JP2003243024A - Sodium - sulfur battery - Google Patents

Sodium - sulfur battery

Info

Publication number
JP2003243024A
JP2003243024A JP2002040372A JP2002040372A JP2003243024A JP 2003243024 A JP2003243024 A JP 2003243024A JP 2002040372 A JP2002040372 A JP 2002040372A JP 2002040372 A JP2002040372 A JP 2002040372A JP 2003243024 A JP2003243024 A JP 2003243024A
Authority
JP
Japan
Prior art keywords
cathode
sodium
fitting
ring
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002040372A
Other languages
Japanese (ja)
Other versions
JP4170636B2 (en
Inventor
Takashi Ando
孝志 安藤
Naoki Isomura
直樹 磯村
Mitsuhiro Shomura
光広 庄村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002040372A priority Critical patent/JP4170636B2/en
Publication of JP2003243024A publication Critical patent/JP2003243024A/en
Application granted granted Critical
Publication of JP4170636B2 publication Critical patent/JP4170636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sodium - sulfur battery with high durability and high reliability. <P>SOLUTION: This sodium - sulfur battery is constituted by housing sodium in an anode chamber partitioned with a cylindrical solid electrolyte tube with bottom, an insulating ring 1 joined with the outer circumferential surface of an opening end part of the solid electrolyte tube, cathode fittings 2 joined with the top surface of the insulating ring 1, and an anode cover welded to the anode fittings 2. The anode fittings 12 are made of aluminum or an aluminum alloy, have such a shape that an outer flange part 2b is formed midway in a cylindrical part, and are joined with the top surface of the insulating ring 1 on the bottom of the outer flange part 2b, and a ring-shaped ceramic determent body 3 deterring a move repeatedly declining an anode fittings cylinder part 2a caused by thermal expansion and contraction in the operation of the battery is installed on the outer circumferential surface of the anode fittings cylinder part 2a in a non-joining state, and the bottom surface of the ceramic determent body 3 is joined by applying thermal pressure with the top surface of the outer flange part 2b. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、電力貯蔵用等の
二次電池として利用されるナトリウム−硫黄電池に関し
て、陰極金具の熱サイクルによる疲労劣化を緩和し、か
つ陰極金具と絶縁リングとの接合面の剥離によるナトリ
ウムの侵入を防止する低コストのセラミック製抑止体を
設けたことを特徴とするナトリウム−硫黄電池に関する
ものである。
TECHNICAL FIELD [0001] The present invention relates to a sodium-sulfur battery used as a secondary battery for power storage or the like, which alleviates fatigue deterioration of a cathode metal fitting due to a thermal cycle, and joins the cathode metal fitting and an insulating ring. The present invention relates to a sodium-sulfur battery characterized by being provided with a low-cost ceramic restraining body which prevents sodium from entering due to peeling of the surface.

【0002】[0002]

【従来の技術】 電力の平準化やピークカットなどの機
能を実現するための電力貯蔵システムにナトリウム−硫
黄電池が使用されているが、そのナトリウム−硫黄電池
の構造は、図10にその断面図を模式的に示した通りの
ものである。
2. Description of the Related Art A sodium-sulfur battery is used in a power storage system for realizing functions such as power leveling and peak cut. The structure of the sodium-sulfur battery is shown in FIG. Is as schematically shown.

【0003】 製造時におけるその電池構造は、有底筒
状のベータアルミナ固体電解質管9がその上端外周面で
α−アルミナの絶縁リング1の内周面とガラス接合さ
れ、更に、絶縁リング1の上面に接合された陰極金具2
及びその陰極金具2に溶接された陰極蓋4と絶縁リング
1とベータアルミナ固体電解質管9とで区画された陰極
室が、有底筒状の金属製安全管12とその安全管12内
側にナトリウム及び少量のアジ化ナトリウムを収納した
ナトリウム収納容器13を配設しており、一方、陽極室
は、絶縁リング1の下面に接合された陽極金具20と、
その陽極金具20に溶接された陽極容器10と、更には
その陽極容器10に溶接された底蓋11と、絶縁リング
1と、ベータアルミナ固体電解質管9とで区画され、硫
黄を含浸したカーボンマットが配設され、その上部には
窒素などの不活性ガスが充填された構造である。
The battery structure at the time of manufacturing is such that a bottomed cylindrical beta-alumina solid electrolyte tube 9 is glass-bonded to the inner peripheral surface of the α-alumina insulating ring 1 at its upper outer peripheral surface, and further, the insulating ring 1 Cathode fitting 2 joined to the upper surface
And a cathode chamber defined by the cathode lid 4 welded to the cathode metal fitting 2, the insulating ring 1, and the beta-alumina solid electrolyte tube 9 has a bottomed cylindrical metal safety tube 12 and sodium inside the safety tube 12. And a sodium container 13 containing a small amount of sodium azide, and the anode chamber has an anode metal fitting 20 joined to the lower surface of the insulating ring 1,
Anode mat 10 welded to the anode fitting 20, a bottom lid 11 welded to the anode container 10, an insulating ring 1, and a beta-alumina solid electrolyte tube 9 are partitioned by a carbon mat impregnated with sulfur. Is provided, and an upper portion thereof is filled with an inert gas such as nitrogen.

【0004】 各部材による単電池組み立て後、電池作
動温度までの昇温過程で、ナトリウム収納容器13内の
ナトリウムは溶融し、ナトリウム収納容器13内の上部
に内包されていたアジ化ナトリウムの分解で発生した窒
素ガスの圧力によりナトリウム収納容器13の底部に設
けられている小孔より溶融ナトリウムが陰極室内に流出
して陰極室内を充填状態にする。
After the unit cell is assembled by each member, sodium in the sodium container 13 is melted during the temperature rising process up to the battery operating temperature, and the sodium azide contained in the upper part of the sodium container 13 is decomposed. Due to the pressure of the generated nitrogen gas, the molten sodium flows into the cathode chamber through a small hole provided at the bottom of the sodium container 13 to fill the cathode chamber.

【0005】 290℃〜385℃の温度で電池は作動
し、ナトリウムはベータアルミナ固体電解質管9中をナ
トリウムイオンとしてイオン伝導し、陽極室の溶融硫黄
と反応し、多硫化ナトリウムを生成して放電反応が進行
する。充電の際は逆の反応が進み、陰極室に溶融ナトリ
ウムが戻される。
The battery operates at a temperature of 290 ° C. to 385 ° C., sodium ion-conducts as sodium ions in the beta-alumina solid electrolyte tube 9, reacts with molten sulfur in the anode chamber, generates sodium polysulfide, and discharges. The reaction proceeds. The opposite reaction proceeds during charging, and molten sodium is returned to the cathode chamber.

【0006】 上述の構成のナトリウム−硫黄電池にお
いて、その構成部材であるα−アルミナ製の絶縁リング
1とAl又はAl合金製の陰極金具2は熱圧接合されて
単電池が組立てられる。
In the sodium-sulfur battery having the above-described structure, the insulating ring 1 made of α-alumina and the cathode metal fitting 2 made of Al or Al alloy, which are the constituent members, are thermocompression-bonded to each other to assemble a unit cell.

【0007】 熱圧接合部材の要部断面図を図7に示
す。絶縁リング1と陰極金具2の熱圧接合方法は、絶縁
リング1の上面にリング状の金属とセラミックの接合部
材17を載置した後、絶縁リング1に陰極金具2を挿嵌
し、陰極金具2の外フランジ2bの底面を金属とセラミ
ックの接合部材17上面に当接させる。次いで、ステン
レス製リング板18を挿嵌して陰極金具2の外フランジ
部2b上面に載置する。加熱した炉内雰囲気中で押圧治
具19によって絶縁リング1の上面に陰極金具2の外フ
ランジ部2bを加圧接合する。
FIG. 7 shows a sectional view of a main part of the thermocompression bonding member. The thermo-compression bonding method of the insulating ring 1 and the cathode metal fitting 2 is performed by placing a ring-shaped metal-ceramic bonding member 17 on the upper surface of the insulating ring 1 and then inserting the cathode metal fitting 2 into the insulating ring 1 to form the cathode metal fitting. The bottom surface of the second outer flange 2b is brought into contact with the upper surface of the metal-ceramic joining member 17. Then, the stainless steel ring plate 18 is inserted and placed on the upper surface of the outer flange portion 2b of the cathode fitting 2. The outer flange portion 2b of the cathode fitting 2 is pressure-bonded to the upper surface of the insulating ring 1 by the pressing jig 19 in a heated furnace atmosphere.

【0008】 この際、陰極金具2の外フランジ部2b
はAl合金であるから柔らかく、金属とセラミックの接
合部材17と共に押し伸ばされながら絶縁リング1の上
面に熱圧接合される。絶縁リング1の内周面上部に位置
する絶縁リング1と陰極金具2下方円筒部2cとの隙間
は、加圧の際にはみ出した金属とセラミックの接合部材
17で充填される。
At this time, the outer flange portion 2 b of the cathode fitting 2
Since it is an Al alloy, it is soft and is thermocompression bonded to the upper surface of the insulating ring 1 while being stretched together with the metal-ceramic bonding member 17. The gap between the insulating ring 1 located above the inner peripheral surface of the insulating ring 1 and the lower cylindrical portion 2c of the cathode fitting 2 is filled with a metal-ceramic joining member 17 that protrudes during pressurization.

【0009】 熱圧接合後、押圧治具19を陰極金具2
から離脱させる際、ステンレス製リング板18と押圧治
具19は接合しないので、押圧治具19は容易に離脱で
きる。一方、ステンレス製リング板18は陰極金具2と
接合した状態であり、図8に示される通り、ステンレス
製リング板18は陰極金具2の外フランジ部2bに接合
されたままの状態で残る。その後、図9に示される通
り、陰極蓋4が陰極金具2の上端縁に溶接され、電池と
して組立てられてきた。
After the thermocompression bonding, the pressing jig 19 is attached to the cathode fitting 2.
Since the stainless steel ring plate 18 and the pressing jig 19 are not joined to each other when detached from, the pressing jig 19 can be easily detached. On the other hand, the stainless steel ring plate 18 is in a state of being bonded to the cathode metal fitting 2, and as shown in FIG. 8, the stainless steel ring plate 18 remains in a state of being bonded to the outer flange portion 2b of the cathode metal fitting 2. After that, as shown in FIG. 9, the cathode lid 4 was welded to the upper edge of the cathode fitting 2 and assembled into a battery.

