JP2003243601A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2003243601A
JP2003243601A JP2002040985A JP2002040985A JP2003243601A JP 2003243601 A JP2003243601 A JP 2003243601A JP 2002040985 A JP2002040985 A JP 2002040985A JP 2002040985 A JP2002040985 A JP 2002040985A JP 2003243601 A JP2003243601 A JP 2003243601A
Authority
JP
Japan
Prior art keywords
metal electrode
electrode
semiconductor device
bonding material
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002040985A
Other languages
Japanese (ja)
Inventor
Hitoshi Goto
均 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002040985A priority Critical patent/JP2003243601A/en
Publication of JP2003243601A publication Critical patent/JP2003243601A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • H01L2224/376Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4007Shape of bonding interfaces, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8434Bonding interfaces of the connector
    • H01L2224/84345Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device excellent in the durability of a connecting part in a constitution wherein a metal electrode is directly connected to an element side electrode. <P>SOLUTION: Emitter electrodes (the element side electrodes) 22 are respectively provided on the upper surfaces of semiconductor elements 10, 12. A single metal electrode 30 is commonly connected to the emitter electrodes 22 through solder layers 50. Lift parts 32a, bent toward the side of receding from the semiconductor elements 10, 12, are formed at both ends of the lengthwise direction of the metal electrodes 30. Thick parts 50a, whose thickness is thicker compared with the central part of the metal electrode 30, are formed between the lifts 32a and the emitter electrodes 22. The stress mitigating performance of the peripheral parts of the metal electrodes 30 can efficiently be improved by the thick parts 50. On the other hand, a fault that the solder layers 50 become too thin is prevented by projections 34, 35 projected from the metal electrodes 30 to the sides of the semiconductor elements 10, 12. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は半導体装置に関
し、詳しくは、半導体素子に設けられた素子側電極に金
属電極が接続された半導体装置に関する。
TECHNICAL FIELD The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a metal electrode is connected to an element-side electrode provided in a semiconductor element.

【0002】[0002]

【従来の技術】 半導体素子の表面に面的に拡がる電極
(素子側電極)を設けておき、この面的に拡がる素子側
電極に面的に拡がる金属電極を、面的に拡がる導電性接
合材層(典型的には半田層)によって機械的かつ電気的
に接合した半導体装置が知られている。面的に拡がる素
子側電極に面的に拡がる金属電極を直接(ボンディング
ワイヤ等を介することなく)接続すると、素子側電極と
回路側電極とをワイヤボンディングにより接続する構造
等に比べて放熱性が向上する。また、半導体素子への電
流供給路の抵抗を小さくすることができる。このため
に、面的電極同士を直接に接合させる構造は、大電流を
通電するために発熱量が大きくなる半導体装置(パワー
デバイス等)に適している。
2. Description of the Related Art A surface-spreading electrode (element-side electrode) is provided on a surface of a semiconductor element, and a surface-spreading metal electrode is spread on the surface-spreading element-side electrode. A semiconductor device in which a layer (typically a solder layer) is mechanically and electrically bonded is known. When a metal electrode that expands in a plane is directly connected to a device electrode that expands in a plane (without a bonding wire or the like), heat dissipation is better than in a structure in which the element electrode and the circuit side electrode are connected by wire bonding. improves. Also, the resistance of the current supply path to the semiconductor element can be reduced. For this reason, the structure in which the planar electrodes are directly joined together is suitable for a semiconductor device (such as a power device) in which a large amount of heat is generated due to the passage of a large current.

【0003】[0003]

【発明が解決しようとする課題】 一般に半導体素子と
金属電極(典型的には、Al,Cu等を主体とする板状
体が用いられる)とは熱膨張の程度(線膨張率等により
表される)が大きく異なる。このため、面的に拡がる素
子側電極と面的に拡がる金属電極を面的に拡がる半田層
等により直接接続する構造では、半導体装置の使用によ
り生じる温度変化によって素子側電極と金属電極の間に
熱応力が発生する。この熱応力によって両電極を接合す
る導電性接合材層等にクラックが生じる場合がある。こ
のようなクラックの発生を防止または抑制する(すなわ
ち、導電性接合材層の耐久性を向上させる)ことができ
れば、両電極を長期に亘って安定的に接続する性能(接
続耐久性)がさらに向上するので好ましい。
Generally, a semiconductor element and a metal electrode (typically, a plate-shaped body mainly composed of Al, Cu or the like is used) have a degree of thermal expansion (expressed by a linear expansion coefficient or the like). Is significantly different. Therefore, in the structure in which the element-side electrode that expands in a plane and the metal electrode that expands in a plane are directly connected by the solder layer that expands in a plane, between the element-side electrode and the metal electrode due to the temperature change caused by the use of the semiconductor device. Thermal stress occurs. This thermal stress may cause cracks in the conductive bonding material layer or the like that bonds both electrodes. If the occurrence of such cracks can be prevented or suppressed (that is, the durability of the conductive bonding material layer can be improved), the performance (connection durability) for stably connecting both electrodes for a long period of time can be further improved. It is preferable because it improves.

【0004】そこで本発明は、面的な素子側電極と面的
な金属電極が直接接続された構成であって、その接続耐
久性に優れた半導体装置を提供することを目的とする。
Therefore, it is an object of the present invention to provide a semiconductor device having a structure in which a planar element-side electrode and a planar metal electrode are directly connected and which has excellent connection durability.

【0005】[0005]

【課題を解決するための手段と作用と効果】 本発明者
は、導電性接合材層(半田層等)にクラックが発生する
場合、そのクラックは金属電極の中心部に位置する接合
材層(導電性接合材層のうち、金属電極の中心部と素子
側電極を接合する部分を指す。以下同じ。)よりも、金
属電極の周辺部に位置する接合材層を起点として発生す
るケースが多いことに着目した。これは、金属電極の周
辺部には熱膨張の差が蓄積されやすく、このため中心部
に比べて大きな応力がかかりやすいことによると推察さ
れる。この周辺部に作用する応力を緩和させる性能を向
上させることにより、両電極の接続耐久性を効率よく向
上させ得ることを見出して本発明を完成した。
MEANS FOR SOLVING PROBLEMS, ACTIONS AND EFFECTS The present inventor has found that when a crack occurs in a conductive bonding material layer (solder layer or the like), the crack is a bonding material layer located at the center of the metal electrode ( Of the conductive bonding material layer, it refers to the portion where the central portion of the metal electrode and the element-side electrode are bonded. The same applies hereinafter.) The bonding material layer located in the peripheral portion of the metal electrode is the starting point in many cases. I focused on that. It is speculated that this is because a difference in thermal expansion is likely to be accumulated in the peripheral portion of the metal electrode, and thus a larger stress is more likely to be applied than in the central portion. The present invention has been completed by finding that the connection durability of both electrodes can be efficiently improved by improving the performance of relaxing the stress acting on the peripheral portion.

【0006】本発明は、半導体素子の表面に面的に拡が
る素子側電極と面的に拡がる金属電極とが面的に拡がる
導電性接合材層によって機械的かつ電気的に接合された
半導体装置に関する。本出願の一つの半導体装置では、
素子側電極と金属電極との間の距離が、金属電極の中心
部で小さく、金属電極の周辺部で大きい。
The present invention relates to a semiconductor device in which an element-side electrode that spreads planarly on the surface of a semiconductor element and a metal electrode that expands planarly are mechanically and electrically joined by a conductive bonding material layer that expands planarly. . In one semiconductor device of the present application,
The distance between the element-side electrode and the metal electrode is small at the center of the metal electrode and large at the periphery of the metal electrode.

