JPH06196204A - Junction structure between solid electrolytic tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery - Google Patents

Junction structure between solid electrolytic tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery

Info

Publication number
JPH06196204A
JPH06196204A JP5074611A JP7461193A JPH06196204A JP H06196204 A JPH06196204 A JP H06196204A JP 5074611 A JP5074611 A JP 5074611A JP 7461193 A JP7461193 A JP 7461193A JP H06196204 A JPH06196204 A JP H06196204A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte tube
insulating ring
sodium
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5074611A
Other languages
Japanese (ja)
Other versions
JP2709015B2 (en
Inventor
Toshiyuki Mima
敏之 美馬
Naoki Isomura
直樹 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5074611A priority Critical patent/JP2709015B2/en
Publication of JPH06196204A publication Critical patent/JPH06196204A/en
Application granted granted Critical
Publication of JP2709015B2 publication Critical patent/JP2709015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To secure the bonding strength, improve the bonding reliability against the thermal stress and mechanical stress, facilitate manufacture, and improve the safety of a battery. CONSTITUTION:An insulating ring 4 is bonded at the end section of a cylindrical positive electrode container. The opening end section of a bottomed cylindrical solid electrolyte tube 5 is arranged on the inner periphery of the insulating ring 4, and the insulating ring 4 and the solid electrolyte tube 5 are bonded via glass 24. A hook section 14 serving as the L-shaped first opposite face proximately facing the outer periphery 5b of the opening end section of the solid electrode tube 5 and the opening end face 5a and a glass filling notch 20 serving as the second opposite face facing the outer periphery 5b of the opening end section at an interval wider than the interval between the hook section 14 and the solid electrolyte tube 5 are formed on the inner periphery of the insulating ring 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ナトリウム−硫黄電
池における固体電解質管と絶縁リングとの接合構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint structure between a solid electrolyte tube and an insulating ring in a sodium-sulfur battery.

【0002】[0002]

【従来の技術】従来、β−アルミナ製の固体電解質管と
α−アルミナ製の絶縁リングとの接合においては、ガラ
スを介在させた接合構造が知られている。例えば、本発
明者らは先に、固体電解質管又は絶縁リングの少なくと
も一方に、ガラス溜まりを形成するためのテーパ部を設
けたものを提案した(特開平3−291860号公
報)。そして、このテーパ部の形状や表面状態などによ
ってガラス溜まりのガラス半田中に残留する応力を少な
くして、ガラス接合部におけるクラックの発生を抑制し
ている。
2. Description of the Related Art Heretofore, in joining a solid electrolyte tube made of β-alumina and an insulating ring made of α-alumina, a joining structure in which glass is interposed is known. For example, the present inventors have previously proposed that at least one of the solid electrolyte tube and the insulating ring is provided with a tapered portion for forming a glass reservoir (Japanese Patent Laid-Open No. 3-291860). The shape of the tapered portion, the surface condition, and the like reduce the stress remaining in the glass solder in the glass pool, thereby suppressing the occurrence of cracks in the glass bonding portion.

【0003】[0003]

【発明が解決しようとする課題】ところで、ナトリウム
−硫黄電池は300〜350℃で作動する高温電池であ
り、作動、停止の繰り返しによる温度変化が大きく、ま
た電池の作動に伴い活物質であるナトリウムイオンが固
体電解質管を介して移動し、固体電解質管の内部の活物
質容量が増減する。そして、上記ガラス接合部に対し、
前記温度変化による固体電解質管や絶縁リングの膨張、
収縮の相違に基づく熱的応力や、外力に基づく機械的応
力が加わりやすい。そのため、このガラス接合部にクラ
ックが発生したり、ガラス接合部が破損したりするおそ
れがある。
The sodium-sulfur battery is a high-temperature battery that operates at 300 to 350 ° C., and its temperature changes greatly due to repeated operation and shutdown, and sodium, which is an active material as the battery operates. Ions move through the solid electrolyte tube, and the active material capacity inside the solid electrolyte tube increases or decreases. Then, with respect to the glass bonding portion,
Expansion of the solid electrolyte tube or insulating ring due to the temperature change,
Thermal stress due to difference in contraction and mechanical stress due to external force are likely to be applied. Therefore, there is a possibility that cracks may occur in the glass joint portion or the glass joint portion may be damaged.

【0004】しかしながら、前記従来の接合構造におい
ては、テーパ部によってガラス溜まりを設けただけの構
造であることから、接合部における機械的強度のばらつ
きが大きい。従って、熱的応力や機械的応力に対する接
合の信頼性が不足するという問題があった。
However, in the above-mentioned conventional joining structure, since the glass reservoir is simply provided by the tapered portion, the mechanical strength of the joining portion varies widely. Therefore, there is a problem in that the reliability of joining with respect to thermal stress and mechanical stress is insufficient.

【0005】また、前記従来の接合構造においては、固
体電解質管はその外周面において絶縁リングと接合され
ているのみである。このため、両者の位置関係が絶縁リ
ングの軸方向にずれ易く、製造にあたってはこのずれが
生じないように治具の使用を余儀無くされた。従って、
従来の接合構造では製造が面倒であるという問題もあっ
た。
Further, in the conventional joining structure, the solid electrolyte tube is only joined to the insulating ring on the outer peripheral surface thereof. For this reason, the positional relationship between the two tends to shift in the axial direction of the insulating ring, and a jig has been forced to be used so that this shift does not occur during manufacturing. Therefore,
The conventional joining structure also has a problem that the manufacturing is troublesome.

【0006】しかも、異常時において固体電解質管が破
壊するおそれがあるが、その破壊部分が固体電解質管と
絶縁リングとの接合部などで起きると、固体電解質管内
のナトリウムが漏出して、発火などの危険性があるとい
う問題があった。
Moreover, the solid electrolyte tube may be broken in an abnormal state, but if the broken part occurs at the joint between the solid electrolyte tube and the insulating ring, sodium in the solid electrolyte tube leaks out, causing ignition, etc. There was a problem that there was a danger of.

