JP2003240364A - Refrigeration cycle unit, and heat-pump type air conditioner - Google Patents

Refrigeration cycle unit, and heat-pump type air conditioner

Info

Publication number
JP2003240364A
JP2003240364A JP2002041330A JP2002041330A JP2003240364A JP 2003240364 A JP2003240364 A JP 2003240364A JP 2002041330 A JP2002041330 A JP 2002041330A JP 2002041330 A JP2002041330 A JP 2002041330A JP 2003240364 A JP2003240364 A JP 2003240364A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
gas
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002041330A
Other languages
Japanese (ja)
Inventor
Seiki Kitamura
清貴 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002041330A priority Critical patent/JP2003240364A/en
Publication of JP2003240364A publication Critical patent/JP2003240364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent liquid compression when a compressor 2 is started after equalization, without enlarging a size of an accumulator 10. <P>SOLUTION: This unit is provided with a gas-liquid separating means 6 for a refrigerant between the first heat-exchangers 4, 8 and pressure reducing means 5, 7, an equalization circuit 20 for making gaseous refrigerant separated in the gas-liquid separating means 6 flow in a low pressure portion from an outlet side of the pressure reducing means 5, 7 to a suction side of the compressor 2, and an opening and closing means 21 for opening and closing the equalization circuit 20, and the opening and closing means 21 is opened to conduct equalization for the refrigeration cycle when an operation of the compressor 2 is stopped. The gas-liquid separating means for the refrigerant is provided in a high-pressure side by this manner, only the separated high-pressure side refrigerant separated therein is removed to a low-pressure side, and the equalization is thereby realized without increasing a liquid refrigerant amount in the low-pressure side. The liquid compression is prevented thereby when the compressor 2 is started after equalization, without enlarging the size of the accumulator 10. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気、水等の流体
の冷却や加熱を行なう冷凍サイクル装置及びヒートポン
プ式空調装置に関し、特に装置を停止させた時の装置内
の均圧に関するものであり、空気を冷却・加熱して居室
内の冷暖房を行うヒートポンプ式空調装置等に適用して
好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle device and a heat pump type air conditioner for cooling and heating a fluid such as air and water, and more particularly to a pressure equalization inside the device when the device is stopped. It is suitable to be applied to a heat pump type air conditioner for cooling and heating air by cooling and heating air.

【0002】[0002]

【従来の技術】従来より、冷凍サイクルの運転を停止さ
せた場合、高圧配管と低圧配管とを短絡させて装置内の
圧力差を解除する均圧回路が設けられている冷凍サイク
ル装置がある。図2は、そのような冷凍サイクル装置の
一実施形態として、従来のヒートポンプ式空調装置の構
成を模式図で示す。
2. Description of the Related Art Conventionally, there is a refrigeration cycle apparatus provided with a pressure equalizing circuit for short-circuiting the high-pressure pipe and the low-pressure pipe to cancel the pressure difference in the device when the operation of the refrigeration cycle is stopped. FIG. 2 is a schematic diagram showing a configuration of a conventional heat pump type air conditioner as an embodiment of such a refrigeration cycle apparatus.

【0003】2は冷媒を圧縮して吐出する圧縮機であ
り、圧縮された冷媒は四方弁3で冷房時と暖房時とで熱
交換器への冷媒流通方向が換えられる。4は室内熱交換
器、5は冷房時の膨張弁、6は冷媒を気液分離して蓄え
るレシーバ、7は暖房時の膨張弁、8は室外熱交換器、
10は冷媒を気液分離して蓄えるアキュームレータであ
り、ここからガス冷媒が圧縮機2に吸入されて循環が成
される。
Reference numeral 2 denotes a compressor which compresses and discharges the refrigerant, and the compressed refrigerant has a four-way valve 3 which changes the direction of refrigerant flow to the heat exchanger during cooling and during heating. Reference numeral 4 is an indoor heat exchanger, 5 is an expansion valve for cooling, 6 is a receiver for separating and storing refrigerant by gas-liquid separation, 7 is an expansion valve for heating, 8 is an outdoor heat exchanger,
Reference numeral 10 is an accumulator that separates and stores the refrigerant into gas and liquid, from which the gas refrigerant is sucked into the compressor 2 and circulated.

【0004】因みに、1は駆動するためのエンジンで、
その他説明を省いた符号は後述する実施形態に付した号
と対応するものである。そして、21が高圧配管と低圧
配管とを短絡させる均圧回路であり、21はその均圧回
路20を開閉する開閉弁であり、冷凍サイクルの運転を
停止させた時にこの開閉弁21を開いて均圧を行うもの
である。
Incidentally, 1 is an engine for driving,
Other reference numerals that are omitted correspond to the numbers given to the embodiments described later. Further, 21 is a pressure equalizing circuit that short-circuits the high pressure pipe and the low pressure pipe, 21 is an on-off valve that opens and closes the pressure equalizing circuit 20, and opens this on-off valve 21 when the operation of the refrigeration cycle is stopped. The pressure is equalized.

