JP2003243729A - Thermoelectric material and manufacturing method therefor - Google Patents

Thermoelectric material and manufacturing method therefor

Info

Publication number
JP2003243729A
JP2003243729A JP2002358618A JP2002358618A JP2003243729A JP 2003243729 A JP2003243729 A JP 2003243729A JP 2002358618 A JP2002358618 A JP 2002358618A JP 2002358618 A JP2002358618 A JP 2002358618A JP 2003243729 A JP2003243729 A JP 2003243729A
Authority
JP
Japan
Prior art keywords
thermoelectric material
pressure
crystal grains
axis
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002358618A
Other languages
Japanese (ja)
Other versions
JP3861804B2 (en
Inventor
Yuuma Horio
裕磨 堀尾
Junya Suzuki
順也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2002358618A priority Critical patent/JP3861804B2/en
Publication of JP2003243729A publication Critical patent/JP2003243729A/en
Application granted granted Critical
Publication of JP3861804B2 publication Critical patent/JP3861804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric material where power consumption at a high temperature can be reduced while a high performance index is maintained and to provide the manufacturing method. <P>SOLUTION: A pressure application face when a solidified molding is hot- pressed is restricted and a face vertical to the pressure application face is depressed with pressure. Crystal grains where a face C vertical to the applying direction of pressure are shifted to an expanding direction with the expansion of the solidified molding. The crystal grains where the face C is parallel to the applying direction of pressure are shifted to the expanding direction while they rotate by 90° with an axis (a) as a rotation axis. Thus, the face C of the crystal grains and the axis (a) are adjusted. In the thermoelectric material, an axis (c) is adjusted to a pressurizing axis direction at the time of swage molding. Since a direction parallel to the face C is that where specific resistance (ρ) is low, a Peltier element (a thermoelement) is assembled so that the direction becomes a conduction direction. Consequently, the high performance index (Z) can be obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱電発電及び熱電冷
却等に応用される熱電材料及びその製造方法に関し、特
に、高温下での性能指数を向上させることができる熱電
材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric material applied to thermoelectric power generation, thermoelectric cooling and the like and a method for producing the same, and more particularly to a thermoelectric material capable of improving a figure of merit at high temperature and a method for producing the same.

【0002】[0002]

【従来の技術】熱電材料として、一方向凝固材と焼結材
とがある。一方向凝固材は、以下のようにして作製され
る。図13(a)乃至(c)は従来の一方向凝固材の作
製方法を工程順に示す模式図である。
2. Description of the Related Art Thermoelectric materials include unidirectionally solidified materials and sintered materials. The unidirectionally solidified material is produced as follows. 13A to 13C are schematic views showing a method of manufacturing a conventional unidirectionally solidified material in the order of steps.

【0003】先ず、図13(a)に示すように、石英管
102内に原料101を挿入し、石英管102の端部を
溶断して原料101を石英管102内に封入する。その
後、図13(b)に示すように、石英管102を管状炉
103内に入れて原料101を溶解し、スタンド104
に回転可能に支持された管状炉103を揺動して原料融
液を撹拌する。次いで、図13(c)に示すように、管
状炉103内に温度勾配を付け、結晶方位を配向させつ
つ融液を凝固させる。これにより、凝固組織が一方向に
延びた一方向凝固材が得られる。
First, as shown in FIG. 13 (a), a raw material 101 is inserted into a quartz tube 102, the end of the quartz tube 102 is melted and cut, and the raw material 101 is sealed in the quartz tube 102. After that, as shown in FIG. 13B, the quartz tube 102 is put into the tubular furnace 103 to melt the raw material 101, and the stand 104 is placed.
The raw material melt is agitated by swinging the tubular furnace 103 rotatably supported by. Next, as shown in FIG. 13C, a temperature gradient is applied in the tubular furnace 103 to solidify the melt while orienting the crystal orientation. Thereby, a unidirectionally solidified material having a solidified structure extending in one direction is obtained.

【0004】また、焼結材は、凝固した材料を粉砕し、
ホットプレス等により固化成形する。この場合に、ホッ
トプレスの圧力方向と垂直の方向に低抵抗の結晶方位
(a軸)が成長するため、このa軸方向に電流を流すよ
うに、電極付けして熱電素子及びこの複数の熱電素子か
らなる熱電モジュールを組み立てる。
The sintered material is obtained by crushing a solidified material,
Solidify by hot pressing or the like. In this case, since a low-resistance crystal orientation (a-axis) grows in a direction perpendicular to the pressure direction of the hot press, electrodes are attached to the thermoelectric element and the plurality of thermoelectric elements so that a current flows in the a-axis direction. Assemble the thermoelectric module consisting of elements.

【0005】図14は固化成形される熱電材料の結晶粒
とホットプレス方向を示す模式図である。熱電材料1は
ホットプレスにより固化成形された場合、ホットプレス
の方向に直交する方向に結晶粒2の結晶構造のa軸側が
成長し、ホットプレスの方向に平行な方向に結晶粒2の
結晶構造のc軸側が成長する。熱電材料は一般的に、構
造上異方性を有しているので、図14に示すように、ホ
ットプレスによって、結晶粒2のc軸方向よりもa軸方
向に成長が進行する。これにより、この結晶粒2の粒径
は数mm程度まで成長し、アスペクト比は5以上になる
(例えば、特許文献1参照)。
FIG. 14 is a schematic view showing the crystal grains of the thermoelectric material to be solidified and molded and the hot pressing direction. When the thermoelectric material 1 is solidified by hot pressing, the a-axis side of the crystal structure of the crystal grain 2 grows in the direction orthogonal to the hot pressing direction, and the crystal structure of the crystal grain 2 extends in the direction parallel to the hot pressing direction. Grows on the c-axis side. Since the thermoelectric material generally has structural anisotropy, as shown in FIG. 14, by hot pressing, the growth proceeds in the a-axis direction rather than the c-axis direction of the crystal grains 2. As a result, the grain size of the crystal grain 2 grows to about several mm and the aspect ratio becomes 5 or more (for example, refer to Patent Document 1).

【0006】なお、このような熱電材料の結晶構造は、
図15に示すように、六方晶であると考えられる。この
図15において、ハッチングにて示した六角形の面がC
面である。
The crystal structure of such a thermoelectric material is
As shown in FIG. 15, it is considered to be a hexagonal crystal. In FIG. 15, the hexagonal surface shown by hatching is C
The surface.

【0007】また、インゴットを粉砕して得られた粉末
を焼結し、その後その焼結体にすえ込み鍛造を行う方法
が記載されている(例えば、特許文献2乃至4参照)。
Further, there is described a method in which powder obtained by crushing an ingot is sintered, and then the sintered body is subjected to upset forging (for example, refer to Patent Documents 2 to 4).

【0008】[0008]

【特許文献1】特開2000−232243号公報
(第2−5頁、第5−6図)
[Patent Document 1] Japanese Patent Laid-Open No. 2000-232243
(Pages 2-5, 5-6)

【特許文献2】特開平10−178218号公報 (第
2−6頁、第1図)
[Patent Document 2] Japanese Patent Laid-Open No. 10-178218 (page 2-6, FIG. 1)

【特許文献3】特開平10−178219号公報 (第
2−5頁、第1図)
[Patent Document 3] JP-A-10-178219 (page 2-5, FIG. 1)

【特許文献4】特開平11−261119号公報 (第
2−3頁、第1図)
[Patent Document 4] Japanese Patent Laid-Open No. 11-261119 (page 2-3, FIG. 1)

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述の
従来の熱電材料のうち一方向凝固材は、結晶粒径が数m
m以上になり、へき開性があるため、機械的な衝撃に対
して脆いという欠点がある。また、従来の熱電材料は、
熱伝導率が高い。熱電材料の性能指数Zは、そのゼーベ
ック係数をα(μ・V/K)、比抵抗をρ(Ω・m)、
熱伝導率をκ(W/m・K)としたとき、下記数式1に
示すように表される。
However, among the above-mentioned conventional thermoelectric materials, the unidirectionally solidified material has a crystal grain size of several meters.
Since it is more than m and is cleavable, it has the drawback of being brittle against mechanical impact. In addition, conventional thermoelectric materials are
High thermal conductivity. The figure of merit Z of a thermoelectric material is its Seebeck coefficient α (μ · V / K), specific resistance ρ (Ω · m),
When the thermal conductivity is κ (W / m · K), it is expressed as shown in the following mathematical formula 1.