【0010】 ステンレス製リング板18は押圧治具1
9との離脱性の改善のみを目的としたものであり、本発
明者らは、経済性から厚み0.12mm〜0.2mmの
SUS304製リング板18を用いてきた。電池組立て
後は何らの機能を有せず電池としては無用の部材であ
る。
The stainless ring plate 18 is the pressing jig 1
The purpose of the present invention is only to improve the releasability of the SUS304 from 9 and the present inventors have used the SUS304 ring plate 18 having a thickness of 0.12 mm to 0.2 mm from the economical viewpoint. After the battery is assembled, it has no function and is a useless member for the battery.

【0011】 この様にして組立てられた単電池を集合
電池として7年間運転させ、7年間運転後の電池を解体
し、調査解析した。その結果、図11に示される通り、
陰極金具2の円筒部2aから外フランジ部2bへの屈曲
部近傍B点に微細な亀裂が発生しており、又絶縁リング
1内周面上端部近傍A点においても接合部にナトリウム
の侵入が発生していた。図12に局部拡大断面図を示
す。陰極金具2の円筒部2aから外フランジ部2bへの
屈曲部近傍B点に発生する微細な亀裂は斜め下方方向に
入っており、更に、陰極金具2は絶縁リング1の内周面
上端部近傍A点で少し上方に離脱し、陰極金具2と絶縁
リング1の熱圧接合部にナトリウムの侵入が観察され
た。尚、用いる陰極金具2はアルミニウム合金の冷間鍛
造品であり、円筒部と外フランジ部は一体品である。
The unit cells thus assembled were operated as an assembled battery for 7 years, and the batteries after 7 years of operation were disassembled and investigated and analyzed. As a result, as shown in FIG.
A minute crack is generated at a point B near the bent portion from the cylindrical portion 2a of the cathode fitting 2 to the outer flange portion 2b, and sodium is not penetrated into the joint at the point A near the upper end of the inner peripheral surface of the insulating ring 1. Had occurred. FIG. 12 shows a partially enlarged sectional view. A minute crack generated at a point B near the bent portion from the cylindrical portion 2a of the cathode metal fitting 2 to the outer flange portion 2b enters in a diagonally downward direction, and the cathode metal fitting 2 is near the upper end of the inner peripheral surface of the insulating ring 1. At the point A, it separated slightly upward, and sodium infiltration was observed in the thermocompression bonded portion between the cathode metal member 2 and the insulating ring 1. The cathode metal fitting 2 used is a cold forged aluminum alloy product, and the cylindrical portion and the outer flange portion are integrated.

【0012】 この様な屈曲部近傍B点における微細な
亀裂の発生、及び絶縁リング1の内周面上端部近傍A点
における陰極金具2の離脱とそれに伴うナトリウムの侵
入についての発生原因は、α−アルミナ絶縁リング1の
膨張係数が7〜8×10-6/℃に対し、アルミニウム合
金製の陰極金具2及び陰極蓋4は25〜26×10-6
℃と極めてその差は大きく、陰極金具と絶縁リングの熱
圧接合時の昇温及び降温、及び電池立ち上げ時の昇温、
電池の運転時における充電及び放電に伴う昇降温、更に
は定期点検修理時の室温までの降温及び作動温度までの
昇温のヒートサイクルの際に、その温度変化に伴って陰
極金具2円筒部2aが膨張、収縮するが、絶縁リング1
内に挿嵌されている部分の円筒部2cは熱膨張係数の小
さい絶縁リング1で拘束され、膨張収縮の動きが抑止さ
れる。
The cause of occurrence of such a minute crack at the point B near the bent portion and the detachment of the cathode metal fitting 2 at the point A near the upper end of the inner peripheral surface of the insulating ring 1 and the accompanying intrusion of sodium are as follows. The expansion coefficient of the alumina insulating ring 1 is 7 to 8 × 10 −6 / ° C., whereas the aluminum alloy cathode fitting 2 and the cathode lid 4 are 25 to 26 × 10 −6 / ° C.
The difference is extremely large with ℃, the temperature rise and fall during the thermocompression bonding of the cathode fitting and the insulating ring, and the temperature rise during battery startup,
During the heat cycle of temperature increase / decrease due to charging and discharging during battery operation, further temperature decrease to room temperature and temperature increase to operating temperature at the time of periodic inspection and repair, the cathode metal fitting 2 cylindrical portion 2a is accompanied by the temperature change. Expands and contracts, but insulation ring 1
The cylindrical portion 2c inserted into the inside is constrained by the insulating ring 1 having a small coefficient of thermal expansion, and the movement of expansion and contraction is suppressed.

【0013】 この結果、陰極金具2の屈曲部近傍B点
を起点として陰極金具円筒部2aが傾動を繰返し、屈曲
部近傍B点に金属疲労を生じ、その結果、亀裂が発生し
たものと推定される。又、絶縁リング1の内周面上端部
近傍A点における陰極金具2の離脱も同じ要因によるも
のと推定される。電池の大型化に伴い陰極金具の円筒部
の外径、及び高さが大きくなり、この問題が生じ易くな
る。
As a result, it is estimated that the cathode metal fitting cylindrical portion 2a repeatedly tilts from the point B near the bent portion of the cathode fitting 2 as a starting point, causing metal fatigue at the point B near the bent portion, and as a result, a crack is generated. It It is also presumed that the detachment of the cathode metal fitting 2 at the point A near the upper end of the inner peripheral surface of the insulating ring 1 is due to the same factor. As the size of the battery increases, the outer diameter and height of the cylindrical portion of the cathode fitting increase, and this problem tends to occur.

【0014】 特開平3−187160号公報には、リ
ング状のα−アルミナ製抑止体を陰極金具の円筒部外周
面に当接する発明を提案しているが、リング状のα−ア
ルミナ製抑止体はアルミナ含有量99%以上あり、それ
自体極めてコストが高く、又、陰極金具の円筒部に当接
させるには高度な寸法精度を要求され、リング状のα−
アルミナ製抑止体は高強度であるから、その研磨加工コ
ストも極めて高い。更に、この従来技術においては、陰
極金具とα−アルミナ絶縁体を熱圧接合後、陰極金具円
筒部にリング状のα−アルミナ製抑止体を嵌通して当接
させている。この場合、絶縁リングと陰極金具の熱圧接
合の際に発生する陰極金具屈曲部Bにおける歪応力に対
しては何ら解決されていない。
Japanese Unexamined Patent Publication (Kokai) No. 3-187160 proposes an invention in which a ring-shaped α-alumina deterrent body is brought into contact with the outer peripheral surface of the cylindrical portion of the cathode fitting, but a ring-shaped α-alumina deterrent body is proposed. Has an alumina content of 99% or more, which is extremely expensive in itself, and requires high dimensional accuracy for contact with the cylindrical portion of the cathode fitting, and the ring-shaped α-
Since the alumina restraining body has high strength, its polishing cost is also extremely high. Furthermore, in this conventional technique, after the cathode metal fitting and the α-alumina insulator are thermocompression bonded, a ring-shaped α-alumina restraining body is fitted into and abutted on the cylindrical portion of the cathode metal fitting. In this case, there is no solution to the strain stress in the bent portion B of the cathode metal fitting, which occurs when the insulating ring and the cathode metal fitting are thermocompression bonded.

【0015】 又、電池運転時においても、陰極金具円
筒部の傾動の動きに追従してα−アルミナ製抑止体も動
き、陰極金具円筒部の傾動を抑止する機能が低下する。
Further, even when the battery is in operation, the α-alumina restraining member also moves following the tilting movement of the cathode fitting cylindrical portion, and the function of restraining the tilting of the cathode fitting cylindrical portion deteriorates.

【0016】 そこで、本発明者らは比較的低コストの
セラミックとしてアルミナ含有量の低い低純度アルミナ
セラミック製抑止体を用いて、この低純度アルミナセラ
ミック製抑止体を陰極金具円筒部に挿入し、絶縁リング
と陰極金具と低純度アルミナセラミック製抑止体の熱圧
接合を試みたが、図13に示す通り、熱圧接合後の低純
度アルミナセラミック製抑止体3のK点を起点に亀裂2
4が発生するとの問題を生じた。
Therefore, the present inventors have used a low-purity alumina ceramic deterrent body having a low alumina content as a relatively low-cost ceramic, and inserted this low-purity alumina ceramic deterrent body into the cathode fitting cylindrical portion, The insulating ring, the cathode fitting, and the low-purity alumina ceramic deterrent body were attempted to be hot-press bonded, but as shown in FIG. 13, cracks 2 started from the K point of the low-purity alumina ceramic deterrent body 3 after the hot-press bonding.
4 has occurred.

【0017】 本発明者らはこの低純度アルミナセラミ
ック製抑止体3に亀裂が発生する原因について詳細に観
察し、調査し、アルミナ含有量が低く、低コストのセラ
ミック製抑止体であっても、熱圧接合の際、このセラミ
ック製抑止体に亀裂が発生せず、且つ電池の長期運転に
おいても陰極金具に亀裂が発生しない、更に、絶縁リン
グと陰極金具の熱圧接合面にもNaが侵入しないナトリ
ウム−硫黄電池を開発し、本発明を完成させたものであ
る。
The present inventors have made detailed observations and investigations on the cause of cracking in the low-purity alumina ceramic deterrent body 3, and even if the ceramic deterrent body has a low alumina content and a low cost, During thermocompression bonding, no cracks will be generated in this ceramic restraining body, and no cracks will be generated in the cathode metal fittings even during long-term operation of the battery. Further, Na will also invade the thermocompression bonding surface between the insulating ring and the cathode metal fittings. The present invention has been completed by developing a sodium-sulfur battery that does not.