【0005】[0005]

【発明が解決しようとする課題】しかし、この均圧を行
った際に高圧側の配管内等の液冷媒が低圧側に流れ込む
ため、アキュームレータでの液冷媒容量を越えると液冷
媒がオーバーフローして圧縮機の吸入側に入り込み、次
に冷凍サイクルを起動する際に圧縮機が液冷媒を吸入し
て液圧縮となり故障を引き起こすという問題がある。
However, when the pressure equalization is performed, the liquid refrigerant in the high-pressure side pipe or the like flows into the low-pressure side. Therefore, when the liquid refrigerant capacity of the accumulator is exceeded, the liquid refrigerant overflows. There is a problem that when the compressor enters the suction side of the compressor and the refrigerating cycle is started next time, the compressor sucks the liquid refrigerant to become liquid compression and cause a failure.

【0006】特に室内熱交換器と室外熱交換器とが離れ
て設置されるような場合には封入する冷媒量が多くな
り、その冷媒量に対して余裕のあるアキュームレータを
設定することで対応は可能であるが、装置の大型化・コ
ストアップ等の問題が生じてしまう。
In particular, when the indoor heat exchanger and the outdoor heat exchanger are installed separately from each other, the amount of refrigerant to be enclosed becomes large, and it is possible to cope with this by setting an accumulator having a margin for the amount of refrigerant. Although it is possible, problems such as an increase in size of the device and an increase in cost will occur.

【0007】本発明は、上記従来の問題に鑑みて成され
たものであり、その目的は、アキュームレータを大型化
することなく、均圧後の圧縮機起動時に液圧縮を防止で
きる冷凍サイクル装置及びヒートポンプ式空調装置を提
供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a refrigeration cycle apparatus capable of preventing liquid compression at the time of starting the compressor after pressure equalization without increasing the size of the accumulator. It is to provide a heat pump type air conditioner.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明では以下の技術的手段を採用する。請求項1
に記載の発明では、冷媒を圧縮して吐出する圧縮機
(2)と、冷媒を凝縮させる第1熱交換器(4、8)
と、冷媒を減圧する減圧手段(5、7)と、冷媒を蒸発
させる第2熱交換器(4、8)と、冷媒を気液分離して
蓄えるアキュームレータ(10)とを環状に接続して形
成された冷凍サイクル装置において、第1熱交換器
(4、8)と減圧手段(5、7)との間に冷媒の気液分
離手段(6)と、その気液分離手段(6)にて分離され
たガス冷媒を減圧手段(5、7)出口側から圧縮機
(2)の吸入側までの低圧部分に流通させる均圧回路
(20)と、その均圧回路(20)内に回路を開閉する
開閉手段(21)とを設け、圧縮機(2)の運転を停止
した場合、開閉手段(21)を開いて冷凍サイクル装置
内を均圧させることを特徴とする。
In order to achieve the above object, the present invention employs the following technical means. Claim 1
In the invention described in (1), the compressor (2) for compressing and discharging the refrigerant, and the first heat exchanger (4, 8) for condensing the refrigerant.
A decompression means (5, 7) for decompressing the refrigerant, a second heat exchanger (4, 8) for evaporating the refrigerant, and an accumulator (10) for gas-liquid separation and storage of the refrigerant, connected in an annular shape. In the formed refrigeration cycle apparatus, the gas-liquid separating means (6) for the refrigerant is provided between the first heat exchanger (4, 8) and the pressure reducing means (5, 7), and the gas-liquid separating means (6). And a pressure equalizing circuit (20) for circulating the separated gas refrigerant to a low pressure portion from the outlet side of the pressure reducing means (5, 7) to the suction side of the compressor (2), and a circuit inside the pressure equalizing circuit (20). An opening and closing means (21) for opening and closing the compressor is provided, and when the operation of the compressor (2) is stopped, the opening and closing means (21) is opened to equalize the pressure in the refrigeration cycle apparatus.

【0009】これは、高圧側に冷媒の気液分離部分を設
け、そこで分離された高圧ガス冷媒だけを低圧側に抜け
ば、低圧側の液冷媒量を増やすことなく均圧が行えるこ
ととなる。これにより、アキュームレータを大型化する
ことなく、均圧後の圧縮機起動時の液圧縮を防止するこ
とができる。
This is because if a gas-liquid separation portion of the refrigerant is provided on the high pressure side and only the high pressure gas refrigerant separated there is discharged to the low pressure side, pressure equalization can be performed without increasing the amount of the liquid refrigerant on the low pressure side. . This makes it possible to prevent liquid compression at the time of starting the compressor after pressure equalization without increasing the size of the accumulator.

【0010】請求項2に記載の発明では、気液分離手段
(6)にレシーバを用いたことを特徴とする。本発明は
そもそも、レシーバで冷媒が気液分離されるうえ液冷媒
溜めとして利用できる点に着目したものであり、レシー
バ上部の高圧ガス冷媒を低圧側に抜くことで冷凍サイク
ル装置内の均圧を行うことができる。その時、高圧側の
液冷媒はレシーバに流れ込むが、気液分離されて液冷媒
はレシーバ内に溜められるため、均圧によって低圧側の
液冷媒量を増やすようなことがない。
The invention according to claim 2 is characterized in that a receiver is used as the gas-liquid separating means (6). In the first place, the present invention focuses on the fact that the receiver can be used as a liquid refrigerant reservoir in which the refrigerant is separated into gas and liquid, and the high-pressure gas refrigerant at the top of the receiver is discharged to the low pressure side to equalize the pressure in the refrigeration cycle apparatus. It can be carried out. At that time, the liquid refrigerant on the high pressure side flows into the receiver, but since the liquid refrigerant is separated into gas and liquid and is stored in the receiver, the amount of the liquid refrigerant on the low pressure side is not increased by pressure equalization.