【0007】素子側電極と金属電極との間に挟まれた導
電性接合材層(以下、単に「接合材層」ともいう。)の
厚さは、応力を緩和するという観点からは大きいほうが
有利である。接合材層が厚く(すなわち、素子側電極と
金属電極との間の距離が大きく)なると、この接合材層
自体の変形により応力を緩和する効果が大きくなる傾向
にあるためである。しかし、従来の一般的な接合方法で
は、厚くかつ均一な接合材層を形成し難い場合がある。
例えば、接合材として半田を用いる場合、ある程度以上
に厚い(例えば約0.3mm以上の厚さの)半田層を形成
しようとすると、接合時に溶融した半田が接合部(例え
ばランド上)からこぼれやすく(溢れやすく)なる。本
発明の構成では、金属電極の周辺部(過剰な応力がかか
りやすく、したがってクラック発生の起点となりやすい
部分)で、接合材層の厚さ(素子側電極と金属電極との
間の距離)を中心部よりも大きくしている。このような
接合材層によると、周辺部での良好な応力緩和性能(典
型的には、素子側電極と金属電極の熱膨張の違いに起因
して両者の間に生じる熱応力を緩和する性能)と、接合
材層の形成しやすさとを両立させることができる。
It is advantageous that the thickness of the conductive bonding material layer (hereinafter also simply referred to as "bonding material layer") sandwiched between the element-side electrode and the metal electrode is large from the viewpoint of relieving stress. Is. This is because if the bonding material layer is thick (that is, the distance between the element-side electrode and the metal electrode is large), the deformation of the bonding material layer itself tends to increase the effect of relieving stress. However, it may be difficult to form a thick and uniform bonding material layer by the conventional general bonding method.
For example, when solder is used as the joining material, if a solder layer having a certain thickness or more (for example, a thickness of about 0.3 mm or more) is formed, the solder melted at the time of joining is likely to be spilled from the joint (for example, land). (Easy to overflow). In the configuration of the present invention, the thickness of the bonding material layer (the distance between the element-side electrode and the metal electrode) is set at the peripheral portion of the metal electrode (the portion where excessive stress is likely to be applied, and thus is a starting point for crack generation). Larger than the center. According to such a bonding material layer, good stress relaxation performance at the peripheral portion (typically, performance of relaxing thermal stress generated between the element-side electrode and the metal electrode due to the difference in thermal expansion between them) ) And the ease of forming the bonding material layer can both be achieved.

【0008】素子側電極と金属電極との間の距離は、金
属電極の周辺部で、中心部とは不連続的に(階段状に)
大きくなっていてもよく、中心部から連続的に(徐々
に)大きくなっていてもよい。接合材層の厚さが変化す
る部分に応力が集中することを抑制するためには、両電
極の距離が連続的に大きくなっていることが好ましい。
また、両電極の距離が金属電極の周辺部のうちほぼ全周
で大きくなっていてもよく、周方向の一部範囲(例えば
金属電極の長手方向の両端)で大きくなっていてもよ
い。
The distance between the element-side electrode and the metal electrode is the periphery of the metal electrode and discontinuously (stepwise) with the center.
It may be larger or may be continuously (gradually) larger from the central portion. In order to suppress the concentration of stress on the portion where the thickness of the bonding material layer changes, it is preferable that the distance between both electrodes be continuously increased.
Further, the distance between both electrodes may be large over substantially the entire circumference of the peripheral portion of the metal electrode, or may be large in a partial range in the circumferential direction (for example, both ends in the longitudinal direction of the metal electrode).

【0009】本発明の半導体装置の好ましい例では、素
子側電極が半導体素子の上面に設けられているととも
に、金属電極の周辺部が半導体素子から遠ざかる側に曲
げられている。これにより、金属電極の周辺部で両電極
間の距離が大きいという本発明の構成を容易に実現する
ことができる。金属電極の周辺部は、半導体素子から連
続的に(徐々に)遠ざかるように曲げられていることが
好ましい。
In a preferred example of the semiconductor device of the present invention, the element-side electrode is provided on the upper surface of the semiconductor element, and the peripheral portion of the metal electrode is bent toward the side away from the semiconductor element. This makes it possible to easily realize the configuration of the present invention in which the distance between both electrodes is large in the peripheral portion of the metal electrode. The peripheral portion of the metal electrode is preferably bent so as to be continuously (gradually) away from the semiconductor element.

【0010】本発明の半導体装置の他の好ましい例で
は、金属電極のうち中心部が厚肉であり、周辺部が薄肉
である。素子側電極と金属電極の接合部に生じる応力
は、金属電極の剛性が低くなると小さくなる(緩和され
る)傾向にある。したがって、接合材層にかかる応力を
緩和するという観点からは金属電極の厚さを小さくする
(薄くする)ことが有利である。一方、金属電極を薄く
しすぎると、半導体素子と外部回路との間の電気伝導性
が低下する虞がある。特に、半導体素子と外部回路との
間に大電流が流れるパワーデバイス等では、半導体素子
と外部回路との間に良好な電気伝導性が確保されている
ことが好ましい。この好ましい例では、金属電極の周辺
部(接合材層に過剰な応力がかかりやすく、したがって
クラック発生の起点となりやすい部分)で金属電極が薄
肉である(厚さが小さい)ので、この周辺部の応力緩和
性能をさらに高めることができる。これにより、金属電
極の周辺部に位置する接合材層の厚さを大きくした(両
電極間の距離を大きくした)ことによる効果と相俟っ
て、接合材層にかかる応力が効率よく緩和されるので、
金属電極の応力緩和性能と電気伝導性とをさらに高度に
バランスさせることができる。
In another preferred example of the semiconductor device of the present invention, the metal electrode has a thick central portion and a thin peripheral portion. The stress generated at the joint between the element-side electrode and the metal electrode tends to become smaller (easier) as the rigidity of the metal electrode becomes lower. Therefore, from the viewpoint of relaxing the stress applied to the bonding material layer, it is advantageous to reduce (thin) the thickness of the metal electrode. On the other hand, if the metal electrode is made too thin, the electrical conductivity between the semiconductor element and the external circuit may decrease. Particularly in a power device or the like in which a large current flows between a semiconductor element and an external circuit, it is preferable that good electrical conductivity be ensured between the semiconductor element and the external circuit. In this preferred example, since the metal electrode is thin (thickness is small) in the peripheral portion of the metal electrode (the portion where the bonding material layer is likely to be overstressed, and thus is a starting point for crack generation), The stress relaxation performance can be further enhanced. This, combined with the effect of increasing the thickness of the bonding material layer located near the periphery of the metal electrode (increasing the distance between both electrodes), effectively relaxes the stress applied to the bonding material layer. So
The stress relaxation performance and the electrical conductivity of the metal electrode can be more highly balanced.

【0011】本発明の半導体装置の他の好ましい例で
は、一つの金属電極に、半導体素子に向けて突出する少
なくとも3個の突起が非直線上に形成されている。かか
る構成では、これらの突起が電極間のスペーサとして機
能し得ることから、金属電極と素子側電極の間に、その
全体として、所定以上の間隔を維持することができる。
一般に接合材層の厚さが小さすぎると応力緩和性能が低
下しやすくなるところ、この好ましい例では両電極の間
に全体として所定以上の間隔(接合材層の厚さ)を確保
することができるので、この接合材層に過剰な応力がか
かることを防止または抑制することができる。これによ
り、金属電極の周辺部に位置する接合材層の厚さを大き
くした(両電極間の距離を大きくした)ことによる効果
と相俟って、接合材層の耐久性をさらに向上させること
ができる。
In another preferable example of the semiconductor device of the present invention, at least three protrusions protruding toward the semiconductor element are formed on one metal electrode in a non-linear manner. In such a configuration, since these protrusions can function as spacers between the electrodes, it is possible to maintain a predetermined distance or more between the metal electrode and the element-side electrode as a whole.
Generally, if the thickness of the bonding material layer is too small, the stress relaxation performance is likely to deteriorate. In this preferred example, however, a predetermined gap (bonding material layer thickness) can be secured between both electrodes as a whole. Therefore, it is possible to prevent or suppress excessive stress from being applied to the bonding material layer. With this, combined with the effect of increasing the thickness of the bonding material layer located in the peripheral portion of the metal electrode (increasing the distance between both electrodes), further improving the durability of the bonding material layer. You can