【0018】[0018]

【発明が解決しようとする課題】 したがって、本発明
の目的とするところは、熱圧接合工程において、低純度
アルミナのセラミック製抑止体に亀裂が発生せず、電池
として長期間運転しても、陰極金具に亀裂が発生せず、
又、陰極金具と絶縁リングの接合部にもナトリウムが侵
入せず、低コストであって高品質である、長期の耐久性
と信頼性に優れたナトリウム−硫黄電池を提供するもの
である。
Therefore, the object of the present invention is that in the thermocompression bonding process, cracks do not occur in the ceramic restraining body of low-purity alumina, and even if it is operated for a long time as a battery, There is no crack in the cathode fitting,
Further, it is intended to provide a sodium-sulfur battery which is low in cost, high in quality, and excellent in long-term durability and reliability, in which sodium does not invade the joint between the cathode fitting and the insulating ring.

【0019】[0019]

【課題を解決するための手段】 本発明の第1発明によ
れば、有底筒状の固体電解質管と固体電解質管の開口端
部の外周面と接合された絶縁リングと絶縁リングの上面
に接合された陰極金具と陰極金具に溶接された陰極蓋と
で区画された陰極室内にナトリウムが収納され、一方、
固体電解質管外周面と絶縁リングと絶縁リングの底面に
接合された陽極金具と陽極金具に溶接された円筒状の陽
極容器とで区画された陽極室に電子導電材と共に硫黄が
収納されて構成されるナトリウム−硫黄電池において、
陰極金具がアルミニウム又はアルミニウム合金製である
と共に、その形状が円筒部の途中に外フランジ部を有す
る形状であり、且つ外フランジ部底面で絶縁リングの上
面と接合した陰極金具であって、電池運転時における熱
膨張収縮により陰極金具円筒部が繰返し傾動する動きを
抑止するリング状のセラミック製抑止体が陰極金具円筒
部の外周面と非接合の状態で設けられていると共に、セ
ラミック製抑止体の底面が外フランジ部の上面に熱圧接
合されていることを特徴とするナトリウム−硫黄電池が
提供される。
According to a first aspect of the present invention, a cylindrical solid electrolyte tube with a bottom, an insulating ring joined to an outer peripheral surface of an opening end of the solid electrolyte tube, and an upper surface of the insulating ring are provided. Sodium is stored in the cathode chamber defined by the joined cathode fitting and the cathode lid welded to the cathode fitting, while
Sulfur is stored together with an electronic conductive material in an anode chamber defined by an outer peripheral surface of a solid electrolyte tube, an insulating ring, and an anode fitting joined to the bottom surface of the insulating ring and a cylindrical anode container welded to the anode fitting. In a sodium-sulfur battery,
The cathode metal fitting is made of aluminum or an aluminum alloy, and the shape is such that the outer flange portion is in the middle of the cylindrical portion, and the cathode metal fitting is joined to the upper surface of the insulating ring at the bottom surface of the outer flange portion. A ring-shaped ceramic restraining body that suppresses the repeated tilting movement of the cathode metal fitting cylindrical portion due to thermal expansion and contraction is provided in a state not bonded to the outer peripheral surface of the cathode metal fitting cylindrical portion, and the ceramic restraining body There is provided a sodium-sulfur battery, wherein the bottom surface is thermocompression bonded to the upper surface of the outer flange portion.

【0020】 本発明においては、前記セラミック製抑
止体が陰極金具円筒部の外周面と隙間を設けて配設され
ていることが好ましく、更にその隙間が連続的に上方ほ
ど大きく設けられていることがより一層好ましい。
In the present invention, it is preferable that the ceramic restraining body is arranged with a gap provided between the ceramic restraining body and the outer circumferential surface of the cathode fitting cylindrical portion. Is even more preferable.

【0021】 又、本発明においては、前記セラミック
製抑止体が外周面を酸化皮膜で覆われた陰極金具円筒部
と当接または近接の状態で設けられていることが好まし
い。
Further, in the present invention, it is preferable that the ceramic restraining member is provided in a state of abutting on or in proximity to a cathode metal fitting cylindrical portion whose outer peripheral surface is covered with an oxide film.

【0022】 更に、本発明においては、前記セラミッ
ク製抑止体が陰極金具円筒部の外周面にリング状のステ
ンレス製円筒体を介して当接または近接して設けられて
いることが好ましく、更にそのステンレス製円筒体が下
端縁にフランジ部を有し、そのフランジ部の底面が陰極
金具の外フランジ部の上面に圧着接合されていると共に
フランジ部の上面でセラミック製抑止体の底面に熱圧接
合されていることがより一層好ましい。
Further, in the present invention, it is preferable that the ceramic restraining body is provided in contact with or close to the outer peripheral surface of the cathode fitting cylindrical portion via a ring-shaped stainless steel cylindrical body. The stainless steel cylinder has a flange on the lower edge, and the bottom of the flange is pressure-bonded to the upper surface of the outer flange of the cathode fitting, and the upper surface of the flange is heat-pressure bonded to the bottom of the ceramic restrainer. Is more preferable.

【0023】 また、本発明の第2発明によれば、有底
筒状の固体電解質管と固体電解質管の開口端部の外周面
と接合された絶縁リングと絶縁リングの上面に接合され
た陰極金具と陰極金具に溶接された陰極蓋とで区画され
た陰極室内にナトリウムが収納され、一方、固体電解質
管外周面と絶縁リングと絶縁リングの底面に接合された
陽極金具と陽極金具に溶接された円筒状の陽極容器とで
区画された陽極室に電子導電材と共に硫黄が収納されて
構成されるナトリウム−硫黄電池において、陰極金具が
アルミニウム又はアルミニウム合金製であると共に、そ
の形状が円筒部の途中に外フランジ部を有する形状であ
り、且つ外フランジ部底面で絶縁リングの上面と接合し
た陰極金具であって、リング状セラミック製抑止体と接
する陰極金具の円筒部外周面全域がリング状セラミック
製抑止体の内周面と圧着接合され、且つセラミック製抑
止体の底面が陰極金具外フランジ部の上面に熱圧接合さ
れていることを特徴とするナトリウム−硫黄電池が提供
される。
Further, according to the second aspect of the present invention, a cylindrical solid electrolyte tube having a bottom, an insulating ring joined to the outer peripheral surface of the open end of the solid electrolyte tube, and a cathode joined to the upper surface of the insulating ring Sodium is stored in the cathode chamber defined by the metal fitting and the cathode lid welded to the cathode metal fitting, while it is welded to the anode metal fitting and the anode metal fitting joined to the outer peripheral surface of the solid electrolyte tube, the insulating ring and the bottom surface of the insulating ring. In a sodium-sulfur battery in which sulfur is stored together with an electronic conductive material in an anode chamber partitioned with a cylindrical anode container, the cathode metal fitting is made of aluminum or an aluminum alloy, and the shape thereof is a cylindrical portion. A cathode metal fitting having a shape having an outer flange part in the middle and joined to the upper surface of the insulating ring at the bottom surface of the outer flange part, and a cylinder of the cathode metal fitting in contact with the ring-shaped ceramic restrainer. Sodium-sulfur, characterized in that the entire outer peripheral surface of the portion is pressure-bonded to the inner peripheral surface of the ring-shaped ceramic restraining body, and the bottom surface of the ceramic restraining body is thermocompression-bonded to the upper surface of the cathode metal fitting outer flange portion. Batteries are provided.

【0024】 本発明の第1発明および第2発明におい
て、リング状のセラミック製抑止体として低純度アルミ
ナセラミックスのものを用いることができる、更に、低
純度アルミナセラミックスの純度が70%以上のものを
用いることもできる。
In the first and second inventions of the present invention, a low-purity alumina ceramics material can be used as the ring-shaped ceramic restrainer, and a low-purity alumina ceramics material having a purity of 70% or more can be used. It can also be used.

【0025】[0025]

【発明の実施の形態】 以下、本発明の実施の形態につ
いて説明するが、本発明は以下の実施の形態に限定され
るものではないことはいうまでもない。本発明の第1発
明(請求項1)のナトリウム−硫黄電池について説明す
る。本発明の第1発明のナトリウム−硫黄電池の特徴
は、電池運転時における熱膨張収縮により陰極金具円筒
部が繰返し傾動する動きを抑止するリング状のセラミッ
ク製抑止体が陰極金具円筒部の外周面と非接合の状態で
設けられていると共に、セラミック製抑止体の底面が外
フランジ部の上面に熱圧接合されている点である。
Embodiments of the present invention will be described below, but it goes without saying that the present invention is not limited to the following embodiments. The sodium-sulfur battery of the first invention (claim 1) of the present invention will be described. The feature of the sodium-sulfur battery of the first invention of the present invention is that the ring-shaped ceramic restraining body for restraining the movement of the cathode fitting cylindrical portion repeatedly tilted by thermal expansion and contraction during battery operation is the outer peripheral surface of the cathode fitting cylindrical portion. And the bottom surface of the ceramic restraining body is thermocompression bonded to the top surface of the outer flange portion.

【0026】 この特徴により、熱圧接合工程の際にリ
ング状セラミック製抑止体3に亀裂は発生せず、又、電
池運転時における熱膨張収縮により陰極金具円筒部2a
が繰返し傾動する動きを抑止する。電池として長期に亘
り運転されても、陰極金具2の屈曲部Bに亀裂は発生せ
ず、又、絶縁リング1と陰極金具2の熱圧接合面6にも
Naの侵入が防止されるとの格別の効果が得られる。
Due to this feature, cracks do not occur in the ring-shaped ceramic restraining body 3 during the thermocompression bonding process, and the cathode metal fitting cylindrical portion 2a is caused by thermal expansion and contraction during battery operation.
Prevents repeated tilting movements. Even if the battery is operated for a long period of time, no crack is generated in the bent portion B of the cathode metal fitting 2, and Na is prevented from entering the thermocompression bonding surface 6 of the insulating ring 1 and the cathode metal fitting 2. A special effect can be obtained.