【0011】これにより、従来と同様の冷凍サイクル構
成機器を用いて均圧回路(20)の高圧側の取り出し部
をレシーバ上部とするだけで、アキュームレータを大型
化することなく、均圧後の圧縮機起動時の液圧縮を防止
することができる。
As a result, by using the same refrigerating cycle constituent equipment as the conventional one, only the high pressure side take-out portion of the pressure equalizing circuit (20) is set as the receiver upper portion, and the compression after pressure equalization is performed without increasing the size of the accumulator. It is possible to prevent liquid compression when the machine is started.

【0012】請求項3に記載の発明では、請求項1また
は請求項2に記載の冷凍サイクル装置をヒートポンプ式
空調装置に用い、第1、第2熱交換器(4、8)を室内
熱交換器(4)及び室外熱交換器(8)としたことを特
徴とする。これにより、アキュームレータを大型化する
ことなく、均圧後の圧縮機起動時にも液圧縮を起こすこ
とのない空調装置とすることができる。
According to a third aspect of the present invention, the refrigeration cycle apparatus according to the first or second aspect is used for a heat pump type air conditioner, and the first and second heat exchangers (4, 8) are used for indoor heat exchange. It is characterized by being used as a vessel (4) and an outdoor heat exchanger (8). This makes it possible to provide an air conditioner that does not cause liquid compression even when the compressor is started after pressure equalization without increasing the size of the accumulator.

【0013】尚、上記各手段に付した括弧内の符号は、
後述する実施形態記載の具体的手段との対応関係を示す
ものである。
The reference numerals in parentheses attached to the above means are as follows:
It shows a correspondence relationship with a specific means described in the embodiment described later.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は、本発明の一実施形態におけ
るヒートポンプ式空調装置100の構成を示す模式図で
ある。本実施形態は、水冷式のエンジン(例えばディー
ゼルエンジン)1によって駆動されるもので、このヒー
トポンプ式空調装置100は定置型或いは車両搭載型の
空調装置として用いられ、屋内や車室内を冷暖房するこ
とができるが、本実施形態では定置型に適用したものと
して述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of a heat pump type air conditioner 100 according to an embodiment of the present invention. The present embodiment is driven by a water-cooled engine (for example, a diesel engine) 1, and this heat pump type air conditioner 100 is used as a stationary type or vehicle mounted type air conditioner to cool and heat the inside of a vehicle or the interior of a vehicle. However, this embodiment will be described as being applied to a stationary type.

【0015】ヒートポンプ式空調装置100は、各冷凍
サイクル機器間を冷媒配管で接続して構成され、屋内暖
房時には、圧縮機2→四方弁3→室内熱交換器4→室内
機電動弁5→レシーバ6(気液分離手段)→室外機電動
弁7→室外熱交換器8→四方弁3→冷媒加熱器9→アキ
ュームレータ10→圧縮機2の順に冷媒を流通(実線矢
印)させて暖房している。
The heat pump type air conditioner 100 is constituted by connecting refrigeration cycle equipment with refrigerant pipes, and at the time of indoor heating, the compressor 2 → the four-way valve 3 → the indoor heat exchanger 4 → the indoor unit electric valve 5 → the receiver. 6 (gas-liquid separating means) → outdoor unit motor-operated valve 7 → outdoor heat exchanger 8 → four-way valve 3 → refrigerant heater 9 → accumulator 10 → compressor 2 in order of circulation (solid arrow) for heating. .

【0016】また、屋内冷房時には、圧縮機2→四方弁
3→室外熱交換器8→室外機電動弁7→レシーバ6→室
内機電動弁5→室内熱交換器4→四方弁3→冷媒加熱器
9→アキュームレータ10→圧縮機2の順に冷媒を流通
(破線矢印)させて冷房している。
During indoor cooling, the compressor 2 → the four-way valve 3 → the outdoor heat exchanger 8 → the outdoor unit electric valve 7 → the receiver 6 → the indoor unit electric valve 5 → the indoor heat exchanger 4 → the four-way valve 3 → the refrigerant heating The refrigerant is circulated (broken line arrow) in the order of the container 9 → the accumulator 10 → the compressor 2 for cooling.

【0017】室内熱交換器4は、暖房時には凝縮器であ
る第1熱交換器として機能し、冷房時には蒸発器である
第2熱交換器として機能する。また、室外熱交換器8
は、暖房時には蒸発器である第2熱交換器として機能
し、冷房時には凝縮器である第1熱交換器として機能す
る。そして、暖房時には、室外機電動弁7が冷媒を減圧
する減圧手段である膨張弁として機能し、冷房時には、
室内機電動弁5が減圧手段である膨張弁として機能す
る。
The indoor heat exchanger 4 functions as a first heat exchanger that is a condenser during heating, and functions as a second heat exchanger that is an evaporator during cooling. In addition, the outdoor heat exchanger 8
Functions as a second heat exchanger that is an evaporator during heating, and functions as a first heat exchanger that is a condenser during cooling. Then, during heating, the outdoor unit electric valve 7 functions as an expansion valve that is a pressure reducing means for reducing the pressure of the refrigerant, and during cooling,
The indoor unit motor operated valve 5 functions as an expansion valve which is a pressure reducing means.