【0007】この発明は上記従来の問題に鑑みてなされ
たものである。その第1の目的は、接合強度を確保でき
るとともに、熱的応力や機械的応力に対する接合の信頼
性が高く、しかも製造が容易なナトリウム−硫黄電池に
おける固体電解質管と絶縁リングとの接合構造及びナト
リウム−硫黄電池を提供することにある。また、第2の
目的は、異常時における固体電解質管の破壊位置を特定
してナトリウムの漏出を防止し、安全性を向上させるこ
とができるナトリウム−硫黄電池を提供することにあ
る。
The present invention has been made in view of the above conventional problems. The first purpose thereof is to secure a bonding strength, have a high reliability of bonding against thermal stress and mechanical stress, and easily manufacture a solid electrolyte tube and an insulating ring in a sodium-sulfur battery. It is to provide a sodium-sulfur battery. A second object is to provide a sodium-sulfur battery capable of specifying the breakage position of the solid electrolyte tube at the time of abnormality to prevent sodium from leaking and improving safety.

【0008】[0008]

【課題を解決するための手段】上記第1の目的を達成す
るために、請求項1に記載の発明では筒状の陽極容器の
端部に絶縁リングを接合するとともに、この絶縁リング
の内周面に有底円筒状をなす固体電解質管の開口端部を
配置して、絶縁リングと固体電解質管との間をガラスを
介して接合したナトリウム−硫黄電池における固体電解
質管と絶縁リングとの接合構造であって、前記絶縁リン
グの内周面には、固体電解質管の開口端部の外周面及び
開口端面に近接対向するL字状の第1の対向面と、その
第1の対向面と固体電解質管との間隔より広い間隔をも
って開口端部の外周面に対向する第2の対向面とを形成
したことを特徴とする。
In order to achieve the above-mentioned first object, in the invention according to claim 1, an insulating ring is joined to the end of a cylindrical anode container and the inner circumference of this insulating ring is joined. Bonding of solid electrolyte tube and insulating ring in sodium-sulfur battery in which the open end of a solid electrolyte tube having a bottomed cylindrical shape is arranged on the surface and the insulating ring and solid electrolyte tube are bonded via glass In the structure, on the inner peripheral surface of the insulating ring, an L-shaped first opposing surface that closely opposes the outer peripheral surface of the opening end portion of the solid electrolyte tube and the opening end surface, and the first opposing surface are provided. It is characterized in that a second facing surface facing the outer peripheral surface of the opening end portion is formed with a spacing wider than the spacing with the solid electrolyte tube.

【0009】また、請求項2に記載の発明では、請求項
1の発明において前記固体電解質管の外周端縁に面取り
部を設けるとともに、この面取り部に対向する第1の対
向面のコーナ部分を弧状面としたことを特徴とする。さ
らに、第1の目的を達成するために、請求項3に記載の
ナトリウム−硫黄電池の発明では、筒状の陽極容器の端
部に絶縁リングを接合するとともに、この絶縁リングの
内周面に有底円筒状をなす固体電解質管の開口端部を配
置して、絶縁リングと固体電解質管との間をガラスを介
して接合し、陽極容器と固体電解質管との間に陽極用導
電材のマットを収容してこのマットに硫黄を含浸し、か
つ固体電解質管内にナトリウムを収容したナトリウム−
硫黄電池において、前記固体電解質管の開口端部におけ
る肉厚を電池の通電部における肉厚より厚く形成したこ
とを特徴とする。
According to a second aspect of the invention, in the first aspect of the invention, a chamfered portion is provided on the outer peripheral edge of the solid electrolyte tube, and a corner portion of the first facing surface facing the chamfered portion is formed. It is characterized by having an arc surface. Furthermore, in order to achieve the first object, in the invention of the sodium-sulfur battery according to claim 3, an insulating ring is joined to the end of the cylindrical anode container, and the inner peripheral surface of this insulating ring is joined. The open end portion of the solid electrolyte tube having a bottomed cylindrical shape is arranged, and the insulating ring and the solid electrolyte tube are joined together via glass, and the anode conductive material is connected between the anode container and the solid electrolyte tube. Sodium containing a mat, impregnated with sulfur in the mat, and containing sodium in the solid electrolyte tube.
In the sulfur battery, the wall thickness at the open end of the solid electrolyte tube is thicker than the wall thickness at the current-carrying part of the battery.

【0010】また、第1及び第2の目的を達成するため
に、請求項4に記載の発明では、請求項3の発明におい
て前記固体電解質管の開口端部と通電部とを所定の傾斜
面で形成するとともに、この傾斜面の通電部側端部を陽
極用導電材のマットの存在する位置に設定したことを特
徴とする。
In order to achieve the first and second objects, according to the invention of claim 4, in the invention of claim 3, the open end of the solid electrolyte tube and the current-carrying part are provided with a predetermined inclined surface. And the end of the inclined surface on the side of the current-carrying part is set at the position where the mat of the conductive material for the anode exists.

【0011】[0011]

【作用】固体電解質管の開口端部が絶縁リングのL字状
をなす第1の対向面で支持される。そのため、固体電解
質管の位置決めがなされるとともに、接合強度が確保さ
れる。
The open end of the solid electrolyte tube is supported by the L-shaped first facing surface of the insulating ring. Therefore, the solid electrolyte tube is positioned and the bonding strength is secured.

【0012】また、固体電解質管の外周端縁に面取り部
を設けるとともに、この面取り部に対向する絶縁リング
の部分を弧状面として尖鋭部分をなくしたことから、こ
の部分において両者間の隙間に充填されるガラスに応力
集中は作用しない。
Further, since the chamfered portion is provided on the outer peripheral edge of the solid electrolyte tube and the portion of the insulating ring facing the chamfered portion is made into an arcuate surface to eliminate the sharp portion, the gap between the two is filled in this portion. Stress concentration does not act on the glass to be treated.

【0013】さらに、固体電解質管の開口端部における
肉厚を電池の通電部における肉厚より厚く形成すること
により、固体電解質管と絶縁リングとの接合部における
機械的強度を高めることができる。従って、固体電解質
管に余分な外力が加わっても、その力は固体電解質管の
肉厚に形成された開口端部で受け止められ、接合部への
力は緩和されるため、この接合部における接合の信頼性
を確保することができる。
Further, by forming the thickness of the open end of the solid electrolyte tube to be thicker than the thickness of the current-carrying portion of the battery, the mechanical strength at the joint between the solid electrolyte tube and the insulating ring can be increased. Therefore, even if an extra external force is applied to the solid electrolyte tube, the force is received by the open end formed in the wall thickness of the solid electrolyte tube, and the force on the joint is relieved. The reliability of can be secured.