【0027】 以下、本発明について、好ましい具体的
実施態様に基づいて順次説明する。図1は、本発明の好
ましい実施態様1を示す図である。即ち、図1は、本発
明のナトリウム−硫黄電池の構成部材であるα−アルミ
ナ製の絶縁リング1と、陰極金具2と、リング状のセラ
ミック製抑止体3とを用いて組み立て後の電池要部拡大
断面図を示す。陰極金具2の形状は、円筒部(上方を2
a、下方を2cと符号)の途中に外フランジ部2bを有
する形状であって、冷間鍛造で製作されたアルミニウム
又はアルミニウム合金の一体品である。
The present invention will be sequentially described below based on preferred specific embodiments. FIG. 1 is a diagram showing a preferred embodiment 1 of the present invention. That is, FIG. 1 shows a battery element after assembly using an insulating ring 1 made of α-alumina, which is a constituent member of the sodium-sulfur battery of the present invention, a cathode metal fitting 2, and a ring-shaped ceramic restraining body 3. The expanded sectional view of a part is shown. The shape of the cathode fitting 2 is a cylindrical part (the upper part is 2
It is a shape having an outer flange portion 2b in the middle of (a, the lower part is denoted by 2c), and is an integrated product of aluminum or aluminum alloy manufactured by cold forging.

【0028】 実施態様1のナトリウム−硫黄電池の特
徴は、電池運転時における熱膨張収縮により陰極金具円
筒部2aが繰返し傾動する動きを抑止する程度の隙間S
を設けてリング状のセラミック製抑止体3が陰極金具円
筒部2aの外周面近傍に配設されていると共に、セラミ
ック製抑止体3の底面が外フランジ部2bの上面に熱圧
接合されていることを特徴とするものである。
The feature of the sodium-sulfur battery of the first embodiment is that the gap S is large enough to prevent the cathode fitting cylindrical portion 2a from repeatedly tilting due to thermal expansion and contraction during battery operation.
And the ring-shaped ceramic restraining body 3 is disposed near the outer peripheral surface of the cathode fitting cylindrical portion 2a, and the bottom surface of the ceramic restraining body 3 is thermocompression bonded to the upper surface of the outer flange portion 2b. It is characterized by that.

【0029】 熱圧接合の際、昇温過程でアルミニウム
合金製の陰極金具円筒部2aの上方部は大きく膨張し、
一方、円筒部2aの下方部は低膨張のα−アルミナ製絶
縁リング1に拘束され膨張が抑止される。その結果、陰
極金具2の円筒部2aは上方に向かってラッパ状に広が
り、円筒部2aの外周面に設けられたリング状のセラミ
ック製抑止体3を押し広げる応力がセラミック製抑止体
3に働く。
During thermocompression bonding, the upper part of the aluminum alloy cathode metal fitting cylindrical portion 2a greatly expands during the temperature rising process,
On the other hand, the lower part of the cylindrical portion 2a is restrained by the low expansion α-alumina insulating ring 1 to suppress the expansion. As a result, the cylindrical portion 2a of the cathode fitting 2 spreads upward in a trumpet shape, and the stress that pushes the ring-shaped ceramic restraining body 3 provided on the outer peripheral surface of the cylindrical portion 2a acts on the ceramic restraining body 3. .

【0030】 しかしながら、円筒部2aの外周面とリ
ング状のセラミック製抑止体3との間には隙間Sが設け
られているため、円筒部2aの膨張・収縮の影響を受け
ないからセラミック製抑止体3に局部歪応力が発生せ
ず、又、セラミック製抑止体3を押し広げる応力が緩和
され、セラミック製抑止体3に亀裂を生じない。電池と
して組立てられ、長期に亘り運転されても、陰極金具2
の屈曲部Bに亀裂を発生せず、又、絶縁リング1と陰極
金具2の熱圧接合面6にもNaの侵入が防止される。
However, since the gap S is provided between the outer peripheral surface of the cylindrical portion 2a and the ring-shaped ceramic restraining member 3, the ceramic restraining member is not affected by the expansion and contraction of the cylindrical portion 2a. No local strain stress is generated in the body 3, and the stress that spreads the ceramic restraining body 3 is relaxed, so that the ceramic restraining body 3 is not cracked. Even when assembled as a battery and operated for a long time, the cathode metal fitting 2
A crack is not generated in the bent portion B of No. 1, and Na is prevented from entering the thermocompression bonding surface 6 of the insulating ring 1 and the cathode fitting 2.

【0031】 リング状のセラミック製抑止体3の底面
が絶縁リング1に熱圧接合された陰極金具2の外フラン
ジ部2bの上面に熱圧接合されており、リング状のセラ
ミック製抑止体3は絶縁リング1と一体的である。
The bottom surface of the ring-shaped ceramic restraining body 3 is thermocompression-bonded to the upper surface of the outer flange portion 2b of the cathode fitting 2 which is thermocompression-bonded to the insulating ring 1. It is integral with the insulating ring 1.

【0032】 リング状のセラミック製抑止体3が外フ
ランジ部2bの上面に熱圧接合されていなければ、電池
運転時における熱膨張収縮により陰極金具円筒部2aの
傾動の動きに追従してリング状のセラミック製抑止体3
も動き、陰極金具円筒部2aの傾動を抑止する機能が低
下する。
If the ring-shaped ceramic restraining body 3 is not thermocompression bonded to the upper surface of the outer flange portion 2b, the ring-shaped ceramic restraining body 3 follows the tilting movement of the cathode metal fitting cylindrical portion 2a due to thermal expansion and contraction during battery operation. Ceramic deterrent body 3
Also, the function of restraining the tilting of the cathode fitting cylindrical portion 2a is deteriorated.

【0033】 電池運転時における熱膨張収縮により陰
極金具円筒部が繰返し傾動する動きを抑止する程度の隙
間Sは、電池の形状、寸法(電池容量)によって、即
ち、陰極金具の陰極蓋4の外径、円筒部2aの高さによ
って適宜設定される。
The gap S that prevents the cathode fitting cylindrical portion from repeatedly tilting due to thermal expansion and contraction during battery operation depends on the shape and size (battery capacity) of the battery, that is, outside the cathode lid 4 of the cathode fitting. The diameter is appropriately set according to the height of the cylindrical portion 2a.

【0034】 又、本発明の実施態様2として、図2に
示す通り、前記隙間Sが連続的に上方ほど大きいことが
好ましい。陰極金具2からセラミック製抑止体3に作用
する応力が分散されるからである。即ち、陰極金具円筒
部2aの上方ほど横方向に大きく膨張し、セラミック製
抑止体3の上方ほど大きな応力を受けるが、隙間Sが上
方ほど連続的に大きく設定されていることにより、セラ
ミック製抑止体3に作用する局部的歪応力の発生が防止
されるからである。
As Embodiment 2 of the present invention, as shown in FIG. 2, it is preferable that the gap S continuously increases toward the upper side. This is because the stress acting on the ceramic restraining body 3 from the cathode fitting 2 is dispersed. That is, the upper side of the cylindrical portion 2a of the cathode fitting expands greatly in the lateral direction, and the upper side of the ceramic restraining body 3 receives a large stress, but the gap S is continuously set higher toward the upper side. This is because the occurrence of local strain stress acting on the body 3 is prevented.

【0035】 次に、本発明の別の好ましい実施態様3
について説明する。本発明の実施態様3の特徴は、図3
に示す通り、リング状セラミック製抑止体3と当接また
は近接する陰極金具円筒部2a外周面全域が酸化被膜1
4で覆われ、リング状セラミック製抑止体3の内周面と
非接合の状態にあり、且つセラミック製抑止体3の底面
が陰極金具2の外フランジ部2bの上面に熱圧接合され
ている点である。
Next, another preferred embodiment 3 of the present invention
Will be described. The feature of Embodiment 3 of the present invention is that FIG.
As shown in FIG. 3, the oxide film 1 is formed on the entire outer peripheral surface of the cathode metal fitting cylindrical portion 2a that is in contact with or close to the ring-shaped ceramic restraining body 3.
4 and is not bonded to the inner peripheral surface of the ring-shaped ceramic restraining body 3, and the bottom surface of the ceramic restraining body 3 is thermocompression bonded to the upper surface of the outer flange portion 2b of the cathode fitting 2. It is a point.

【0036】 リング状セラミック製抑止体3の内周面
と当接または近接する陰極金具2の円筒部2a外周面全
域を切削加工せず、表面を酸化皮膜層とした状態にすれ
ば、熱圧接合の際、陰極金具円筒部2a外周面とリング
状セラミック製抑止体3内周面との接触面8は全域で非
接合(非圧着接合)の状態となり、この場合もリング状
セラミック製抑止体3に亀裂が発生しない。尚、熱圧接
合後は、降温過程でリング状セラミック製抑止体3は陰
極金具円筒部2aと当接または近接の状態になる。
If the entire outer peripheral surface of the cylindrical portion 2a of the cathode fitting 2 that is in contact with or close to the inner peripheral surface of the ring-shaped ceramic restraining body 3 is not cut and the surface is made into an oxide film layer, thermal compression is performed. At the time of joining, the contact surface 8 between the outer peripheral surface of the cylindrical portion 2a of the cathode fitting and the inner peripheral surface of the ring-shaped ceramic restraining body 3 is in a non-bonding (non-pressure bonding) state over the entire area. No crack occurs in 3. In addition, after the thermocompression bonding, the ring-shaped ceramic restraining body 3 is brought into contact with or in the vicinity of the cathode fitting cylindrical portion 2a in the temperature lowering process.