【0012】本出願の他の一つの半導体装置は、半導体
素子の表面に面的に拡がる素子側電極と面的に拡がる金
属電極とが面的に拡がる導電性接合材層によって機械的
かつ電気的に接合されており、その金属電極の周辺部に
は切欠きが設けられている。導電性接合材層はその切欠
きに入り込んで形成されている。かかる構成によると、
金属電極の周辺部では、その平面方向(厚み方向とほぼ
直交する方向)に、金属電極の構成材料と導電性接合材
層の構成材料(導電性接合材)とが交互に配置されて
(大まかにみれば混在して)いる。一般に、金属電極の
構成材料(例えば銅、銀等)に比べて導電性接合材層の
構成材料(導電性接合材;典型的には半田)の線膨張係
数は半導体素子のそれに近い。したがって、金属電極の
切欠きに導電性接合材を入り込ませた構成とすることに
より、切欠きが設けられていない金属電極を用いた構成
に比べて、金属電極の周辺部での見掛け上の線膨張係数
が半導体素子のそれに近づく。これにより、素子側電極
と金属電極の接合部に発生する熱応力を低減(緩和)す
ることができる。したがって接合材層の耐久性が向上す
る。この構成において、金属電極の周辺部で両電極の間
の距離(導電性接合材層の厚さ)が中心部に比べて大き
くなっている場合には、この周辺部の応力緩和効果がさ
らに向上するので好ましい。また、この金属電極の周辺
部に上述の薄肉部が形成されている場合には応力緩和効
果がさらに向上するのでより好ましい。
According to another semiconductor device of the present application, a conductive bonding material layer in which a device-side electrode that spreads planarly on the surface of a semiconductor device and a metal electrode that expands planarly spread mechanically and electrically is used. And a notch is provided in the peripheral portion of the metal electrode. The conductive bonding material layer is formed in the notch. According to this configuration,
In the peripheral portion of the metal electrode, the constituent material of the metal electrode and the constituent material of the conductive bonding material layer (conductive bonding material) are alternately arranged in the plane direction (direction substantially orthogonal to the thickness direction) (roughly). Seen in mixed). In general, the linear expansion coefficient of the constituent material of the conductive bonding material layer (conductive bonding material; typically solder) is closer to that of the semiconductor element than the constituent material of the metal electrode (eg, copper, silver, etc.). Therefore, by adopting a configuration in which the conductive bonding material is inserted into the notch of the metal electrode, an apparent line in the peripheral portion of the metal electrode is provided as compared with the configuration using the metal electrode without the notch. The expansion coefficient approaches that of the semiconductor device. As a result, it is possible to reduce (alleviate) the thermal stress generated at the joint between the element-side electrode and the metal electrode. Therefore, the durability of the bonding material layer is improved. In this configuration, when the distance between the two electrodes (thickness of the conductive bonding material layer) is larger in the peripheral portion of the metal electrode than in the central portion, the stress relaxation effect of the peripheral portion is further improved. Therefore, it is preferable. Further, when the above-mentioned thin portion is formed in the peripheral portion of this metal electrode, the stress relaxation effect is further improved, which is more preferable.

【0013】本出願に係る他の一つの半導体装置は、半
導体素子の表面に面的に拡がる素子側電極と面的に拡が
る金属電極とが面的に拡がる導電性接合材層によって機
械的かつ電気的に接合されており、その金属電極は、中
心部で厚肉であり、周辺部で薄肉である。かかる構成に
よると、薄肉部をもたない形状の金属電極を用いた場合
等に比べて、金属電極の周辺部に位置する接合材層にか
かる応力をよく緩和することができる。したがって接合
材層の耐久性が向上する。この構成において、金属電極
の周辺部で両電極の間の距離(導電性接合材層の厚さ)
が中心部に比べて大きくなっている場合には、この周辺
部の応力緩和効果がさらに向上するので好ましい。
Another semiconductor device according to the present application is a mechanical and electrical device having a conductive bonding material layer in which a device-side electrode that spreads in a plane on a surface of a semiconductor device and a metal electrode that spreads in a plane are spread in a plane. The metal electrode is thickly bonded in the central portion and thin in the peripheral portion. With such a configuration, the stress applied to the bonding material layer located in the peripheral portion of the metal electrode can be relaxed more than in the case where a metal electrode having a shape without a thin portion is used. Therefore, the durability of the bonding material layer is improved. In this configuration, the distance between both electrodes at the periphery of the metal electrode (thickness of the conductive bonding material layer)
Is larger than that in the central portion, the stress relaxation effect in the peripheral portion is further improved, which is preferable.

【0014】本発明に係るさらに他の一つの半導体装置
は、半導体素子の表面に面的に拡がる素子側電極と面的
に拡がる金属電極とが面的に拡がる導電性接合材層によ
って機械的かつ電気的に接合されており、一つの金属電
極に、半導体素子に向けて突出する3以上の突起が非同
一線上に形成されている。かかる構成によると、これら
の突起が素子側電極と金属電極との間のスペーサとして
機能し得ることから、両電極の間に全体として所定以上
の間隔(接合材層の厚さ)を確保することができる。こ
れにより、接合材層に過剰な応力がかかることを防止ま
たは抑制することができる。この構成において、金属電
極の周辺部で両電極の間の距離(導電性接合材層の厚
さ)が中心部に比べて大きくなっている場合には、この
周辺部の応力緩和効果がさらに向上するので好ましい。
また、この金属電極の周辺部に上述の薄肉部が形成され
ている場合には応力緩和効果がさらに向上するので好ま
しい。
According to still another semiconductor device of the present invention, a conductive bonding material layer in which a device-side electrode that spreads planarly on a surface of a semiconductor device and a metal electrode that expands planarly spread mechanically and It is electrically joined, and three or more protrusions protruding toward the semiconductor element are formed on one metal electrode in a non-coincident line. According to such a configuration, since these protrusions can function as a spacer between the element-side electrode and the metal electrode, it is necessary to secure a space (thickness of the bonding material layer) or more between both electrodes as a whole. You can Accordingly, it is possible to prevent or suppress excessive stress from being applied to the bonding material layer. In this configuration, when the distance between the two electrodes (thickness of the conductive bonding material layer) is larger in the peripheral portion of the metal electrode than in the central portion, the stress relaxation effect of the peripheral portion is further improved. Therefore, it is preferable.
In addition, it is preferable that the thin portion is formed in the peripheral portion of the metal electrode because the stress relaxation effect is further improved.

【0015】[0015]

【発明の実施の形態】 この発明はまた、下記の形態で
実施することができる。 (形態1)金属電極の周辺部のうち、少なくともその金
属電極の長手方向の両端で、素子側電極と金属電極との
間の距離が大きくなっている(接合材層が厚くなってい
る)。金属電極の長手方向両端部では接合材層にかかる
応力が特に大きくなりやすい。そこで、少なくともこの
部分の接合材層を厚くすることによって本発明の効果
(主として応力緩和により接続耐久性を向上させる効
果)を効率よく発揮することができる。また、金属電極
の周辺部のほぼ全周に亘って接合材層が厚くなっている
形態としてもよい。このような場合にはさらに高い効果
を得ることが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention can also be implemented in the following modes. (Mode 1) In the peripheral portion of the metal electrode, the distance between the element-side electrode and the metal electrode is large at least at both ends in the longitudinal direction of the metal electrode (the bonding material layer is thick). The stress applied to the bonding material layer tends to be particularly large at both ends in the longitudinal direction of the metal electrode. Therefore, by thickening the bonding material layer at least in this portion, the effect of the present invention (mainly the effect of improving connection durability by relaxing stress) can be efficiently exhibited. Alternatively, the bonding material layer may be thick over substantially the entire circumference of the peripheral portion of the metal electrode. In such a case, a higher effect can be obtained.

【0016】(形態2〜4)本発明は、形態1と同様の
理由から、以下の形態で実施することができる。 形態2:金属電極の少なくとも長手方向の両端(好まし
くはほぼ全周)が半導体素子から遠ざかる側に曲げられ
ている。 形態3:金属電極の少なくとも長手方向の両端(好まし
くはほぼ全周)に薄肉部が形成されている。 形態4:金属電極の少なくとも長手方向の両端(好まし
くはほぼ全周)に切欠きが設けられている。
(Modes 2 to 4) The present invention can be implemented in the following modes for the same reason as in Mode 1. Mode 2: At least both ends (preferably substantially the entire circumference) of the metal electrode in the longitudinal direction are bent to the side away from the semiconductor element. Form 3: A thin portion is formed on at least both ends (preferably substantially the entire circumference) of the metal electrode in the longitudinal direction. Form 4: Notches are provided at least at both ends (preferably substantially the entire circumference) of the metal electrode in the longitudinal direction.