【0018】エンジン1は、クランクプーリ1aに巻き
付けられたVベルト1bにより圧縮機2に設けられたプ
ーリ2aに駆動力を伝達するようになっている。そし
て、プーリ2aと圧縮機2との間には、プーリ2aに伝
達された駆動力を圧縮機2に伝達または遮断する駆動力
断続手段として電磁クラッチ(図示せず)が設けられて
いる。
The engine 1 is configured to transmit a driving force to a pulley 2a provided on the compressor 2 by a V belt 1b wound around a crank pulley 1a. An electromagnetic clutch (not shown) is provided between the pulley 2a and the compressor 2 as a driving force connecting / disconnecting means that transmits or blocks the driving force transmitted to the pulley 2a to the compressor 2.

【0019】また、圧縮機2の吐出側(四方弁3側)に
接続された冷媒配管には、圧縮機2が吐出した冷媒から
オイルを分離する周知のオイルセパレータ(図示せず)
が設けられており、オイルセパレータで分離されたオイ
ルはオイルリターンチューブ(図示せず)を介して、圧
縮機2の吸入側(アキュームレータ10側)に接続され
た冷媒配管の経路中に圧縮機2前後の差圧により戻され
るようになっている。
A known oil separator (not shown) for separating oil from the refrigerant discharged from the compressor 2 is provided in the refrigerant pipe connected to the discharge side of the compressor 2 (the four-way valve 3 side).
Is provided, and the oil separated by the oil separator is connected to the suction side (accumulator 10 side) of the compressor 2 via an oil return tube (not shown) in the path of the refrigerant pipe connected to the compressor 2 It is designed to be returned by the differential pressure between the front and back.

【0020】110は冷却水回路であり、エンジン1の
本体内に形成されエンジン1を冷却するための図示しな
い冷却水通路と、この冷却水通路出口から冷媒加熱部で
ある冷媒加熱器9、冷却水切替弁113、冷却水ポンプ
114を順次流れ、上記冷却水通路入口に戻る第1冷却
水回路111と、上記冷却水通路出口からラジエータ1
15、冷却水切替弁113、冷却水ポンプ114を順次
流れ、上記冷却水通路入口に戻る第2冷却水回路112
とから構成されている。
Reference numeral 110 denotes a cooling water circuit, which is a cooling water passage (not shown) formed in the main body of the engine 1 for cooling the engine 1, and a refrigerant heater 9 serving as a refrigerant heating section from the cooling water passage outlet to a cooling device. The first cooling water circuit 111 that sequentially flows through the water switching valve 113 and the cooling water pump 114 and returns to the cooling water passage inlet, and the radiator 1 from the cooling water passage outlet.
15, the second cooling water circuit 112 that sequentially flows through the cooling water switching valve 113, the cooling water pump 114, and returns to the cooling water passage inlet.
It consists of and.

【0021】ここで、冷却水ポンプ114は電動ポンプ
であり、冷却水切替弁113は第1冷却水回路111と
第2冷却水回路112とを切り替える電磁切替弁であ
る。また、ラジエータ115は冷却水と外気とを熱交換
する周知の熱交換器であり、冷媒加熱器9は、例えば金
属等からなる2重管式の熱交換器であり冷却水と冷媒と
が熱交換可能になっている。また、上記冷却水通路の出
入口と各部材9、113〜115は例えばゴムホース等
によって連結されている。
Here, the cooling water pump 114 is an electric pump, and the cooling water switching valve 113 is an electromagnetic switching valve that switches between the first cooling water circuit 111 and the second cooling water circuit 112. Further, the radiator 115 is a well-known heat exchanger for exchanging heat between the cooling water and the outside air, and the refrigerant heater 9 is a double-tube heat exchanger made of, for example, metal or the like, and the cooling water and the refrigerant are heat-exchanged. It is replaceable. Further, the inlet / outlet of the cooling water passage and each member 9, 113 to 115 are connected by, for example, a rubber hose or the like.

【0022】上記構成を有するヒートポンプ式空調装置
100において、各構成要素のうち室内熱交換器4及び
室内機電動弁5は、室内機200を構成して室内の適所
に設置され、その他のものは、室外機300を構成して
室外の適所に設置されている。
In the heat pump type air conditioner 100 having the above construction, the indoor heat exchanger 4 and the indoor unit motorized valve 5 among the respective components constitute the indoor unit 200 and are installed at appropriate places in the room. The outdoor unit 300 is configured and installed in an appropriate place outdoors.