【0037】 リング状セラミック製抑止体3が外周面
を酸化被膜で覆われた陰極金具円筒部2aと当接または
近接の状態に設けられていること、及びセラミック製抑
止体3の底面が絶縁リング1に熱圧接合されている陰極
金具2の外フランジ部2bの上面に熱圧接合されている
ことにより、熱圧接合工程の際にリング状セラミックス
製抑止体3に亀裂は発生せず、又、電池として長期に運
転されても、陰極金具2に亀裂は発生せず、更に、絶縁
リング1と陰極金具2の熱圧接合部にもNaの侵入が防
止されるとの効果が得られる。
The ring-shaped ceramic restraining body 3 is provided in a state of abutting or in proximity to the cathode metal fitting cylindrical portion 2a whose outer peripheral surface is covered with an oxide film, and the bottom surface of the ceramic restraining body 3 is an insulating ring. Since the upper surface of the outer flange portion 2b of the cathode metal fitting 2 that is heat-pressure-bonded to No. 1 is heat-pressure-bonded, cracks do not occur in the ring-shaped ceramic restraining body 3 during the heat-pressure bonding process, and Even if the battery is operated for a long period of time, cracks do not occur in the cathode metal fitting 2 and, further, Na is prevented from entering the thermocompression bonding portion between the insulating ring 1 and the cathode metal fitting 2.

【0038】 次に、本発明の更に別の好ましい実施態
様4について説明する。本発明の実施態様4の特徴は、
図4に示す通り、電池運転時における熱膨張収縮により
陰極金具円筒部2aが繰返し傾動する動きを抑止するリ
ング状のセラミック製抑止体3が陰極金具円筒部2aの
外周面にリング状のステンレス製円筒体15を介して当
接又は近接して設けられていると共に、セラミック製抑
止体3の底面が陰極金具2の外フランジ部2bの上面に
熱圧接合されている点である。
Next, still another preferred embodiment 4 of the present invention will be described. The feature of Embodiment 4 of the present invention is that
As shown in FIG. 4, a ring-shaped ceramic restraining body 3 for restraining the tilting movement of the cathode metal fitting cylindrical portion 2a due to thermal expansion and contraction during battery operation is made of ring-shaped stainless steel on the outer peripheral surface of the cathode metal fitting cylindrical portion 2a. The point is that they are provided in contact with or close to each other via the cylindrical body 15, and that the bottom surface of the ceramic restraining body 3 is thermocompression bonded to the upper surface of the outer flange portion 2b of the cathode fitting 2.

【0039】 絶縁リング1と陰極金具2の外フランジ
部2bとセラミック製抑止体3を熱圧接合する際、陰極
金具2とセラミック製抑止体3の間にリング状のステン
レス製円筒体15を介在させることにより、昇温過程に
おける陰極金具円筒部2aの膨張をリング状のステンレ
ス製円筒体15が抑止し、セラミック製抑止体3に作用
する応力を緩和する。又、ステンレス製円筒体15とセ
ラミック製抑止体3は接合しない。従って、熱圧接合工
程において、セラミック製抑止体3に亀裂は発生しな
い。
When the insulating ring 1, the outer flange portion 2b of the cathode metal fitting 2 and the ceramic restraining body 3 are thermocompression bonded, a ring-shaped stainless steel cylindrical body 15 is interposed between the cathode metal fitting 2 and the ceramic restraining body 3. By doing so, the ring-shaped stainless steel cylindrical body 15 suppresses the expansion of the cathode fitting cylindrical portion 2a during the temperature rising process, and the stress acting on the ceramic suppressing body 3 is relieved. Further, the stainless cylindrical body 15 and the ceramic restraining body 3 are not joined. Therefore, cracks do not occur in the ceramic restraining body 3 in the hot press bonding step.

【0040】 更に、電池運転時における熱膨張収縮に
より陰極金具円筒部2aが繰返し傾動する動きをステン
レス製円筒体15とセラミック製抑止体3の両者によっ
て抑止されるから、又、セラミック製抑止体3の底面が
陰極金具2の外フランジ部2bの上面に熱圧接合されて
いるから、電池として長期に亘り運転されても、陰極金
具2の屈曲部Bに亀裂は発生せず、又、絶縁リング1と
陰極金具2の熱圧接合面6にもNaの侵入が防止され
る。
Further, the repeated tilting movement of the cathode fitting cylindrical portion 2a due to thermal expansion and contraction during battery operation is suppressed by both the stainless steel cylindrical body 15 and the ceramic restraining body 3, and the ceramic restraining body 3 is also provided. Since the bottom surface of the cathode metal fitting is thermocompression bonded to the upper surface of the outer flange portion 2b of the cathode metal fitting 2, even if the battery is operated for a long period of time, no crack is generated in the bent portion B of the cathode metal fitting 2 and the insulating ring is formed. It is also possible to prevent Na from entering the thermocompression bonding surface 6 of the cathode metal 1 and the cathode metal fitting 2.

【0041】 又、本発明の更に好ましい実施態様5と
して、図5に示す通り、ステンレス製リング円筒体15
が下端縁にフランジ部15aを有し、そのフランジ部1
5aの底面が陰極金具2の外フランジ部2bの上面に圧
着接合されていることが好ましい。
As a further preferred embodiment 5 of the present invention, as shown in FIG.
Has a flange portion 15a at the lower edge, and the flange portion 1
The bottom surface of 5a is preferably pressure-bonded to the upper surface of the outer flange portion 2b of the cathode fitting 2.

【0042】 前記ステンレス製リング円筒体15が下
端縁にフランジ部15aを有し、そのフランジ部15a
の底面が陰極金具2の外フランジ部2bの上面に圧着接
合されていると共にそのフランジ部2aの上面でセラミ
ック製抑止体3の底面に熱圧接合されていることによ
り、絶縁リング1と陰極金具外フランジ部2bとステン
レス製円筒体フランジ部15aとセラミック製抑止体3
とが一体的に接合されている。このことにより、電池運
転時における熱膨張収縮により陰極金具円筒部2aが繰
返し傾動する動きに対し追従して動くことが更に確実に
防止される。
The stainless steel ring cylinder 15 has a flange portion 15a at the lower end edge, and the flange portion 15a
Since the bottom surface of the above is pressure-bonded to the upper surface of the outer flange portion 2b of the cathode fitting 2 and the bottom surface of the ceramic restraining body 3 is thermocompression bonded to the upper surface of the flange portion 2a, the insulating ring 1 and the cathode fitting are Outer flange 2b, stainless steel cylindrical flange 15a, and ceramic restraining body 3
And are integrally joined. This further reliably prevents the cathode fitting cylindrical portion 2a from repeatedly moving due to thermal expansion and contraction during battery operation.

【0043】 尚、リング状のステンレス製円筒体15
の材質は、廉価であるオーステナイト系ステンレス(S
US304)を用いても良いが、熱膨張係数がα−アル
ミナ絶縁リングに近く、剛性の高いものが好ましい。例
えば、フェライト系ステンレス(例えばSUS430)
熱膨張係数11×10-6/℃が廉価であり、特に好まし
い。
The ring-shaped stainless steel cylindrical body 15
Is made of austenitic stainless steel (S
US304) may be used, but a material having a thermal expansion coefficient close to that of the α-alumina insulating ring and high rigidity is preferable. For example, ferritic stainless steel (eg SUS430)
The coefficient of thermal expansion of 11 × 10 −6 / ° C. is inexpensive and is particularly preferable.

【0044】 本発明の第1発明のナトリウム−硫黄電
池を構成する他の構成部材による電池構造は、図10に
示すナトリウム−硫黄電池と同一である。即ち、絶縁リ
ング1に陰極金具2を熱圧接合した後、有底筒状の金属
製安全管12とその安全管12内側にナトリウム及び少
量のアジ化ナトリウムを収納したナトリウム収納容器1
3を配設し、次いで、減圧雰囲気中で陰極金具2に陰極
蓋4を溶接する。
The battery structure of the other components constituting the sodium-sulfur battery of the first invention of the present invention is the same as the sodium-sulfur battery shown in FIG. That is, after the cathode metal fitting 2 is thermocompression-bonded to the insulating ring 1, a bottomed tubular safety tube 12 made of metal and a sodium container 1 containing sodium and a small amount of sodium azide inside the safety tube 12
3, the cathode lid 4 is welded to the cathode fitting 2 in a reduced pressure atmosphere.

【0045】 陽極室に関しては、絶縁リング1の底面
に陽極金具20を熱圧接合し、有底筒状のベータアルミ
ナ固体電解質管9の上端部外周面を絶縁リング1の内周
面にガラス接合し、陽極金具20に円筒状の陽極容器1
0を溶接後、硫黄を含浸したカーボンマット(電子導電
材)を陽極陽器10内に配設し、次いで、底蓋11を溶
接して電池を組立てる。
Regarding the anode chamber, the anode metal fitting 20 is thermocompression bonded to the bottom surface of the insulating ring 1, and the outer peripheral surface of the upper end portion of the bottomed cylindrical beta alumina solid electrolyte tube 9 is glass bonded to the inner peripheral surface of the insulating ring 1. Then, the anode metal fitting 20 has a cylindrical anode container 1
After welding 0, a carbon mat (electronic conductive material) impregnated with sulfur is placed in the anode positive vessel 10, and then the bottom lid 11 is welded to assemble the battery.

【0046】 次に、本発明の第2発明(請求項7)の
ナトリウム−硫黄電池について説明する。本発明の第2
発明のナトリウム−硫黄電池の特徴は、図6に示す通
り、リング状セラミック製抑止体3と接する陰極金具2
の円筒部2a外周面全域がリング状セラミック製抑止体
3の内周面に圧着接合され、且つセラミック製抑止体3
の底面が陰極金具2の外フランジ部2bの上面に熱圧接
合されている点である。
Next, the sodium-sulfur battery of the second invention (claim 7) of the present invention will be explained. Second of the present invention
The feature of the sodium-sulfur battery of the invention is, as shown in FIG. 6, the cathode metal fitting 2 in contact with the ring-shaped ceramic restraining body 3.
The entire outer peripheral surface of the cylindrical portion 2a is pressure-bonded to the inner peripheral surface of the ring-shaped ceramic restraining body 3, and the ceramic restraining body 3
Is the point where the bottom surface of is bonded to the upper surface of the outer flange portion 2b of the cathode fitting 2 by thermocompression.