【0017】(形態5)素子側電極は半導体素子の上面
に設けられている。このような素子側電極(上面電極)
と金属電極を機械的かつ電気的に接合する接合材層に
は、例えば半導体素子の下面に設けられた素子側電極と
金属電極(典型的には回路基板表面に設けられた金属電
極)を接合する接合材層に比べて、より大きな応力がか
かりやすい。したがって本発明の適用効果がよりよく発
揮される。
(Mode 5) The element side electrode is provided on the upper surface of the semiconductor element. Such element side electrode (top surface electrode)
For example, the element side electrode provided on the lower surface of the semiconductor element and the metal electrode (typically the metal electrode provided on the surface of the circuit board) are joined to the joining material layer that mechanically and electrically joins A larger stress is likely to be applied as compared with the joining material layer. Therefore, the application effect of the present invention is better exhibited.

【0018】(形態6)金属電極は、複数の半導体素子
の上面にそれぞれ設けられた一以上の素子側電極に共通
的に接続されている。かかる構成の半導体装置では、金
属電極のサイズ(少なくとも長手方向のサイズ)が大き
くなりやすいため、金属電極の周辺部で接合材層に大き
な応力がかかりやすい。また、かかる構成において、複
数の半導体素子の上面にそれぞれ設けられた一以上の素
子側電極の高さが互いに異なる(図1に例示するよう
に、これらの素子側電極が一平面上にはないことをい
う。)場合には、例えば単純な平板状の金属電極を用い
た場合には接合材層の厚さが小さすぎる箇所が形成され
やすい。これらのうち少なくとも一つの理由により本発
明の適用効果が特によく発揮される。
(Mode 6) The metal electrodes are commonly connected to one or more element-side electrodes provided on the upper surfaces of the plurality of semiconductor elements, respectively. In the semiconductor device having such a configuration, since the size of the metal electrode (at least the size in the longitudinal direction) tends to be large, a large stress is likely to be applied to the bonding material layer in the peripheral portion of the metal electrode. Further, in such a configuration, the heights of one or more element-side electrodes provided on the upper surfaces of the plurality of semiconductor elements are different from each other (these element-side electrodes are not on one plane as illustrated in FIG. In this case, when a simple flat metal electrode is used, a portion where the thickness of the bonding material layer is too small is likely to be formed. The application effect of the present invention is exhibited particularly well for at least one of these reasons.

【0019】[0019]

【実施例】以下、本発明の好適な実施例について詳細に
説明する。本発明の半導体装置に備えられる半導体素子
としては、各種の半導体素子(IGBT(Insulated Ga
te Bipolar Transistor)等のバイポーラトランジスタ
やMOS等の電界効果型トランジスタ等)を用いること
ができる。本発明の半導体装置がパワーデバイスである
(典型的には、IGBT、パワーMOS等の電力用半導
体素子を備える)場合には、本発明を適用することによ
る効果が特によく発揮される。
The preferred embodiments of the present invention will be described in detail below. As semiconductor elements included in the semiconductor device of the present invention, various semiconductor elements (IGBTs (Insulated Ga
te Bipolar Transistor) and field effect transistors such as MOS). When the semiconductor device of the present invention is a power device (typically, a power semiconductor element such as an IGBT or a power MOS is provided), the effects of applying the present invention are particularly well exhibited.

【0020】この半導体素子に設けられた電極のうち金
属電極と直接接続される素子側電極の種類は特に問わな
い。好適例としては、電力用半導体素子のエミッタ電極
および/またはコレクタ電極(特に好ましくはエミッタ
電極)が挙げられる。金属電極と接続される素子側電極
は、半導体素子の上面に設けられた電極(上面電極)で
あることが好ましいが、下面に設けられた電極であって
もよい。
Of the electrodes provided on this semiconductor element, the type of element-side electrode that is directly connected to the metal electrode does not matter. Suitable examples include an emitter electrode and / or a collector electrode (particularly preferably an emitter electrode) of a power semiconductor element. The element-side electrode connected to the metal electrode is preferably an electrode (upper surface electrode) provided on the upper surface of the semiconductor element, but may be an electrode provided on the lower surface.

【0021】金属電極を構成する材料としては、電気伝
導性および熱伝導性が高い材料が適している。例えば、
銅、銀、金、白金、ニッケル、コバルト、亜鉛等の純金
属およびそれらを含む合金が好ましく使用される。ま
た、これらの材料の表面に半田濡れ性のよい金属(ニッ
ケル、クロム、金等)がメッキされていてもよい。この
ようなメッキ層を設けることにより、導電性接合材(典
型的には半田)に対する濡れ性の向上、材料費の低減、
耐酸化性の向上等を実現し得る。また、絶縁性材料から
なる基材の表面(被接合面側の表面)に上記金属材料等
からなる導体膜を形成してなる金属電極を用いてもよ
い。この基材は線膨張率の低い材料(セラミック材料
等;典型的には窒化アルミニウム)から構成されること
が好ましい。かかる金属電極は、金属材料のみからなる
金属電極に比べて半導体素子(典型的にはシリコン基板
を備える)に近い線膨張率を示すものとすることができ
る。したがって、半導体素子(素子側電極)と金属電極
との間に発生する熱応力をよく低減し得る。
As a material for forming the metal electrode, a material having high electrical conductivity and high thermal conductivity is suitable. For example,
Pure metals such as copper, silver, gold, platinum, nickel, cobalt and zinc and alloys containing them are preferably used. The surface of these materials may be plated with a metal having good solder wettability (nickel, chromium, gold, etc.). By providing such a plating layer, the wettability with respect to the conductive bonding material (typically solder) is improved, the material cost is reduced,
It is possible to improve the oxidation resistance. Alternatively, a metal electrode formed by forming a conductor film made of the above-mentioned metal material or the like on the surface of the base material made of an insulating material (surface on the surface to be joined) may be used. This base material is preferably made of a material having a low linear expansion coefficient (ceramic material or the like; typically, aluminum nitride). Such a metal electrode can exhibit a linear expansion coefficient closer to that of a semiconductor element (typically including a silicon substrate) as compared with a metal electrode made of only a metal material. Therefore, the thermal stress generated between the semiconductor element (element-side electrode) and the metal electrode can be well reduced.

【0022】導電性接合材層を構成する「導電性接合
材」の典型例としては、半田に代表される低融点金属類
が挙げられる。また、有機高分子等からなるマトリック
ス樹脂中に導電性充填材が分散された導電性樹脂材料を
導電性接合材として用いてもよい。このマトリックス樹
脂としてはエポキシ樹脂、ポリイミド樹脂、フェノール
樹脂、シリコーン樹脂等を用いることができる。導電性
充填材としては、銅、銀、金、白金、ニッケル、カーボ
ン等からなる導電性繊維、導電性微粒子等を用いること
ができる。本発明の半導体装置に用いられる導電性接合
材としては、半田等の低融点金属類(特に好ましくは半
田)が好ましい。
Typical examples of the "conductive bonding material" constituting the conductive bonding material layer include low melting point metals represented by solder. Alternatively, a conductive resin material in which a conductive filler is dispersed in a matrix resin made of an organic polymer or the like may be used as the conductive bonding material. An epoxy resin, a polyimide resin, a phenol resin, a silicone resin, or the like can be used as the matrix resin. As the conductive filler, it is possible to use conductive fibers made of copper, silver, gold, platinum, nickel, carbon or the like, conductive fine particles, or the like. As the conductive bonding material used in the semiconductor device of the present invention, low melting point metals such as solder (particularly preferably solder) are preferable.

【0023】以下、本発明をパワーデバイスに適用した
具体的実施例を説明するが、本発明をかかる実施例に示
すものに限定することを意図したものではない。
Specific examples in which the present invention is applied to a power device will be described below, but the present invention is not intended to be limited to those shown in the examples.