【0014】また、固体電解質管の開口端部と通電部と
を所定の傾斜面で形成し、かつこの傾斜面の通電部側端
部を陽極用導電材のマットの存在する位置に設定するこ
とにより、異常時における固体電解質管の破壊位置が特
定される。すなわち、固体電解質管の破壊は固体電解質
管の厚みが変化する位置、つまり上記傾斜面の通電部側
端部で起こる。このとき、破壊部分はその外周からマッ
トで覆われていることから、クラックなどの破壊の進展
が抑えられる。しかも、この場合破壊によって固体電解
質管内からナトリウムが流出しても、この流出したナト
リウムは、マット中の硫黄と反応して多硫化ナトリウム
となるため、ナトリウムの外部への流出を防止すること
ができる。
Also, the open end of the solid electrolyte tube and the current-carrying part are formed by a predetermined inclined surface, and the end of the inclined surface on the current-carrying part side is set at the position where the mat of the conductive material for anode is present. By this, the breakage position of the solid electrolyte tube at the time of abnormality is specified. That is, the breakage of the solid electrolyte tube occurs at the position where the thickness of the solid electrolyte tube changes, that is, at the end portion of the inclined surface on the current-carrying portion side. At this time, since the fractured portion is covered with the mat from the outer periphery, the progress of fracture such as cracks is suppressed. Moreover, in this case, even if sodium spills out of the solid electrolyte tube due to destruction, the spilled sodium reacts with sulfur in the mat to become sodium polysulfide, so that the sodium can be prevented from flowing out. .

【0015】[0015]

【実施例】(第1実施例)以下に、請求項1及び2の発
明を具体化した一実施例について、図面に従って説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) An embodiment embodying the invention of claims 1 and 2 will be described below with reference to the drawings.

【0016】図3に示すように、円筒状に形成された陽
極容器1には、下端部に陽極蓋2が取付けられるととも
に、上部外面に陽極端子3が取着されている。絶縁リン
グ4はα−アルミナにより形成され、陽極容器1の上端
部に接合されている。有底円筒状をなす固体電解質管5
は、β−アルミナにより形成され、その上端部が絶縁リ
ング4の内周面にガラス24を介在させてそのガラス2
4により接合されている。陽極室6は陽極容器1と固体
電解質管5とで形成され、陽極作用物質としての硫黄が
含浸されたグラファイトマットからなる陽極用導電材7
が収納されている。
As shown in FIG. 3, an anode lid 1 is attached to the lower end of an anode container 1 formed in a cylindrical shape, and an anode terminal 3 is attached to the outer surface of the upper portion. The insulating ring 4 is made of α-alumina and is joined to the upper end portion of the anode container 1. Solid electrolyte tube 5 having a bottomed cylindrical shape
Is formed of β-alumina, and the upper end portion of the glass 2 is formed by interposing the glass 24 on the inner peripheral surface of the insulating ring 4.
It is joined by 4. The anode chamber 6 is formed by the anode container 1 and the solid electrolyte tube 5, and is made of a graphite mat impregnated with sulfur as an anode acting substance, and a conductive material 7 for an anode.
Is stored.

【0017】陰極蓋8は絶縁リング4の上端面に取付け
られ、その上面には陰極端子9が取着されている。陰極
室10は絶縁リング4、固体電解質管5及び陰極蓋8に
よって形成され、陰極室10内には陰極作用物質である
ナトリウム11が収容されている。
The cathode lid 8 is attached to the upper end surface of the insulating ring 4, and the cathode terminal 9 is attached to the upper surface thereof. The cathode chamber 10 is formed by an insulating ring 4, a solid electrolyte tube 5 and a cathode lid 8, and the cathode chamber 10 contains sodium 11 which is a cathode active substance.

【0018】さて、図1,2は固体電解質管5と絶縁リ
ング4とのガラス接合構造を示す部分断面図で、上下逆
に図示されている。両図に示すように、前記固体電解質
管5の開口端である上部(図中下部)は厚肉部12とさ
れて強度の向上が図られるとともに、その上部外周端縁
には面取り部13が設けられている。
1 and 2 are partial cross-sectional views showing a glass bonding structure between the solid electrolyte tube 5 and the insulating ring 4, which are shown upside down. As shown in both figures, the upper part (the lower part in the figure), which is the open end of the solid electrolyte tube 5, is a thick part 12 to improve the strength, and a chamfered part 13 is formed on the outer peripheral edge of the upper part. It is provided.

【0019】一方、絶縁リング4の内周面にはL字状を
なす第1の対向面としての係止部14が固体電解質管5
と近接対向するように設けられ、その内頂面14a及び
内周面14bにより固体電解質管5が垂直位置に位置決
めされる。前記係止部14の内周面14bと固体電解質
管5の外周面5bとの間の間隙に、厚さ50〜200μ
m程度のガラスの薄肉充填部19が形成されている。な
お、固体電解質管5の外周面5bは表面研削により滑ら
かに仕上げられているので、薄肉充填部19を形成する
隙間が一定レベルに保持され、ガラスの薄肉充填部19
の厚さは一定である。
On the other hand, on the inner peripheral surface of the insulating ring 4, there is provided an engaging portion 14 as an L-shaped first opposing surface, which is the solid electrolyte tube 5.
The solid electrolyte tube 5 is positioned at a vertical position by its inner top surface 14a and inner peripheral surface 14b. In the gap between the inner peripheral surface 14b of the locking portion 14 and the outer peripheral surface 5b of the solid electrolyte tube 5, a thickness of 50 to 200 μm is provided.
A thin-walled filling portion 19 of about m of glass is formed. Since the outer peripheral surface 5b of the solid electrolyte tube 5 is smoothly finished by surface grinding, the gap forming the thin wall filling portion 19 is maintained at a constant level, and the glass thin wall filling portion 19 is maintained.
Has a constant thickness.