【0047】 絶縁リング1に熱圧接合されている陰極
金具2の外フランジ部2bの上面にセラミック製抑止体
3の底面が熱圧接合されていることにより、セラミック
製抑止体3は陰極金具円筒部2aが傾動する動きに対し
追従して動くことはなく、更に、リング状のセラミック
製抑止体3が陰極金具円筒部2aの外周面に圧着接合さ
れていることにより電池運転時における熱膨張収縮によ
り陰極金具円筒部2aが繰返し傾動する動きを抑止す
る。熱圧接合工程の際においても、リング状セラミック
製抑止体3に亀裂は発生しない。電池として組立てら
れ、長期に亘り運転されても、陰極金具2の屈曲部Bに
亀裂は発生せず、又、絶縁リング1と陰極金具2の熱圧
接合面6にもNaの侵入が防止される。
Since the bottom surface of the ceramic restraining body 3 is heat-pressure joined to the upper surface of the outer flange portion 2b of the cathode fitting 2 that is heat-pressure joined to the insulating ring 1, the ceramic restraining body 3 is a cathode fitting cylinder. The portion 2a does not follow the tilting movement, and the ring-shaped ceramic restraining body 3 is pressure-bonded to the outer peripheral surface of the cathode fitting cylindrical portion 2a, so that thermal expansion and contraction during battery operation. This prevents the cathode fitting cylindrical portion 2a from repeatedly tilting. No cracks are generated in the ring-shaped ceramic restraining body 3 even in the hot press bonding step. Even when assembled as a battery and operated for a long period of time, cracks do not occur in the bent portion B of the cathode fitting 2, and Na is prevented from entering the thermocompression bonding surface 6 between the insulating ring 1 and the cathode fitting 2. It

【0048】 尚、研削された陰極金具円筒部2aの外
周面にリング状のセラミック製抑止体3が全域に亘り圧
着接合していることにより、熱圧接合の際、リング状の
セラミック製抑止体3に亀裂は発生しないメカニズムに
ついて説明する。図13に示す従来の場合、熱圧接合の
際、リング状セラミック製抑止体3に亀裂24が発生す
るが、本発明者らはこの亀裂24が発生した多数のリン
グ状セラミック製抑止体3について観察し、調査した結
果、亀裂24はリング状セラミック製抑止体3が陰極金
具2の円筒部2a外周面に対して接触・非接触の境界線
K点からいずれも発生していることを見出した。
Since the ring-shaped ceramic restraining body 3 is pressure-bonded to the ground outer peripheral surface of the cathode metal fitting cylindrical portion 2a over the entire area, a ring-shaped ceramic restraining body is used during thermocompression bonding. The mechanism by which cracks do not occur in 3 will be described. In the conventional case shown in FIG. 13, cracks 24 are generated in the ring-shaped ceramic restraining body 3 at the time of thermocompression bonding. As a result of observation and inspection, it was found that the cracks 24 were generated from the boundary line K point of the contact / non-contact of the ring-shaped ceramic restraining body 3 to the outer peripheral surface of the cylindrical portion 2a of the cathode fitting 2. .

【0049】 冷間鍛造で製作されたアルミニウム合金
の陰極金具2におけるこの接触面と非接触面の境界線K
点について調査観察した結果、図14に示す通り、非接
触面23が冷間鍛造により製作されたままの表面であっ
て、酸化皮膜を有した表面部であり、一方、接触面22
は切削加工した表面であり、酸化皮膜のない表面部であ
ることが判明した。冷間鍛造で製作されたアルミニウム
合金の陰極金具2においては、円筒部2aの下方部が寸
法精度悪く、研削加工を必要としていた。
A boundary line K between the contact surface and the non-contact surface of the aluminum alloy cathode metal fitting 2 manufactured by cold forging.
As a result of investigating and observing the points, as shown in FIG. 14, the non-contact surface 23 is the surface as produced by cold forging and is the surface portion having the oxide film, while the contact surface 22
Was a surface that was cut, and was found to be a surface portion without an oxide film. In the aluminum alloy cathode metal fitting 2 manufactured by cold forging, the lower portion of the cylindrical portion 2a has poor dimensional accuracy and requires grinding.

【0050】 この接合部・非接合部が発生する原因、
及びその境界線K点に亀裂が発生する原因については、
熱圧接合の際、加熱によって、陰極金具2の円筒部2a
は膨張し、低膨張のセラミック製抑止体3を強く押し広
げる方向に圧力がかかり、その結果、酸化皮膜の無い研
削面22では圧着接合し、一方、酸化皮膜を有する表面
部では非接合(非圧着接合)の状態になったものと推定
される。室温までの降温過程で陰極金具2が収縮する際
に、この接触面22と非接触面23の境界線K点に大き
な歪応力が発生し、K点を起点に亀裂24が発生したも
のと推定される。
Causes of occurrence of this joint portion / non-joint portion,
And the cause of cracks at the boundary line K point,
The cylindrical portion 2a of the cathode metal fitting 2 is heated by heat during the thermocompression bonding.
Expands and a pressure is applied in a direction to strongly spread the low expansion ceramic restraining body 3, and as a result, the grinding surface 22 having no oxide film is pressure-bonded and the surface portion having the oxide film is not bonded (non-bonded). It is presumed that it has become a state of (crimping and joining). It is estimated that a large strain stress was generated at the boundary line K point between the contact surface 22 and the non-contact surface 23 when the cathode fitting 2 contracted during the temperature decrease to room temperature, and the crack 24 started from the K point. To be done.

【0051】 そこで、本発明者らは、リング状セラミ
ック製抑止体3と接する陰極金具2の円筒部2a外周面
全域を切削加工面とすれば、熱圧接合の際、昇温過程で
陰極金具円筒部2a外周面とリング状セラミック製抑止
体3との接触面(接合面)7は全域で互いに圧着接合
し、降温過程においても局部的に歪応力が発生せず、リ
ング状セラミック製抑止体3に亀裂が発生しないと考
え、本発明の第2発明を完成したものである。
Therefore, the inventors of the present invention set the entire outer peripheral surface of the cylindrical portion 2a of the cathode metal fitting 2 in contact with the ring-shaped ceramic restraining body 3 as a cut surface, so that the cathode metal fitting is heated in the temperature rising process during thermocompression bonding. The contact surface (bonding surface) 7 between the outer peripheral surface of the cylindrical portion 2a and the ring-shaped ceramic restraining body 3 is pressure-bonded to each other in the entire region, and no strain stress is locally generated even in the temperature lowering process, and the ring-shaped ceramic restraining body is formed. The second invention of the present invention has been completed on the assumption that no cracks will occur in No. 3.

【0052】 本発明の第2発明のナトリウム−硫黄電
池においても、第1発明のナトリウム−硫黄電池と同
様、ナトリウム−硫黄電池を構成する他の構成部材によ
る電池構造は図10に示すナトリウム−硫黄電池と同一
である。
Also in the sodium-sulfur battery of the second invention of the present invention, similar to the sodium-sulfur battery of the first invention, the battery structure by the other constituent members of the sodium-sulfur battery is shown in FIG. It is the same as the battery.

【0053】(熱圧接合試験)本発明の第1発明および
第2発明に基づく熱圧接合体を実施例1〜実施例6とし
て各々30個作製した。各熱圧接合体のリング状セラミ
ック製抑止体について亀裂の有無を検査し、その結果を
表1に示した。
(Heat-Pressure Bonding Test) Thirty heat-pressure bonding bodies based on the first and second inventions of the present invention were manufactured as Examples 1 to 6. The presence or absence of cracks was inspected for the ring-shaped ceramic restraining body of each thermocompression bonded body, and the results are shown in Table 1.

【0054】 尚、リング状セラミック製抑止体として
は、リング幅5mm、厚み5mmのリング状低純度アル
ミナセラミック製抑止体を用いた。又、陰極金具の円筒
部の寸法は、外径60mm、高さ13mm、肉厚1.0
mmのアルミニウム合金製のものを用いた。又、実施例
4、実施例5で用いたリング状ステンレス円筒体は、肉
厚0.5mmのSUS430製のものを用いた。
As the ring-shaped ceramic deterrent body, a ring-shaped low-purity alumina ceramic deterrent body having a ring width of 5 mm and a thickness of 5 mm was used. The dimensions of the cylindrical portion of the cathode fitting are 60 mm in outer diameter, 13 mm in height, and 1.0 in wall thickness.
An aluminum alloy having a size of mm was used. The ring-shaped stainless steel cylinder used in Examples 4 and 5 was made of SUS430 with a wall thickness of 0.5 mm.

【0055】 リング状低純度アルミナセラミック製抑
止体内の亀裂の有無についての検査方法は、X線透過
法、浸透探傷試験法、及び浸透探傷試験後の供試体を切
断し、切断面の光学顕微鏡観察によって確認した。併せ
て、図14に示す従来の非研磨面と研磨面を有する陰極
金具を用い、従来方法により作製した熱圧接合体につい
ても、低純度アルミナセラミックス製リング体について
観察した。その結果を従来例として表1に示す。
The inspection method for the presence or absence of cracks in the ring-shaped low-purity alumina ceramic deterrent body is as follows: the X-ray transmission method, the penetrant flaw test method, and the specimen after the penetrant flaw test is cut and observed with an optical microscope. Confirmed by. At the same time, using a cathode fitting having a conventional non-polished surface and a polished surface shown in FIG. 14, a thermocompression bonded body produced by a conventional method was also observed for a ring body made of low-purity alumina ceramics. The results are shown in Table 1 as a conventional example.