【0010】[0010]

【数1】Z=α/(ρ×κ)## EQU1 ## Z = α 2 / (ρ × κ)

【0011】この数式1から明らかなように、熱伝導率
κが高いと、性能指数Zが低くなる。従って、熱伝導率
κが高い場合は、性能の向上に限界がある。
As is clear from the mathematical formula 1, when the thermal conductivity κ is high, the figure of merit Z is low. Therefore, when the thermal conductivity κ is high, there is a limit to the improvement in performance.

【0012】また、従来の焼結法による熱電材料は、粉
末の大きさが結晶粒の大きさに等しい。一般的に、結晶
粒の粒径が大きくなるほど熱伝導率κは大きくなると共
に、比抵抗ρは小さくなり、粒径が小さくなるほど熱伝
導率κが小さくなると共に、比抵抗ρは大きくなる。し
かし、粒径の影響は熱伝導率よりも比抵抗の方が小さい
ため、熱伝導率κを小さくするために、結晶粒を微細化
することが性能指数Zの向上のために有効であるが、従
来、粉末粒径と結晶粒径とが同一であるので、結晶粒の
微細化には限界がある。しかも、粉砕時に、粉末表面の
酸化及び不純物の混入があり、これにより、比抵抗が増
大するため、性能指数が低下してしまう。
In the conventional thermoelectric material produced by the sintering method, the size of the powder is equal to the size of the crystal grain. Generally, the larger the grain size of the crystal grains, the larger the thermal conductivity κ and the smaller the specific resistance ρ, and the smaller the grain size, the smaller the thermal conductivity κ and the larger the specific resistance ρ. However, since the influence of the grain size is smaller in the specific resistance than the thermal conductivity, it is effective to refine the crystal grains in order to reduce the thermal conductivity κ for improving the performance index Z. Conventionally, since the powder grain size and the crystal grain size are the same, there is a limit to the refinement of the crystal grains. In addition, during pulverization, the powder surface is oxidized and impurities are mixed in, which increases the specific resistance, which lowers the figure of merit.

【0013】また、すえ込み鍛造を行う製造方法におい
ては、インゴットを粉砕して得られた粉末をそのまま焼
結しているので、粉末内部の配向性が低い。このため、
固化成形体の配向性が低く熱電性能も十分ではない。特
許文献3には、結晶粒のすべり及びへき開面を利用して
配向性を高める方法も記載されているが、このような方
法を採用すると、歪が大量に発生して熱伝導率κが低下
すると共に、比抵抗ρが上昇してしまう。このような不
具合は高温の熱処理及び加工により抑制することも可能
であるが、配向とは無関係な粒成長が生じてしまう。
In addition, in the manufacturing method of upset forging, the powder obtained by crushing the ingot is sintered as it is, so the orientation inside the powder is low. For this reason,
The orientation of the solidified compact is low and the thermoelectric performance is not sufficient. Patent Document 3 also describes a method of enhancing the orientation by utilizing the slippage and cleavage planes of crystal grains, but when such a method is adopted, a large amount of strain occurs and the thermal conductivity κ decreases. At the same time, the specific resistance ρ increases. Although such a problem can be suppressed by high-temperature heat treatment and processing, grain growth unrelated to the orientation occurs.

【0014】更にまた、特許文献1に記載の熱電材料の
熱電性能に関しては、性能指数Z自体は良好であるが、
熱の影響を受けやすい比抵抗ρが比較的高いため、高温
での使用に制限がある。即ち、温度の上昇に連れて比抵
抗ρが上昇するため、ジュール発熱が大きくなる。ま
た、熱電素子の使用メーカにおいては、その駆動電流が
定められている。従って、熱電素子(ペルチェ素子)と
しての吸熱量が低下して消費電力が増加してしまう。こ
のため、パッケージ内の温度が90℃に達するような高
温環境下では、消費電力が高くなってしまう。
Further, regarding the thermoelectric performance of the thermoelectric material described in Patent Document 1, the performance index Z itself is good,
Since the specific resistance ρ, which is easily affected by heat, is relatively high, its use at high temperatures is limited. That is, since the specific resistance ρ increases as the temperature increases, Joule heat generation increases. Further, the driving current is set by the manufacturer of the thermoelectric element. Therefore, the amount of heat absorbed by the thermoelectric element (Peltier element) is reduced and power consumption is increased. Therefore, in a high temperature environment where the temperature inside the package reaches 90 ° C., power consumption increases.

【0015】本発明はかかる問題点に鑑みてなされたも
のであって、高い性能指数を維持したまま高温下での消
費電力を低減することができる熱電材料及びその製造方
法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermoelectric material capable of reducing power consumption at high temperatures while maintaining a high figure of merit, and a method for manufacturing the same. And

【0016】[0016]

【課題を解決するための手段】本発明に係る熱電材料熱
電材料は、Bi及びSbからなる群から選択された少な
くとも1種の元素と、Te及びSeからなる群から選択
された少なくとも1種の元素とからなる組成を有する熱
電素材に対し1方向から圧力を印加することにより前記
熱電素材内の結晶粒のa軸を前記圧力の印加方向に平行
に配向させ、前記圧力を印加した面を拘束しながらこの
拘束された面に垂直な方向から圧力を印加するすえ込み
鍛造を行うことにより、前記熱電素材を展延させて結晶
粒のC面を回転又はすべりにより前記すえこみ鍛造時の
圧力の印加方向に垂直になるように配向させたものであ
ることを特徴とする。本願明細書において、a軸とは、
Bi−Te系熱電材料が有する六方晶系の結晶のa軸を
さす。
The thermoelectric material according to the present invention comprises at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se. By applying pressure from one direction to a thermoelectric material having a composition consisting of elements, the a-axes of the crystal grains in the thermoelectric material are oriented parallel to the direction in which the pressure is applied, and the surface to which the pressure is applied is constrained. However, by performing upset forging in which pressure is applied from a direction perpendicular to the constrained surface, the thermoelectric material is spread and the C-plane of the crystal grains is rotated or slipped to reduce the pressure during upset forging. It is characterized in that it is oriented so as to be perpendicular to the application direction. In this specification, the a-axis is
The a-axis of the hexagonal crystal of the Bi-Te-based thermoelectric material.

【0017】なお、前記熱電素材は、Bi及びSbから
なる群から選択された少なくとも1種の元素と、Te及
びSeからなる群から選択された少なくとも1種の元素
とからなる組成の溶融金属を急冷凝固させて一方向凝固
した薄片であり、前記結晶粒のa軸が前記薄片の厚さ方
向に揃っていることが好ましい。
The thermoelectric material is a molten metal having a composition of at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se. It is preferable that the thin piece is unidirectionally solidified by rapid cooling and the a-axes of the crystal grains are aligned in the thickness direction of the thin piece.

【0018】本発明に係る熱電材料の製造方法は、Bi
及びSbからなる群から選択された少なくとも1種の元
素と、Te及びSeからなる群から選択された少なくと
も1種の元素とからなる組成を有する熱電素材に対し1
方向から圧力を印加することにより前記熱電素材内の結
晶粒のa軸を前記圧力の印加方向に平行に配向させる工
程と、前記圧力を印加した面を拘束しながらこの拘束さ
れた面に垂直な方向から圧力を印加するすえ込み鍛造を
行うことにより、前記熱電素材を展延させて結晶粒のC
面を回転又はすべりにより前記すえこみ鍛造時の圧力の
印加方向に垂直になるように配向させる工程と、を有す
ることを特徴とする。
The method for producing a thermoelectric material according to the present invention is based on Bi
1 for a thermoelectric material having a composition of at least one element selected from the group consisting of Sb and Sb and at least one element selected from the group consisting of Te and Se.
Applying a pressure from the direction to orient the a-axis of the crystal grains in the thermoelectric material parallel to the direction of applying the pressure; and a plane perpendicular to the constrained surface while constraining the surface to which the pressure is applied. By carrying out swaging forging in which pressure is applied from the direction, the thermoelectric material is spread to form C
And a step of orienting the surface by rotation or sliding so as to be perpendicular to the direction in which the pressure is applied during upset forging.