【0020】また、前記内頂面14aと内周面14bの
境界部(コーナ部)には、前記固体電解質管5の面取り
部13と対向するように弧状面15が形成されている。
これら面取り部13と弧状面15との間には、ガラスが
充填されてコーナ充填部16が形成されている。そし
て、面取り部13と弧状面15とを設けたことにより、
このコーナ充填部16が応力集中を受けるのを回避して
いる。
An arcuate surface 15 is formed at a boundary portion (corner portion) between the inner top surface 14a and the inner peripheral surface 14b so as to face the chamfered portion 13 of the solid electrolyte tube 5.
Between the chamfered portion 13 and the arcuate surface 15, glass is filled to form a corner filling portion 16. And by providing the chamfered portion 13 and the arcuate surface 15,
The corner filling portion 16 is prevented from receiving stress concentration.

【0021】さらに、前記内頂面14aの端部には端部
面取り部17が設けられ、固体電解質管5の上面との間
に端部ガラス溜まり18が形成され、この部分に接触す
る陰極作用物質であるナトリウムに対する耐食性を向上
させている。
Further, an end chamfered portion 17 is provided at an end of the inner top surface 14a, and an end glass reservoir 18 is formed between the inner top surface 14a and the upper surface of the solid electrolyte tube 5, and a cathode action which contacts this portion is formed. It improves the corrosion resistance to the substance sodium.

【0022】また、絶縁リング4の下端内周面には傾斜
面21を有し、固体電解質管5の外周面5bと対向する
第2の対向面としてのガラス充填用切欠き20が形成さ
れている。この切欠き20と固体電解質管5の外周面5
bとの間の間隙は前記係止部14と固体電解質管5との
間の間隙よりも十分に広く、従ってこの部分はガラスの
厚肉充填部22となり、十分な接合強度が得られる。
Further, the insulating ring 4 has an inclined surface 21 on the inner peripheral surface of the lower end thereof, and a glass filling notch 20 is formed as a second facing surface facing the outer peripheral surface 5b of the solid electrolyte tube 5. There is. The notch 20 and the outer peripheral surface 5 of the solid electrolyte tube 5
The gap between b and b is sufficiently wider than the gap between the engaging portion 14 and the solid electrolyte tube 5, and therefore this portion becomes the thick glass filling portion 22 and sufficient bonding strength can be obtained.

【0023】固体電解質管5と絶縁リング4とをガラス
接合する場合には、図2に示すように、絶縁リング4の
ガラス充填用切欠き20と固体電解質管5の外周面5b
との間の空間に、予め成形したガラスリング23を配置
してこれを加熱溶融させる。すると、図1に示すよう
に、溶融したガラスは図中下方へ流れ、絶縁リング4の
係止部14の内周面14bと固体電解質管5の外周面5
bとの狭い間隙を経て、端部面取り部17へ至る。この
端部面取り部17と固体電解質管5の開口端面としての
上端面5aとの間で、表面張力によるガラス溜まり18
が形成される。
When the solid electrolyte tube 5 and the insulating ring 4 are bonded to each other by glass, as shown in FIG. 2, the glass filling notch 20 of the insulating ring 4 and the outer peripheral surface 5b of the solid electrolyte tube 5 are connected.
A preformed glass ring 23 is placed in the space between and to heat and melt it. Then, as shown in FIG. 1, the molten glass flows downward in the figure, and the inner peripheral surface 14 b of the locking portion 14 of the insulating ring 4 and the outer peripheral surface 5 of the solid electrolyte tube 5 are caused.
It reaches the end chamfered portion 17 through a narrow gap with b. Between the end chamfered portion 17 and the upper end surface 5a as the open end surface of the solid electrolyte tube 5, a glass pool 18 due to surface tension is formed.
Is formed.

【0024】このようにして、固体電解質管5と絶縁リ
ング4との間にガラスによる端部ガラス溜まり18と、
コーナ充填部16と、薄肉充填部19と、厚肉充填部2
2とが一体的に形成される。そして、これらガラス接合
部により固体電解質管5と絶縁リング4とが接合され
る。
In this way, an end glass pool 18 made of glass is provided between the solid electrolyte tube 5 and the insulating ring 4,
Corner filling section 16, thin wall filling section 19, and thick wall filling section 2
And 2 are integrally formed. Then, the solid electrolyte tube 5 and the insulating ring 4 are joined by these glass joints.

【0025】上述のように、この実施例においては、固
体電解質管5の上端部外周面5b及び上端面5aに近接
対向するL字状の係止部14が形成されている。従っ
て、固体電解質管5の軸方向及びそれに直交する方向の
位置決めが係止部14によってなされ、位置決めのため
の治具が不要になって製造が容易になる。しかも、絶縁
リング4と固体電解質管5との接合強度は多量のガラス
24が充填された厚肉充填部22で確保され、十分な接
合強度を得ることができる。その上、ガラス接合部は全
体としてL字状をなしているため、各方向からの外力に
耐えることができ、熱的応力や機械的応力に対して信頼
性を向上できる。
As described above, in this embodiment, the L-shaped locking portion 14 is formed so as to closely face the outer peripheral surface 5b and the upper end surface 5a of the upper end portion of the solid electrolyte tube 5. Therefore, positioning of the solid electrolyte tube 5 in the axial direction and the direction orthogonal thereto is performed by the locking portion 14, and a jig for positioning is not required, which facilitates manufacturing. Moreover, the bonding strength between the insulating ring 4 and the solid electrolyte tube 5 is ensured by the thick filling portion 22 filled with a large amount of glass 24, and sufficient bonding strength can be obtained. Moreover, since the glass bonding portion is L-shaped as a whole, it can withstand external force from each direction and can improve reliability against thermal stress and mechanical stress.

【0026】また、コーナ充填部16においては、固体
電解質管5に面取り部13が設けられ、絶縁リング4に
弧状面15が設けられているので、尖鋭部分や鋭いコー
ナ部分がなくなって、固体電解質管5や絶縁リング4に
応力が加わったときに、応力が分散されて部分的な応力
集中が緩和され、クラックが入るおそれがない。
Further, in the corner filling portion 16, the solid electrolyte tube 5 is provided with the chamfered portion 13 and the insulating ring 4 is provided with the arcuate surface 15, so that there is no sharp portion or sharp corner portion, and the solid electrolyte is eliminated. When a stress is applied to the tube 5 and the insulating ring 4, the stress is dispersed, the partial stress concentration is relieved, and there is no risk of cracking.