【0056】[0056]

【表1】 [Table 1]

【0057】 本発明の第1発明および第2発明に基づ
く熱圧接合体(各々実施例1〜実施例6)のリング状低
純度アルミナセラミック製抑止体にはいずれも亀裂は発
生していなかった。一方、従来方法により作製した熱圧
接合体の低純度アルミナセラミックス製リング体には3
0個中28個に亀裂が発生していた。
No cracks were generated in the ring-shaped low-purity alumina ceramic deterrent bodies of the thermocompression bonded bodies (each of Examples 1 to 6) according to the first and second inventions of the present invention. On the other hand, the low-purity alumina ceramic ring body of the thermocompression bonded body manufactured by the conventional method has 3
28 of 0 had cracks.

【0058】[0058]

【発明の効果】 以上説明したように、本発明の第1発
明および第2発明のナトリウム−硫黄電池によれば、電
池運転時における熱膨張収縮により陰極金具円筒部が繰
返し傾動する動きを抑止するリング状セラミック抑止体
として、低コストの低アルミナ含有量の抑止体を用いて
も、熱圧接合工程においてセラミック抑止体に亀裂は発
生しない。又、電池立ち上げ時の昇温、電池の運転時に
おける充電及び放電に伴う昇降温、更には定期点検修理
時の室温までの降温及び作動温度までの昇温のヒートサ
イクルを受けても、陰極金具に亀裂は発生せず、絶縁リ
ングと陰極金具の熱圧接合部にNaが侵入するのが防止
される。その結果、低コストで、長期の耐久性と信頼性
に格別に優れたナトリウム−硫黄電池が得られる。
As described above, according to the sodium-sulfur battery of the first invention and the second invention of the present invention, the movement of the cathode fitting cylindrical portion repeatedly tilted due to thermal expansion and contraction during battery operation is suppressed. Even if a low cost suppressor having a low alumina content is used as the ring-shaped ceramic suppressor, cracks do not occur in the ceramic suppressor in the thermocompression bonding process. In addition, even if a heat cycle is performed when the battery starts up, the temperature rises and falls due to charging and discharging during battery operation, and further, the temperature decreases to room temperature and temperature rises to the operating temperature during periodic inspection and repair. No cracks are generated in the metal fitting, and Na is prevented from entering the thermocompression bonding portion between the insulating ring and the cathode metal fitting. As a result, it is possible to obtain a sodium-sulfur battery that is low in cost and has excellent long-term durability and reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1発明のナトリウム−硫黄電池に
係り、本発明の好ましい実施態様1について説明する電
池局部構造の要部断面図を示す。
FIG. 1 is a cross-sectional view of a main part of a battery local structure for explaining a preferred embodiment 1 of the present invention according to a sodium-sulfur battery of the first invention of the present invention.

【図2】 本発明の第1発明のナトリウム−硫黄電池に
係り、本発明の更に好ましい実施態様2について説明す
る電池局部構造の要部断面図を示す。
FIG. 2 is a cross-sectional view of a main part of a battery local structure for explaining a further preferred embodiment 2 of the present invention according to the sodium-sulfur battery of the first invention of the present invention.

【図3】 本発明の第1発明のナトリウム−硫黄電池に
係り、別の好ましい実施態様3について説明する電池局
部構造の要部断面図を示す。
FIG. 3 is a cross-sectional view of an essential part of a battery local structure for explaining another preferred embodiment 3 according to the sodium-sulfur battery of the first invention of the present invention.

【図4】 本発明の第1発明のナトリウム−硫黄電池に
係り、本発明の更に好ましい実施態様4について説明す
る電池局部構造の要部断面図を示す。
FIG. 4 is a fragmentary cross-sectional view of a battery local structure for explaining a further preferred embodiment 4 of the present invention according to the sodium-sulfur battery of the first invention of the present invention.

【図5】 本発明の第1発明のナトリウム−硫黄電池に
係り、本発明の更に好ましい実施態様5について説明す
る電池局部構造の要部断面図を示す。
FIG. 5 is a fragmentary cross-sectional view of a battery local structure for explaining a further preferred embodiment 5 of the present invention according to the sodium-sulfur battery of the first invention of the present invention.

【図6】 本発明の第2発明のナトリウム−硫黄電池に
係り、本発明の実施態様の1例を説明する電池局部構造
の要部断面図を示す。
FIG. 6 is a cross-sectional view of a main part of a battery local structure for explaining an example of the embodiment of the present invention, which relates to the sodium-sulfur battery of the second invention of the present invention.

【図7】 従来の熱圧接合する工程において、絶縁リン
グと、金属とセラミックスの接合材と、陰極金具と、ス
テンレス製リング板とを配設し、押圧治具で押圧する要
部断面図を示す。
FIG. 7 is a cross-sectional view of a main part in which an insulating ring, a metal / ceramic bonding material, a cathode fitting, and a stainless steel ring plate are arranged and pressed by a pressing jig in a conventional thermocompression bonding process. Show.

【図8】 従来の熱圧接合後の絶縁リングと陰極金具と
ステンレス製リング板とから構成される中間電池部材の
要部断面図を示す。
FIG. 8 is a sectional view of a main part of a conventional intermediate battery member including an insulating ring after thermocompression bonding, a cathode fitting, and a stainless steel ring plate.

【図9】 従来の陰極金具に陰極蓋を溶接して電池を組
立てることを説明する要部断面図を示す。
FIG. 9 is a cross-sectional view of an essential part for explaining assembling a battery by welding a cathode cover to a conventional cathode fitting.

【図10】 従来のナトリウム−硫黄電池を示す模式的
断面図である。
FIG. 10 is a schematic cross-sectional view showing a conventional sodium-sulfur battery.

【図11】 従来のナトリウム−硫黄電池を長年運転し
た際に、陰極金具に発生する亀裂及び陰極金具と絶縁リ
ングの熱圧接合面へのNaの侵入を説明する図である。
FIG. 11 is a diagram for explaining cracks that occur in a cathode metal fitting and infiltration of Na into a thermocompression bonding surface between the cathode metal fitting and the insulating ring when a conventional sodium-sulfur battery is operated for many years.

【図12】 亀裂が発生した部位及び陰極金具と絶縁リ
ングの熱圧接合面へのNaの侵入部位を示す局部拡大断
面図を示す。
FIG. 12 is a locally enlarged cross-sectional view showing a cracked portion and a portion where Na enters the thermocompression bonding surface between the cathode fitting and the insulating ring.

【図13】 熱圧接合工程でリング状セラミック体に発
生する亀裂の発生起点を説明する図を示す。
FIG. 13 is a diagram illustrating a starting point of a crack that occurs in a ring-shaped ceramic body in a thermocompression bonding process.

【図14】 従来使用の陰極金具の表面研削部と非研削
部の位置関係とリング状セラミック体に発生する亀裂の
発生起点との関係を説明する図を示す。
FIG. 14 is a diagram illustrating a relationship between a positional relationship between a surface-ground portion and a non-ground portion of a conventional cathode fitting and a starting point of a crack generated in a ring-shaped ceramic body.

【符号の説明】[Explanation of symbols]

1…絶縁リング、2…陰極金具、2a…上部円筒部、2
b…外フランジ部、2c…下方円筒部、B…屈曲部、3
…リング状のセラミック製抑止体、S…隙間、4…陰極
蓋、5…陰極金具外フランジとセラミック製抑止体の熱
圧接合面、6…陰極金具と絶縁リングとの熱圧接合面、
7…陰極金具円筒部外周面とセラミック抑止体内周面と
の接合面、8…表面を酸化非膜で覆われた陰極金具円筒
部外周面とセラミック抑止体内周面との接触面(非接合
面)9…固体電解質管、10…陽極容器、11…底蓋、
12…安全管、13…ナトリウム収納容器、14…酸化
皮膜、15…リング状のステンレス製円筒体、15a…
フランジ部、16…陰極金具円筒部外周面とステンレス
製円筒体との接合面、17…金属とセラミックの接合
材、18…ステンレス製リング板、19…押圧治具、2
0…陽極金具、21…溶接部、22…研削面(接触
面)、23…非接触面、24…亀裂、K…亀裂の発生起
点。
1 ... Insulating ring, 2 ... Cathode metal fitting, 2a ... Upper cylindrical part, 2
b ... outer flange part, 2c ... lower cylindrical part, B ... bent part, 3
... Ring-shaped ceramic restraining body, S ... Gap, 4 ... Cathode lid, 5 ... Thermocompression bonding surface of cathode metal fitting outer flange and ceramic restraining body, 6 ... Thermocompression bonding surface of cathode fitting and insulating ring,
7 ... Joining surface between outer peripheral surface of cathode fitting cylindrical portion and inner peripheral surface of ceramic suppressor, 8 ... Contact surface between outer peripheral surface of cylindrical cylindrical cathode fitting and ceramic restricting inner peripheral surface (non-joint surface) ) 9 ... Solid electrolyte tube, 10 ... Anode container, 11 ... Bottom lid,
12 ... Safety pipe, 13 ... Sodium storage container, 14 ... Oxide film, 15 ... Ring-shaped stainless steel cylinder, 15a ...
Flange portion, 16 ... Joining surface between outer peripheral surface of cathode fitting cylindrical portion and stainless steel cylinder, 17 ... Metal-ceramic joining material, 18 ... Stainless ring plate, 19 ... Pressing jig, 2
0 ... Anode metal fitting, 21 ... Welded portion, 22 ... Grinding surface (contact surface), 23 ... Non-contact surface, 24 ... Crack, K ... Origin of crack occurrence.