【0023】そして、ヒートポンプ式空調装置100
は、電子回路等からなる制御手段として制御装置(図示
せず)を有し、この制御装置は、図示しない室内に設け
られたコントローラ、図示しない外気温センサ・冷媒温
度センサ・水温センサ等からの情報を入力し、室内機2
00及び室外機300を作動制御するようになってい
る。
The heat pump type air conditioner 100
Has a control device (not shown) as a control means composed of an electronic circuit and the like. This control device includes a controller provided in a room (not shown), an outside air temperature sensor, a refrigerant temperature sensor, a water temperature sensor, etc. Enter the information, indoor unit 2
00 and the outdoor unit 300 are controlled.

【0024】次に、本実施形態の要部の構成を説明す
る。室内熱交換器4及び室外熱交換器8と室内機電動弁
5及び室外機電動弁7との間に冷媒の気液分離手段とし
てレシーバ6を設けている。そして、そのレシーバ6内
で分離されて上部に溜まるガス冷媒を、冷房時の室内機
電動弁5の出口側及び暖房時の室外機電動弁7の出口側
から圧縮機2の吸入側までの低圧部分に流通させる均圧
回路20としての冷媒配管部分を設けている。
Next, the structure of the main part of this embodiment will be described. A receiver 6 is provided between the indoor heat exchanger 4 and the outdoor heat exchanger 8 and the indoor unit motor-operated valve 5 and the outdoor unit motor-operated valve 7 as gas-liquid separating means for the refrigerant. Then, the gas refrigerant separated in the receiver 6 and accumulated in the upper part is reduced in pressure from the outlet side of the indoor unit electric valve 5 during cooling and the outlet side of the outdoor unit electric valve 7 during heating to the suction side of the compressor 2. A refrigerant pipe portion is provided as a pressure equalizing circuit 20 to be circulated in the portion.

【0025】実際にはレシーバ6の上面部と、冷房時も
暖房時も冷媒の流れ方向が同じとなる四方弁3の下流か
ら液冷媒を溜められるようアキュームレータ10の上流
までの間とを冷媒配管でつないでいる。また、その均圧
回路20内に回路の開閉手段としての均圧用電磁弁21
を設けている。
In practice, the refrigerant pipe is provided between the upper surface of the receiver 6 and the downstream of the four-way valve 3 in which the refrigerant flows in the same direction during cooling and heating to the upstream of the accumulator 10 so that the liquid refrigerant can be stored. It is connected. Further, in the pressure equalizing circuit 20, a solenoid valve 21 for equalizing pressure as a circuit opening / closing means.
Is provided.

【0026】次に、本実施形態の作動を上記構成に基づ
いて説明する。制御装置は、ヒートポンプ式空調装置1
00に電力供給されている時には、図示しないコントロ
ーラからの情報に基づいて、暖房運転時の制御処理、又
は冷房運転時の制御処理のいずれかを実行する。
Next, the operation of this embodiment will be described based on the above configuration. The control device is a heat pump type air conditioner 1
When the electric power is supplied to 00, either the control processing during the heating operation or the control processing during the cooling operation is executed based on information from a controller (not shown).

【0027】まず、暖房運転時の作動について説明す
る。例えば外気温が低い時、図示しないコントローラの
暖房スイッチがONされ、ON信号が制御装置に入力さ
れると、制御装置は暖房運転時の制御処理を実行する。
制御装置は四方弁3を暖房側(実線)に切り替えるとと
もに、エンジン1を起動し圧縮機2を駆動する。また、
室内機電動弁5を全開にすると共に、室外機電動弁7を
膨張弁として機能する開度に調節する。
First, the operation during the heating operation will be described. For example, when the outside air temperature is low, the heating switch of the controller (not shown) is turned on, and when the ON signal is input to the control device, the control device executes the control process during the heating operation.
The control device switches the four-way valve 3 to the heating side (solid line), starts the engine 1 and drives the compressor 2. Also,
The indoor unit motor-operated valve 5 is fully opened, and the outdoor unit motor-operated valve 7 is adjusted to an opening that functions as an expansion valve.

【0028】圧縮機2を出た高温のガス冷媒は、四方弁
3を通り、室内熱交換器4で凝縮することで暖房を行な
った後、レシーバ6で気液分離され、液冷媒が室外機電
動弁7で減圧され、室外熱交換器8で蒸発し、四方弁3
を再び通り、続いて冷媒加熱器9で、エンジン排熱を回
収した冷却水との熱交換により加熱された後、アキュー
ムレータ10にて気液分離され、ガス冷媒が圧縮機2に
戻る。
The high-temperature gas refrigerant discharged from the compressor 2 passes through the four-way valve 3 and is condensed in the indoor heat exchanger 4 for heating, and is then separated into gas and liquid in the receiver 6, and the liquid refrigerant is converted into the outdoor unit. The pressure is reduced by the motor-operated valve 7, evaporated by the outdoor heat exchanger 8, and the four-way valve 3
And is then heated by the refrigerant heater 9 by heat exchange with the cooling water that has recovered the engine exhaust heat, and is then gas-liquid separated by the accumulator 10 and the gas refrigerant returns to the compressor 2.