【0019】なお、前記熱電素材は、Bi及びSbから
なる群から選択された少なくとも1種の元素と、Te及
びSeからなる群から選択された少なくとも1種の元素
とからなる組成の溶融金属を急冷凝固させて一方向凝固
した薄片であり、前記結晶粒のa軸を前記圧力の印加方
向に平行に配向させる工程は、前記結晶粒のa軸を前記
薄片の厚さ方向に揃わせる工程を有することが好まし
い。
The thermoelectric material is a molten metal having a composition of at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se. The step of orienting the a-axis of the crystal grains parallel to the direction of applying the pressure is a unidirectionally solidified thin piece that is rapidly cooled and solidified, and the step of aligning the a-axis of the crystal grains in the thickness direction of the thin piece is performed. It is preferable to have.

【0020】また、前記結晶粒のa軸を前記圧力の印加
方向に平行に配向させる工程の後に、前記熱電素材を還
元ガス雰囲気又は不活性ガス雰囲気中で熱処理する工程
を有することが好ましい。
Further, it is preferable that after the step of orienting the a-axis of the crystal grains parallel to the direction of applying the pressure, a step of heat-treating the thermoelectric material in a reducing gas atmosphere or an inert gas atmosphere is included.

【0021】本発明においては、押圧によりa軸が一方
向に揃った熱電素材に対して、その押圧面を拘束しなが
らこの拘束された面に垂直な方向から圧力を印加するす
え込み鍛造を行うため、すえ込み鍛造の押圧方向に垂直
な方向であって拘束されていない面に垂直な方向に熱電
素材が展延する。そして、この展延に伴って、各結晶粒
のa軸を含むC面が互いに平行に並ぶようになる。従っ
て、c軸の配向性が極めて高くなり、特に比抵抗が低い
方向を通電方向として熱電素子を組み立てることによ
り、性能指数を向上させることができ、高い性能指数を
維持したまま高温下での消費電力を低減することが可能
となる。
In the present invention, swaging forging is performed on a thermoelectric material whose a-axis is aligned in one direction by pressing, while pressing the pressing surface and applying pressure from a direction perpendicular to the restricted surface. Therefore, the thermoelectric material spreads in a direction perpendicular to the pressing direction of the swaging forging and perpendicular to the unconstrained surface. Along with this spreading, the C-planes including the a-axis of each crystal grain are arranged in parallel with each other. Therefore, the orientation of the c-axis becomes extremely high, and the performance index can be improved by assembling the thermoelectric element with the direction of the low specific resistance as the current-carrying direction, and the consumption at high temperature can be maintained while maintaining the high performance index. It becomes possible to reduce the power.

【0022】[0022]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。液体急冷法により熱電材料の箔を製造するこ
とができ、この作製した箔はそれ自体が粉末のように微
細である場合がある。このような微細でない場合は、得
られた箔を粉砕し、粉末とする。このようにして、液体
急冷法により得られた熱電材料の粉末は、その内部に高
密度の歪み及び欠陥が導入されている。この急冷箔にお
いては、水素ガスの還元雰囲気中で熱処理したり、ホッ
トプレス又は押出成形等の固化成形したりする際に、歪
み又は欠陥が核となって微細な再結晶粒が粉末(箔)の
内部に析出する。この結晶粒の粒界(界面)は、粉砕粉
末同士の界面に比べて不純物濃度が低いために、比抵抗
(ρ)を低く保持したまま、粒界によるフォノン散乱を
増加させて熱伝導率(κ)を低減することができる。こ
れにより、性能指数(Z)を著しく向上させることがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. A foil of thermoelectric material can be produced by a liquid quenching method, and the produced foil itself may be fine like a powder. If it is not fine, the obtained foil is crushed into powder. In this way, the thermoelectric material powder obtained by the liquid quenching method has high-density strains and defects introduced therein. In this quenched foil, when heat treatment is performed in a reducing atmosphere of hydrogen gas, or during solidification molding such as hot pressing or extrusion molding, fine recrystallized grains become powder (foil) with nuclei of strain or defects. Is deposited inside. Since the grain boundary (interface) of the crystal grains has a lower impurity concentration than the interface between the pulverized powders, the phonon scattering due to the grain boundary is increased and the thermal conductivity (ratio) is increased while keeping the specific resistance (ρ) low. κ) can be reduced. Thereby, the figure of merit (Z) can be significantly improved.

【0023】更に、この急冷箔中の歪みを利用した結晶
は、固化成形時に加圧方向と平行の方向に長軸が偏倚
し、加圧方向と垂直の方向に短軸が偏倚して、アスペク
ト比が大きな結晶粒として成長し、又は再結晶する特徴
を有する。この場合に、長軸方向の比抵抗(ρ)値が短
軸方向の比抵抗(ρ)値よりも著しく低下するため、こ
の方向の性能指数が高くなる。また、押圧方向に平行に
C面を揃えると、更に比抵抗ρが低下し、性能指数Zが
高くなる。従って、熱電変換素子として、熱電モジュー
ルに組み立てる際には、最初の固化成形(1次固化成
形)時の加圧方向と平行の方向、即ち長軸方向に電流が
流れるように電極を取り付けることが必要である。
Further, in the crystal utilizing the strain in the quenched foil, the major axis is biased in the direction parallel to the pressing direction during solidification forming, and the minor axis is biased in the direction perpendicular to the pressing direction to obtain an aspect ratio. It has a characteristic that it grows as a crystal grain having a large ratio or recrystallizes. In this case, the resistivity (ρ) value in the major axis direction is significantly lower than the resistivity (ρ) value in the minor axis direction, so that the figure of merit in this direction is high. Further, if the C planes are aligned parallel to the pressing direction, the specific resistance ρ further decreases and the figure of merit Z increases. Therefore, when assembling a thermoelectric conversion element into a thermoelectric conversion element, it is necessary to attach electrodes so that a current flows in a direction parallel to the pressurizing direction at the first solidification molding (primary solidification molding), that is, the long axis direction. is necessary.

【0024】本実施例においては、Bi、Sb及びTe
からなる組成物にSeを添加して製造された熱電材料を
使用しているが、他の種々の組成を有する熱電材料を使
用しても、同様の効果を得ることができる。例えば、本
発明において、熱電材料としては、Bi及びSbのいず
れか一方又は両方と、Te及びSeのいずれか一方又は
両方とからなるものを使用することができる。また、熱
電材料としては、前記組成の他に、I、Cl、Hg、B
r、Ag及びCuからなる群から選択された少なくとも
1種の元素が添加されているものも使用することができ
る。
In this embodiment, Bi, Sb and Te are used.
Although the thermoelectric material manufactured by adding Se to the composition consisting of is used, the same effect can be obtained by using thermoelectric materials having other various compositions. For example, in the present invention, as the thermoelectric material, a material composed of either one or both of Bi and Sb and one or both of Te and Se can be used. As the thermoelectric material, in addition to the above composition, I, Cl, Hg, B
It is also possible to use those to which at least one element selected from the group consisting of r, Ag and Cu is added.

【0025】次に、本発明の実施例に係る熱電材料の製
造方法について説明する。図1は本発明の実施例に係る
熱電材料の製造方法を示すフローチャートである。
Next, a method for manufacturing a thermoelectric material according to an embodiment of the present invention will be described. FIG. 1 is a flowchart showing a method for manufacturing a thermoelectric material according to an embodiment of the present invention.