【0024】(第一実施例)本発明の第一実施例に係る
半導体装置を図1および図2に示す。電力用半導体素子
(IGBT)10には、その上面にエミッタ電極22お
よびゲート電極(図示せず)が設けられ、下面にコレク
タ電極24が設けられている。また、別の半導体素子1
2の上面にもエミッタ電極22およびゲート電極(図示
せず)が設けられ、下面にはコレクタ電極24が設けら
れている。これらの半導体素子10,12の下面に設け
られたコレクタ電極24は、それぞれ半田層52を介し
て、セラミックス(例えば窒化アルミニウム)を主体と
する回路基板70の表面に設けられた基板電極(金属電
極)72に直接接続されている。
(First Embodiment) A semiconductor device according to a first embodiment of the present invention is shown in FIGS. The power semiconductor element (IGBT) 10 is provided with an emitter electrode 22 and a gate electrode (not shown) on its upper surface and a collector electrode 24 on its lower surface. In addition, another semiconductor device 1
An emitter electrode 22 and a gate electrode (not shown) are also provided on the upper surface of 2, and a collector electrode 24 is provided on the lower surface. The collector electrodes 24 provided on the lower surfaces of the semiconductor elements 10 and 12 are substrate electrodes (metal electrodes) provided on the surface of the circuit board 70 mainly made of ceramics (for example, aluminum nitride) via the solder layers 52. ) 72 is directly connected.

【0025】一方、半導体素子10,12の上面に設け
られたエミッタ電極22には、それぞれ半田層50を介
して、単一の金属電極30が共通的に接合されている。
すなわち金属電極30は、半導体素子10,12の上面
に設けられたエミッタ電極22との間に二つの接合部2
0a,20bを形成している。
On the other hand, a single metal electrode 30 is commonly joined to the emitter electrodes 22 provided on the upper surfaces of the semiconductor elements 10 and 12 via solder layers 50, respectively.
That is, the metal electrode 30 and the emitter electrode 22 provided on the upper surfaces of the semiconductor elements 10 and 12 are connected to each other by the two joint portions 2
0a and 20b are formed.

【0026】図1および図2に示すように、この金属電
極30は概ね均一な厚さの金属板から形成されている。
その全体形状は、大まかにいえば長方形状である。金属
電極30の長手方向の中心部には、半導体素子10,1
2側とは反対側に盛り上がった屈曲部31が形成されて
いる。この屈曲部31の長手方向両側が、半導体素子1
0,12の上面に設けられたエミッタ電極22との接合
部20a,20bをそれぞれ構成している。金属電極3
0の長手方向の両端部には、半導体素子10,12から
遠ざかる側に曲げられたリフト部32aが形成されてい
る。また、金属電極30の幅方向の両端部であって屈曲
部31を除いた部分にはリフト部32bが形成されてい
る。このように、リフト部32aおよびリフト部32b
により金属電極30のほぼ全周が囲まれている。
As shown in FIGS. 1 and 2, the metal electrode 30 is formed of a metal plate having a substantially uniform thickness.
The overall shape is roughly rectangular. At the center of the metal electrode 30 in the longitudinal direction, the semiconductor elements 10, 1
A raised bent portion 31 is formed on the side opposite to the second side. Both sides in the longitudinal direction of the bent portion 31 are the semiconductor element 1.
Bonding portions 20a and 20b with the emitter electrodes 22 provided on the upper surfaces of the electrodes 0 and 12 are respectively configured. Metal electrode 3
Lifting portions 32a bent toward the side away from the semiconductor elements 10 and 12 are formed at both ends in the longitudinal direction of 0. Further, lift portions 32b are formed at both end portions in the width direction of the metal electrode 30 except the bent portion 31. Thus, the lift portion 32a and the lift portion 32b
The metal electrode 30 is surrounded by almost the entire circumference.

【0027】図1によく示されるように、このリフト部
32aでは、金属電極30の構成材料(ここでは厚みが
ほぼ均一な金属板)が、金属電極30の外周に向かうに
つれて半導体素子10,12から徐々に遠ざかる側に曲
がって(反って)いる。リフト部32bもリフト部32
aと同様に曲がっている。その曲がりかた(リフト部の
形状)は平面状でもよく曲面状でもよい。金属電極30
の中心部から滑らかに続く曲面状に(例えばR面をなす
ように)リフト部32a,32bが反りあがっているこ
とが好ましい。なお、これらのうち金属電極30の幅方
向の両端部に形成されたリフト部32bを省略した構成
とすることもできる。また、本実施例では金属電極30
の成形を容易にするためにリフト部32aとリフト部3
2bを分割しているが、リフト部32aとリフト部32
bを連続して形成してもよい。
As shown in FIG. 1, in the lift portion 32a, the semiconductor elements 10, 12 are made closer to the outer circumference of the metal electrode 30 as the constituent material of the metal electrode 30 (here, a metal plate having a substantially uniform thickness). Bending (warping) to the side gradually away from. The lift section 32b is also the lift section 32.
Bent like a. The bending method (the shape of the lift portion) may be flat or curved. Metal electrode 30
It is preferable that the lift portions 32a and 32b are warped in a curved shape (for example, forming an R surface) smoothly continuing from the central portion of the. Of these, the lift portions 32b formed at both ends of the metal electrode 30 in the width direction may be omitted. Further, in this embodiment, the metal electrode 30
Lift portion 32a and lift portion 3 to facilitate the molding of the
2b is divided, but the lift portion 32a and the lift portion 32
b may be formed continuously.

【0028】このようなリフト部32a,32bが設け
られていることにより、金属電極30とエミッタ電極2
2との間に設けられた半田層50は、金属電極30の周
辺部(リフト部32a,32bとエミッタ電極22との
間に位置する部分)に、金属電極30の中心部に比べて
半田層50の厚さが大きい厚肉部50aを有する。この
厚肉部50aでは、半田層50の厚さが金属電極30の
外周に向かって徐々に大きくなっている。この厚肉部5
0aでは半田層50の応力緩和性能が高められている。
したがって、従来の構成では半田層50にクラックの生
じやすかった金属電極周辺部の応力緩和性能を効率的に
高めることができる。
Since the lift portions 32a and 32b are provided, the metal electrode 30 and the emitter electrode 2
The solder layer 50 provided between the solder electrode 50 and the metal electrode 30 is disposed in the peripheral portion of the metal electrode 30 (the portion located between the lift portions 32a and 32b and the emitter electrode 22) as compared with the center portion of the metal electrode 30. The thick portion 50a has a large thickness 50. In the thick portion 50a, the thickness of the solder layer 50 gradually increases toward the outer circumference of the metal electrode 30. This thick part 5
At 0a, the stress relaxation performance of the solder layer 50 is enhanced.
Therefore, it is possible to efficiently enhance the stress relaxation performance in the peripheral portion of the metal electrode where the solder layer 50 easily cracks in the conventional configuration.

【0029】また、図1および図2に示すように、金属
電極30のうち接合部20a,20bを構成する部分に
は、半導体素子10側に突出する一個の突起34および
半導体素子12側に突出する二個の突起35からなる合
計三個の突起が設けられている。これら三個の突起3
4,35は非同一直線上に配置されている。図1に示す
ように、半導体素子10と半導体素子12とはその厚さ
が異なるため、半導体素子10の上面に設けられたエミ
ッタ電極22と半導体素子12の上面に設けられたエミ
ッタ電極22とは基板70表面からの高さが異なる。突
起34と突起35とは、このエミッタ電極22の高さの
違いをほぼ相殺するように、半導体素子10,12側へ
の突出高さを異ならせて形成されている。これにより金
属電極30は、全体として基板70とほぼ平行になるよ
うに接合されている。かかる形状の金属電極30による
と、本実施例のように上面の高さが異なる半導体素子1
0,12に跨って金属電極30を配置する場合にも、金
属電極30の各部で半田層50に所定以上の厚さを確保
することができる。
Further, as shown in FIGS. 1 and 2, in the portion of the metal electrode 30 that constitutes the joint portions 20a and 20b, one projection 34 protruding toward the semiconductor element 10 and the semiconductor element 12 side. A total of three protrusions including two protrusions 35 are provided. These three protrusions 3
4, 35 are arranged on a non-coincident line. As shown in FIG. 1, since the semiconductor element 10 and the semiconductor element 12 have different thicknesses, the emitter electrode 22 provided on the upper surface of the semiconductor element 10 and the emitter electrode 22 provided on the upper surface of the semiconductor element 12 are different from each other. The height from the surface of the substrate 70 is different. The protrusions 34 and the protrusions 35 are formed so as to have different protrusion heights toward the semiconductor elements 10 and 12 so as to substantially cancel out the difference in height of the emitter electrode 22. As a result, the metal electrode 30 is bonded so as to be substantially parallel to the substrate 70 as a whole. According to the metal electrode 30 having such a shape, the semiconductor element 1 having different upper surface heights as in the present embodiment
Even when the metal electrode 30 is arranged over 0 and 12, the thickness of the solder layer 50 can be ensured to be equal to or larger than a predetermined value in each part of the metal electrode 30.