【0029】エンジン1の起動に合わせて、冷却水ポン
プ114も起動され、冷却水切替弁113は冷却水が第
1冷却水回路111に流れる方向に切り替えられる。冷
却水ポンプ114によって圧送された冷却水は、エンジ
ン1内の冷却水通路を流れ、エンジン排熱を吸熱した
後、冷媒加熱器9に入り、ここで、室外熱交換器8で蒸
発した冷媒と熱交換して冷媒を加熱する。その後、冷却
水切替弁113から冷却水ポンプ114に戻り、再びエ
ンジン1内の冷却水通路に送られる。
When the engine 1 is started, the cooling water pump 114 is also started, and the cooling water switching valve 113 is switched so that the cooling water flows into the first cooling water circuit 111. The cooling water pumped by the cooling water pump 114 flows through the cooling water passage in the engine 1 to absorb the engine exhaust heat, and then enters the refrigerant heater 9, where the cooling water is evaporated with the refrigerant in the outdoor heat exchanger 8. Heat exchange to heat the refrigerant. After that, the cooling water switching valve 113 returns to the cooling water pump 114 and is sent again to the cooling water passage in the engine 1.

【0030】このように冷却水が循環するため、エンジ
ン1の排熱は冷却水に回収され、冷媒加熱器9にて冷媒
の加熱に利用されて、ヒートポンプ式空調装置100の
暖房熱源の一部となる。
Since the cooling water circulates in this way, the exhaust heat of the engine 1 is recovered by the cooling water and used for heating the refrigerant by the refrigerant heater 9 to form a part of the heating heat source of the heat pump type air conditioner 100. Becomes

【0031】次に、冷房運転時の作動について説明す
る。例えば外気温が高い時、図示しないコントローラの
冷房スイッチがONされ、ON信号が制御装置に入力さ
れると、制御装置は冷房運転時の制御処理を実行する。
制御装置は四方弁3を冷房側(破線)に切り替えると共
に、エンジン1を起動し圧縮機2を駆動する。また、室
外機電動弁7を全開にすると共に、室内機電動弁5を膨
張弁として機能する開度に調節する。
Next, the operation during the cooling operation will be described. For example, when the outside air temperature is high, the cooling switch of the controller (not shown) is turned on, and when an ON signal is input to the control device, the control device executes the control process during the cooling operation.
The control device switches the four-way valve 3 to the cooling side (broken line), starts the engine 1 and drives the compressor 2. Further, the outdoor unit motor-operated valve 7 is fully opened, and the indoor unit motor-operated valve 5 is adjusted to an opening degree that functions as an expansion valve.

【0032】圧縮機2を出た高温のガス冷媒は、四方弁
3を通り、室外熱交換器8で凝縮し、レシーバ6で気液
分離され、液冷媒は室内機電動弁5で減圧され、室外熱
交換器8で蒸発することで冷房を行なった後、四方弁3
を再び通り、続いて冷媒加熱器9からアキュームレータ
10に送られ、アキュームレータ10にて気液分離さ
れ、ガス冷媒が圧縮機2に戻る。
The high-temperature gas refrigerant leaving the compressor 2 passes through the four-way valve 3, is condensed in the outdoor heat exchanger 8, is separated into gas and liquid by the receiver 6, and the liquid refrigerant is decompressed by the indoor unit electric valve 5, After cooling by evaporating in the outdoor heat exchanger 8, the four-way valve 3
Through the refrigerant heater 9 to the accumulator 10, where the gas-liquid separation is performed in the accumulator 10 and the gas refrigerant returns to the compressor 2.

【0033】エンジン1の起動に合わせて、冷却水ポン
プ114も起動され、冷却水切替弁113は冷却水が第
2冷却水回路112に流れる方向に切り替えられる。冷
却水ポンプ114によって圧送された冷却水は、エンジ
ン1内の冷却水通路を流れ、エンジン排熱を吸熱した
後、ラジエータ115に入る。その後、冷却水切替弁1
13から冷却水ポンプ114に戻り、再びエンジン1内
の冷却水通路に送られる。
When the engine 1 is started, the cooling water pump 114 is also started, and the cooling water switching valve 113 is switched to the direction in which the cooling water flows into the second cooling water circuit 112. The cooling water pumped by the cooling water pump 114 flows through the cooling water passage in the engine 1, absorbs the exhaust heat of the engine, and then enters the radiator 115. After that, the cooling water switching valve 1
It returns from 13 to the cooling water pump 114 and is sent again to the cooling water passage in the engine 1.

【0034】このように冷却水が循環するため、エンジ
ン1の排熱は冷却水に回収され、ラジエータ115にて
外気と熱交換して放熱される。そして、上記の構成と作
動により、エンジン1を停止させたり、電磁クラッチで
駆動力を切るなりして、圧縮機2を停止させ、冷凍サイ
クル内の冷媒循環を停止した場合には均圧用電磁弁21
を開いて冷凍サイクル装置内を均圧させるものである。
Since the cooling water circulates in this manner, the exhaust heat of the engine 1 is recovered by the cooling water, and the radiator 115 exchanges heat with the outside air to radiate the heat. With the above configuration and operation, when the engine 1 is stopped or the driving force is cut off by the electromagnetic clutch, the compressor 2 is stopped and the refrigerant circulation in the refrigeration cycle is stopped. 21
Is opened to equalize the pressure in the refrigeration cycle apparatus.