【0026】本実施例においては、先ず、原料であるB
i、Sb、Te及びSeの秤量を行い(ステップS
1)、図2(a)に示すように、この原料41をアンプ
ル42に挿入する(ステップS2)。なお、この封入に
際しては、原料41をアンプル42内に入れた後、アン
プル42内を真空引きし、その内部が真空となったまま
か、又は不活性ガスを導入した状態として、図2(b)
に示すように、アンプル42の口を封じ切る。その後、
図2(c)に示すように、アンプル42を600乃至7
00℃の管状炉43内に入れて原料41を溶解し、管状
炉43をスタンド44に回転可能に支持させてゆりかご
のように揺動して原料融液を撹拌する。次いで、融液を
冷却して凝固させる。このようにして、インゴットを作
製する(ステップS3)。
In this embodiment, first, the raw material B
i, Sb, Te and Se are weighed (step S
1), as shown in FIG. 2A, this raw material 41 is inserted into the ampoule 42 (step S2). In addition, at the time of this encapsulation, after the raw material 41 is put into the ampoule 42, the inside of the ampoule 42 is evacuated, and the inside of the ampoule 42 is kept in a vacuum state or an inert gas is introduced. )
The mouth of the ampoule 42 is sealed off as shown in FIG. afterwards,
As shown in FIG. 2C, the ampoule 42 is placed at 600 to 7
The raw material 41 is melted by being placed in a tubular furnace 43 at 00 ° C., the tubular furnace 43 is rotatably supported by a stand 44, and is swung like a cradle to stir the raw material melt. Then, the melt is cooled and solidified. In this way, an ingot is manufactured (step S3).

【0027】図3は液体急冷法により熱電材料の粉末を
製造する方法を示す図である。銅製ロール12を回転さ
せつつ、その頂部15に、先端にスリット又は複数の孔
からなる射出口が設けられた石英ノズル11内に貯留し
た熱電材料の溶湯13をArガスにより加圧して供給す
る。これにより、溶湯13が銅製ロール12に接触して
急冷され、急冷薄帯14となってロール12の回転によ
り送り出される(ステップS4)。
FIG. 3 is a diagram showing a method for producing powder of thermoelectric material by the liquid quenching method. While rotating the copper roll 12, the molten metal 13 of thermoelectric material stored in a quartz nozzle 11 having a slit or a plurality of holes formed in the tip thereof at its tip 15 is pressurized by Ar gas and supplied. As a result, the molten metal 13 comes into contact with the copper roll 12 and is rapidly cooled, and becomes a quenched thin ribbon 14 which is sent out by the rotation of the roll 12 (step S4).

【0028】図4は急冷薄片における結晶粒の成長方向
を示す模式図である。冷却ロール30の表面に急冷薄片
31が形成され、結晶がロール表面から遠ざかる方向
(箔の厚さ方向)に成長し、この方向に長軸Dを有し、
ロール表面に平行の方向に短軸dを有する結晶構造32
が得られる。急冷薄片31内における結晶の形状及び配
向に関しては、元々長軸Dの方向とC面とが平行になっ
ている。そして、この急冷薄片31に対し、図5に示す
ように、長軸に平行の方向に応力を印加すると、六方晶
であって、そのC面が押圧方向に平行の結晶構造33が
得られる。
FIG. 4 is a schematic diagram showing the growth direction of crystal grains in a quenched thin piece. A quenching thin piece 31 is formed on the surface of the cooling roll 30, crystals grow in a direction away from the roll surface (thickness direction of foil), and have a major axis D in this direction,
Crystal structure 32 having a minor axis d in a direction parallel to the roll surface
Is obtained. Regarding the shape and orientation of the crystal in the quenched thin piece 31, the direction of the long axis D is originally parallel to the C plane. Then, when stress is applied to the quenched thin piece 31 in a direction parallel to the major axis, a crystal structure 33 which is a hexagonal crystal and whose C-plane is parallel to the pressing direction is obtained.

【0029】図3のような液体急冷法(単ロール法)の
場合を例にとると、熱電材料の溶湯が冷却ロールの表面
で冷却され、急冷薄帯が形成されるとき、溶湯は冷却ロ
ールの表面側の部分が先ず冷却され、その後順次冷却ロ
ールから離れる部分が冷却されていく。従って、ロール
表面側が低温でそれから離れるに従って高温になる温度
勾配が生じる。このため、結晶粒はロール方面から遠ざ
かる方向に成長し、この方向に長軸Dを有し、ロール表
面に平行の方向に短軸dを有するアスペクト比の大きな
結晶粒となる。急冷薄帯14中にはこのような厚さ方向
と平行に長軸が有する結晶粒が多数並ぶ。つまり、各結
晶粒のC面が急冷薄帯14の厚さ方向に平行になってお
り、急冷薄帯14の厚さ方向はこの材料における低抵抗
の方向となっている。
Taking the case of the liquid quenching method (single roll method) as shown in FIG. 3 as an example, when the molten metal of the thermoelectric material is cooled on the surface of the cooling roll to form a quenched ribbon, the molten metal is cooled. The part on the front surface side is first cooled, and then the part which is separated from the cooling roll is sequentially cooled. Therefore, a temperature gradient occurs in which the roll surface side is low in temperature and becomes higher in temperature as it moves away from it. Therefore, the crystal grains grow in a direction away from the roll surface, and have a long axis D in this direction and a short axis d in a direction parallel to the roll surface, and have a large aspect ratio. In the quenched ribbon 14, a large number of crystal grains having the major axis are arranged in parallel with the thickness direction. That is, the C plane of each crystal grain is parallel to the thickness direction of the quenched ribbon 14, and the thickness direction of the quenched ribbon 14 is the direction of low resistance in this material.

【0030】更に、この急冷時の溶湯の温度を制御する
と、熱電材料の成長する結晶方位を制御することがで
き、図5のように急冷薄片31の厚さ方向と平行に六方
晶のa軸及びC面も整列する。
Further, by controlling the temperature of the molten metal during the rapid cooling, the crystallographic orientation in which the thermoelectric material grows can be controlled. As shown in FIG. 5, the hexagonal a-axis is parallel to the thickness direction of the quenched thin piece 31. And C-plane are also aligned.

【0031】次に、必要に応じて、図3に示す液体急冷
法により急冷されて得られた急冷薄帯14を水素ガス中
又はArガス中で熱処理(水素還元処理又はアニール処
理:ステップS5)する。この熱処理条件は、例えば、
温度が400℃で、時間が8時間である。図6(a)は
熱処理前の急冷薄帯14の組織を示す断面図、(b)は
熱処理後の急冷薄帯14の組織を示す断面図である。図
6(a)に示すように、熱処理前、即ち急冷凝固ままの
組織では、厚さ方向に延びる結晶粒51の他に急冷薄帯
14の表面に多量のチル晶52が存在している。これに
対し、熱処理を施すことにより、図6(b)に示すよう
に、チル晶52が消失する。また、熱処理中には、急冷
薄帯14中のTe原子及びSe原子が粒界拡散によりそ
の表面に偏析するようになる。これは、焼結性の向上、
キャリアの移動度の向上に効果がある。
Next, if necessary, the quenched ribbon 14 obtained by quenching by the liquid quenching method shown in FIG. 3 is heat-treated in hydrogen gas or Ar gas (hydrogen reduction treatment or annealing treatment: step S5). To do. This heat treatment condition is, for example,
The temperature is 400 ° C. and the time is 8 hours. FIG. 6A is a sectional view showing the structure of the quenched ribbon 14 before heat treatment, and FIG. 6B is a sectional view showing the structure of the quenched ribbon 14 after heat treatment. As shown in FIG. 6A, in the structure before the heat treatment, that is, in the structure as rapidly solidified, a large amount of chill crystals 52 are present on the surface of the quenched ribbon 14 in addition to the crystal grains 51 extending in the thickness direction. On the other hand, the heat treatment causes the chill crystals 52 to disappear, as shown in FIG. Further, during the heat treatment, Te atoms and Se atoms in the quenched ribbon 14 are segregated on the surface due to grain boundary diffusion. This is an improvement in sinterability,
Effective for improving carrier mobility.