フロントページの続き (72)発明者 庄村 光広 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 5H029 AJ05 AJ14 AK05 AL13 AM15 BJ02 BJ16 CJ02 CJ03 CJ05 DJ06 EJ01 EJ08 HJ01 Continued front page    (72) Inventor Mitsuhiro Shomura             2-56, Sudacho, Mizuho-ku, Nagoya-shi, Aichi             Inside Hon insulator Co., Ltd. F term (reference) 5H029 AJ05 AJ14 AK05 AL13 AM15                       BJ02 BJ16 CJ02 CJ03 CJ05                       DJ06 EJ01 EJ08 HJ01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 有底筒状の固体電解質管と該固体電解質
管の開口端部の外周面と接合された絶縁リングと該絶縁
リングの上面に接合された陰極金具と該陰極金具に溶接
された陰極蓋とで区画された陰極室内にナトリウムが収
納され、一方、該固体電解質管外周面と該絶縁リングと
該絶縁リングの底面に接合された陽極金具と該陽極金具
に溶接された円筒状の陽極容器とで区画された陽極室に
電子導電材と共に硫黄が収納されて構成されるナトリウ
ム−硫黄電池において、 該陰極金具がアルミニウム又はアルミニウム合金製であ
ると共に、その形状が円筒部の途中に外フランジ部を有
する形状であり、且つ該外フランジ部底面で該絶縁リン
グの上面と接合した陰極金具であって、電池運転時にお
ける熱膨張収縮により該陰極金具円筒部が繰返し傾動す
る動きを抑止するリング状のセラミック製抑止体が該陰
極金具円筒部の外周面と非接合の状態で設けられている
と共に、該セラミック製抑止体の底面が該外フランジ部
の上面に熱圧接合されていることを特徴とするナトリウ
ム−硫黄電池。
1. A bottomed cylindrical solid electrolyte tube, an insulating ring joined to the outer peripheral surface of the open end of the solid electrolyte tube, a cathode fitting joined to the upper surface of the insulating ring, and a welding to the cathode fitting. Sodium is contained in a cathode chamber defined by a cathode lid, while the outer peripheral surface of the solid electrolyte tube, the insulating ring, an anode fitting joined to the bottom surface of the insulating ring, and a cylindrical shape welded to the anode fitting. In a sodium-sulfur battery in which sulfur is stored together with an electronic conductive material in an anode chamber defined by the anode container, the cathode metal fitting is made of aluminum or an aluminum alloy, and its shape is in the middle of the cylindrical portion. A cathode metal fitting having a shape having an outer flange portion and joined to the upper surface of the insulating ring on the bottom surface of the outer flange portion, wherein the cathode metal fitting cylindrical portion is repeatedly subjected to thermal expansion and contraction during battery operation. A ring-shaped ceramic restraining body for restraining the moving motion is provided in a state of not being joined to the outer peripheral surface of the cathode metal fitting cylindrical portion, and the bottom surface of the ceramic restraining body is heated on the upper surface of the outer flange portion. A sodium-sulfur battery characterized by being pressure-bonded.
【請求項2】 該セラミック製抑止体が該陰極金具円筒
部の外周面と隙間を設けて配設されていることを特徴と
する請求項1に記載のナトリウム−硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the ceramic restraining member is arranged with a gap provided between the ceramic restraining member and the outer peripheral surface of the cathode fitting cylindrical portion.
【請求項3】 該隙間が連続的に上方ほど大きく設けら
れていることを特徴とする請求項2に記載のナトリウム
−硫黄電池。
3. The sodium-sulfur battery according to claim 2, wherein the gap is continuously provided so as to be larger toward the upper side.
【請求項4】 該セラミック製抑止体が外周面を酸化皮
膜で覆われた該陰極金具円筒部と当接または近接の状態
で設けられていることを特徴とする請求項1に記載のナ
トリウム−硫黄電池。
4. The sodium according to claim 1, wherein the ceramic restraining member is provided in a state of abutting on or in proximity to the cathode metal fitting cylindrical portion whose outer peripheral surface is covered with an oxide film. Sulfur battery.
【請求項5】 該セラミック製抑止体が該陰極金具円筒
部の外周面にリング状のステンレス製円筒体を介して当
接または近接して設けられていることを特徴とする請求
項1に記載のナトリウム−硫黄電池。
5. The ceramic suppressor is provided in contact with or close to the outer peripheral surface of the cathode fitting cylindrical portion via a ring-shaped stainless steel cylindrical body. Sodium-sulfur battery.
【請求項6】 該ステンレス製円筒体が下端縁にフラン
ジ部を有し、該フランジ部の底面が該陰極金具の外フラ
ンジ部の上面に圧着接合されていると共に該フランジ部
の上面で該セラミック製抑止体の底面に熱圧接合されて
いることを特徴とする請求項5に記載のナトリウム−硫
黄電池。
6. The stainless steel cylindrical body has a flange portion at a lower end edge thereof, a bottom surface of the flange portion is pressure-bonded to an upper surface of an outer flange portion of the cathode fitting, and the ceramic is provided on an upper surface of the flange portion. The sodium-sulfur battery according to claim 5, wherein the sodium-sulfur battery is thermocompression bonded to the bottom surface of the depressing body.
【請求項7】 有底筒状の固体電解質管と該固体電解質
管の開口端部の外周面と接合された絶縁リングと該絶縁
リングの上面に接合された陰極金具と該陰極金具に溶接
された陰極蓋とで区画された陰極室内にナトリウムが収
納され、一方、該固体電解質管外周面と該絶縁リングと
該絶縁リングの底面に接合された陽極金具と該陽極金具
に溶接された円筒状の陽極容器とで区画された陽極室に
電子導電材と共に硫黄が収納されて構成されるナトリウ
ム−硫黄電池において、 該陰極金具がアルミニウム又はアルミニウム合金製であ
ると共に、その形状が円筒部の途中に外フランジ部を有
する形状であり、該外フランジ部底面で該絶縁リングの
上面と接合した陰極金具であって、リング状セラミック
製抑止体と接する該陰極金具の円筒部外周面全域が該リ
ング状セラミック製抑止体の内周面と圧着接合され、且
つ該セラミック製抑止体の底面が該陰極金具外フランジ
部の上面に熱圧接合されていることを特徴とするナトリ
ウム−硫黄電池。
7. A bottomed cylindrical solid electrolyte tube, an insulating ring joined to the outer peripheral surface of the open end of the solid electrolyte tube, a cathode fitting joined to the upper surface of the insulating ring, and a welding to the cathode fitting. Sodium is contained in a cathode chamber defined by a cathode lid, while the outer peripheral surface of the solid electrolyte tube, the insulating ring, an anode fitting joined to the bottom surface of the insulating ring, and a cylindrical shape welded to the anode fitting. In a sodium-sulfur battery in which sulfur is stored together with an electronic conductive material in an anode chamber defined by the anode container, the cathode metal fitting is made of aluminum or an aluminum alloy, and its shape is in the middle of the cylindrical portion. A cathode metal fitting having a shape having an outer flange portion, the bottom surface of the outer flange portion being joined to the upper surface of the insulating ring, and the entire outer peripheral surface of the cylindrical portion of the cathode metal fitting in contact with the ring-shaped ceramic restraining body. Is the inner peripheral surface and the pressure bonding of the ring-shaped ceramic suppression body, and sodium bottom of the ceramic suppression body is characterized in that it is thermocompression bonded to the upper surface of the cathode metal outer flange - sulfur battery.
【請求項8】 該リング状のセラミック製抑止体が低純
度アルミナセラミックスからなることを特徴とする請求
項1〜7のいずれか一項に記載のナトリウム−硫黄電
池。
8. The sodium-sulfur battery according to claim 1, wherein the ring-shaped ceramic suppressor is made of low-purity alumina ceramics.
【請求項9】 該低純度アルミナセラミックスの純度が
70%以上であることを特徴とする請求項8に記載のナ
トリウム−硫黄電池。
9. The sodium-sulfur battery according to claim 8, wherein the purity of the low-purity alumina ceramics is 70% or more.
JP2002040372A 2002-02-18 2002-02-18 Sodium-sulfur battery Expired - Lifetime JP4170636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040372A JP4170636B2 (en) 2002-02-18 2002-02-18 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040372A JP4170636B2 (en) 2002-02-18 2002-02-18 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JP2003243024A true JP2003243024A (en) 2003-08-29
JP4170636B2 JP4170636B2 (en) 2008-10-22

Family

ID=27781123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040372A Expired - Lifetime JP4170636B2 (en) 2002-02-18 2002-02-18 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP4170636B2 (en)

Also Published As

Publication number Publication date
JP4170636B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US6716554B2 (en) Battery case, cover, and feedthrough
CN102124590B (en) Seal ring and associated method
JP5501605B2 (en) Superplastic seal system for electrochemical cell systems preferentially
US4419418A (en) Individual rechargeable electric cell
US5397366A (en) Glass sealing of electrochemical storage cell structures
EP0480962B1 (en) Sodium/sulphur cells including a ceramic member and a metal member bonded together
JP2003243024A (en) Sodium - sulfur battery
GB2190236A (en) Hot isostatically compressed electrochemical cell seal
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
JP4040315B2 (en) Sodium-sulfur battery
JP2000195543A (en) Jointing method and bonding structure of insulation ring to negative electrode fitting and sodium-sulfur battery using them
JP2003217650A (en) Sodium - sulfur battery
JP2003288867A (en) Ceramic terminal
JPH0766799B2 (en) Airtight method for battery terminal
JP2002056887A (en) Method for manufacturing thermo-compression joining member for insulating ring constituting sodium-sulfur battery and positive electrode metal fitting
JP2000327442A (en) Ceramic-metal joined body, its production and high temperature type secondary battery
JPH06196204A (en) Junction structure between solid electrolytic tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery
JPH0650649B2 (en) Sodium-sulfur battery
JP2000323167A (en) Manufacture and manufacturing device of sodium-sulfur battery
JP4574196B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JP2000133303A (en) Sodium sulfur battery
JP3325238B2 (en) Anode and cathode fittings for sodium-sulfur battery and method of joining these to insulating ring
KR101554336B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JP3351186B2 (en) Sodium-sulfur battery
JPH08148182A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4170636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term