【0035】このように、高圧側に冷媒の気液分離手段
6を設け、そこで分離された高圧ガス冷媒だけを低圧側
に抜くことで、低圧側の液冷媒量を増やすことなく均圧
を行なっている。これにより、アキュームレータ10を
大型化することなく、均圧後の圧縮機2起動時の液圧縮
を防止することができる。
As described above, the gas-liquid separating means 6 for the refrigerant is provided on the high pressure side, and only the high pressure gas refrigerant separated there is discharged to the low pressure side, so that the pressure equalization is performed without increasing the amount of the liquid refrigerant on the low pressure side. ing. As a result, it is possible to prevent liquid compression at the time of starting the compressor 2 after pressure equalization without increasing the size of the accumulator 10.

【0036】また、その気液分離手段6にレシーバを用
いている。これにより、従来と同様の冷凍サイクル構成
機器を用いて均圧回路20の高圧側の取り出し部をレシ
ーバ上部とするだけで、アキュームレータを大型化する
ことなく、均圧後の圧縮機起動時の液圧縮を防止するこ
とができる。
A receiver is used as the gas-liquid separating means 6. With this, by using the same refrigeration cycle constituent device as the conventional one, only the high pressure side take-out portion of the pressure equalizing circuit 20 is used as the receiver upper portion, and the liquid at the time of starting the compressor after pressure equalization without increasing the size of the accumulator. Compression can be prevented.

【0037】また、このような均圧回路20を第1、第
2熱交換器を室内熱交換器4及び室外熱交換器8とした
ヒートポンプ式空調装置に用いている。これにより、ア
キュームレータ10を大型化することなく、均圧後の圧
縮機2起動時にも液圧縮を起こすことのない空調装置と
することができる。
Further, such a pressure equalizing circuit 20 is used in a heat pump type air conditioner in which the first and second heat exchangers are the indoor heat exchanger 4 and the outdoor heat exchanger 8. This makes it possible to provide an air conditioner that does not cause liquid compression even when the compressor 2 is started after pressure equalization without increasing the size of the accumulator 10.

【0038】(その他の実施形態)上記実施形態では、
気液分離手段6にレシーバを用いているが、本発明はこ
れに限らず、均圧回路20専用の気液分離装置装置とし
て設けても良い。また、エンジン駆動のヒートポンプ式
空調装置であったが、ヒートポンプ式空調装置以外の冷
媒圧縮式冷凍サイクルに適用してもよい。また、圧縮機
2は電動圧縮機等のエンジン駆動以外のものであっても
良いし、水や不凍液等のブライン(熱交換媒体)を加熱
する給湯装置等に適用しても良い。
(Other Embodiments) In the above embodiment,
Although a receiver is used as the gas-liquid separation means 6, the present invention is not limited to this, and may be provided as a gas-liquid separation device dedicated to the pressure equalizing circuit 20. Further, although the engine-driven heat pump type air conditioner is used, it may be applied to a refrigerant compression type refrigeration cycle other than the heat pump type air conditioner. Further, the compressor 2 may be something other than an engine driven one such as an electric compressor, or may be applied to a hot water supply device or the like for heating brine (heat exchange medium) such as water or antifreeze.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態におけるヒートポンプ式空
調装置の構成を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a heat pump type air conditioner according to an embodiment of the present invention.

【図2】従来の一実施形態におけるヒートポンプ式空調
装置の構成を示す模式図である。
FIG. 2 is a schematic diagram showing a configuration of a heat pump type air conditioner according to a conventional embodiment.

【符号の説明】[Explanation of symbols]