【0027】ナトリウム−硫黄電池の作動時には、端部
ガラス溜まり18に高温のナトリウムが接触するが、上
述のようにガラス溜まり18の接合部分が広く、かつ表
面積が大きく形成されているので、この部分において十
分な耐薬品性と耐久性が発揮される。
At the time of operation of the sodium-sulfur battery, high temperature sodium comes into contact with the end glass puddle 18, but as described above, since the glass puddle 18 has a large joint and a large surface area, this part is formed. Sufficient chemical resistance and durability are exhibited in.

【0028】また、固体電解質管5自体は絶縁リング4
との接合部において厚肉部12とされているため、この
部分の機械的強度が高く、固体電解質管5が損傷を受け
るおそれが少ない。さらには、固体電解質管5の外周面
5bが表面加工により滑らかに仕上げられているので、
この外周面5bと切欠係止部14の内周面14bとの狭
い隙間を所定値に保持できるとともに、ガラスの流通性
と充填性が確保される。 (第2実施例)次に、請求項3及び4に記載の発明を具
体化した実施例について、図4及び5に従って説明す
る。
The solid electrolyte tube 5 itself is the insulating ring 4.
Since the thick portion 12 is formed at the joint portion with, the mechanical strength of this portion is high, and the solid electrolyte tube 5 is less likely to be damaged. Furthermore, since the outer peripheral surface 5b of the solid electrolyte tube 5 is smoothly finished by surface processing,
The narrow gap between the outer peripheral surface 5b and the inner peripheral surface 14b of the notch engaging portion 14 can be maintained at a predetermined value, and the flowability and filling of the glass can be ensured. (Second Embodiment) Next, an embodiment in which the invention described in claims 3 and 4 is embodied will be described with reference to FIGS.

【0029】固体電解質管5は電池の通電部25から絶
縁リング4の接合部の間において、その厚みが絶縁リン
グ4側ほど厚くなるような一定の傾斜面26を有してい
る。そして、通電部25の肉厚D1 に対して開口端部2
7の肉厚D2 が最も厚くなっている。このように、固体
電解質管5と絶縁リング4との接合部における固体電解
質管5の厚みを厚くすることにより、この部分における
固体電解質管5の機械的強度を高めて、接合の信頼性を
向上させる。
The solid electrolyte tube 5 has a constant inclined surface 26 between the current-carrying portion 25 of the battery and the junction of the insulating ring 4 such that the thickness thereof becomes thicker toward the insulating ring 4 side. Then, with respect to the thickness D 1 of the energizing portion 25, the opening end portion 2
The wall thickness D 2 of 7 is the thickest. In this way, by increasing the thickness of the solid electrolyte tube 5 at the joint between the solid electrolyte tube 5 and the insulating ring 4, the mechanical strength of the solid electrolyte tube 5 at this portion is increased and the reliability of the joint is improved. Let

【0030】また、上記傾斜面26の通電部25側端部
の境界線Bが陽極用導電材7のグラファイトマット7a
の部分に位置している。このため、この円周状をなす境
界線Bの部分が固体電解質管5の最も弱い部分となり、
異常時などにおいて固体電解質管5に外力が加わったと
き、ここにクラックが入ったりして破損しやすい。従っ
て、固体電解質管5の破壊部分が特定される。そして、
この部分で破損が起きても、その外周部が陽極用導電材
7で被覆されていることから、破損の進展が防止され
る。
The boundary line B at the end of the inclined surface 26 on the side of the current-carrying portion 25 is the graphite mat 7a of the conductive material 7 for anode.
It is located in the part of. Therefore, the portion of the boundary line B forming the circumferential shape is the weakest portion of the solid electrolyte tube 5,
When an external force is applied to the solid electrolyte tube 5 due to an abnormality or the like, the solid electrolyte tube 5 is likely to be cracked or damaged. Therefore, the broken portion of the solid electrolyte tube 5 is specified. And
Even if breakage occurs in this portion, since the outer peripheral portion is covered with the conductive material for anode 7, the progress of breakage is prevented.

【0031】なお、固体電解質管5の開口端部27側の
肉厚部の長さに対する通電部25の長さの比率は4〜8
の範囲であることが、開口端部27の強度保持と通電部
25の領域の確保の点から望ましい。
The ratio of the length of the current-carrying portion 25 to the length of the thick portion of the solid electrolyte tube 5 on the open end portion 27 side is 4 to 8.
It is desirable to be in the range from the viewpoint of maintaining the strength of the opening end portion 27 and securing the area of the conducting portion 25.

【0032】さて、この実施例では、固体電解質管5の
開口端部27における肉厚D2 を電池の通電部25にお
ける肉厚D1 より厚く形成したことにより、固体電解質
管5と絶縁リング4との接合部における固体電解質管5
の機械的強度を高めることができる。このため、固体電
解質管5に余分な外力が加わっても、その力はこの肉厚
に形成された固体電解質管5の開口端部27で支持さ
れ、接合部への力が緩和される。その結果、この接合部
における接合の信頼性を確保することができる。
In this embodiment, the solid electrolyte tube 5 and the insulating ring 4 are formed by forming the wall thickness D 2 at the open end 27 of the solid electrolyte tube 5 to be thicker than the wall thickness D 1 at the current-carrying portion 25 of the battery. Solid electrolyte tube 5 at the joint with
The mechanical strength of can be increased. For this reason, even if an extra external force is applied to the solid electrolyte tube 5, the force is supported by the open end portion 27 of the solid electrolyte tube 5 formed in this thickness, and the force on the joint portion is relaxed. As a result, it is possible to ensure the reliability of the joining at this joining portion.