【0032】その後、薄帯14を必要に応じて粉砕し、
分級して粒度を揃える。そして、適度な粒度範囲の薄帯
(箔)14を角柱状の型(図示せず)内に積層しながら
装入し、加熱した熱間で側面を拘束した状態で軸方向に
圧力Pを印加し、ホットプレスする。なお、液体急冷に
より得られた薄帯14においては、図7に示すように、
各結晶粒のa軸(C面)が薄帯14の厚さ方向に揃って
いるため、ホットプレス時の圧力Pはa軸に対して平行
に印加されることになる。このホットプレスの結果、プ
レス方向(押圧方向)に長軸が揃い、押圧方向に直交す
る方向に短軸が揃った結晶粒を有する結晶組織の角柱状
の固化成形体が得られる(1次固化成形)される(ステ
ップS6)。
Thereafter, the thin strip 14 is crushed if necessary,
Classify and make the particle size uniform. Then, a thin strip (foil) 14 having an appropriate grain size range is loaded while being stacked in a prismatic mold (not shown), and a pressure P is applied in the axial direction in a state where the side surface is restrained by the heated heat. And hot press. In addition, in the ribbon 14 obtained by liquid quenching, as shown in FIG.
Since the a-axis (C plane) of each crystal grain is aligned in the thickness direction of the ribbon 14, the pressure P during hot pressing is applied parallel to the a-axis. As a result of this hot pressing, a prismatic solidified compact having a crystal structure having crystal grains whose major axis is aligned in the pressing direction (pressing direction) and whose minor axis is aligned in the direction orthogonal to the pressing direction is obtained (primary solidification). Molding) (step S6).

【0033】液体急冷法により製造した急冷薄片には歪
み及び欠陥が導入されている。急冷薄片を粉砕し、又は
粉砕せずにホットプレス等によって固化成形する際、結
晶粒の粒成長が起こるか、又はこの歪み又は欠陥が核と
なって再結晶粒が析出する。この再結晶粒は、固化成形
時のプレス方向と平行の方向に長軸を有し、プレス方向
と垂直の方向に短軸を有するアスペクト比の大きな結晶
粒とすることができる。
Strains and defects have been introduced into the quenched flakes produced by the liquid quenching method. When the rapidly cooled flakes are crushed or solidified by hot pressing or the like without crushing, grain growth of crystal grains occurs, or this strain or defect serves as nuclei to precipitate recrystallized grains. The recrystallized grains can be crystal grains with a large aspect ratio having a major axis in a direction parallel to the pressing direction during solidification molding and a minor axis in a direction perpendicular to the pressing direction.

【0034】従って、急冷薄片(粉)を固化成形する
際、急冷薄帯の厚さ方向と平行方向に、即ち急冷薄帯中
の結晶粒の長軸と平行の方向に押圧し、固化成形時に生
成する再結晶粒も長軸が押圧方向に揃うようにすると、
結果として、結晶粒の長軸方向が押圧方向に平行の方向
に揃った結晶組織を有する固化成形体が得られる。
Therefore, when solidifying the quenched thin piece (powder), it is pressed in the direction parallel to the thickness direction of the quenched ribbon, that is, in the direction parallel to the long axis of the crystal grains in the quenched ribbon, and at the time of solidification molding. If the long axes of the recrystallized grains that are generated are aligned in the pressing direction,
As a result, a solidified compact having a crystal structure in which the major axis direction of the crystal grains is aligned in the direction parallel to the pressing direction is obtained.

【0035】また、本実施例においては、前述のよう
に、熱処理により急冷薄帯14の表面にTe原子及びS
e原子が偏析しているので、急冷薄帯14間でこれらの
原子が互いに拡散し合いやすく、固化成形されやすい。
Further, in this embodiment, as described above, Te atoms and S atoms are formed on the surface of the quenched ribbon 14 by the heat treatment.
Since the e-atoms are segregated, these atoms are easily diffused between the quenched ribbons 14 and are easily solidified and molded.

【0036】その後、固化成形体に対して、すえ込み鍛
造を行う(ステップS7)。図8はすえ込み鍛造の方法
を示す模式図である。すえ込み鍛造を行う際には、先
ず、図8(a)に示すように、固化成形体61のホット
プレス時の圧力印加面61aを拘束し、圧力印加面61
aに垂直な面に対して圧力P2で押圧する。この結果、
固化成形体61は、圧力印加面61a及び圧力P2が印
加された面に平行な方向に展延することになる。
After that, upsetting is performed on the solidified compact (step S7). FIG. 8 is a schematic view showing a method of upsetting. When performing the swaging forging, first, as shown in FIG. 8A, the pressure applying surface 61a of the solidified molded body 61 during hot pressing is constrained, and the pressure applying surface 61 is restrained.
The surface perpendicular to a is pressed with pressure P2. As a result,
The solidified molded body 61 extends in a direction parallel to the pressure application surface 61a and the surface to which the pressure P2 is applied.

【0037】図9乃至図11は固化成形体61の展延に
伴う結晶粒の配向の変化を示す模式図である。図9乃至
図11において、(a)は展延前の状態を示し、(b)
及び(c)は展延後の状態を示す。図9(a)におい
て、X軸はすえこみ鍛造の圧力印加方向を、Y軸は展延
方向を、Z軸はホットプレス時の圧力印加方向を示す。
また、図9は圧力P2の印加方向(X軸方向)に対して
傾斜した方向から見たときの変化を示し、図10は圧力
P2の印加方向(X軸方向)から見たときの変化を示
し、図11は拘束面(圧力印加面61a)に垂直な方向
(Z軸方向)から見たときの変化を示す。固化成形体6
1の展延に伴い、C面が圧力P2の印加方向(X軸方
向)に垂直な結晶粒62は、図10(b)及び図11
(b)に示すように、圧力P2の印加方向(X軸方向)
とC面とが垂直の状態のままで、C面の1辺がY軸と平
行になるように回転し、更に展延方向(Y軸方向)にず
れる。又は、図10(c)及び図11(c)に示すよう
に、圧力P2の印加方向(X軸方向)とC面とが垂直の
状態のままでC面が回転せずに、C面の1辺がZ軸と平
行になるように配向し、展延方向(Y軸方向)にずれ
る。一方、C面が圧力P2の印加方向に平行な結晶粒6
3は、圧力P2の印加方向とC面とが垂直になるように
90゜回転し、更に、図10(b)及び図10(b)に
示すように、C面の1辺がY軸と平行になるように回転
し、展延方向(Y軸方向)にずれる。又は、図10
(c)及び図11(c)に示すように、C面の1辺がZ
軸と平行になるように配向し、展延方向(Y軸方向)に
ずれる。この結果、図9乃至図11に示すように、各結
晶粒のC面及びa軸が揃う。
9 to 11 are schematic diagrams showing changes in the orientation of the crystal grains as the solidified compact 61 is spread. 9 to 11, (a) shows a state before spreading, (b)
And (c) show the state after spreading. In FIG. 9A, the X axis indicates the pressure application direction of upset forging, the Y axis indicates the spreading direction, and the Z axis indicates the pressure application direction during hot pressing.
Further, FIG. 9 shows a change when viewed from a direction inclined with respect to the application direction of the pressure P2 (X-axis direction), and FIG. 10 shows a change when viewed from the application direction of the pressure P2 (X-axis direction). 11 shows the change when viewed from the direction (Z-axis direction) perpendicular to the constraining surface (pressure applying surface 61a). Solidified compact 6
With the spread of No. 1, the crystal grains 62 whose C-plane is perpendicular to the application direction of the pressure P2 (X-axis direction) are shown in FIGS.
As shown in (b), the application direction of the pressure P2 (X-axis direction)
While the C and C planes remain vertical, one side of the C plane rotates so as to be parallel to the Y axis, and further shifts in the spreading direction (Y axis direction). Alternatively, as shown in FIGS. 10 (c) and 11 (c), the C plane does not rotate and the C plane does not rotate while the application direction (X-axis direction) of the pressure P2 and the C plane remain vertical. It is oriented so that one side is parallel to the Z axis and is offset in the spreading direction (Y axis direction). On the other hand, crystal grains 6 whose C plane is parallel to the direction of application of pressure P2
3 rotates 90 ° so that the direction of application of the pressure P2 and the C-plane are perpendicular to each other, and as shown in FIGS. 10 (b) and 10 (b), one side of the C-plane is the Y-axis. It rotates so that it becomes parallel, and it shifts in the spreading direction (Y-axis direction). Alternatively, FIG.
As shown in (c) and FIG. 11 (c), one side of the C plane is Z
It is oriented so that it is parallel to the axis and is offset in the spreading direction (Y-axis direction). As a result, as shown in FIGS. 9 to 11, the C planes and a-axes of the respective crystal grains are aligned.