【0030】このような金属電極30は、例えば金属板
(銅板等)のプレス加工により作製することができる。
なお、本実施例では金属電極30のうちリフト部32
a,32b以外の部分に突起34,35を形成したが、
突起34,35の一部または全部がリフト部32a,3
2bに形成されていてもよい。
Such a metal electrode 30 can be manufactured by pressing a metal plate (copper plate or the like), for example.
In this embodiment, the lift portion 32 of the metal electrode 30 is used.
The protrusions 34 and 35 are formed on the portions other than a and 32b,
Some or all of the protrusions 34 and 35 are lift portions 32a and 3a.
It may be formed in 2b.

【0031】金属電極30とエミッタ電極22とを接続
するには、例えば、エミッタ電極22の上に板状の半田
(導電性接合材)を載せ、その半田の上に金属電極30
を載置した後に、加熱により半田を溶融させればよい。
あるいは、エミッタ電極22上であらかじめ半田を加熱
溶融させておき、その溶融した半田の上に金属電極30
を載置してもよい。ここで、金属電極30とエミッタ電
極22を接続する際、半田と金属電極30の界面、半田
とエミッタ電極22の界面または半田の内部にエアを噛
み込むことがある。本実施例の構成では、金属電極30
の周辺部に、その外周に向かうにつれて金属電極30の
被接合面(半導体素子10,12側の面)が半導体素子
10,12側から遠ざかるリフト部32a,32bが設
けられている。このため、被接合面の全体が平面状であ
る金属電極に比べて、エアを噛み込んだ場合にも半田の
溶融時にそのエアを金属電極30の外周から外部へと逃
しやすい。これにより半田の内部または接合界面にボイ
ドが発生しにくくなるという効果が得られる。したがっ
て半導体装置の性能を安定化し得る。
To connect the metal electrode 30 and the emitter electrode 22, for example, a plate-shaped solder (conductive bonding material) is placed on the emitter electrode 22, and the metal electrode 30 is placed on the solder.
After mounting, the solder may be melted by heating.
Alternatively, the solder is previously heated and melted on the emitter electrode 22, and the metal electrode 30 is placed on the melted solder.
May be placed. Here, when connecting the metal electrode 30 and the emitter electrode 22, air may be trapped in the interface between the solder and the metal electrode 30, the interface between the solder and the emitter electrode 22, or the inside of the solder. In the configuration of this embodiment, the metal electrode 30
Lift portions 32a and 32b are provided in the peripheral portion of the metal electrode 30 such that the surface to be bonded (the surface on the side of the semiconductor elements 10 and 12) moves away from the semiconductor elements 10 and 12 side toward the outer periphery thereof. Therefore, as compared with a metal electrode having a flat surface as a whole to be joined, the air is more likely to escape from the outer circumference of the metal electrode 30 to the outside when the solder is melted even when the air is trapped. As a result, the effect that voids are less likely to occur inside the solder or at the bonding interface is obtained. Therefore, the performance of the semiconductor device can be stabilized.

【0032】(第二実施例)本発明の第二実施例に係る
半導体装置を図3に示す。以下、第一実施例に係る部材
と同様の機能を果たす部材には同じ符号を付し、その説
明を省略する。半導体素子10の上面に設けられたエミ
ッタ電極22と金属電極30が半田層50により接合さ
れている。本実施例では、一つの金属電極30は一つの
半導体素子10のみに接続されている。金属電極30の
周辺部には、そのほぼ全周に亘って、第一実施例と同様
に、半導体素子10から遠ざかる側に曲がった(反りあ
がった)リフト部32aが形成されている。これによ
り、リフト部32aとエミッタ電極22の間に位置する
半田層50は、金属電極30の外周に向けて次第に厚さ
が大きくなる厚肉部50aを形成している。なお、この
金属電極30には突起が設けられていない。本実施例の
半導体装置は、金属電極30の中心部に位置する半田層
50の厚さが0.3mm以下となるように設計されている
ことが好ましい。この範囲の厚さの半田層50は安定し
て形成しやすいからである。一方、半田層50のうち厚
肉部50aの厚さ(典型的には最外周の厚さ)は0.3
mm以下であってもよく、あるいは0.3mmを超える厚さ
とすることもできる。かかる構成の半導体装置による
と、金属電極30の周辺部に形成された厚肉部50aに
よって、この周辺部の応力緩和性能を効率よく高めるこ
とができる。
(Second Embodiment) FIG. 3 shows a semiconductor device according to a second embodiment of the present invention. Hereinafter, members having the same functions as those of the member according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. The emitter electrode 22 and the metal electrode 30 provided on the upper surface of the semiconductor element 10 are joined by the solder layer 50. In this embodiment, one metal electrode 30 is connected to only one semiconductor element 10. In the peripheral portion of the metal electrode 30, a lift portion 32a that is curved (warped) toward the side away from the semiconductor element 10 is formed over substantially the entire circumference, as in the first embodiment. As a result, the solder layer 50 located between the lift portion 32a and the emitter electrode 22 forms a thick portion 50a whose thickness gradually increases toward the outer circumference of the metal electrode 30. No protrusion is provided on the metal electrode 30. The semiconductor device of this embodiment is preferably designed so that the thickness of the solder layer 50 located at the center of the metal electrode 30 is 0.3 mm or less. This is because the solder layer 50 having a thickness within this range can be stably formed easily. On the other hand, the thickness (typically the thickness of the outermost periphery) of the thick portion 50a of the solder layer 50 is 0.3.
The thickness may be less than or equal to mm, or may be greater than 0.3 mm. According to the semiconductor device having such a configuration, the thick portion 50a formed in the peripheral portion of the metal electrode 30 can efficiently enhance the stress relaxation performance of the peripheral portion.

【0033】(第三実施例)本発明の第三実施例に係る
半導体装置を図4に示す。半導体素子10の上面に設け
られたエミッタ電極22と金属電極30が半田層50に
より接合されている。半導体素子10の上面の周辺部に
は、そのほぼ全周に亘って、半導体素子10の外周に向
かって下がる傾斜面14が形成されている。これによ
り、傾斜面14上に設けられたエミッタ電極22と金属
電極30の間に位置する半田層50は、金属電極30の
外周に向けて次第に厚さが大きくなる厚肉部50aを形
成している。かかる構成の半導体装置によると、第二実
施例と同様に、金属電極30の周辺部に形成された厚肉
部50aによって、この周辺部の応力緩和性能を効率よ
く高めることができる。
(Third Embodiment) FIG. 4 shows a semiconductor device according to a third embodiment of the present invention. The emitter electrode 22 and the metal electrode 30 provided on the upper surface of the semiconductor element 10 are joined by the solder layer 50. In the peripheral portion of the upper surface of the semiconductor element 10, an inclined surface 14 that descends toward the outer periphery of the semiconductor element 10 is formed over substantially the entire circumference. As a result, the solder layer 50 located between the emitter electrode 22 and the metal electrode 30 provided on the inclined surface 14 forms a thick portion 50a whose thickness gradually increases toward the outer periphery of the metal electrode 30. There is. According to the semiconductor device having such a configuration, similarly to the second embodiment, the thick portion 50a formed in the peripheral portion of the metal electrode 30 can efficiently enhance the stress relaxation performance of the peripheral portion.