【0033】加えて、接合部における固体電解質管5の
肉厚を厚くすれば、通電部25の肉厚D1 を通常の肉厚
より薄くすることができる。この場合、通電部25にお
ける固体電解質管5の電気抵抗を低減させることができ
る。従って、電池の充放電の効率を向上させることがで
き、充放電に伴う温度制御も容易に行うことができる。
In addition, if the wall thickness of the solid electrolyte tube 5 at the joint is increased, the wall thickness D 1 of the current-carrying portion 25 can be made thinner than the normal wall thickness. In this case, the electrical resistance of the solid electrolyte tube 5 in the energization section 25 can be reduced. Therefore, the charging / discharging efficiency of the battery can be improved, and the temperature control associated with charging / discharging can be easily performed.

【0034】また、固体電解質管5の開口端部27と通
電部25とを所定の傾斜面26で接続して形成し、しか
もこの傾斜面26の通電部25側端部の境界線Bをマッ
ト7aの存在する位置に設定した。そのため、異常時に
おける固体電解質管5の破壊位置が特定される。すなわ
ち、固体電解質管5の破壊は固体電解質管5の厚みが変
化する位置、つまり上記傾斜面26の通電部25側端部
である境界線Bで発生する。
Further, the open end portion 27 of the solid electrolyte tube 5 and the current-carrying portion 25 are connected by a predetermined inclined surface 26, and the boundary line B of the end portion of the inclined surface 26 on the current-carrying portion 25 mat is formed. It was set at the position where 7a was present. Therefore, the breakage position of the solid electrolyte tube 5 at the time of abnormality is specified. That is, the breakage of the solid electrolyte tube 5 occurs at the position where the thickness of the solid electrolyte tube 5 changes, that is, at the boundary line B which is the end of the inclined surface 26 on the side of the current-carrying portion 25.

【0035】このとき、マット7aは圧縮状態で収容さ
れているため、マット7aの圧力により固体電解質管5
は内方へ付勢されている。そのため、固体電解質管5の
破壊部分はその外周からマット7aで支持されているこ
とになり、クラックなどの破壊が他の部分へ進展するこ
とが抑えられる。しかも、破壊によって固体電解質管5
内から流出したナトリウムは、マット7a中に含浸され
た硫黄と反応して多硫化ナトリウムとなるため、ナトリ
ウム自体の外部への流出を防止することができる。従っ
て、電池の安全性を高めることができる。
At this time, since the mat 7a is housed in a compressed state, the pressure of the mat 7a causes the solid electrolyte tube 5 to move.
Is biased inward. Therefore, the broken portion of the solid electrolyte tube 5 is supported by the mat 7a from the outer periphery of the solid electrolyte tube 5, and it is possible to prevent the destruction such as cracks from propagating to another portion. Moreover, the solid electrolyte tube 5 is destroyed due to the destruction.
The sodium flowing out from the inside reacts with the sulfur impregnated in the mat 7a to become sodium polysulfide, so that the sodium itself can be prevented from flowing out. Therefore, the safety of the battery can be improved.

【0036】次に、通電部25の肉厚D1 に対する開口
端部27の肉厚D2 を厚くなるように変化させて、固体
電解質管5の強度を測定した。その結果を表1に示す。
なお、強度は片持曲げ強度測定方法により測定した。す
なわち、絶縁リング4に接合した固体電解質管5が水平
方向に延びるように絶縁リング4の位置で支持し、固体
電解質管5の長さの90%先端部に所定の荷重をかけ、
この荷重を次第に大きくして固体電解質管5及びガラス
22が破壊するまでの強度として求めた。
Next, varied such that increasing the thickness D 2 of the opening end portion 27 against the thickness D 1 of the conducting portion 25, to measure the strength of the solid electrolyte tube 5. The results are shown in Table 1.
The strength was measured by the cantilever bending strength measuring method. That is, the solid electrolyte tube 5 joined to the insulating ring 4 is supported at the position of the insulating ring 4 so as to extend in the horizontal direction, and 90% of the length of the solid electrolyte tube 5 is applied with a predetermined load on the tip end thereof.
This load was gradually increased to obtain the strength until the solid electrolyte tube 5 and the glass 22 were broken.

【0037】[0037]

【表1】 表1の試験例2〜6に示したように、固体電解質管の通
電部の肉厚に対する開口端部の肉厚をより厚くした場
合、すなわちその比率を1.2〜2.4にした場合、肉
厚を変えない試験例1に比べて強度は向上する。
[Table 1] As shown in Test Examples 2 to 6 in Table 1, when the wall thickness of the open end with respect to the wall thickness of the current-carrying part of the solid electrolyte tube is made thicker, that is, when the ratio is set to 1.2 to 2.4. The strength is improved as compared with Test Example 1 in which the wall thickness is not changed.

【0038】なお、この発明は上記実施例に限定される
ものではなく、この発明の趣旨を逸脱しない範囲で例え
ば次のように構成を変更して具体化してもよい。 (a)絶縁リング4の端部面取り部17の傾斜角度を変
えて、端部ガラス溜まり18の厚みや表面積を変化させ
ること。 (b)固体電解質管5の面取り部13や絶縁リング4の
弧状面15の大きさを変化させて、ガラスのコーナ充填
部16の大きさを変え、応力集中の緩和の程度を変える
こと。 (c)固体電解質管5の面取り部13を円弧状の曲面に
したり、絶縁リング4の弧状面15を所定角度の傾斜面
にしたりすること。 (d)ガラスの厚肉充填部22と薄肉充填部19との間
を、連続的に階段状に形成したりして、厚みの異なるガ
ラス層の段数を変えること。 (e)固体電解質管5の厚肉部12の厚みを、ナトリウ
ム−硫黄電池の大きさなどに応じてさらに厚くしたり、
又は少し薄くしたりして適宜調整すること。 (f)傾斜面26を滑らかな円弧面とすること。 (g)固体電解質管5をマット7aの存在する位置で段
差状に形成し、段差部のコーナ部を滑らかな円弧状に形
成すること。
The present invention is not limited to the above-described embodiments, but may be embodied by changing the configuration as follows, for example, without departing from the spirit of the present invention. (A) Changing the inclination angle of the end chamfer 17 of the insulating ring 4 to change the thickness and surface area of the end glass pool 18. (B) Changing the size of the chamfered portion 13 of the solid electrolyte tube 5 and the arcuate surface 15 of the insulating ring 4 to change the size of the corner filling portion 16 of the glass to change the degree of stress concentration relaxation. (C) The chamfered portion 13 of the solid electrolyte tube 5 is formed into an arcuate curved surface, or the arcuate surface 15 of the insulating ring 4 is formed into an inclined surface having a predetermined angle. (D) The number of glass layers having different thicknesses is changed by continuously forming a step between the thick-walled filling portion 22 and the thin-walled filling portion 19 of glass. (E) The thickness of the thick portion 12 of the solid electrolyte tube 5 may be further increased according to the size of the sodium-sulfur battery, or the like.
Or make it a little thinner and adjust accordingly. (F) The inclined surface 26 should be a smooth arc surface. (G) The solid electrolyte tube 5 is formed in a step shape at the position where the mat 7a exists, and the corner portion of the step portion is formed in a smooth arc shape.