2 圧縮機 4 室内熱交換器(暖房時の第1熱交換器、冷房時の第
2熱交換器) 5 室内機電動弁(冷房時の減圧手段) 6 レシーバ(気液分離手段) 7 室外機電動弁(暖房時の減圧手段) 8 室外熱交換器(冷房時の第1熱交換器、暖房時の第
2熱交換器) 10 アキュームレータ 30 均圧回路 31 均圧用電磁弁(開閉手段)
2 Compressor 4 Indoor heat exchanger (first heat exchanger during heating, second heat exchanger during cooling) 5 Indoor unit electric valve (pressure reducing means during cooling) 6 Receiver (gas-liquid separation means) 7 Outdoor unit Motor operated valve (pressure reducing means during heating) 8 Outdoor heat exchanger (first heat exchanger during cooling, second heat exchanger during heating) 10 Accumulator 30 Pressure equalizing circuit 31 Pressure equalizing solenoid valve (opening / closing means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮して吐出する圧縮機(2)
と、 前記冷媒を凝縮させる第1熱交換器(4、8)と、 前記冷媒を減圧する減圧手段(5、7)と、 前記冷媒を蒸発させる第2熱交換器(4、8)と、 前記冷媒を気液分離して蓄えるアキュームレータ(1
0)とを環状に接続して形成された冷凍サイクル装置に
おいて、 前記第1熱交換器(4、8)と前記減圧手段(5、7)
との間に冷媒の気液分離手段(6)と、 その気液分離手段(6)にて分離されたガス冷媒を前記
減圧手段(5、7)出口側から前記圧縮機(2)の吸入
側までの低圧部分に流通させる均圧回路(20)と、 その均圧回路(20)内に回路を開閉する開閉手段(2
1)とを設け、 前記圧縮機(2)の運転を停止した場合、前記開閉手段
(21)を開いて前記冷凍サイクル装置内を均圧させる
ことを特徴とする冷凍サイクル装置。
1. A compressor (2) for compressing and discharging a refrigerant.
A first heat exchanger (4, 8) for condensing the refrigerant, a decompression means (5, 7) for decompressing the refrigerant, a second heat exchanger (4, 8) for evaporating the refrigerant, Accumulator (1) that separates and stores the refrigerant by gas-liquid separation
0) in a refrigeration cycle apparatus formed by connecting the first heat exchanger (4, 8) and the pressure reducing means (5, 7).
And a gas-liquid separating means (6) for the refrigerant, and the gas refrigerant separated by the gas-liquid separating means (6) is sucked into the compressor (2) from the outlet side of the pressure reducing means (5, 7). Pressure equalizing circuit (20) that circulates in the low pressure portion up to the side, and opening / closing means (2) that opens and closes the circuit within the pressure equalizing circuit (20).
1) is provided, and when the operation of the compressor (2) is stopped, the opening / closing means (21) is opened to equalize the pressure in the refrigeration cycle apparatus.
【請求項2】 前記気液分離手段(6)にレシーバを用
いたことを特徴とする請求項1に記載の冷凍サイクル装
置。
2. The refrigeration cycle apparatus according to claim 1, wherein a receiver is used as the gas-liquid separating means (6).
【請求項3】 請求項1または請求項2に記載の冷凍サ
イクル装置を備え、前記第1、第2熱交換器(4、8)
とは室内熱交換器(4)及び室外熱交換器(8)である
ことを特徴とするヒートポンプ式空調装置。
3. The refrigeration cycle apparatus according to claim 1 or 2, comprising the first and second heat exchangers (4, 8).
Is a heat pump type air conditioner characterized by being an indoor heat exchanger (4) and an outdoor heat exchanger (8).
JP2002041330A 2002-02-19 2002-02-19 Refrigeration cycle unit, and heat-pump type air conditioner Pending JP2003240364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041330A JP2003240364A (en) 2002-02-19 2002-02-19 Refrigeration cycle unit, and heat-pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041330A JP2003240364A (en) 2002-02-19 2002-02-19 Refrigeration cycle unit, and heat-pump type air conditioner

Publications (1)

Publication Number Publication Date
JP2003240364A true JP2003240364A (en) 2003-08-27

Family

ID=27781781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041330A Pending JP2003240364A (en) 2002-02-19 2002-02-19 Refrigeration cycle unit, and heat-pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2003240364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013769A1 (en) * 2004-08-04 2006-02-09 Daikin Industries, Ltd. Air conditioner
KR100741252B1 (en) * 2004-08-04 2007-07-19 다이킨 고교 가부시키가이샤 Air conditioner
JP2021103081A (en) * 2019-09-30 2021-07-15 ダイキン工業株式会社 Heat source unit and refrigeration unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013769A1 (en) * 2004-08-04 2006-02-09 Daikin Industries, Ltd. Air conditioner
JP2006046779A (en) * 2004-08-04 2006-02-16 Daikin Ind Ltd Air conditioner
KR100741252B1 (en) * 2004-08-04 2007-07-19 다이킨 고교 가부시키가이샤 Air conditioner
AU2005268315B2 (en) * 2004-08-04 2008-05-29 Daikin Industries, Ltd. Air conditioner
US7607317B2 (en) 2004-08-04 2009-10-27 Daikin Industries, Ltd. Air conditioner with oil recovery function
JP2021103081A (en) * 2019-09-30 2021-07-15 ダイキン工業株式会社 Heat source unit and refrigeration unit
JP7116346B2 (en) 2019-09-30 2022-08-10 ダイキン工業株式会社 Heat source unit and refrigerator

Similar Documents

Publication Publication Date Title
JP4394709B2 (en) Apparatus and method for preventing accumulation of liquid refrigerant in air conditioner
CN103597296A (en) Freezing cycle
JP2006194565A (en) Air conditioner
WO2006115053A1 (en) Air conditioner
JP5145026B2 (en) Air conditioner
JP4465889B2 (en) Refrigeration equipment
WO2006115051A1 (en) Air conditioner
JP5018020B2 (en) Refrigeration cycle equipment
JP3750520B2 (en) Refrigeration equipment
JP4765921B2 (en) Refrigeration cycle equipment
JP2021021509A (en) Air-conditioning apparatus
JP2003240364A (en) Refrigeration cycle unit, and heat-pump type air conditioner
JPH06323636A (en) Refrigerator
JP2001355940A (en) Heat pump device
JP2002168534A (en) Heat pump system of air conditioner
JP2009047389A (en) Refrigerating cycle device
JP4052020B2 (en) Heat pump system
JPH0828974A (en) Cold heat carrying equipment
JP2001336850A (en) Heat pump apparatus
JP5488816B2 (en) Dual refrigeration equipment
JP3008925B2 (en) Refrigeration equipment
JP2009281645A (en) Air conditioner and control method for air conditioner
JP2000205700A (en) Liquid receiver integrated type refrigerant condenser
JP2002277111A (en) Refrigerant recovery unit
JP2005140373A (en) Engine driven type refrigeration cycle device with generator