【0034】(第四実施例)本発明の第四実施例に係る
半導体装置を図5に示す。半導体素子10の上面に設け
られたエミッタ電極22と金属電極30が半田層50に
より接合されている。金属電極30の周辺部には、その
ほぼ全周に亘って、エミッタ電極22から遠ざかる側に
曲げられたリフト部32cが形成されている。ただし、
第二実施例とは異なり、このリフト部32cは中心部と
は不連続的に(縦断面が階段状に)半導体素子10から
遠ざかっている。これにより、リフト部32cとエミッ
タ電極22の間に位置する半田層50は、金属電極30
の中心部とは不連続的にその厚さが大きくなった厚肉部
50bを形成している。かかる構成の半導体装置によっ
ても、金属電極30の周辺部に位置する半田層50形成
された厚肉部50bによって、この周辺部の応力緩和性
能を効率よく高めることができる。
(Fourth Embodiment) FIG. 5 shows a semiconductor device according to a fourth embodiment of the present invention. The emitter electrode 22 and the metal electrode 30 provided on the upper surface of the semiconductor element 10 are joined by the solder layer 50. A lift portion 32c, which is bent toward the side away from the emitter electrode 22, is formed on the peripheral portion of the metal electrode 30 over substantially the entire circumference thereof. However,
Unlike the second embodiment, the lift portion 32c is distant from the semiconductor element 10 discontinuously with the central portion (in a stepwise vertical cross section). As a result, the solder layer 50 located between the lift portion 32c and the emitter electrode 22 has the metal electrode 30
A thick portion 50b having a large thickness is formed discontinuously with the central portion. Also in the semiconductor device having such a configuration, the thick portion 50b formed on the peripheral portion of the metal electrode 30 and formed with the solder layer 50 can efficiently enhance the stress relaxation performance of the peripheral portion.

【0035】(第五実施例)本発明の第五実施例に係る
半導体装置を図6および図7に示す。半導体素子10の
上面に設けられたエミッタ電極22と金属電極30が半
田層50により接合されている。図7によく示されるよ
うに、金属電極30の周辺部には、そのほぼ全周に亘っ
て、金属電極30の厚さが金属電極30の外周に向けて
次第に小さくなる薄肉部36が形成されている。この薄
肉部36の上面(半導体素子10とは反対側の面)は金
属電極30の中心部とほぼ同一面上にある。一方、薄肉
部36の下面(被接合面)は金属電極30の外周に向か
うにつれてエミッタ電極22から次第に遠ざかってい
る。これにより、薄肉部36とエミッタ電極22の間に
位置する半田層50は、金属電極30の外周に向けて次
第に厚さが大きくなる厚肉部50aを形成している。な
お、符号37は金属電極30から延びる引出リードであ
る。
(Fifth Embodiment) FIGS. 6 and 7 show a semiconductor device according to a fifth embodiment of the present invention. The emitter electrode 22 and the metal electrode 30 provided on the upper surface of the semiconductor element 10 are joined by the solder layer 50. As shown in FIG. 7, a thin portion 36 in which the thickness of the metal electrode 30 gradually decreases toward the outer periphery of the metal electrode 30 is formed in the peripheral portion of the metal electrode 30 over substantially the entire circumference thereof. ing. The upper surface (the surface opposite to the semiconductor element 10) of the thin portion 36 is substantially flush with the center of the metal electrode 30. On the other hand, the lower surface (bonded surface) of the thin portion 36 is gradually separated from the emitter electrode 22 as it goes toward the outer periphery of the metal electrode 30. As a result, the solder layer 50 located between the thin portion 36 and the emitter electrode 22 forms a thick portion 50a whose thickness gradually increases toward the outer circumference of the metal electrode 30. Reference numeral 37 is a lead lead extending from the metal electrode 30.

【0036】かかる構成の半導体装置によると、金属電
極30の周辺部に設けられた薄肉部36の剛性が金属電
極30の中心部に比べて低いことから、この周辺部に発
生する応力をよく緩和することができる。また、金属電
極30の周辺部の半田層50には厚肉部50aが形成さ
れているので、この周辺部の応力緩和性能を効率よく高
めることができる。なお、本実施例では金属電極30の
周辺部においてその被接合面を半導体素子10から遠ざ
けることにより薄肉部36を形成したが、被接合面は平
坦な形状とし、金属電極30の上面が外周に向かうにつ
れて半導体素子10側に下がる形状の薄肉部としてもよ
い。この場合にも、薄肉部の剛性が中心部に比べて低い
ことから、金属電極30の周辺部に発生する応力をよく
緩和することができる。
According to the semiconductor device having such a structure, since the rigidity of the thin portion 36 provided in the peripheral portion of the metal electrode 30 is lower than that in the central portion of the metal electrode 30, the stress generated in the peripheral portion is well relieved. can do. Further, since the thick portion 50a is formed in the solder layer 50 in the peripheral portion of the metal electrode 30, the stress relaxation performance in the peripheral portion can be efficiently enhanced. In this embodiment, the thin portion 36 is formed in the peripheral portion of the metal electrode 30 by moving the joined surface away from the semiconductor element 10. However, the joined surface has a flat shape and the upper surface of the metal electrode 30 is the outer periphery. The thin portion may be shaped so as to decrease toward the semiconductor element 10 side. In this case as well, since the rigidity of the thin portion is lower than that of the central portion, the stress generated in the peripheral portion of the metal electrode 30 can be relaxed well.

【0037】(第六実施例)本発明の第六実施例に係る
半導体装置を図8に示す。半導体素子10の上面に設け
られたエミッタ電極22と金属電極30が半田層50に
より接合されている。金属電極30の周辺部のうち長手
方向の両端には切欠き38が設けられている。図9によ
く示されるように、半田層50はこの切欠き38の内部
にまで入り込んで形成されている。
(Sixth Embodiment) FIG. 8 shows a semiconductor device according to a sixth embodiment of the present invention. The emitter electrode 22 and the metal electrode 30 provided on the upper surface of the semiconductor element 10 are joined by the solder layer 50. Notches 38 are provided at both ends in the longitudinal direction of the peripheral portion of the metal electrode 30. As well shown in FIG. 9, the solder layer 50 is formed so as to penetrate into the inside of the notch 38.

【0038】かかる構成の半導体装置では、金属電極3
0の長手方向の両端部では、その平面方向(図8の上下
方向)に、金属電極30の構成材料と半田層50を構成
する半田とが大まかには混在している。これにより、長
手方向の両端部(切欠き38が設けられた範囲)では金
属電極部30の見掛け上の線膨張係数が低下する。これ
により、長手方向の両端部に発生する熱応力を緩和する
ことができる。なお、この第六実施例において、金属電
極30のうち切欠き38に隣接する帯状部41を半導体
素子10から遠ざかる側に曲げ(反らせ)てもよい。こ
れにより、帯状部41とエミッタ電極22の間に位置す
る半田層50の厚さが金属電極30の中心部に比べて大
きくなるので、この部分の応力緩和性能をさらに向上さ
せることができる。あるいは、この帯状部41を金属電
極30の中心部に比べて薄肉としてもよい。
In the semiconductor device having such a structure, the metal electrode 3
At both ends in the longitudinal direction of 0, the constituent material of the metal electrode 30 and the solder composing the solder layer 50 are roughly mixed in the plane direction (vertical direction in FIG. 8). As a result, the apparent linear expansion coefficient of the metal electrode portion 30 decreases at both ends in the longitudinal direction (the range where the notches 38 are provided). Thereby, the thermal stress generated at both ends in the longitudinal direction can be relaxed. In the sixth embodiment, the strip-shaped portion 41 of the metal electrode 30 adjacent to the cutout 38 may be bent (warped) to the side away from the semiconductor element 10. As a result, the thickness of the solder layer 50 located between the strip-shaped portion 41 and the emitter electrode 22 becomes larger than that of the central portion of the metal electrode 30, so that the stress relaxation performance of this portion can be further improved. Alternatively, the band-shaped portion 41 may be thinner than the central portion of the metal electrode 30.

【0039】以上、本発明の具体例を詳細に説明した
が、これらは例示にすぎず、特許請求の範囲を限定する
ものではない。特許請求の範囲に記載の技術には、以上
に例示した具体例を様々に変形、変更したものが含まれ
る。また、本明細書または図面に説明した技術要素は、
単独であるいは各種の組み合わせによって技術的有用性
を発揮するものであり、出願時請求項記載の組み合わせ
に限定されるものではない。また、本明細書または図面
に例示した技術は複数目的を同時に達成するものであ
り、そのうちの一つの目的を達成すること自体で技術的
有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. Further, the technical elements described in the present specification or the drawings are
The technical usefulness is exhibited alone or in various combinations, and is not limited to the combinations described in the claims at the time of filing. In addition, the technique illustrated in the present specification or the drawings achieves a plurality of purposes at the same time, and achieving the one purpose among them has technical utility.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第一実施例に係る半導体装置の要部断面図で
ある。
FIG. 1 is a cross-sectional view of essential parts of a semiconductor device according to a first embodiment.