【0038】そして、このようにして得られた熱電材料
においては、すえ込み鍛造時の加圧軸方向にc軸が揃
う。即ち、すえ込み鍛造時の展延方向にC面が揃う。C
面に平行な方向は比抵抗(ρ)が低い方向であるため、
この方向が通電方向となるように、ペルチェ素子(熱電
素子)を組み立てることにより、高い性能指数(Z)を
得ることができる。また、このような熱電素子は、例え
ば光通信に使用することができ、高温になるパッケージ
内で使用されてもジュール熱が少なく消費電力が低いペ
ルチェ素子として極めて有効である。
In the thermoelectric material thus obtained, the c-axis is aligned in the pressing axis direction during upset forging. That is, the C planes are aligned in the spreading direction during upsetting. C
Since the direction parallel to the plane is the direction where the specific resistance (ρ) is low,
A high performance index (Z) can be obtained by assembling the Peltier device (thermoelectric device) so that this direction is the energization direction. Further, such a thermoelectric element can be used for optical communication, for example, and is extremely effective as a Peltier element that has low Joule heat and low power consumption even when used in a package having a high temperature.

【0039】更に、本実施例においては、熱処理により
急冷薄帯14中のチル晶を消失させているので、その結
果得られた熱電材料の焼結性が高く機械的強度に優れる
と共に、配向性がより一層向上する。即ち、従来のよう
に熱処理を行わない場合には、急冷薄帯の表面に存在す
るチル晶がその後のホットプレス時に不規則に成長す
る。実際に、このような方法で製造した熱電材料の組織
を観察すると、急冷薄帯の界面に、配向性が高い結晶粒
ではなく、チル晶の成長により得られた結晶粒が存在
し、結晶粒の配向が乱れている。このため、この領域が
焼結時の変形抵抗となり、焼結性が低くなっている。こ
れに対し、本実施例のように、熱処理を行うと、急冷時
の歪みが緩和されると共に、チル晶が消失し、焼結(ホ
ットプレス)時の変形抵抗が著しく緩和され、焼結性が
向上する。また、チル晶の成長もあり得ないので、高い
配向性が得られる。更に、前述のように、熱処理時のT
e原子及びSe原子の拡散によっても焼結性が向上す
る。
Further, in this embodiment, since the chill crystals in the quenched ribbon 14 are eliminated by heat treatment, the thermoelectric material obtained as a result has high sinterability and excellent mechanical strength, and orientation Is further improved. That is, when heat treatment is not performed as in the conventional case, the chill crystals existing on the surface of the quenched ribbon grow irregularly during the subsequent hot pressing. In fact, when observing the structure of the thermoelectric material produced by such a method, the crystal grains obtained by the growth of chill crystals are present at the interface of the quenched ribbon, not the crystal grains with high orientation. The orientation of is disturbed. Therefore, this region serves as a deformation resistance during sintering, and the sinterability is low. On the other hand, when heat treatment is performed as in this example, strain during quenching is relaxed, chill crystals disappear, deformation resistance during sintering (hot pressing) is significantly relaxed, and sinterability is improved. Is improved. In addition, since chill crystals cannot grow, high orientation can be obtained. Further, as described above, T during heat treatment
The sinterability is also improved by the diffusion of e atoms and Se atoms.

【0040】なお、すえ込み鍛造時の雰囲気は、酸素濃
度を5000ppm以下とし、露点が−20℃以下とな
る水分濃度としたものであることが好ましい。
It is preferable that the atmosphere during the upsetting is such that the oxygen concentration is 5000 ppm or less and the dew point is -20 ° C. or less.

【0041】また、液体急冷法によって結晶内部に配向
を有する箔又は粉末を得る方法としては、例えば単ロー
ル法及びガスアトマイズ法があるが、本発明はこれらに
限定されるものではない。
The method for obtaining the foil or powder having the orientation inside the crystal by the liquid quenching method includes, for example, the single roll method and the gas atomizing method, but the present invention is not limited thereto.

【0042】更に、すえ込み鍛造における加工の程度に
ついては、変化量を50乃至90%程度とすることが好
ましい。
Further, with respect to the degree of working in the swaging forging, it is preferable that the variation is about 50 to 90%.

【0043】次に、種々の条件で熱電材料を作製し、そ
の熱電特性を求めた結果について説明する。先ず、種々
の組成を有する熱電材料を製造し、最初のホットプレス
(1次固化成形)時の押圧方向に平行の方向について、
比抵抗ρ、熱伝導率κ及びゼーベック係数αから性能指
数Zを算出した。その結果を下記表1乃至表20に示
す。表1及び表2は、各熱電材料の組成を示し、表3及
び表4は、還元処理を行った場合の比抵抗ρ、熱伝導率
κ、ゼーベック係数α及び性能指数Zの値を示し、表5
及び表6は、還元処理を行わなかった場合の比抵抗ρ、
熱伝導率κ、ゼーベック係数α及び性能指数Zの値を示
す。
Next, the results of producing thermoelectric materials under various conditions and determining their thermoelectric characteristics will be described. First, the thermoelectric materials having various compositions are manufactured, and the direction parallel to the pressing direction at the time of the first hot pressing (primary solidification molding) is
The figure of merit Z was calculated from the specific resistance ρ, the thermal conductivity κ and the Seebeck coefficient α. The results are shown in Tables 1 to 20 below. Tables 1 and 2 show the composition of each thermoelectric material, and Tables 3 and 4 show the values of the specific resistance ρ, the thermal conductivity κ, the Seebeck coefficient α, and the figure of merit Z when the reduction treatment is performed, Table 5
And Table 6 shows the specific resistance ρ when no reduction treatment is performed,
The values of thermal conductivity κ, Seebeck coefficient α and figure of merit Z are shown.