【0039】[0039]

【発明の効果】以上詳述したように請求項1に記載の発
明によれば、製造が容易で、接合強度を確保でき、熱的
応力や機械的応力に対する接合の信頼性が高いという優
れた効果を奏する。また、請求項2に記載の発明によれ
ば、固体電解質管の面取り部と絶縁リングの弧状面との
間に充填されるガラスに加わる応力集中が緩和され、ガ
ラス接合の耐久性が向上するという効果が得られる。
As described above in detail, according to the invention described in claim 1, the manufacturing is easy, the bonding strength can be secured, and the reliability of the bonding against the thermal stress and the mechanical stress is high. Produce an effect. Further, according to the invention described in claim 2, stress concentration applied to the glass filled between the chamfered portion of the solid electrolyte tube and the arcuate surface of the insulating ring is relaxed, and the durability of the glass bonding is improved. The effect is obtained.

【0040】さらに、請求項3に記載の発明によれば、
固体電解質管と絶縁リングとの接合部における機械的強
度を高めることができ、この接合部における接合の信頼
性を確保することができるという優れた効果を奏する。
Further, according to the invention of claim 3,
The mechanical strength at the joint between the solid electrolyte tube and the insulating ring can be increased, and the excellent reliability of the joint at this joint can be ensured.

【0041】また、請求項4の発明によれば、請求項3
の発明の効果に加えて、異常時における固体電解質管の
破壊位置を特定して、ナトリウムの漏出を防止し、安全
性を向上させることができるという優れた効果を発揮す
る。
According to the invention of claim 4, claim 3
In addition to the effect of the invention described above, it is possible to specify the breakage position of the solid electrolyte tube at the time of abnormality, prevent leakage of sodium, and improve the safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を具体化した第1実施例の固体電解質
管と絶縁リングとの接合構造を示す要部拡大断面図であ
る。
FIG. 1 is an enlarged sectional view of an essential part showing a joint structure between a solid electrolyte tube and an insulating ring according to a first embodiment of the present invention.

【図2】固体電解質管と絶縁リングとの接合構造を示す
部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view showing a joint structure between a solid electrolyte tube and an insulating ring.

【図3】ナトリウム−硫黄電池の構造を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing the structure of a sodium-sulfur battery.

【図4】第2実施例の固体電解質管と絶縁リングとの接
合構造を示す部分拡大断面図である。
FIG. 4 is a partially enlarged cross-sectional view showing a joint structure between a solid electrolyte tube and an insulating ring of a second embodiment.

【図5】ナトリウム−硫黄電池の構造を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing the structure of a sodium-sulfur battery.

【符号の説明】[Explanation of symbols]

1…陽極容器、4…絶縁リング、5…固体電解質管、1
3…固体電解質管の面取り部、14…第1の対向面とし
ての係止部、15…絶縁リングの弧状面、20…第2の
対向面としてのガラス充填用切欠き、25…通電部、2
6…傾斜面、27…開口端部、D1 …通電部の肉厚、D
2 …開口端部の肉厚。
1 ... Anode container, 4 ... Insulating ring, 5 ... Solid electrolyte tube, 1
3 ... Chamfered part of solid electrolyte tube, 14 ... Locking part as first facing surface, 15 ... Arc surface of insulating ring, 20 ... Glass filling notch as second facing surface, 25 ... Conducting part, Two
6 ... inclined surface, 27 ... opening end, D 1 ... thickness of the conductive portion, D
2 … The thickness of the open end.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 筒状の陽極容器の端部に絶縁リングを接
合するとともに、この絶縁リングの内周面に有底円筒状
をなす固体電解質管の開口端部を配置して、絶縁リング
と固体電解質管との間をガラスを介して接合したナトリ
ウム−硫黄電池における固体電解質管と絶縁リングとの
接合構造であって、 前記絶縁リングの内周面には、固体電解質管の開口端部
の外周面及び開口端面に近接対向するL字状の第1の対
向面と、その第1の対向面と固体電解質管との間隔より
広い間隔をもって開口端部の外周面に対向する第2の対
向面とを形成したことを特徴とするナトリウム−硫黄電
池における固体電解質管と絶縁リングとの接合構造。
1. An insulating ring is joined to an end of a cylindrical anode container, and an open end of a solid electrolyte tube having a bottomed cylindrical shape is arranged on an inner peripheral surface of the insulating ring to form an insulating ring. The solid electrolyte tube is a junction structure between the solid electrolyte tube and the insulating ring in the sodium-sulfur battery joined via glass between the solid electrolyte tube and the inner peripheral surface of the insulating ring, the opening end portion of the solid electrolyte tube An L-shaped first facing surface that closely faces the outer peripheral surface and the opening end surface, and a second facing surface that faces the outer peripheral surface of the opening end with a distance wider than the distance between the first facing surface and the solid electrolyte tube. And a bonding surface between a solid electrolyte tube and an insulating ring in a sodium-sulfur battery.
【請求項2】 前記固体電解質管の外周端縁に面取り部
を設けるとともに、この面取り部に対向する第1の対向
面のコーナ部分を弧状面としたことを特徴とする請求項
1に記載のナトリウム−硫黄電池における固体電解質管
と絶縁リングとの接合構造。
2. The chamfered portion is provided on the outer peripheral edge of the solid electrolyte tube, and the corner portion of the first facing surface facing the chamfered portion is an arc-shaped surface. The joint structure of a solid electrolyte tube and an insulating ring in a sodium-sulfur battery.
【請求項3】 筒状の陽極容器の端部に絶縁リングを接
合するとともに、この絶縁リングの内周面に有底円筒状
をなす固体電解質管の開口端部を配置して、絶縁リング
と固体電解質管との間をガラスを介して接合し、陽極容
器と固体電解質管との間に陽極用導電材のマットを収容
してこのマットに硫黄を含浸し、かつ固体電解質管内に
ナトリウムを収容したナトリウム−硫黄電池において、 前記固体電解質管の開口端部における肉厚を電池の通電
部における肉厚より厚く形成したことを特徴とするナト
リウム−硫黄電池。
3. An insulating ring is joined to an end of a cylindrical anode container, and an open end of a solid electrolyte tube having a bottomed cylindrical shape is arranged on an inner peripheral surface of the insulating ring to form an insulating ring. The solid electrolyte tube is joined via glass, the anode conductive material mat is housed between the anode container and the solid electrolyte tube, the mat is impregnated with sulfur, and the solid electrolyte tube contains sodium. In the sodium-sulfur battery, the thickness of the solid electrolyte tube at the open end is formed to be thicker than the thickness of the current-carrying portion of the battery.
【請求項4】 前記固体電解質管の開口端部と通電部と
を所定の傾斜面で形成するとともに、この傾斜面の通電
部側端部を陽極用導電材のマットの存在する位置に設定
したことを特徴とする請求項3に記載のナトリウム−硫
黄電池。
4. The solid electrolyte tube has an open end and a current-carrying part formed on a predetermined inclined surface, and the end of the tilted surface on the current-carrying part side is set at a position where a mat of a conductive material for an anode is present. The sodium-sulfur battery according to claim 3, wherein:
JP5074611A 1992-10-29 1993-03-31 Joint structure between solid electrolyte tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery Expired - Lifetime JP2709015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074611A JP2709015B2 (en) 1992-10-29 1993-03-31 Joint structure between solid electrolyte tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-291820 1992-10-29
JP29182092 1992-10-29
JP5074611A JP2709015B2 (en) 1992-10-29 1993-03-31 Joint structure between solid electrolyte tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH06196204A true JPH06196204A (en) 1994-07-15
JP2709015B2 JP2709015B2 (en) 1998-02-04