【図2】 第一実施例に係る半導体装置の金属電極を示
す平面図である。
FIG. 2 is a plan view showing a metal electrode of the semiconductor device according to the first embodiment.

【図3】 第二実施例に係る半導体装置の要部断面図で
ある。
FIG. 3 is a cross-sectional view of essential parts of a semiconductor device according to a second embodiment.

【図4】 第三実施例に係る半導体装置の要部断面図で
ある。
FIG. 4 is a cross-sectional view of essential parts of a semiconductor device according to a third embodiment.

【図5】 第四実施例に係る半導体装置の要部断面図で
ある。
FIG. 5 is a cross-sectional view of essential parts of a semiconductor device according to a fourth embodiment.

【図6】 第五実施例に係る半導体装置の要部平面図で
ある。
FIG. 6 is a plan view of a principal portion of a semiconductor device according to a fifth example.

【図7】 図6の VII−VII 線断面図である。7 is a sectional view taken along line VII-VII of FIG.

【図8】 第六実施例に係る半導体装置の要部平面図で
ある。
FIG. 8 is a plan view of a main portion of a semiconductor device according to a sixth embodiment.

【図9】 図8のIX−IX線断面図である。9 is a sectional view taken along line IX-IX in FIG.

【符号の説明】[Explanation of symbols]

10,12:半導体素子 20,20a,20b:接合部 22:エミッタ電極(素子側電極) 30:金属電極 32a,32b,32c:リフト部 34,35:突起 36:薄肉部 38:切欠き 41:帯状部 50,52:半田層(導電性接合材層) 50a,50b:厚肉部 10, 12: Semiconductor element 20, 20a, 20b: joint part 22: Emitter electrode (element side electrode) 30: Metal electrode 32a, 32b, 32c: Lift section 34, 35: protrusion 36: Thin part 38: Notch 41: Strip 50, 52: Solder layer (conductive bonding material layer) 50a, 50b: thick part

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子の表面に面的に拡がる素子側
電極と、面的に拡がる金属電極とが、面的に拡がる導電
性接合材層によって機械的かつ電気的に接合されてお
り、 素子側電極と金属電極との間の距離が、金属電極の中心
部で小さく、金属電極の周辺部で大きいことを特徴とす
る半導体装置。
1. A device-side electrode that spreads planarly on the surface of a semiconductor device and a metal electrode that expands planarly are mechanically and electrically joined by a conductive bonding material layer that expands planarly. A semiconductor device, wherein the distance between the side electrode and the metal electrode is small at the center of the metal electrode and large at the periphery of the metal electrode.
【請求項2】 前記素子側電極は前記半導体素子の上面
に設けられており、前記金属電極はその周辺部で半導体
素子から遠ざかる側に曲げられている請求項1に記載の
半導体装置。
2. The semiconductor device according to claim 1, wherein the element-side electrode is provided on an upper surface of the semiconductor element, and the metal electrode is bent in a peripheral portion thereof away from the semiconductor element.
【請求項3】 前記金属電極は、その中心部で厚肉であ
り、周辺部で薄肉である請求項1に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the metal electrode has a thick central portion and a thin peripheral portion.
【請求項4】 一つの前記金属電極には、前記半導体素
子に向けて突出する少なくとも3個の突起が非同一線上
に形成されていることを特徴とする請求項1に記載の半
導体装置。
4. The semiconductor device according to claim 1, wherein at least three protrusions protruding toward the semiconductor element are formed on one metal electrode in a non-coincident line.
【請求項5】 半導体素子の表面に面的に拡がる素子側
電極と、面的に拡がる金属電極とが、面的に拡がる導電
性接合材層によって機械的かつ電気的に接合されてお
り、 その金属電極の周辺部には切欠きが設けられており、導
電性接合材層がその切欠きに入り込んでいることを特徴
とする半導体装置。
5. An element-side electrode that spreads planarly on the surface of a semiconductor device and a metal electrode that expands planarly are mechanically and electrically joined by a conductive bonding material layer that expands planarly. A semiconductor device, wherein a notch is provided in a peripheral portion of the metal electrode, and the conductive bonding material layer is inserted into the notch.
【請求項6】 半導体素子の表面に面的に拡がる素子側
電極と、面的に拡がる金属電極とが、面的に拡がる導電
性接合材層によって機械的かつ電気的に接合されてお
り、 前記金属電極は、その中心部で厚肉であり、周辺部で薄
肉であることを特徴とする半導体装置。
6. An element-side electrode that spreads planarly on the surface of the semiconductor device and a metal electrode that expands planarly are mechanically and electrically joined by a conductive bonding material layer that expands planarly, The semiconductor device is characterized in that the metal electrode has a large thickness in its central portion and a small thickness in its peripheral portion.
【請求項7】 半導体素子の表面に面的に拡がる素子側
電極と、面的に拡がる金属電極とが、面的に拡がる導電
性接合材層によって機械的かつ電気的に接合されてお
り、 一つの金属電極には、半導体素子に向けて突出する3以
上の突起が非同一線上に形成されていることを特徴とす
る半導体装置。
7. A device-side electrode that spreads planarly on the surface of a semiconductor device and a metal electrode that expands planarly are mechanically and electrically joined by a conductive bonding material layer that expands planarly. A semiconductor device, wherein three or more protrusions protruding toward a semiconductor element are formed on one metal electrode in a non-coincident line.
JP2002040985A 2002-02-19 2002-02-19 Semiconductor device Pending JP2003243601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040985A JP2003243601A (en) 2002-02-19 2002-02-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040985A JP2003243601A (en) 2002-02-19 2002-02-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2003243601A true JP2003243601A (en) 2003-08-29

Family

ID=27781507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040985A Pending JP2003243601A (en) 2002-02-19 2002-02-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2003243601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273882A (en) * 2006-03-31 2007-10-18 Toyota Central Res & Dev Lab Inc Semiconductor device
EP2916348A4 (en) * 2012-11-05 2016-01-27 Nsk Ltd Semiconductor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273882A (en) * 2006-03-31 2007-10-18 Toyota Central Res & Dev Lab Inc Semiconductor device
EP2916348A4 (en) * 2012-11-05 2016-01-27 Nsk Ltd Semiconductor module
US9397030B2 (en) 2012-11-05 2016-07-19 Nsk Ltd. Semiconductor module

Similar Documents

Publication Publication Date Title
TW574749B (en) Semiconductor device package with improved cooling
US10262953B2 (en) Semiconductor device
JP5928485B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6393342B2 (en) Semiconductor module and method for manufacturing semiconductor module
US11201121B2 (en) Semiconductor device
JP7273055B2 (en) semiconductor equipment
CN109314063A (en) Power semiconductor device
JPWO2017130512A1 (en) Power module
JP2019186326A (en) Semiconductor device and manufacturing method of the same
JP2003188378A (en) Semiconductor device
JP2003243601A (en) Semiconductor device
US20240112990A1 (en) Method for manufacturing semiconductor apparatus and semiconductor apparatus
JP3744431B2 (en) Semiconductor device and manufacturing method thereof
JP2004296837A (en) Semiconductor device
JP7419781B2 (en) semiconductor module
JP4847357B2 (en) Manufacturing method of semiconductor device
US7579675B2 (en) Semiconductor device having surface mountable external contact areas and method for producing the same
JP5724415B2 (en) Semiconductor module
JP7298679B2 (en) Silicon carbide semiconductor device
JP2019009280A (en) Semiconductor device
JP3879647B2 (en) Assembly of members with different linear expansion coefficients
JP4281229B2 (en) Flat type semiconductor device
JP7487411B2 (en) Electrical contact configuration, power semiconductor module, method for manufacturing electrical contact configuration, and method for manufacturing power semiconductor module
WO2023214500A1 (en) Semiconductor device
WO2024116873A1 (en) Semiconductor module