【0044】実施例No.1乃至7では、各組成に調合
したインゴットから液体急冷法により薄片又は粉末を作
製し、水素雰囲気中で400℃、10時間の還元処理を
施し、その後箔を積層して箔の厚さ方向(C面に平行な
方向)を押圧方向としてホットプレスを行うことによ
り、固化成形体を作製した。また、還元処理を行わない
固化成形体も作製した。更に、固化成形体のホットプレ
ス時の押圧面を拘束しながら、他の1方向から圧力を印
加することにより、すえ込み鍛造を行った。ホットプレ
スでは、超硬ダイスを使用し、雰囲気はAr雰囲気とし
た。また、固化成形体の形状は各辺の長さが50mmの
立方体とし、0.5(t/cm)の圧力を、P型熱電
材料では380℃で1時間、N型熱電材料では450℃
で1時間印加し続けた。また、すえ込み鍛造では、超硬
ダイスを使用し、0.8(t/cm )の圧力を400
℃で5時間印加し続け、鍛造時押圧方向の変化量は55
%とした。また、すえ込み鍛造時の雰囲気について、酸
素濃度は5000ppm以下とし、水分濃度について
は、露点温度を−20℃以下とした。図12は鍛造時押
圧方向の変化量を示す模式図である。図12における寸
法a及びbに対して、b/a×100により変化量が求
められる。
Example No. In 1 to 7, compounded to each composition
Thin slices or powders are made from the ingots by the liquid quenching method.
Manufactured and subjected to reduction treatment in a hydrogen atmosphere at 400 ° C for 10 hours
And then stack the foils in the thickness direction of the foil (parallel to the C surface).
Direction) as the pressing direction.
Then, a solidified molded body was produced. Also, do not perform reduction processing
A solidified compact was also produced. Furthermore, the hot press of the solidified compact
Pressure is applied from one direction while restraining the pressing surface during
Upsetting was performed by adding. Hot pre
For the space, use a carbide die and set the atmosphere to Ar atmosphere.
It was Further, the shape of the solidified molded body is such that each side has a length of 50 mm.
Cube, 0.5 (t / cmTwo) Pressure to P-type thermoelectric
Material is 380 ℃ for 1 hour, N-type thermoelectric material is 450 ℃
Application was continued for 1 hour. In addition, in upset forging, carbide
Using a die, 0.8 (t / cm Two) Pressure is 400
Continue to apply for 5 hours at ℃, the amount of change in the pressing direction during forging is 55
%. In addition, regarding the atmosphere during upsetting,
Elementary concentration shall be 5000ppm or less
Has a dew point temperature of −20 ° C. or lower. Figure 12 shows the forging
It is a schematic diagram which shows the amount of change of a pressure direction. Dimension in Figure 12
For method a and b, change amount is calculated by b / a × 100
Can be

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】これらの結果に示すように、各実施例にお
いて、所定のすえ込み鍛造を施すことにより、高い性能
指数(Z)を維持したまま比抵抗(ρ)が低下した。即
ち、これらの処理により高温での使用に好適な熱電材料
が得られた。
As shown in these results, in each of the examples, by performing the predetermined upset forging, the specific resistance (ρ) decreased while maintaining the high performance index (Z). That is, these treatments yielded a thermoelectric material suitable for use at high temperatures.

【0052】[0052]

【発明の効果】以上詳述したように、本発明によれば、
すえ込み鍛造の押圧方向に垂直な方向であって拘束され
ていない面に垂直な方向に熱電素材が展延し、この展延
に伴って、各結晶粒のa軸を含むC面が互いに平行に並
ぶようになるため、c軸の配向性が極めて高くなり、特
に比抵抗が低い方向を通電方向として熱電素子を組み立
てることにより、性能指数を向上させることができる。
この結果、高い性能指数を維持したまま高温下での消費
電力を低減することができる。
As described in detail above, according to the present invention,
The thermoelectric material spreads in a direction perpendicular to the pressing direction of upset forging and perpendicular to the unconstrained surface, and the C-planes including the a-axis of each crystal grain are parallel to each other with this spreading. Since the c-axis is extremely aligned, the figure of merit can be improved by assembling the thermoelectric element with the direction in which the specific resistance is low as the conducting direction.
As a result, it is possible to reduce power consumption at high temperature while maintaining a high figure of merit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る熱電材料の製造方法を示
すフローチャートである。
FIG. 1 is a flowchart showing a method for manufacturing a thermoelectric material according to an example of the present invention.

【図2】(a)乃至(c)は本発明の実施例におけるイ
ンゴットの作製方法を示す図である。
2 (a) to 2 (c) are views showing a method for producing an ingot in the example of the present invention.

【図3】液体急冷法により熱電材料の粉末を製造する方
法を示す。
FIG. 3 shows a method for producing a powder of thermoelectric material by a liquid quenching method.

【図4】急冷薄片における結晶粒の成長方向を示す模式
図である。
FIG. 4 is a schematic diagram showing a growth direction of crystal grains in a quenched thin piece.

【図5】押圧方向とC面との関係を示す模式図である。FIG. 5 is a schematic diagram showing a relationship between a pressing direction and a C surface.

【図6】(a)は熱処理前の急冷薄帯14の組織を示す
断面図、(b)は熱処理後の急冷薄帯14の組織を示す
断面図である。
6A is a sectional view showing the structure of the quenched ribbon 14 before heat treatment, and FIG. 6B is a sectional view showing the structure of the quenched ribbon 14 after heat treatment.

【図7】液体急冷により得られた薄帯14内の結晶粒の
配向を示す模式図である。
FIG. 7 is a schematic diagram showing the orientation of crystal grains in the ribbon 14 obtained by liquid quenching.

【図8】すえ込み鍛造の方法を示す模式図である。FIG. 8 is a schematic view showing a swaging forging method.

【図9】固化成形体61の展延に伴う結晶粒の配向の変
化(圧力P2の印加方向に対して傾斜した方向から見た
とき)を示す模式図であり、(a)は展延前の状態を示
し、(b)及び(c)は展延後の状態を示す模式図であ
る。
FIG. 9 is a schematic diagram showing changes in the orientation of crystal grains (when viewed from a direction inclined with respect to the application direction of the pressure P2) due to the spreading of the solidified compact 61, (a) before spreading And (b) and (c) are schematic diagrams showing a state after spreading.

【図10】固化成形体61の展延に伴う結晶粒の配向の
変化(圧力P2の印加方向から見たとき)を示す模式図
であり、(a)は展延前の状態を示し、(b)及び
(c)は展延後の状態を示す模式図である。
FIG. 10 is a schematic diagram showing a change in orientation of crystal grains (when viewed from the direction of application of pressure P2) due to spreading of the solidified compact 61, (a) showing a state before spreading, (b) And (c) is a schematic diagram which shows the state after spreading.

【図11】固化成形体61の展延に伴う結晶粒の配向の
変化(拘束面に垂直な方向から見たとき)を示す模式図
でああり、(a)は展延前の状態を示し、(b)及び
(c)は展延後の状態を示す模式図である。
FIG. 11 is a schematic diagram showing a change in orientation of crystal grains (when viewed from a direction perpendicular to a constraining surface) due to spreading of the solidified compact 61, (a) showing a state before spreading. , (B) and (c) are schematic views showing a state after spreading.

【図12】鍛造時押圧方向の変化量を示す模式図であ
り、(a)は加工前、(b)は加工後である。
FIG. 12 is a schematic diagram showing the amount of change in the pressing direction during forging, where (a) is before processing and (b) is after processing.

【図13】(a)乃至(c)は従来の一方向凝固材の作
製方法を工程順に示す模式図である。
13A to 13C are schematic views showing a method of manufacturing a conventional unidirectionally solidified material in the order of steps.

【図14】固化成形される熱電材料の結晶粒とホットプ
レス方向を示す模式図である。
FIG. 14 is a schematic diagram showing crystal grains of a thermoelectric material to be solidified and molded and hot pressing directions.

【図15】Bi−Te系熱電材料の結晶構造を示す図で
ある。
FIG. 15 is a diagram showing a crystal structure of a Bi—Te based thermoelectric material.