Family

ID=26415772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074611A Expired - Lifetime JP2709015B2 (en) 1992-10-29 1993-03-31 Joint structure between solid electrolyte tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2709015B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035527A (en) * 1999-07-22 2001-02-09 Ngk Spark Plug Co Ltd Insulating ring and manufacture thereof
WO2011148631A1 (en) 2010-05-25 2011-12-01 Ohkawa Hiroshi Solid-electrolyte secondary battery
WO2011152028A1 (en) 2010-05-31 2011-12-08 Ohkawa Hiroshi Solid electrolyte secondary battery
KR101353598B1 (en) * 2011-12-27 2014-01-23 주식회사 포스코 Method for manufacturing sodium-sulfur rechargeable battery
KR20180063276A (en) 2015-11-24 2018-06-11 유겐가이샤 쥬세이기켄 Molten sodium batteries and bulkheads for molten sodium batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248665U (en) * 1985-09-12 1987-03-25
JPH0388279A (en) * 1989-08-31 1991-04-12 Ngk Insulators Ltd Sintering method of beta alumina tube for sodium-sulfur battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248665U (en) * 1985-09-12 1987-03-25
JPH0388279A (en) * 1989-08-31 1991-04-12 Ngk Insulators Ltd Sintering method of beta alumina tube for sodium-sulfur battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035527A (en) * 1999-07-22 2001-02-09 Ngk Spark Plug Co Ltd Insulating ring and manufacture thereof
JP4538115B2 (en) * 1999-07-22 2010-09-08 日本特殊陶業株式会社 Insulating ring and method of manufacturing the same
WO2011148631A1 (en) 2010-05-25 2011-12-01 Ohkawa Hiroshi Solid-electrolyte secondary battery
WO2011152028A1 (en) 2010-05-31 2011-12-08 Ohkawa Hiroshi Solid electrolyte secondary battery
US9300012B2 (en) 2010-05-31 2016-03-29 Hiroshi Ohkawa Solid electrolyte secondary battery
KR101353598B1 (en) * 2011-12-27 2014-01-23 주식회사 포스코 Method for manufacturing sodium-sulfur rechargeable battery
KR20180063276A (en) 2015-11-24 2018-06-11 유겐가이샤 쥬세이기켄 Molten sodium batteries and bulkheads for molten sodium batteries

Also Published As

Publication number Publication date
JP2709015B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US6696199B2 (en) Battery
US8537526B2 (en) Cylindrical capacitor employing electrolyte solution
US4294897A (en) Sealing of ceramic electrolyte tubes in electrochemical cells
US3841912A (en) Sodium sulfur storage battery
US4657830A (en) Sodium-sulfur storage battery
JPH06196204A (en) Junction structure between solid electrolytic tube and insulating ring in sodium-sulfur battery and sodium-sulfur battery
JPH09320551A (en) Sealed battery
KR20240001243A (en) battery
US4661424A (en) Sodium-sulfur storage battery
JPH0650649B2 (en) Sodium-sulfur battery
JP2870067B2 (en) Sealed battery
JP2693264B2 (en) Sodium-sulfur battery
JPH02256173A (en) Connecting method for solid electrolyte tube
JP4538115B2 (en) Insulating ring and method of manufacturing the same
JPH04138663A (en) Lead-acid battery
JPH02165574A (en) Sodium-sulfur battery and its connection
JPS6226767A (en) Sodium-sulfur battery
JPH043375Y2 (en)
JP2000090967A (en) Joint structure of insulation ring and positive electrode cylindrical fitting for sodium-sulfur battery
JPH03291860A (en) Sodium sulpher cell
JPH057734Y2 (en)
JPH03194864A (en) Sodium-sulfur battery
KR20170126529A (en) Header assembly for lithium battery
JPS6017870A (en) Sodium-sulfur battery
JPS6238824B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 16