JP2003240356A - Sun tracking system - Google Patents

Sun tracking system

Info

Publication number
JP2003240356A
JP2003240356A JP2002039874A JP2002039874A JP2003240356A JP 2003240356 A JP2003240356 A JP 2003240356A JP 2002039874 A JP2002039874 A JP 2002039874A JP 2002039874 A JP2002039874 A JP 2002039874A JP 2003240356 A JP2003240356 A JP 2003240356A
Authority
JP
Japan
Prior art keywords
light
angle
axis
rotation axis
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002039874A
Other languages
Japanese (ja)
Inventor
Seishiro Munehira
聖士郎 宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002039874A priority Critical patent/JP2003240356A/en
Publication of JP2003240356A publication Critical patent/JP2003240356A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/88Multi reflective traps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize solar energy by controlling the angle and the density of sunlight with a simple device, in utilization of solar energy. <P>SOLUTION: In this sun tracking system, a light duct B9 and a light duct A10, each with an angle to the axis, are individually and rotatably controlled to have the in-coming light side axis of the light duct B9 automatically track the direction of the sun, and light is guided in the ducts by the reflection from inner surfaces of the light duct B9 and the light duct A10 or by the reflection from a reflector 46. Thus, the output light is fixed in a specified direction. A parabolic reflecting structure is employed to retain the parallel state of the light even after the sunlight concentration. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、太陽エネルギーを
集光してエネルギー密度を高めて 直接熱源又はエネル
ギー変換して 有効利用を促進するものに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for concentrating solar energy to increase energy density and directly heat source or energy conversion to promote effective utilization.

【0002】[0002]

【従来の技術】従来,太陽光を追尾する方法は、 1 水平軸と垂直軸又は傾斜軸の二軸をそれぞれ制御し
て、それぞれを太陽光の方向をセンシングして太陽の方
向へ向ける。 2 水平軸と垂直軸又は傾斜軸の二軸をそれぞれ予め
設定された 季節、時間に応じた角度に制御して太陽の
方向へ向ける。 以上のように 太陽を追尾するための機構が複雑とな
り、予め想定した方向に合わせて設置調整する必要があ
り 駆動自身も大きな動力を必要とした。
2. Description of the Related Art Conventionally, in the method of tracking sunlight, the two axes of 1) a horizontal axis and a vertical axis or a tilt axis are controlled respectively, and each of them is sensed and directed toward the sun. 2 The horizontal axis and the vertical axis or the tilt axis are controlled in the direction of the sun by controlling the angles according to the preset season and time. As described above, the mechanism for tracking the sun became complicated, and it was necessary to adjust the installation according to the direction assumed beforehand, and the drive itself required large power.

【0003】[0003]

【発明が解決しようとする課題】解決しようとする問題
点は、機構を単純化し、合わせて集光された光を任意の
方向位置に導き、製作コストを下げ、光又は熱源として
利用の自由度を上げることであり、 1 構造の単純化、軽量化で製作コストを低減する。 2 作動動力を効率よく角度の制御に伝達する。 3 追尾角度の範囲、設置方向の自由度を大きくする。 4 光の伝送路を確保する。 5 所要の角度 位置に太陽光を案内する。 以上の課題を解決することである。
The problems to be solved are to simplify the mechanism, guide the light that is focused together to an arbitrary directional position, reduce the manufacturing cost, and have a degree of freedom of use as a light or heat source. The manufacturing cost is reduced by simplifying the structure and reducing the weight. 2 The operating power is efficiently transmitted to the angle control. 3 Increase the range of tracking angles and the degree of freedom in the installation direction. 4 Secure the optical transmission line. 5 Guide the sunlight to the required angle position. It is to solve the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は、太陽光の追尾
並びに集光された光を直接利用しやすくするためになさ
れたものである。太陽追尾機構については、図1におい
て 固定軸1と同軸にて回転角度を制御される回転軸A
2を設け、回転軸A2に対し角度αをなす角度回転軸A
3に同軸にて回転角度を制御される回転軸B4を設け、
回転軸B4に対し角度βをなす角度回転軸B5の軸方向
を太陽光の方向へ角度制御させる。回転軸A2と角度回
転軸A3の角度αは固定軸1に対し180度回転するこ
とでαの2倍のα’の角度を制御でき、回転軸B4と角
度回転軸B5の角度βは角度回転軸A3に対し180度
回転する事でβの2倍のβ’の角度を制御できる。よっ
て角度回転軸B5の角度は固定軸1に対しα’とβ’の
和が制御角度となり、α及びβを45度とすれば角度回
転軸B5の角度範囲は水平方向360度、垂直方向18
0度となり 天球の全ての追尾角度を制御可能となる。 1 軸構造のみで構成されるため、構造が単純となる。 2 軸構造の軸が一本なので中空にする事で 内部に光
の通路を成型することが出来、外力に対して構造的に耐
力を持たせることが容易である。 3 軸制御の駆動力はジャバラ、リンク機構、ばね継ぎ
手等のたわみ継ぎ手を介して行うことで動力線等の可動
電線をなくすことが出来、スリップリング等を介しても
回転に制限のない駆動方法を取ることが出来る。
SUMMARY OF THE INVENTION The present invention has been made to facilitate tracking of sunlight and direct utilization of condensed light. Regarding the sun tracking mechanism, in FIG. 1, a rotation axis A whose rotation angle is controlled coaxially with the fixed axis 1
2 is provided, and the angle rotation axis A forms an angle α with the rotation axis A2.
3 is provided with a rotation axis B4 whose rotation angle is coaxially controlled,
The axial direction of the angle rotation axis B5 forming an angle β with respect to the rotation axis B4 is controlled to the direction of sunlight. The angle α between the rotation axis A2 and the angle rotation axis A3 can be controlled 180 degrees with respect to the fixed axis 1 to control the angle α ′ that is twice the angle α, and the angle β between the rotation axis B4 and the angle rotation axis B5 can be rotated by an angle. By rotating 180 degrees with respect to the axis A3, it is possible to control the angle of β ′ which is twice β. Therefore, the angle of the angle rotation axis B5 is the control angle which is the sum of α ′ and β ′ with respect to the fixed axis 1, and if α and β are 45 degrees, the angle range of the angle rotation axis B5 is 360 degrees in the horizontal direction and 18 degrees in the vertical direction.
It becomes 0 degree and it becomes possible to control all tracking angles of the celestial sphere. The structure is simple because it consists of only a uniaxial structure. Since the biaxial structure has one shaft, it is possible to mold the light passage inside by making it hollow, and it is easy to give structural resistance to external force. The driving force for 3-axis control can be eliminated by using bellows, link mechanism, and flexible joints such as spring joints to eliminate movable electric wires such as power lines, and a drive method with unlimited rotation even through slip rings. You can take

【0005】図1の固定軸1、回転軸A2、角度回転軸
A3、回転軸B4、角度回転軸B5を全て中空としその
中空内面を光の高反射率とし、軸構造を図3の光ダクト
B9と光ダクトA10として内面を鏡面とする事で 光
ファイバーと同様に 光ダクトB9の軸方向から入光し
た光は各光ダクト内面にて反射を繰り返し光ダクトA1
0を通過して所要の位置に導かれ光を固定軸1方向に拡
散せずに導くこととなる。 1 単純形状の反射面を容易に形成することが出来、光
の損失も少なくすることが出来る。 2 光を熱として利用する場合も、伝送路は光のままな
ので伝送路の発熱も少なく、構造材として樹脂なども利
用可能である。 3 軸内部反射面は密閉構造とすることが出来るので
塵埃、汚れなどによる光の損失が無く、メンテナンス性
に優れる。
The fixed shaft 1, the rotary shaft A2, the angle rotary shaft A3, the rotary shaft B4, and the rotary shaft B5 of FIG. 1 are all hollow, and the hollow inner surface has a high light reflectance, and the axial structure is the optical duct of FIG. B9 and the optical duct A10 have mirror surfaces on the inner surface. Like the optical fiber, the light incident from the axial direction of the optical duct B9 is repeatedly reflected on the inner surface of each optical duct A1.
The light passes through 0 and is guided to a desired position, and the light is guided in the fixed axis 1 direction without being diffused. 1 It is possible to easily form a reflection surface having a simple shape and reduce light loss. 2 Even when light is used as heat, since the transmission line is still light, heat generation in the transmission line is small, and resin or the like can be used as the structural material. Since the triaxial internal reflection surface can be a closed structure,
There is no light loss due to dust and dirt, and it has excellent maintainability.

【0006】図5及び図6において、回転放物曲面より
なる相似形の一次反射膜41と二次反射膜42を対向又
は反対向し焦点43を同じ点にて設けることにて、一次
反射膜41にて反射され集光した光は焦点43を通過後
二次反射膜42にて一次反射膜41の同角度の反射角に
て反射され平行光に戻り集光されることとなる。 1 集光された光が平行のままなので、光ダクト等を介
さずに拡散せずに導光できる。 2 集光された光が平行のままなので、平面鏡2枚の反
射のみ 又はプリズム等の屈折に容易に方向性を制御す
ることができる。 3 集光された光が平行のままなので、空中を長距離伝
送できる。 4 二次反射膜42に反射された平行光を更にレンズな
どで集光して光ファイバーに導光して伝送することも可
能である。
In FIGS. 5 and 6, the primary reflection film 41 and the secondary reflection film 42, which are similar to each other and have a parabolic curved surface, are opposed or anti-opposed to each other, and a focal point 43 is provided at the same point. After passing through the focal point 43, the light reflected and condensed at 41 is reflected by the secondary reflective film 42 at the same reflection angle of the primary reflective film 41 and returned to parallel light and condensed. 1 Since the collected light remains parallel, it can be guided without diffusion through a light duct or the like. 2 Since the condensed light remains parallel, it is possible to easily control the directionality of only the reflection of two plane mirrors or the refraction of a prism or the like. 3 Since the condensed light remains parallel, it can be transmitted over a long distance in the air. 4 It is also possible to further collect parallel light reflected by the secondary reflection film 42 with a lens or the like and guide it to an optical fiber for transmission.

【0007】図2にて、集光導光された光を透過体16
を透過させてのち集光箱15に集光し内部で太陽光が光
が熱又は赤外線に変化した後は、透過体16の伝熱抵抗
及び光の選択性フィルター効果により熱拡散を防止する
ことで、 1 集光箱15に入光後熱エネルギーになった後は透過
体16の伝熱抵抗によりエネルギーの一方通行となり、
集光箱15内にて外部漏洩損失の少ない熱エネルギーが
得られる。 2 透過体16の構造を太陽光の透過率が高く、断熱性
及び赤外線の反射率の高いもので構成することにより、
よりエネルギー収集効率がよくなり高温も得られやすく
なる。 3 透過体16の断熱効果により、外部に熱が逃げない
ので機構部、構造部にに耐熱性の考慮が不要となる。
In FIG. 2, the light that is condensed and guided is transmitted through the transmitting member 16.
After the light is transmitted to the condenser box 15 and the sunlight is converted into heat or infrared rays inside the condenser box 15, heat diffusion is prevented by the heat transfer resistance of the transmission body 16 and the selective filter effect of light. Then, 1 After the light enters the condensing box 15 and becomes heat energy, it becomes one-way passage of energy due to the heat transfer resistance of the transmissive body 16,
Thermal energy with little external leakage loss can be obtained in the light collecting box 15. 2 By constructing the structure of the transmissive body 16 with a material having high sunlight transmittance, high heat insulation and high infrared reflectance,
Energy collection efficiency is improved and high temperature is easily obtained. 3 Due to the heat insulating effect of the transmissive body 16, heat does not escape to the outside, so it is not necessary to consider heat resistance in the mechanical portion and the structural portion.

【0008】図13において、図1の角度回転軸B5軸
上に3個以上よりなる光センサー40aを一方向のみの
光量出力の総和が極大となり、極大以外の方向でも光量
出力の変化を持つ配置とし、同様に光の向きに対して反
対向きに3個以上よりなる光センサー40bを設け、光
量出力の総和の極大値に向け角度制御を行うことにより 1 センサーの数が少なくて制御が可能となる。 2 少ないセンサーで広い範囲のセンシングが可能。 3 センサーが軸上で回転しても光量出力の総和が変ら
ないため 取り付けの自由度が大きい。 4 反対向きの光センサー40bの光センサー40aと
出力値が反転する回路を用いることで、全方向に死角の
無いセンシングが可能となる。 5 光センサー40bの光センサー40aに安価なLE
Dをセンサーとして用いることにより、センシング回路
が簡単に低コストで製造できる 。
In FIG. 13, a total of three or more photosensors 40a on the angle rotation axis B5 of FIG. 1 has a maximum sum of light quantity outputs in only one direction, and the light quantity output changes in directions other than the maximum. Similarly, by providing three or more optical sensors 40b in the opposite direction to the direction of the light and performing the angle control toward the maximum value of the total sum of the light amount outputs, one sensor can be controlled with a small number of sensors. Become. 2 Wide range of sensing is possible with few sensors. 3 Even if the sensor rotates on the axis, the total amount of light output does not change, so there is great freedom in mounting. 4. By using the optical sensor 40a of the opposite optical sensor 40b and the circuit whose output value is inverted, it is possible to perform sensing without blind spots in all directions. 5 Cheap LE for optical sensor 40a of optical sensor 40b
By using D as a sensor, the sensing circuit can be easily manufactured at low cost.

【0009】以上のような手段を単独又は組み合わせて
講じる。また 集光箱15に 太陽電池にて直接発電、
一旦熱より熱電変換素子,熱機関を利用しての発電に応
用も可能である。
The above means may be used alone or in combination. In addition, the concentrating box 15 directly generates electricity with solar cells,
It can also be applied to power generation using a thermoelectric conversion element or heat engine rather than heat.

【0010】[0010]

【発明の実施の形態】実施形態の違いにより、その構造
特徴を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structural features of different embodiments will be described.

【0011】1 図1に角度制御機構概念図を示し、こ
れを説明する。固定台に固定軸1より、回転軸受けA6
に角度制御可能な回転軸A2に設け、回転軸A2に角度
αを持つ角度回転軸A3とその軸上に回転軸受けB7を
設ける。回転軸受けB7と同軸に角度制御可能な回転軸
B4を設け、回転軸B4と角度βを持つ角度回転軸B7
を設ける。回転軸A2をθa回転することにより、回転
軸B4はθaが180度回転によりαの2倍のα’角度
が変化し、αに対してβの角度を持つ角度回転軸B5は
θbを180度回転することによりβの2倍の角度とな
るβ’角度が変化することとなり、角度回転軸B5の固
定軸1に対する角度は2α+2βの角度範囲を変化する
ことが出来る。ここでα=β=45度とすると角度回転
軸B5は固定軸1に対し垂直180度角度を可変でき、
水平θaと合わせると半球の全ての角度を変化制御する
事ができる。また、α及びβの角度は任意に設定でき等
角度である必要もない。
FIG. 1 shows a conceptual diagram of an angle control mechanism, which will be described. From the fixed shaft 1 to the fixed base, the rotary bearing A6
Is provided on the rotary shaft A2 whose angle can be controlled, the rotary shaft A2 is provided with a rotary shaft A3 having an angle α, and a rotary bearing B7 is provided on the rotary shaft A3. The rotary shaft B4 is provided coaxially with the rotary bearing B7 so that the angle can be controlled, and the rotary shaft B7 has an angle β with the rotary shaft B4.
To provide. By rotating the rotation axis A2 by θa, the rotation axis B4 changes θa by 180 degrees, thereby changing the α ′ angle twice as large as α, and the angle rotation axis B5 having an angle of β with respect to α rotates θb by 180 degrees. By rotating, the β ′ angle, which is twice the angle of β, changes, and the angle of the angle rotation axis B5 with respect to the fixed axis 1 can change in the angular range of 2α + 2β. Here, when α = β = 45 degrees, the angle rotation axis B5 can change the angle of 180 degrees perpendicular to the fixed axis 1,
When combined with the horizontal θa, it is possible to change and control all angles of the hemisphere. Further, the angles α and β do not have to be equal and can be set arbitrarily.

【0012】2 図3に駆動部詳細図を示し、これを説
明する。断熱材21にて外気と断熱及び遮光された集光
箱15に赤外線反射が高く断熱性を持つ透過体16にて
入光部を設け、集光箱15に駆動モータB13及び駆動
モータA14を設けた固定フランジ20にて回転自在に
光ダクトA10を設け回転フランジ11にて回転自在に
光ダクトB9を設ける。駆動モータA14のモータギヤ
19はギヤA18と噛み合い光ダクトA10を回転さ
せ、駆動モータB13のモータギヤ19はギヤB17と
噛み合い、屈曲して回転を伝達する回転伝達ジャバラ1
2を経由して光ダクトB9を回転させる。光ダクトB9
には光センサー38を設け太陽光の影とならないよう透
過窓39を透明体にて設けておく。この構造により駆動
モータB13及び駆動モータA14の回転により、光ダ
クトA10および光ダクトB9を回転させ図1に示した
ものと同様の機構となり、光ダクトB9の開口部を任意
の角度に制御する。また 光ダクトA10および光ダク
トB9の内面は反射率の良い鏡面として開口部より入射
した光は光ファイバーと同様にダクトの軸線を反射しな
がら伝送される。光ダクトA10および光ダクトB9に
より形成される軸線は任意の直線又は曲線の組合せで良
く対向面が平行であれば機能を果たし、光の逆流を防止
する観点から光の進行方向に断面の小さくなるテーパー
形状をとることも可能である。光ダクトA10、光ダク
トB9及び透過体16を経由して集光箱15に入光した
太陽光は集光箱15の内面又は直接加熱物に当たり熱と
なり、発生した熱は断熱材21と透過体16にて断熱さ
れ、発熱による赤外線放射もまた同様に遮断され集光箱
15の内部又は直接加熱物は効率よく加熱される。また
採光、露光などのように光のみを利用する場合は、透
過体16に利用波長のフィルターをかけて透過させるこ
とにより太陽光の任意の波長成分を利用することが可能
である。透過体16の構造は二重ガラス真空断熱、各種
フィルター効果のあるコーティングを施すなどが可能
で、熱利用温度により耐熱性の有るものを使用する。回
転伝達機構は回転伝達ジャバラ12に限らず、屈曲して
回転運動を伝達できれば良く、ばね継ぎ手、リンク機
構、噛み合い機構が利用出来、角度制御に必要な剛性及
び強度を持つもので有れば良い、また 屈曲しての回転
運動伝達でなく、直接光ダクトA10と光ダクトB9を
相対回転運動させる駆動用のモーター又は各種アクチュ
エーターを回転部に直接取りつけ駆動しても良く、アク
チュエーターも電動モーターに係らず油圧、空圧、超音
波モーターなど制御に必要なトルク、回転精度により選
択できる。
2 FIG. 3 shows a detailed view of the drive unit, which will be described. The condensing box 15 which is insulated and shielded from the outside air by the heat insulating material 21 is provided with the light entrance portion by the transmissive body 16 having a high infrared reflection and a heat insulating property, and the condensing box 15 is provided with the drive motor B13 and the drive motor A14. The fixed flange 20 rotatably provides the optical duct A10, and the rotary flange 11 rotatably provides the optical duct B9. The motor gear 19 of the drive motor A14 meshes with the gear A18 to rotate the optical duct A10, and the motor gear 19 of the drive motor B13 meshes with the gear B17 and bends to transmit rotation.
The optical duct B9 is rotated via 2. Light duct B9
A light sensor 38 is provided in the above, and a transparent window 39 is provided in advance so as not to be shaded by sunlight. With this structure, by rotating the drive motor B13 and the drive motor A14, the optical duct A10 and the optical duct B9 are rotated, and a mechanism similar to that shown in FIG. 1 is obtained, and the opening of the optical duct B9 is controlled to an arbitrary angle. Further, the inner surfaces of the optical duct A10 and the optical duct B9 are mirror surfaces having a high reflectance, and the light incident from the opening is transmitted while reflecting the axial lines of the ducts like the optical fiber. The axis formed by the light duct A10 and the light duct B9 may be an arbitrary combination of straight lines or curved lines, and functions if the opposing surfaces are parallel, and the cross section becomes smaller in the light traveling direction from the viewpoint of preventing backflow of light. It is also possible to take a tapered shape. The sunlight that has entered the light collecting box 15 via the light duct A10, the light duct B9, and the transmitting body 16 hits the inner surface of the light collecting box 15 or directly on the heated object to become heat, and the generated heat is the heat insulating material 21 and the transmitting body. Insulation is provided at 16, and infrared radiation due to heat generation is also blocked in the same manner, so that the inside of the light collecting box 15 or directly the heated object is efficiently heated. Further, in the case of using only light such as daylighting and exposure, it is possible to use any wavelength component of sunlight by filtering the transmitting body 16 with a wavelength of use and transmitting the light. The structure of the transmissive body 16 is such that double glass vacuum heat insulation and coating with various filter effects can be applied, and one having heat resistance depending on the heat utilization temperature is used. The rotation transmission mechanism is not limited to the rotation transmission bellows 12 as long as it can be bent to transmit a rotational movement, and a spring joint, a link mechanism, a meshing mechanism can be used, and it may have a rigidity and strength necessary for angle control. Also, instead of transmitting the rotational movement by bending, a driving motor or various actuators for directly making relative rotation between the optical duct A10 and the optical duct B9 may be directly attached to the rotating portion and driven, and the actuator may be an electric motor. Instead, hydraulic pressure, pneumatic pressure, ultrasonic motor, etc. can be selected depending on the torque and rotational accuracy required for control.

【0013】3 図2にコーン型外形図を示し、これを
説明する。太陽光の集光に焦点距離の小さい回転放物線
反射面にて構成されたコーン型反射集光反射器8にて行
うもので、コーン型反射集光反射器8の入光部より入社
した太陽光はその焦点の面に集光され光ダクトB9の入
光部に入射する。コーン型反射集光反射器8の特徴とし
て集光率を大きく取らなければ、散乱光でも集光でき
また太陽追尾角度も低精度で良く、比較的低温の利用又
は直接太陽電池での発電などに利用出来、気膜構造のコ
ーン型反射集光反射器8では 軽量で収納がコンパクト
なポータブルなものが可能となる。
3 FIG. 2 shows a cone type outline drawing, which will be described. It is performed by a cone-type reflection / collection reflector 8 composed of a rotating parabolic reflection surface having a small focal length for collecting sunlight. Is condensed on the surface of its focal point and enters the light entrance portion of the light duct B9. As a feature of the cone-type reflection / collection reflector 8, if the light collection ratio is not large, scattered light can be collected.
In addition, the sun tracking angle is also low in accuracy, and can be used for relatively low temperatures or for direct power generation by solar cells. The cone-type reflective condensing reflector 8 with a gas film structure is lightweight and portable in a compact size. It will be possible.

【0014】4 図4にディッシュ型外形図を示し、こ
れを説明する。太陽光の集光に焦点距離の大きい回転放
物線反射面にて構成されたディッシュ型集光反射器22
にて行うもので、ディッシュ型の集光反射にては入光側
に集光されるので、再反射させて入光方向と集光方向を
同じ方向にするよう二次反射器23を設けてこれを行
う。ディッシュ型集光反射器22の入光部より入社した
太陽光はその焦点の前に二次反射器23にて反射され光
ダクトB9の入光部に入射する。ディッシュ型集光反射
器22の特徴として集光率を大きく取りやすく、受光面
に対して反射器の体積を少なくすることが出来、比較的
高温の利用又は直接に高集光型太陽電池での発電などに
利用出来、気膜構造のディッシュ型集光反射器22では
軽量で収納がコンパクトなポータブルなものが可能と
なる。二次反射器23は平面でも凸面でも良く特殊曲面
を利用すれば更に集光率を上げることも出来、気膜構造
に有っては入光透過面に一体構造として成型することが
可能である。
4 FIG. 4 shows a dish type outline diagram, which will be described. Dish type condensing reflector 22 composed of a rotating parabolic reflecting surface having a large focal length for condensing sunlight
In the dish type condensing reflection, the light is condensed on the light incident side. Therefore, the secondary reflector 23 is provided so that the light is re-reflected so that the light incident direction is the same as the light condensing direction. Do this. Sunlight entering from the light entering part of the dish type condensing reflector 22 is reflected by the secondary reflector 23 before its focus and enters the light entering part of the light duct B9. The features of the dish type condensing reflector 22 are that it is easy to obtain a large condensing rate, the volume of the reflector can be reduced with respect to the light receiving surface, and it is possible to use at relatively high temperature or directly generate electricity with a highly concentrating solar cell In addition, the dish type condensing reflector 22 having a gas film structure can be made lightweight and portable in a compact storage. The secondary reflector 23 may be a flat surface or a convex surface, and if a special curved surface is used, the light collection rate can be further increased, and in the gas film structure, it can be molded as an integral structure on the light transmission surface. .

【0015】5 図5にディッシュ型反射構造を示し、
これを説明する。一次反射膜41と焦点距離がF1対F
2比率の相似形二次反射膜42の反射面を対向させ焦点
43を同一点となる配置になるよう一次透過膜44にて
成形し、一次反射膜41の一部に二次透過膜45を設け
たもので、太陽光は一次透過膜44を透過後一次反射膜
41にて反射され焦点43を通過後二次反射膜42にて
再反射され二次透過膜45を透過する。このとき一次反
射膜41と二次反射膜42での反射角は同じで向きが反
対になるので、太陽からの平行光は集光後も平行とな
る。構造に気膜構造をとる場合は一次透過膜44と二次
透過膜45で機密構造とし、剛性を持つ反射面の時は開
放面でも良い。これにより集光後の光が太陽光と同等な
平行光となり、太陽光がどの方向からでも2回の反射又
は屈折にて任意の方向に制御でき 空間を伝送しても拡
散が無く長距離伝送も可能となる。また簡単な反射 屈
折にて光を任意に制御可能となる。また二次透過膜45
を光ファイバー入光面として直接光ファイバーにて伝送
することも可能である。この特徴をもって、複数の分散
した集光器より集光された平行光を1箇所に集積するこ
とで大規模集光システムを容易に構築可能となる。また
山、川、海上など構造物を作り伝送経路の構築しがたい
場所で有っても、伝送経路を造ることなく構築すること
が出来る。太陽追跡動作の速度を速めれば、水面などに
浮遊した不安定な設置方法でも伝送可能である。
5 FIG. 5 shows a dish type reflection structure,
This will be explained. The focal length is F1 to F with the primary reflection film 41
The secondary transmissive film 45 is formed on a part of the primary reflective film 41 by forming the primary transmissive film 44 so that the reflecting surfaces of the similar-shaped secondary reflective film 42 of two ratios face each other and the focal points 43 are arranged at the same point. The sunlight is transmitted through the primary transmission film 44, reflected by the primary reflection film 41, passed through the focal point 43, re-reflected by the secondary reflection film 42, and transmitted through the secondary transmission film 45. At this time, since the reflection angles of the primary reflection film 41 and the secondary reflection film 42 are the same and the directions are opposite, the parallel light from the sun remains parallel even after being condensed. When the structure is a gas-permeable structure, the primary permeable film 44 and the secondary permeable film 45 form a sealed structure, and when the reflecting surface has rigidity, it may be an open surface. As a result, the condensed light becomes parallel light equivalent to sunlight, and the sunlight can be controlled in any direction by twice reflection or refraction from any direction. Even if it is transmitted in space, there is no diffusion and long-distance transmission. Will also be possible. Moreover, the light can be arbitrarily controlled by simple catadioptric refraction. In addition, the secondary permeable film 45
It is also possible to directly transmit by using an optical fiber as an optical fiber entrance surface. With this feature, it is possible to easily construct a large-scale light-collecting system by integrating parallel light beams collected by a plurality of dispersed light collectors at one place. Moreover, even if it is a place where it is difficult to construct a transmission path by constructing a structure such as a mountain, a river, or the sea, it can be constructed without constructing a transmission path. If the speed of the sun tracking operation is increased, it is possible to transmit even with an unstable installation method that floats on the water surface.

【0016】6 図6にコーン型反射構造を示し、これ
を説明する。一次反射膜41と焦点距離がF1対F2比
率の相似形二次反射膜42の反射面を相反させ焦点43
を同一点となる配置に成形したもので、太陽光は一次透
過膜44を透過後一次反射膜41にて反射され焦点43
を通過後二次反射膜42にて再反射され二次透過膜45
を透過する。このとき一次反射膜41と二次反射膜42
での反射角は同じで向きが反対になるので、太陽からの
平行光は集光後も平行となる。構造に気膜構造をとる場
合は一次透過膜44と二次透過膜45で機密構造とし、
剛性を持つ反射面の時は開放面でも良い。また二次透過
膜45を光ファイバー入光面として直接光ファイバーに
て伝送することも可能である。これにより集光後の光が
太陽光と同等な平行光となり、太陽光がどの方向からで
も2回の反射又は屈折にて任意の方向に制御でき 空間
を伝送しても拡散が無く長距離伝送も可能である。また
簡単な反射 屈折にて光を任意に制御可能となる。
6 FIG. 6 shows a cone type reflection structure, which will be described. The reflection surface of the primary reflection film 41 and the reflection surface of the similar secondary reflection film 42 having a focal length of F1 to F2 ratio are made to contradict each other, and a focus 43 is formed.
Are formed to have the same point, and the sunlight is transmitted through the primary transmission film 44, reflected by the primary reflection film 41, and then reflected by the focal point 43.
After passing through the secondary reflection film 42, it is reflected again by the secondary reflection film 42.
Through. At this time, the primary reflection film 41 and the secondary reflection film 42
Since the angle of reflection at is the same and the directions are opposite, the parallel light from the sun remains parallel even after being collected. When the film structure is a gas-permeable structure, the primary permeable film 44 and the secondary permeable film 45 form a sealed structure.
When the reflecting surface has rigidity, it may be an open surface. Further, it is also possible to directly transmit the secondary permeable film 45 as an optical fiber incident surface by the optical fiber. As a result, the condensed light becomes parallel light equivalent to sunlight, and the sunlight can be controlled in any direction by twice reflection or refraction from any direction. Even if it is transmitted in space, there is no diffusion and long-distance transmission. Is also possible. Moreover, the light can be arbitrarily controlled by simple catadioptric refraction.

【0017】7 図7に平行光集光システムを示し、こ
れを説明する。光ダクトA10及び光ダクトB9の内部
に平面の反射板46を反射面が対向する向きにそれぞれ
固定し、光ダクトB9の入射光に一次反射膜41と二次
反射膜42により図5又は図6にて構成される構造を連
動させ、一次反射膜41と二次反射膜42により集光さ
れた平行光を反射板46にて反射し光ダクトA10の回
転軸方向に光の方向を固定する。太陽を追尾するとき光
ダクトB9と一次反射膜41は共に太陽の方向に向けら
れ、光ダクトB9に1/2βの角度で固定された反射板
46により常に180度−βの角度で反射し、光ダクト
A10に1/2αの角度で固定された反射板46にて1
80度−αの角度で反射し光ダクトA10の回転軸と同
じ角度となる。このとき集光された平行光の光軸は機械
軸と同一系路を通過することになるので光ダクトB9と
光ダクトA10が同一軸上で回転しても光が円形の断面
であればそのままの断面形状で方向を制御される。光の
反射は反射板46のみにて行われるので光ダクトB9と
光ダクトA10は鏡面である必要も無く単純に機械構造
体であるのでワイヤーフレーム構造でも問題はないが、
反射板46の環境による塵埃からの保護目的にては内部
は密閉構造の方が良い。また反射板46は屈折を利用す
るプリズムでも良い。光ダクトA10よりでてきた集光
された光は、平行なので導光するためのダクト、光ファ
イバーなどが不要で空気中を拡散することなく伝送する
事ができるようになる。
7 FIG. 7 shows a collimated light focusing system, which will be described. 5 and FIG. 6 are formed by fixing the flat reflecting plates 46 inside the light duct A10 and the light duct B9 so that the reflecting surfaces face each other, and by using the primary reflection film 41 and the secondary reflection film 42 for the incident light of the light duct B9. By interlocking the structure constituted by, the parallel light condensed by the primary reflection film 41 and the secondary reflection film 42 is reflected by the reflection plate 46, and the direction of the light is fixed in the rotation axis direction of the optical duct A10. When the sun is tracked, the light duct B9 and the primary reflection film 41 are both directed toward the sun, and are always reflected at an angle of 180 ° −β by the reflection plate 46 fixed to the light duct B9 at an angle of 1 / 2β, 1 with the reflector 46 fixed to the light duct A10 at an angle of 1 / 2α
The light is reflected at an angle of 80 ° -α and has the same angle as the rotation axis of the light duct A10. Since the optical axis of the parallel light collected at this time passes through the same system path as the mechanical axis, even if the optical duct B9 and the optical duct A10 rotate on the same axis, if the light has a circular cross section, it remains as it is. The direction is controlled by the cross-sectional shape of. Since the light is reflected only by the reflection plate 46, the light duct B9 and the light duct A10 do not need to be mirror surfaces and are simply mechanical structures, so there is no problem even with a wire frame structure.
For the purpose of protecting the reflection plate 46 from dust due to the environment, it is better to have a sealed structure inside. The reflector 46 may be a prism that uses refraction. Since the condensed light coming from the optical duct A10 is parallel, a duct for guiding light, an optical fiber, etc. are unnecessary, and can be transmitted without diffusing in the air.

【0018】8 図8に平行光集光採光システムを示
し、これを説明する。図7に示した構造を家屋25の窓
ガラス24に取り付けたもので、太陽の出ている間は一
定の光量一定の方向にて窓ガラス24より入光し、必要
があれば散乱器26にて所要の向きに拡散させる。必要
があれば照度を設定し、設定された照度となるよう追尾
角を制御することで採光照度以下には任意にコントール
が可能である。また集光光は平行なので窓の近くに設け
る必要も無く、近隣の建物などより空中伝送も可能であ
り、空調も兼ねる場合一旦フィルターを介して熱線成分
を除去すれば発熱の少ない採光となり、そのまま入光さ
せ吸効率の高いものに当てれば暖房効果も得られる。高
層ビルなどに適用する場合、屋上より吹きぬけ又は外部
に垂直に光を降ろし、必要な階に反射板にて分枝させて
用いる事も可能である。
8 FIG. 8 shows a collimated light collecting and lighting system, which will be described. The structure shown in FIG. 7 is attached to the window glass 24 of the house 25. While the sun is shining, light enters from the window glass 24 in a constant light amount and a constant direction, and if necessary, to the scatterer 26. And spread it in the desired direction. If necessary, the illuminance can be set, and the tracking angle can be controlled so that the set illuminance can be achieved. In addition, since the condensed light is parallel, there is no need to install it near the window, it is possible to transmit in the air from a nearby building, etc.When also functioning as air conditioning, once the heat ray component is removed through the filter, it produces light with less heat generation A heating effect can also be obtained by shining light on it and shining it on something with high absorption efficiency. When it is applied to a high-rise building, it is possible to use it by blowing it from the roof or by vertically shining light to the outside and branching it with a reflector to the required floor.

【0019】9 図9に散乱光採光システムを示し、こ
れを説明する。図2または図4に示した構造の集光部を
家屋25の窓ガラス24に取り付けたもので、太陽の出
ている間は一定の光量一定の方向にて窓ガラス24より
入光し、必要があれば散乱器26にて所要の向きに拡散
させる。また集光光は散乱光なので窓に直接設置しなけ
ればならないが、光ダクトにて伝送路を確保すれば離れ
た場所でも設置でき、屋根の上に設置して北向きの窓よ
り採光することも可能であり集光度を低く押さえれば散
乱光でも集光できるので曇り空でもある程度の光量は確
保可能である。必要があれば照度を設定し、設定された
照度となるよう追尾角を制御することで採光照度以下に
は任意にコントールが可能である。空調も兼ねる場合一
旦フィルターを介して熱線成分を除去すれば発熱の少な
い採光となり、そのまま入光させ吸効率の高いものに当
てれば暖房効果も得られる。高層ビルなどに適用する場
合、光ダクトにて分枝させて用いる事も可能である。
9 A scattered light collecting system is shown in FIG. 9 and will be described. The light collecting part having the structure shown in FIG. 2 or FIG. 4 is attached to the window glass 24 of the house 25. While the sun is shining, the light is incident from the window glass 24 in a certain direction with a constant amount of light, which is necessary. If there is, it is diffused by the scatterer 26 in a desired direction. Also, since the condensed light is scattered light, it must be installed directly on the window, but if the transmission path is secured by an optical duct, it can be installed at a remote place, and it should be installed on the roof and the daylight should be received from the north facing window. Since it is possible to collect even scattered light if the degree of light collection is kept low, it is possible to secure a certain amount of light even in a cloudy sky. If necessary, the illuminance can be set, and the tracking angle can be controlled so that the set illuminance can be achieved. When it also serves as an air conditioner, once the heat ray component is removed through the filter, it produces light with less heat generation, and if it is incident as it is and is applied to something with high absorption efficiency, a heating effect can also be obtained. When applied to high-rise buildings, it is also possible to branch by using an optical duct.

【0020】10 図10に温水器を示し、これを説明
する。図2または図4に示した構造の集光部を延長ダク
ト27を導光路として、断熱効果の高い透過体16を透
過させ、断熱材21にて外気と断熱された集光箱15に
導光し、内部の温水28を直接及び集光箱15内壁より
加熱するものである。熱伝達棒29は温水28の温度分
布を平均に保つためのもので、給湯等の出湯温度の均一
化を計るためのものである。重量物である温水28及び
そのタンクとなる集光箱15を対荷重の高い場所に設置
可能で容量の大きな物が設置可能となり、断熱効果も高
く出来、集光した光で加熱するので高温も得ることが出
来る。同様にして集光箱15内の温度は外気への放熱量
及び蓄熱熱量と太陽からの熱量の比で決まるので放熱量
及び蓄熱量の比率を下げれば高温が得られ、集光箱15
を高圧容器とすれば直接高温高圧の水蒸気を得ることも
可能となる。また集光箱15内面を耐火物にて構成すれ
ば高温炉として利用が出来、発熱体が必要なく理論上太
陽表面温度上昇させることが可能なので化学反応炉とし
て利用する事もできる。また図7に示した構造にて、集
光平行光を複数集中させ透過体16より入光させる事で
よりエネルギー密度を高めることも容易である。
10 A water heater is shown in FIG. 10 and will be described. The light-collecting part having the structure shown in FIG. 2 or FIG. 4 is guided through the extension duct 27 as a light-guiding path to the transparent body 16 having a high heat-insulating effect, and is guided to the light-collecting box 15 which is insulated from the outside air by the heat insulating material 21. However, the hot water 28 inside is heated directly and from the inner wall of the light collecting box 15. The heat transfer rod 29 is for keeping the temperature distribution of the hot water 28 at an average, and is for keeping the temperature of hot water such as hot water supply uniform. The warm water 28 which is a heavy object and the light collecting box 15 which is the tank thereof can be installed in a place with a high load and a large capacity can be installed, the heat insulating effect can be enhanced, and the light is condensed to heat the high temperature. You can get it. Similarly, the temperature in the light collecting box 15 is determined by the ratio of the amount of heat radiated to the outside air and the amount of heat stored and the amount of heat from the sun. Therefore, if the ratio of the amount of heat radiated and the amount of heat stored is reduced, a high temperature can be obtained.
If high pressure vessel is used, it is possible to directly obtain high temperature and high pressure steam. Further, if the inner surface of the light collecting box 15 is made of refractory, it can be used as a high temperature furnace, and since it is theoretically possible to raise the surface temperature of the sun without a heating element, it can also be used as a chemical reaction furnace. Further, in the structure shown in FIG. 7, it is also easy to further increase the energy density by concentrating a plurality of condensed parallel lights and letting them enter the transmitting body 16.

【0021】11 図11に乾燥機を示し、これをを説
明する。断熱材21にて外気と断熱された集光箱15内
部に撹拌ドラム30を外部撹拌モーター31にて回転可
能に組み込み、撹拌ドラム30開放側に扉33を開閉可
能に取り付け、集光箱15に外気との通気、内部湿度制
御用の吸気口34と排気口35を設け、集光光の取り入
れ口の透過体16を設けて図2または図4に示した構造
の集光部を取り付ける。利用する場合、被乾燥物32で
ある衣類等を扉33を開閉して撹拌ドラム30内部に装
入して置く、太陽が出れば集光部は自動的に太陽を追尾
し乾燥機本体となる集光箱15に太陽光を取り込み、被
乾燥物32を直接及び間接的に加熱し被乾燥物32の水
分を蒸発させる。このとき内部湿度及び温度を吸気口3
4と排気口35換気を制御し、合わせて追尾角を制御し
て加熱量を制御し、撹拌モーター31を駆動して均一乾
燥を行う。これにより雨天となっても再度濡れる事も無
く、曇天で有っても短時間でも太陽光が有れば乾燥が行
う事ができ、乾燥と共に太陽の直接光による殺菌効果も
期待できる。また設置もマンションのベランダ等でも日
照が限られた時間でも利用でき、光ダクトを用いて集光
部を離れた場所に設置する事も可能である。
11 FIG. 11 shows a dryer, which will be described. The stirring drum 30 is rotatably incorporated into the light collecting box 15 which is insulated from the outside air by the heat insulating material 21 by the external stirring motor 31, and the door 33 is attached to the opening side of the stirring drum 30 so that the door 33 can be opened and closed. An intake port 34 and an exhaust port 35 for ventilating with the outside air and controlling the internal humidity are provided, and a transmissive body 16 as an intake port for the condensed light is provided and the condensing unit having the structure shown in FIG. 2 or 4 is attached. When used, clothes or the like to be dried 32 are placed inside the stirring drum 30 by opening and closing the door 33. When the sun comes out, the condensing unit automatically tracks the sun and becomes the dryer main body. The sunlight is taken into the condensing box 15, and the material 32 to be dried is directly or indirectly heated to evaporate the water content of the material 32 to be dried. At this time, the internal humidity and temperature are adjusted to the intake port 3
4 and the exhaust port 35 are controlled, the tracking angle is also controlled to control the heating amount, and the stirring motor 31 is driven to perform uniform drying. As a result, even if it rains, it will not get wet again, and even if it is cloudy, it can be dried for a short time if there is sunlight, and it is possible to expect a sterilization effect by direct sunlight from the drying. It can also be installed on the balcony of a condominium, even when the sunshine is limited, and it is also possible to install the condensing part at a remote place using an optical duct.

【0022】12 図12にソーラークッカーを示し、
これを説明する。断熱材21にて外気と断熱された集光
箱15内部を反射構造とし加熱器36を内部に直接露呈
し取り外し可能なようにはめ込み、断熱効果のある透過
体16を介して図2または図4に示した構造の集光部を
取り付ける。これを利用するときは太陽光の当たる所に
設置するだけでコーン型反射集光反射器8又はディッシ
ュ型集光反射器22を気膜構造の場合は内部に空気を充
填する。調理器としての機能は太陽の直射を受けるとき
に限られるので、必要動力は近辺に置いた小型太陽電池
で賄い、空気充填も太陽電池の発電をまって小型送風機
にて方向弁を通して行うことも可能である。太陽が当た
りその電源で自動的に制御部の電源も賄い太陽を追尾し
始めると集光された光は透過体16を透過し集光箱15
内部に入射し、一部は内部での反射時に熱となり一部は
加熱器36の露呈部を直接加熱、断熱構造の集光箱15
内部の温度も上昇し対流伝熱においても効率よく加熱器
36の露呈部に伝熱される事となり、加熱器36の外面
にて被加熱物37を加熱調理が可能となる。また被加熱
物37を直接集光箱15内部に挿入し加熱器36の替わ
りに保温効果のある蓋をすればオーブン加熱と同様の効
果を得ることが出来る。調理に関係する温度管理も過加
熱に対しては太陽追尾角の制御で防止可能である。加熱
器36に換えて熱電半導体、太陽電地にすると簡単にポ
ータブル太陽光発電器となり、アウトドアに限らずポー
タブルな非常用熱源、エネルギー事情の悪い地域などで
は常用として利用する事ができる。
12 FIG. 12 shows a solar cooker,
This will be explained. 2 and FIG. 4 through the transparent body 16 having a heat insulating effect by exposing the inside of the condenser box 15 which is insulated from the outside air by the heat insulating material 21 to a reflecting structure and directly exposing the heater 36 to the inside. Attach the condensing part with the structure shown in. When this is utilized, the cone type condensing light condensing reflector 8 or the dish type light condensing reflector 22 is filled with air in the case of a gas film structure only by installing it in a place exposed to sunlight. Since the function as a cooking device is limited when it is exposed to the direct sunlight, the necessary power can be covered by a small solar cell placed in the vicinity, and air filling can also be done by turning the solar cell's power generation through a directional valve with a small blower. It is possible. When the sun hits and the power source automatically controls the power source of the control unit and starts tracking the sun, the collected light passes through the transparent body 16 and the light collecting box 15
The light enters the inside, and part of it becomes heat when reflected inside, and part of it directly heats the exposed part of the heater 36, and the light-collecting box 15 with a heat insulating structure.
The internal temperature also rises and the heat is efficiently transferred to the exposed portion of the heater 36 even in convective heat transfer, and the object 37 to be heated can be cooked on the outer surface of the heater 36. If the object to be heated 37 is directly inserted into the light collecting box 15 and a lid having a heat retaining effect is used instead of the heater 36, the same effect as the oven heating can be obtained. Temperature control related to cooking can also be prevented by controlling the sun tracking angle for overheating. If a thermoelectric semiconductor or a solar power station is used instead of the heater 36, it becomes a portable solar power generator, which can be used not only outdoors but also as a portable emergency heat source, or in an area where the energy situation is poor.

【0023】13 図13にセンサー配置を示し、これ
を説明する。太陽の方向をセンシングするためのセンサ
ーの配置を太陽光の方向に向く3等分配置された光セン
サー40aと太陽光の方向に逆向きに3等分配置された
光センサー40bを光ダクトB9入光軸及びコーン型反
射集光反射器8又はディッシュ型集光反射器22と同軸
に配置する。このときセンサーの指向性に合わせて指向
角と光センサー40aの取り付け開き角をほぼ同じとし
て光軸方向の合計出力の総和が極大となるように傾斜さ
せる。反対向きのセンサー40bは光センサー40aの
センシング範囲外を補完するもので光センサー40aと
90度以上の角度を持っていれば良い。光センサー40
aの開き角は出力と光軸に対する感度を鋭くするため
で、太陽光の軸と制御軸が同一となったときのみセンサ
ーの指向角内に入光して鋭敏な極大値が得られると共に
3個の出力差が最小となるようにしたものである。また
この方法を採るとセンサー出力の総和と差分が軸の回転
に係らないため軸と同時にセンサーが回転してもしなく
ても値は変化しない特徴を持つ。光センサー40aの個
数は3個以上が必要で数量を増せば、より感度を上げる
ことが可能であり、センサーは太陽光の光を検出できれ
ば何を選択しても良く太陽電池の出力を検出しても可能
である。
13 FIG. 13 shows a sensor arrangement, which will be described. Insert the sensor for sensing the direction of the sun into three parts, that is, the optical sensor 40a which is arranged in three parts facing the direction of the sun, and the optical sensor 40b which is arranged in three parts opposite to the direction of the sun are installed in the optical duct B9. It is arranged coaxially with the optical axis and the cone-type reflection / collection reflector 8 or the dish-type collection / collection reflector 22. At this time, the directivity angle and the attachment opening angle of the optical sensor 40a are set to be substantially the same in accordance with the directivity of the sensor, and the inclination is made so that the total sum of the total outputs in the optical axis direction becomes maximum. The sensor 40b in the opposite direction complements the outside of the sensing range of the optical sensor 40a and may have an angle of 90 degrees or more with the optical sensor 40a. Light sensor 40
The opening angle of a is for sharpening the sensitivity to the output and the optical axis. Only when the axis of sunlight and the control axis are the same, the light enters within the directional angle of the sensor to obtain a sharp maximum value. This is to minimize the output difference of the individual pieces. Moreover, when this method is adopted, the sum and difference of the sensor outputs do not depend on the rotation of the axis, and therefore the value does not change even if the sensor rotates simultaneously with the axis. The number of optical sensors 40a should be three or more, and if you increase the number, you can increase the sensitivity. The sensor can detect any output of the solar cell as long as it can detect sunlight. But it is possible.

【0024】14 図14にセンサー回路を示し、これ
を説明する3等分配置された光センサー40aと太陽光
の方向に逆向き3等分配置された光センサー40b交互
に全ての+極と−極を環状に接続し、接続点の一つおき
にそれぞれの出力とし、空いた接続点を接地とする。光
センサー40aが受光すれば出力は+、光センサー40
bが受光すれば出力は−となり、出力の極大は光軸が合
ったときのみとなり、出力の差分は極小はそれぞれのセ
ンサーが光軸に対して3点が面を構成するとき又は光量
が0となるときとなる。よって 光軸の感度を上げるた
めに光量の極大にて差分が極小の時を合わせ検出する。
本回路において、センサーとしてLEDを用いているが
太陽電池でも同じ効果を得られ、他の光センサーにても
同様の効果があるが、LEDを利用すると極めて安価に
構成することが出来る。
FIG. 14 shows a sensor circuit, which illustrates the sensor circuit. The photosensor 40a is divided into three equal parts and the photosensor 40b is divided into three parts in the opposite direction to the direction of the sunlight. The poles are connected in a ring, every other connection point has its output, and the vacant connection point is grounded. If the light sensor 40a receives light, the output is +, the light sensor 40
When b receives light, the output is negative, the maximum output is only when the optical axes are aligned, and the minimum output difference is when each sensor forms a surface at three points with respect to the optical axis or when the amount of light is 0. It will be when Therefore, in order to increase the sensitivity of the optical axis, the time when the difference is minimum at the maximum light amount is also detected.
Although an LED is used as a sensor in this circuit, the same effect can be obtained with a solar cell and the same effect can be obtained with other optical sensors. However, if an LED is used, the configuration can be extremely inexpensive.

【0025】15 図15に制御フローを示し、制御を
説明する。太陽の方向に追尾させる為の方法は、センサ
ーの極大値に向け 図1の角度回転軸A3と角度回転軸
B5の二軸制御で、交互あるいは同時に回転動作させ回
転前と回転後のセンサーの出力が大きくなる方向にて収
束動作させる事により行い、補助的にセンサーの出力が
0付近でない時出力の増加時に出力差分を速度のパラメ
ータとして用い差分が少なくなれば回転速度を小さくす
る用に制御する。このとき差分が0で有れば光軸が一致
していると判断可能で、太陽の移動により光軸がずれる
と差分が増大して光軸のずれを判断することが可能とな
る。センサーの出力の極大値は天気等の要因により激し
く変動するので予め設定した極大値に向け制御を行うこ
とは難しく、太陽光の直射を受けるセンサーの劣化等の
問題に対しても誤差を最小にすることが可能である。
15 FIG. 15 shows a control flow, and the control will be described. The method for tracking in the direction of the sun is the biaxial control of the angle rotation axis A3 and the angle rotation axis B5 shown in FIG. When the output of the sensor is not near 0, the output difference is used as a speed parameter when the output of the sensor is not near 0, and the rotation speed is controlled to be small when the difference is small. . At this time, if the difference is 0, it can be determined that the optical axes coincide with each other, and if the optical axis shifts due to the movement of the sun, the difference increases and the optical axis shift can be determined. Since the maximum value of the sensor output fluctuates drastically due to factors such as weather, it is difficult to control it toward a preset maximum value, and the error is minimized even for problems such as deterioration of the sensor that receives direct sunlight. It is possible to

【0026】以上のようにそれぞれの構造と特徴をも
ち、各構造、機能の組合せ、構成材質により、さまざま
な環境に合わせることが可能である。また安全対策に尽
いては、風による外力が一番大きく変動も激しいため、
風の強い時は 集光部を空力的に抵抗が最小となるよう
向きを制御するか、制御軸をフリーとして風の向きに倣
わせる方法をとることも可能であり、気膜構造の場合機
械部との接合部を可逆可能な方法で取り付け、過負荷時
には気膜構造部のみ結合が外れ風に流されてしまう構造
とする事で対策することが出来る。
As described above, each structure and feature can be adapted to various environments depending on each structure, combination of functions, and constituent materials. Also, when it comes to safety measures, the external force due to the wind is the largest and the fluctuations are severe,
When the wind is strong, it is also possible to control the direction of the light collecting part so that the resistance is aerodynamically minimized, or to set the control axis free and follow the direction of the wind. A countermeasure can be taken by attaching the joint part to the mechanical part in a reversible manner, and by making the structure only the air-membrane structure part is dislodged by the wind when overloaded.

【0027】[0027]

【実施例】本発明の動作を検証するために、図1に示す
基本構造を試作し、動作の検証を行った。図1における
軸の角度はαを30度、βを30度として、図3に置
ける構造と同等な構造にて電動モーターにて二軸制御を
行い。図1の角度回転軸B5軸上に図13のセンサーを
配置、センサーはLED中で比較的起電力の大きく安価
な汎用品指向角30度の緑色LEDを用い、図14に示
す回路で各出力は8ビットマイクロコンピュータの入出
力に直結し、接地と0.01μFの容量を持たせ セン
サー側の接地と8ビットマイクロコンピュータの接地に
は1MΩの抵抗を介して接続しておく、接地側に抵抗を
附加しておくのはセンサー出力が負となるとき入出力と
接地コンデンサーに負の容量を検出するためである。8
ビットマイクロコンピュータの他の入出力はモータ駆動
用HブリッジICをON−OFF制御−正逆回転の制御
が可能にしてある。
EXAMPLE In order to verify the operation of the present invention, the basic structure shown in FIG. 1 was prototyped and the operation was verified. The axis angles in FIG. 1 are α = 30 ° and β = 30 °, and two-axis control is performed by an electric motor with a structure similar to that shown in FIG. The sensor of FIG. 13 is arranged on the angle rotation axis B5 axis of FIG. 1, and the sensor is a general-purpose green LED with a relatively large electromotive force and an inexpensive directivity angle of 30 degrees, and each output in the circuit shown in FIG. Is directly connected to the input / output of the 8-bit microcomputer and has a capacitance of 0.01 μF to the ground. The ground of the sensor and the ground of the 8-bit microcomputer are connected via a 1 MΩ resistor. The reason for adding is to detect the negative capacitance in the input / output and the ground capacitor when the sensor output becomes negative. 8
The other input / output of the bit microcomputer enables ON / OFF control and forward / reverse rotation control of the motor drive H-bridge IC.

【0028】ADコンバータ内蔵していない8ビットマ
イクロコンピュータにてアナログ正負の値をとるため
と、緑LEDの飽和電圧約1.6Vとなった場合の出力
電流を計るため 一定期間のコンデンサーに電流を蓄積
して、一定電流を加え一定電圧になるまでの時間を計測
してLEDからの出力電流を検出可能とした。これは太
陽電池をセンサーとした場合ににも流用できコストも非
常に安くすることが出来た。実際の太陽光を検出して1
0mSECの充電時間で6から8ビット程度の分解能を
得られ、LEDが飽和電圧に達した後も十分に実用レベ
ルの検出が可能でとなった。
An 8-bit microcomputer without a built-in AD converter takes an analog positive / negative value, and measures the output current when the saturation voltage of the green LED reaches about 1.6 V. The output current from the LED can be detected by measuring the time until the voltage is accumulated and a constant current is applied to reach a constant voltage. This can be diverted even when a solar cell is used as a sensor, and the cost can be made very low. 1 by detecting the actual sunlight
With a charging time of 0 mSEC, a resolution of about 6 to 8 bits was obtained, and it was possible to detect a practical level sufficiently even after the LED reached the saturation voltage.

【0029】LEDの出力値を元に0電圧付近ではモー
タ速度大とし 基準以上の電圧にて出力の差分を速度パ
ラメータとしてPWM波形制御し、センサー出力総和を
増大させる方向に回転方向の制御をかけると、太陽光の
直射においても曇天にても明るい方向に制御軸をコント
ールすることでき、実用上の制御に問題は無く、非常に
低コストで全方向追跡システムを構築することが出来
た。またこのシステムは消費電力も徴少でモータが連続
運転している状態でも0.5W程度の消費で実際の間欠
運転は太陽電池の電力をスーパーキャパシタ或は大容量
コンデンサに連続充電したものを断続利用すれば十分に
小型太陽電池で駆動することがが可能である。
Based on the output value of the LED, the motor speed is set to a high value in the vicinity of 0 voltage, and the PWM waveform control is performed with the output difference at a voltage higher than the reference as a speed parameter, and the rotation direction is controlled to increase the total sensor output. As a result, the control axis could be controlled in the bright direction both in direct sunlight and in cloudy weather, there was no problem in practical control, and an omnidirectional tracking system could be constructed at a very low cost. In addition, this system consumes only about 0.5W even when the motor is operating continuously due to its low power consumption. In actual intermittent operation, the solar battery power is continuously charged to a supercapacitor or a large-capacity capacitor, which is intermittent. If it is used, it can be driven by a sufficiently small solar cell.

【0030】[0030]

【発明の効果】 以上説明したように、本発明の効果を
以下に列記する。
EFFECTS OF THE INVENTION As described above, the effects of the present invention are listed below.

【0031】装置及び設備の製造コストの低減により 1 集光器及び追尾装置の製造コストが激減するため
低コストで太陽熱、太陽光の利用が可能となる。 2 高効率温水器など良質な高温エネルギーを簡単に低
コストにて利用できるようになる。 3 全方向自動追跡によりシステムの設置方法、位置方
向の調整が不要でシステム全体のコストが低減する。
Due to the reduction of the manufacturing cost of the device and equipment, the manufacturing cost of the concentrator and the tracking device is drastically reduced.
It is possible to use solar heat and sunlight at low cost. 2 High-quality high-temperature energy such as a high-efficiency water heater can be easily used at low cost. 3 Automatic tracking in all directions eliminates the need to adjust the system installation method and position, reducing the overall system cost.

【0032】気膜構造集光器の場合は、装置、設備の設
置及び復元の容易性により 1 移動を伴う設置でキャンプなど、電源、熱源のない
場所で電源、熱源の確保が容易に出来る。 2 緊急災害時など電力、動力が利用不可能になったと
き、容易に設置して緊急電源、緊急動力とする事ができ
る。 3 搬送が困難なために設置する事ができなかった場所
でも設置が可能となる。 4 台風等の非常時には、即座に撤去でき、設備の安全
性を確保する事が容易である。 5 気膜構造の場合、設備が何らかの異常で破壊されて
も、硬く重い部品がなく、破壊 故障による二次災害が
防止できる
In the case of the air-film concentrator, it is possible to easily secure a power source and a heat source in a place where there is no power source or heat source, such as a camp, by the installation involving one movement due to the ease of installation and restoration of the device and equipment. 2 When power or power cannot be used due to an emergency disaster, it can be easily installed and used as an emergency power source or power source. 3 It can be installed even in places where it could not be installed due to difficult transportation. 4 In case of emergency such as typhoon, it can be removed immediately and it is easy to secure the safety of the equipment. 5 In the case of the gas film structure, even if the equipment is destroyed due to some abnormality, there are no hard and heavy parts, and secondary disasters due to breakdown failure can be prevented.

【0033】集光平行光で光の伝送を行う場合 1 簡単な反射構造で大型の物でも製造コストが低い。 2 エネルギーの伝送に係る設備が全く不要で長距離伝
送しても損失が僅かとなる。 3 分散した場所の複数の集光ビームを一点に集めるこ
とが可能で分散集光大出力を得る事ができる。
In the case of transmitting light by condensed parallel light 1. Even a large-sized object with a simple reflection structure has a low manufacturing cost. 2 No equipment for energy transmission is required, and the loss is small even after long-distance transmission. 3 It is possible to collect a plurality of condensed beams at dispersed locations at one point and obtain a large dispersed condensed output.

【0034】直接光エネルギーを利用出来る事が可能な
ので 1 直接室内の照明用の光源として利用可能で晴天時の
屋内照明の省エネルギーが計れる。 2 太陽光の持つ殺菌効果 露光効果などを利用でき
る。 3 熱変換する場合、断熱された構造の中で熱に変るの
で変換効率が高く、高温を作り出すことが可能。 4 高強度の光の性質を利用し、化学反応炉にて水の高
温分解、ダイオキシンなどの高温分解などに応用でき
る。
Since it is possible to directly use light energy, it can be directly used as a light source for indoor lighting, and energy saving of indoor lighting in fine weather can be measured. 2 The bactericidal effect of sunlight The exposure effect can be used. 3 When converting heat, it is converted into heat in a heat-insulated structure, so conversion efficiency is high and it is possible to create high temperatures. 4. Utilizing the property of high intensity light, it can be applied to high temperature decomposition of water and high temperature decomposition of dioxins in a chemical reactor.

【0035】以上のように本発明の効果はさまざまな環
境に対応でき、装置、設備のコストが削減出来、稼動時
の環境負荷は皆無である。
As described above, the effects of the present invention can be applied to various environments, the cost of equipment and facilities can be reduced, and there is no environmental load during operation.

【0036】[0036]

【図面の簡単な説明】[Brief description of drawings]

【図1】角度制御機構概念図FIG. 1 Conceptual view of angle control mechanism

【図2】コーン型外形図[Fig.2] Cone type outline drawing

【図3】駆動部詳細図FIG. 3 is a detailed view of a drive unit

【図4】ディッシュ型外形図[Figure 4] Dish type outline drawing

【図5】ディッシュ型反射構造FIG. 5: Dish-type reflective structure

【図6】コーン型反射構造FIG. 6 Cone type reflective structure

【図7】平行光集光システムFIG. 7: Parallel light condensing system

【図8】平行光集光採光システムFIG. 8: Parallel light collecting and lighting system

【図9】散乱光採光システムFIG. 9 Scattered light lighting system

【図10】温水器[Figure 10] Water heater

【図11】乾燥機FIG. 11 Dryer

【図12】ソーラークッカー[Figure 12] Solar cooker

【図13】センサー配置[Fig. 13] Sensor arrangement

【図14】センサー回路FIG. 14: Sensor circuit

【図15】制御フローFIG. 15: Control flow

【符号の説明】[Explanation of symbols]

1 固定軸 2 回転軸A 3 角度回転軸A 4 回転軸B 5 角度回転軸B 6 回転軸受けA 7 回転軸受けB 8 コーン型反射集光反射器 9 光ダクトB 10 光ダクトA 11 回転フランジ 12 回転伝達ジャバラ 13 駆動モータB 14 駆動モータA 15 集光箱 16 透過体 17 ギヤB 18 ギヤA 19 モータギヤ 20 固定フランジ 21 断熱材 22 ディッシュ型集光反射器 23 二次反射器 24 窓ガラス 25 家屋 26 散乱器 27 延長ダクト 28 温水 29 熱伝達棒 30 撹拌ドラム 31 撹拌モーター 32 被乾燥物 33 扉 34 吸気口 35 排気口 36 加熱器 37 被加熱物 38 光センサー 39 透過窓 40a 光センサー 40b 光センサー 41 一次反射膜 42 二次反射膜 43 焦点 44 一次透過膜 45 二次透過膜 46 反射板 1 fixed axis 2 rotation axis A 3 Angle rotation axis A 4 rotation axis B 5 angle rotation axis B 6 rotating bearing A 7 Rotation bearing B 8 Cone type reflective condenser reflector 9 Light duct B 10 Light duct A 11 rotating flange 12 Rotation transmission bellows 13 Drive motor B 14 Drive motor A 15 Focusing box 16 Transmitter 17 Gear B 18 Gear A 19 motor gear 20 fixed flange 21 thermal insulation 22 Dish type condensing reflector 23 Secondary reflector 24 window glass 25 houses 26 Scatterer 27 extension duct 28 warm water 29 heat transfer rod 30 stirring drum 31 stirring motor 32 Items to be dried 33 door 34 Intake port 35 exhaust port 36 heater 37 Heated object 38 Optical sensor 39 transparent window 40a optical sensor 40b optical sensor 41 Primary reflective film 42 Secondary reflective film 43 Focus 44 Primary permeable membrane 45 Secondary permeable membrane 46 Reflector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】太陽追尾機構において、固定軸1と同軸に
て回転角度を制御された回転軸A2を設け、回転軸A2
に対し角度αをなす角度回転軸A3に同軸にて回転角度
を制御された回転軸B4を設け、回転軸B4に対し角度
βをなす角度回転軸B5の軸方向を太陽光の方向へ角度
制御することを特徴とする太陽追尾システム。
1. A sun tracking mechanism is provided with a rotation axis A2 whose rotation angle is controlled coaxially with a fixed axis 1, and which has a rotation axis A2.
Is provided with a rotation axis B4 whose rotation angle is controlled coaxially with the angle rotation axis A3 forming an angle α, and the axis direction of the angle rotation axis B5 forming an angle β with the rotation axis B4 is angle-controlled to the direction of sunlight. A solar tracking system characterized by:
【請求項2】請求項1の固定軸1、回転軸A2、角度回
転軸A3、回転軸B4、角度回転軸B5を全て中空とし
その中空内面を光の高反射率として、光を固定軸1方向
に拡散させずに導くことを特徴とする太陽追尾システ
ム。
2. The fixed shaft 1, the rotary shaft A2, the angle rotary shaft A3, the rotary shaft B4, and the rotary shaft B5 of claim 1 are all hollow, and the hollow inner surface has a high reflectance of light, and the light is fixed. A solar tracking system that is characterized by guiding without spreading in the direction.
【請求項3】回転放物曲面よりなる一次反射膜41と二
次反射膜42を対向又は反対向し焦点43を同じ点にて
設けることにて、平行光を集光後も平行光とすることを
特徴とする太陽追尾システム。
3. The parallel light is made parallel after being condensed by providing a primary reflection film 41 and a secondary reflection film 42 each having a paraboloid of revolution on opposite sides or opposite sides and providing a focal point 43 at the same point. A solar tracking system characterized by this.
【請求項4】請求項1及び請求項2より導光された光を
透過体16を透過させてのち集光箱15に集光し、透過
体16による熱拡散を防止したことを特徴とする太陽追
尾システム。
4. The light guided according to claims 1 and 2 is transmitted through the transparent body 16 and then collected in the light collecting box 15 to prevent heat diffusion by the transparent body 16. Sun tracking system.
【請求項5】3個以上よりなる光センサー40a及び3
個以上よりなる光センサー40bの光量出力の総和にて
太陽の方向をセンシングすること、及び 光センサー4
0aと光センサー40bをLEDを用いることを特徴と
する太陽追尾システム。
5. Optical sensors 40a and 3 consisting of three or more
Sensing the direction of the sun with the sum of the light output of the optical sensor 40b, which is composed of more than one optical sensor 40b;
0a and the optical sensor 40b are LEDs that use the sun tracking system.
JP2002039874A 2002-02-18 2002-02-18 Sun tracking system Pending JP2003240356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039874A JP2003240356A (en) 2002-02-18 2002-02-18 Sun tracking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039874A JP2003240356A (en) 2002-02-18 2002-02-18 Sun tracking system

Publications (1)

Publication Number Publication Date
JP2003240356A true JP2003240356A (en) 2003-08-27

Family

ID=27780770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039874A Pending JP2003240356A (en) 2002-02-18 2002-02-18 Sun tracking system

Country Status (1)

Country Link
JP (1) JP2003240356A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115417A (en) * 2005-10-18 2007-05-10 Nikken Sekkei Ltd Light carrying device
JP2007139408A (en) * 2005-11-14 2007-06-07 Lg Electronics Inc Ventilation system and control method for it
JP2007305504A (en) * 2006-05-15 2007-11-22 Inosho:Kk Daylighting device
CN100370194C (en) * 2003-10-31 2008-02-20 赵小峰 Solar collecting and utilizing device
JP2008533752A (en) * 2005-03-21 2008-08-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Multijunction solar cell with an aberration-free imaging system and a combined non-imaging light concentrator
JP2008218582A (en) * 2007-03-01 2008-09-18 Nagaoka Univ Of Technology Solar tracking module device
WO2009048879A2 (en) * 2007-10-12 2009-04-16 Megawatt Solar, Inc. Methods, systems, and computer readable media for controlling orientation of a photovoltaic collection system to track apparent movement of the sun
EP2139046A1 (en) * 2007-04-16 2009-12-30 Zakrytoe Aktsionernoe Obschestvo "Technoexan" Photovoltaic module
CH700626A1 (en) * 2009-03-17 2010-09-30 Zlatko Rezagic Solar collector for use in e.g. underground area, is designed such that plastic parabolic part with highly reflective surface makes corresponding energy concentration in focal point, where stand is provided to stabilize parabolic part
US7875796B2 (en) 2006-07-28 2011-01-25 Megawatt Solar, Inc. Reflector assemblies, systems, and methods for collecting solar radiation for photovoltaic electricity generation
CN102003799A (en) * 2010-09-30 2011-04-06 北京印刷学院 Double-revolution paraboloid parallel light-reflecting solar energy-focusing thermoelectric daylighting device
WO2011093634A2 (en) * 2010-01-26 2011-08-04 Park Ki Sung Light collecting solar cell module
JP2012506139A (en) * 2008-10-15 2012-03-08 シン ビルク,クルディップ Solar panel
EP2444719A2 (en) * 2009-06-19 2012-04-25 O, Se Dae Natural lighting apparatus and hybrid illumination system using same
WO2012109027A1 (en) * 2011-02-11 2012-08-16 3M Innovative Properties Company Light duct bend
WO2013008665A1 (en) * 2011-07-11 2013-01-17 株式会社レーベン販売 Condenser, light condensing system, solar power generation device, and solar system
KR20130057992A (en) * 2010-04-14 2013-06-03 쑤저우 사이파 솔라 테크놀로지 컴퍼니, 리미티드 Solar heat collecting system
JP2013535799A (en) * 2010-08-13 2013-09-12 スリーエム イノベイティブ プロパティズ カンパニー Concentrating daylight concentrator
JP5342053B1 (en) * 2012-10-02 2013-11-13 信博 松本 Solar collector with concave mirror and convex lens
DE102012209795A1 (en) * 2012-06-12 2013-12-12 Siemens Aktiengesellschaft Solar collector device for use in daylight system for conducting sun parallel light into building roof, has container containing fluid heated so that volume change is experienced, where volume change actuates collector to rotate around axis
CN103574929A (en) * 2013-03-17 2014-02-12 兰进生 Solar energy
WO2014070603A1 (en) * 2012-10-30 2014-05-08 3M Innovative Properties Company Light concentrator alignment system
WO2014126340A1 (en) * 2013-02-18 2014-08-21 Kim Byunggyun Solar tracking concentrator
WO2014179820A1 (en) * 2013-04-29 2014-11-06 Van Wyk Johannes Abraham Solar cooker
JP2015504575A (en) * 2011-11-15 2015-02-12 サンフラワー コーポレーション Photovoltaic concentrator
CN105135356A (en) * 2015-10-15 2015-12-09 上海笙荣森电子有限公司 Sunlight illuminating system
CN105351881A (en) * 2015-11-16 2016-02-24 同济大学 Sunlight mixing lighting system of underground station
KR101722514B1 (en) * 2016-04-22 2017-04-03 주식회사 선포탈 Transmission Device Of Solar Light
JP2017161092A (en) * 2016-03-07 2017-09-14 富士エネルギー株式会社 Heat collection and power generating system
EP2645011A4 (en) * 2010-11-27 2017-09-27 York Airconditioning Corporation Sunlight collection structure, multi light collection method, and sunlight transmission device
CN107559768A (en) * 2017-09-26 2018-01-09 深圳市科冷商用设备有限公司 A kind of pneumatic membrane building with assemblies
CN107631191A (en) * 2017-09-30 2018-01-26 重庆格络新材科技有限公司 A kind of illuminator of fibre-optic light guide integration
WO2018083509A1 (en) * 2016-11-02 2018-05-11 Vladimir Grlica Solar radiation concentrator
JP2018528751A (en) * 2015-09-11 2018-09-27 ボリーメディアコミュニケーションズ(シンチェン)カンパニーリミテッドBoly Media Communications (Shenzhen)Co., Ltd Integrated solar energy utilization device and system
WO2019034534A1 (en) * 2017-08-15 2019-02-21 Deutsches Zentrum für Luft- und Raumfahrt e. V. System for the solar-operated sintering of material samples
KR20210099933A (en) * 2020-02-05 2021-08-13 김주호 Apparatus for transmitting sunlight

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370194C (en) * 2003-10-31 2008-02-20 赵小峰 Solar collecting and utilizing device
JP2008533752A (en) * 2005-03-21 2008-08-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Multijunction solar cell with an aberration-free imaging system and a combined non-imaging light concentrator
JP2007115417A (en) * 2005-10-18 2007-05-10 Nikken Sekkei Ltd Light carrying device
JP2007139408A (en) * 2005-11-14 2007-06-07 Lg Electronics Inc Ventilation system and control method for it
JP2007305504A (en) * 2006-05-15 2007-11-22 Inosho:Kk Daylighting device
US7875796B2 (en) 2006-07-28 2011-01-25 Megawatt Solar, Inc. Reflector assemblies, systems, and methods for collecting solar radiation for photovoltaic electricity generation
JP2008218582A (en) * 2007-03-01 2008-09-18 Nagaoka Univ Of Technology Solar tracking module device
EP2139046A4 (en) * 2007-04-16 2014-09-24 Zakrytoe Aktsionernoe Obschestvo Technoexan Photovoltaic module
EP2139046A1 (en) * 2007-04-16 2009-12-30 Zakrytoe Aktsionernoe Obschestvo "Technoexan" Photovoltaic module
WO2009048879A2 (en) * 2007-10-12 2009-04-16 Megawatt Solar, Inc. Methods, systems, and computer readable media for controlling orientation of a photovoltaic collection system to track apparent movement of the sun
WO2009048879A3 (en) * 2007-10-12 2009-07-16 Megawatt Solar Inc Methods, systems, and computer readable media for controlling orientation of a photovoltaic collection system to track apparent movement of the sun
US8178775B2 (en) 2007-10-12 2012-05-15 Megawatt Solar, Inc. Methods, systems, and computer readable media for controlling orientation of a photovoltaic collection system to track apparent movement of the sun
JP2012506139A (en) * 2008-10-15 2012-03-08 シン ビルク,クルディップ Solar panel
CH700626A1 (en) * 2009-03-17 2010-09-30 Zlatko Rezagic Solar collector for use in e.g. underground area, is designed such that plastic parabolic part with highly reflective surface makes corresponding energy concentration in focal point, where stand is provided to stabilize parabolic part
EP2444719A4 (en) * 2009-06-19 2013-11-13 O Se Dae Natural lighting apparatus and hybrid illumination system using same
EP2444719A2 (en) * 2009-06-19 2012-04-25 O, Se Dae Natural lighting apparatus and hybrid illumination system using same
US8905586B2 (en) 2009-06-19 2014-12-09 Se Dae O Natural lighting apparatus and hybrid illumination system using same
WO2011093634A2 (en) * 2010-01-26 2011-08-04 Park Ki Sung Light collecting solar cell module
WO2011093634A3 (en) * 2010-01-26 2011-12-29 Park Ki Sung Light collecting solar cell module
KR20130057992A (en) * 2010-04-14 2013-06-03 쑤저우 사이파 솔라 테크놀로지 컴퍼니, 리미티드 Solar heat collecting system
JP2013524161A (en) * 2010-04-14 2013-06-17 蘇州賽▲ぱ▼太陽能科技有限公司 Solar heat collection system
JP2013535799A (en) * 2010-08-13 2013-09-12 スリーエム イノベイティブ プロパティズ カンパニー Concentrating daylight concentrator
CN102003799A (en) * 2010-09-30 2011-04-06 北京印刷学院 Double-revolution paraboloid parallel light-reflecting solar energy-focusing thermoelectric daylighting device
EP2645011A4 (en) * 2010-11-27 2017-09-27 York Airconditioning Corporation Sunlight collection structure, multi light collection method, and sunlight transmission device
WO2012109027A1 (en) * 2011-02-11 2012-08-16 3M Innovative Properties Company Light duct bend
US8251527B1 (en) 2011-02-11 2012-08-28 3M Innovative Properties Company Light duct bend
WO2013008665A1 (en) * 2011-07-11 2013-01-17 株式会社レーベン販売 Condenser, light condensing system, solar power generation device, and solar system
JP2015504575A (en) * 2011-11-15 2015-02-12 サンフラワー コーポレーション Photovoltaic concentrator
DE102012209795A1 (en) * 2012-06-12 2013-12-12 Siemens Aktiengesellschaft Solar collector device for use in daylight system for conducting sun parallel light into building roof, has container containing fluid heated so that volume change is experienced, where volume change actuates collector to rotate around axis
JP5342053B1 (en) * 2012-10-02 2013-11-13 信博 松本 Solar collector with concave mirror and convex lens
WO2014054816A1 (en) * 2012-10-02 2014-04-10 Matsumoto Nobuhiro Solar heat collection device formed with concave mirror and convex lens
US9709771B2 (en) 2012-10-30 2017-07-18 3M Innovative Properties Company Light concentrator alignment system
WO2014070603A1 (en) * 2012-10-30 2014-05-08 3M Innovative Properties Company Light concentrator alignment system
WO2014126340A1 (en) * 2013-02-18 2014-08-21 Kim Byunggyun Solar tracking concentrator
CN103574929A (en) * 2013-03-17 2014-02-12 兰进生 Solar energy
WO2014179820A1 (en) * 2013-04-29 2014-11-06 Van Wyk Johannes Abraham Solar cooker
JP2018528751A (en) * 2015-09-11 2018-09-27 ボリーメディアコミュニケーションズ(シンチェン)カンパニーリミテッドBoly Media Communications (Shenzhen)Co., Ltd Integrated solar energy utilization device and system
CN105135356A (en) * 2015-10-15 2015-12-09 上海笙荣森电子有限公司 Sunlight illuminating system
CN105351881A (en) * 2015-11-16 2016-02-24 同济大学 Sunlight mixing lighting system of underground station
JP2017161092A (en) * 2016-03-07 2017-09-14 富士エネルギー株式会社 Heat collection and power generating system
KR101722514B1 (en) * 2016-04-22 2017-04-03 주식회사 선포탈 Transmission Device Of Solar Light
WO2018083509A1 (en) * 2016-11-02 2018-05-11 Vladimir Grlica Solar radiation concentrator
WO2019034534A1 (en) * 2017-08-15 2019-02-21 Deutsches Zentrum für Luft- und Raumfahrt e. V. System for the solar-operated sintering of material samples
CN107559768A (en) * 2017-09-26 2018-01-09 深圳市科冷商用设备有限公司 A kind of pneumatic membrane building with assemblies
CN107559768B (en) * 2017-09-26 2023-09-01 深圳市科冷商用设备有限公司 Air film building with light guide illumination assembly
CN107631191A (en) * 2017-09-30 2018-01-26 重庆格络新材科技有限公司 A kind of illuminator of fibre-optic light guide integration
KR20210099933A (en) * 2020-02-05 2021-08-13 김주호 Apparatus for transmitting sunlight
KR102392108B1 (en) * 2020-02-05 2022-04-29 김주호 Apparatus for transmitting sunlight

Similar Documents

Publication Publication Date Title
JP2003240356A (en) Sun tracking system
JP5829708B2 (en) Solar energy conversion
US20080011288A1 (en) Solar Collection Apparatus and Methods Using Accelerometers and Magnetic Sensors
KR101256200B1 (en) Solar heat collecting structure and solar heat boiler system using the same
JP3091001U (en) Solar power generator
BR112016000006B1 (en) SOLAR COLLECTOR ASSEMBLY AND METHOD FOR OPERATING AN ASSEMBLY
Hadjiat et al. Design and analysis of a novel ICS solar water heater with CPC reflectors
JP3315108B1 (en) Seesaw type solar power generation water heater system
WO2017187445A1 (en) Sun position detector and method of sensing sun position
JP2015513057A (en) Skylight energy management system
KR20050042314A (en) Solar collecting apparatus having variable function of a collecting angle
ITTO20110777A1 (en) SOLAR PANEL WITH CONCENTRATION WITH BIAS TRACKING AND MANAGEMENT SYSTEM INCLUDING THIS PANEL
JP2003149586A (en) Condenser
JP4378257B2 (en) Solar tracking system
JP2008014508A (en) Solar light reflection control method and daylighting device
WO2012107605A1 (en) Direct solar-radiation collection and concentration element and panel
US7985920B2 (en) Solar concentrator with self-tracking receiver
JPH0727425A (en) Solar concentrator and thermal storage apparatus
RU2206837C2 (en) Solar module with concentrator (alternatives)
JP2001201187A (en) Solar heat boiler
KR100972424B1 (en) Multidirectional Solar Concentrator
TWI510733B (en) Indoor illuminating device using directed sunlight
CA1113327A (en) System for collecting solar heat
CN1174199C (en) Automatically controlled orientationally reflective solar energy collection and light-heat conversion equipment
KR0181201B1 (en) Solar concentrator