【符号の説明】[Explanation of symbols]

1;熱電材料、 2;結晶粒、 11;石英ノズル、
12;銅製ロール、13;溶湯、 14;急冷箔帯、
15;頂部、 30;冷却ロール、 31;急冷薄片、
32、33;結晶構造、 41、101;原料、 4
2、102;アンプル、 43、103;管状炉、 4
4、104;スタンド、 51、62、63;結晶粒、
52;チル晶、 61;固化成形体
1; thermoelectric material, 2; crystal grain, 11; quartz nozzle,
12: Copper roll, 13: Molten metal, 14: Quenched foil strip,
15; top part, 30; chill roll, 31; quenching flakes,
32, 33; crystal structure, 41, 101; raw material, 4
2, 102; ampoule, 43, 103; tubular furnace, 4
4, 104; stand, 51, 62, 63; crystal grain,
52; chill crystal, 61; solidified compact

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年12月17日(2002.12.
17)
[Submission date] December 17, 2002 (2002.12.
17)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 28/00 C22C 28/00 Z H01L 35/34 H01L 35/34 Fターム(参考) 4K018 AA40 AB10 AC01 BA20 BC06 EA03 EA04 EA43 FA09 FA14 HA08 KA32 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 28/00 C22C 28/00 Z H01L 35/34 H01L 35/34 F term (reference) 4K018 AA40 AB10 AC01 BA20 BC06 EA03 EA04 EA43 FA09 FA14 HA08 KA32

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とからなる組成を有す
る熱電素材に対し1方向から圧力を印加することにより
前記熱電素材内の結晶粒のa軸を前記圧力の印加方向に
平行に配向させ、前記圧力を印加した面を拘束しながら
この拘束された面に垂直な方向から圧力を印加するすえ
込み鍛造を行うことにより、前記熱電素材を展延させて
結晶粒のC面を回転又はすべりにより前記据え込み鍛造
時の圧力の印加方向に垂直になるように配向させたもの
であることを特徴とする熱電材料。
1. A thermoelectric material having a composition comprising at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se from one direction. By applying pressure, the a-axes of the crystal grains in the thermoelectric material are oriented parallel to the direction in which the pressure is applied, and while constraining the surface to which the pressure is applied, pressure is applied from a direction perpendicular to the constrained surface. By applying upset forging, the thermoelectric material is spread and the C-plane of the crystal grains is oriented by rotation or sliding so as to be perpendicular to the direction in which the pressure is applied during upsetting forging. A thermoelectric material characterized in that
【請求項2】 前記熱電素材は、Bi及びSbからなる
群から選択された少なくとも1種の元素と、Te及びS
eからなる群から選択された少なくとも1種の元素とか
らなる組成の溶融金属を急冷凝固させて一方向凝固した
薄片であり、前記結晶粒のa軸が前記薄片の厚さ方向に
揃っていることを特徴とする請求項1に記載の熱電材
料。
2. The thermoelectric material comprises at least one element selected from the group consisting of Bi and Sb, and Te and S.
A thin piece obtained by unidirectionally solidifying a molten metal having a composition consisting of at least one element selected from the group consisting of e, in which the a-axes of the crystal grains are aligned in the thickness direction of the thin piece. The thermoelectric material according to claim 1, wherein:
【請求項3】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とからなる組成を有す
る熱電素材に対し1方向から圧力を印加することにより
前記熱電素材内の結晶粒のa軸を前記圧力の印加方向に
平行に配向させる工程と、前記圧力を印加した面を拘束
しながらこの拘束された面に垂直な方向から圧力を印加
するすえ込み鍛造を行うことにより、前記熱電素材を展
延させて結晶粒のC面を回転又はすべりにより前記すえ
こみ鍛造時の圧力の印加方向に垂直になるように配向さ
せる工程と、を有することを特徴とする熱電材料の製造
方法。
3. A thermoelectric material having a composition comprising at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se from one direction. Applying a pressure to orient the a-axes of the crystal grains in the thermoelectric material parallel to the direction in which the pressure is applied; and, while constraining the surface to which the pressure is applied, from a direction perpendicular to the constrained surface. A step of spreading the thermoelectric material by performing a swaging forging to apply a pressure, and orienting the C-plane of the crystal grains by rotation or sliding so as to be perpendicular to the direction in which the pressure is applied during the swallowing forging; A method for producing a thermoelectric material, comprising:
【請求項4】 前記熱電素材は、Bi及びSbからなる
群から選択された少なくとも1種の元素と、Te及びS
eからなる群から選択された少なくとも1種の元素とか
らなる組成の溶融金属を急冷凝固させて一方向凝固した
薄片であり、前記結晶粒のa軸を前記圧力の印加方向に
平行に配向させる工程は、前記結晶粒のa軸を前記薄片
の厚さ方向に揃わせる工程を有することを特徴とする請
求項4に記載の熱電材料の製造方法。
4. The thermoelectric material comprises at least one element selected from the group consisting of Bi and Sb, and Te and S.
A thin piece obtained by unidirectionally solidifying a molten metal having a composition consisting of at least one element selected from the group consisting of e, in which the a-axis of the crystal grains is oriented parallel to the direction in which the pressure is applied. The method for producing a thermoelectric material according to claim 4, wherein the step includes a step of aligning the a-axes of the crystal grains in the thickness direction of the flakes.
【請求項5】 前記結晶粒のa軸を前記圧力の印加方向
に平行に配向させる工程の後に、前記熱電素材を還元ガ
ス雰囲気又は不活性ガス雰囲気中で熱処理する工程を有
することを特徴とする請求項4又は5に記載の熱電材料
の製造方法。
5. A step of heat-treating the thermoelectric material in a reducing gas atmosphere or an inert gas atmosphere after the step of orienting the a-axis of the crystal grains parallel to the pressure application direction. The method for producing a thermoelectric material according to claim 4 or 5.
JP2002358618A 2001-12-13 2002-12-10 Thermoelectric material and manufacturing method thereof Expired - Fee Related JP3861804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358618A JP3861804B2 (en) 2001-12-13 2002-12-10 Thermoelectric material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-380657 2001-12-13
JP2001380657 2001-12-13
JP2002358618A JP3861804B2 (en) 2001-12-13 2002-12-10 Thermoelectric material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003243729A true JP2003243729A (en) 2003-08-29
JP3861804B2 JP3861804B2 (en) 2006-12-27

Family

ID=27790827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358618A Expired - Fee Related JP3861804B2 (en) 2001-12-13 2002-12-10 Thermoelectric material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3861804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539600A (en) * 2005-04-28 2008-11-13 クール シールド,インコーポレーテッド Formable Peltier heat transfer element and method for manufacturing the same
WO2016056278A1 (en) * 2014-10-07 2016-04-14 日立化成株式会社 Thermoelectric conversion element, method for manufacturing same, and thermoelectric conversion module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539600A (en) * 2005-04-28 2008-11-13 クール シールド,インコーポレーテッド Formable Peltier heat transfer element and method for manufacturing the same
WO2016056278A1 (en) * 2014-10-07 2016-04-14 日立化成株式会社 Thermoelectric conversion element, method for manufacturing same, and thermoelectric conversion module
CN105765747A (en) * 2014-10-07 2016-07-13 日立化成株式会社 Thermoelectric conversion element, method for manufacturing same, and thermoelectric conversion module
JPWO2016056278A1 (en) * 2014-10-07 2017-06-15 日立化成株式会社 Thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion module

Also Published As

Publication number Publication date
JP3861804B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JP2004335796A (en) Thermoelectric semiconductor material, thermoelectric semiconductor device using same, thermoelectric module using the device, and method for manufacturing these device and module
WO2004049464A1 (en) Thermoelectric material and method for producing same
US6596226B1 (en) Process for producing thermoelectric material and thermoelectric material thereof
JPH0316281A (en) Thermoelectric semiconductor material and manufacture thereof
JP3958857B2 (en) Thermoelectric semiconductor material manufacturing method
EP0235702A1 (en) Thermoelectric material for low temperature use and method of manufacturing the same
EP0996174B1 (en) Thermoelectric materials and thermoelectric conversion element
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JPH10178218A (en) Thermoelectric semiconductor material, its manufacture, thermoelectric module using the same and hot forging method
JP2003243729A (en) Thermoelectric material and manufacturing method therefor
JP4281079B2 (en) Thermoelectric semiconductor material or element manufacturing method and thermoelectric module manufacturing method
JP2004235278A (en) Thermoelectric material and its manufacturing method
JP3979290B2 (en) Thermoelectric material and manufacturing method thereof
JP2003037302A (en) Method for manufacturing thermoelectric material
JP4303924B2 (en) Method for manufacturing thermoelectric semiconductor member
JP3929880B2 (en) Thermoelectric material
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP3603698B2 (en) Thermoelectric material and thermoelectric conversion element
JPH11284237A (en) Manufacture of p-type thermoelectric conversion material
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
JP2729964B2 (en) Thermoelectric material for low temperature
Jung et al. Thermoelectric Properties of Highly Deformed and Subsequently Annealed p-Type (Bi 0.25 Sb 0.75) 2 Te 3 Alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Ref document number: 3861804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees