JP2001201187A - Solar heat boiler - Google Patents

Solar heat boiler

Info

Publication number
JP2001201187A
JP2001201187A JP2000012891A JP2000012891A JP2001201187A JP 2001201187 A JP2001201187 A JP 2001201187A JP 2000012891 A JP2000012891 A JP 2000012891A JP 2000012891 A JP2000012891 A JP 2000012891A JP 2001201187 A JP2001201187 A JP 2001201187A
Authority
JP
Japan
Prior art keywords
solar
solar cell
heat
parabolic reflector
cell panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000012891A
Other languages
Japanese (ja)
Inventor
Teijiro Yamamoto
悌二郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000012891A priority Critical patent/JP2001201187A/en
Publication of JP2001201187A publication Critical patent/JP2001201187A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat boiler which has a small-sized and simple structure and high efficiency. SOLUTION: A heat collecting tube, through which a heat receiving fluid flows, is disposed fixed on the focal axis of ranging focuses of a parabolic reflector formed like a trough and in a long shape. The parabolic reflector is supported axially and rotatably around the axis of rotation coinciding with the focal axis, and besides, a sun follower is connected coaxially to the parabolic reflector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽追尾装置に
より受光面を常に太陽の方向に向けるようにした太陽熱
発電用のボイラーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler for solar thermal power generation in which a light-receiving surface is always directed toward the sun by a sun tracking device.

【0002】[0002]

【従来の技術】今日では、太陽電池により太陽光を直接
電気に変換する太陽光発電が、太陽エネルギー利用の主
流をなす。通常は、住宅の屋根等に太陽電池を瓦のよう
に敷き詰める非焦点式として設置される。国は補助金を
出して家庭用にこの種の発電装置の普及を図っている
が、太陽電池のエネルギー変換効率が低いこと(多結晶
シリコンで約10%)と、コストが高いこと(同10万
円/m)が問題である。
2. Description of the Related Art Today, photovoltaic power generation, which directly converts sunlight into electricity by means of solar cells, is the mainstream of solar energy utilization. Usually, it is installed as a non-focus type in which solar cells are laid like a tile on the roof of a house or the like. The government is subsidizing this type of power generator for home use, but the low energy conversion efficiency of solar cells (about 10% for polycrystalline silicon) and the high cost (10 10,000 yen / m 2 ) is a problem.

【0003】変換効率の低さは大きな設置面積要求に結
びつく。例えば、平均的家庭の年間消費電力約4,50
0kWhの、60〜80%に当たる3,000〜3,5
00kWhを発電するには出力3kWの太陽光発電シス
テムが必要で、そのシステムの設置面積(傾斜屋根の場
合)は約26mである(M社営業資料から)。ここか
ら設備費が数百万円掛かることが分かるが、補助金はそ
の3分の1である。
[0003] Low conversion efficiency leads to a large installation area requirement. For example, the average household annual power consumption is about 4,50
0 kWh, 60-80% or 3,000-3.5
To generate 00 kWh, a photovoltaic power generation system with an output of 3 kW is required, and the installation area of the system (in the case of a sloping roof) is about 26 m 2 (from M company's business materials). From this, it can be seen that the equipment cost is several million yen, but the subsidy is one third of that.

【0004】もう一つの可能性は太陽熱発電である。こ
れは太陽熱により蒸気を作り、これでタービン・発電機
を回すものである。かつてのオイルショックの折りに
は、わが国でもサンシャイン計画の一環として、香川県
仁尾町にこの種の大型試験施設が建設された。
[0004] Another possibility is solar thermal power generation. This produces steam from solar heat, which turns turbines and generators. In the wake of the oil crisis, a large-scale test facility of this kind was built in Niio Town, Kagawa Prefecture, as part of the Sunshine Project in Japan.

【0005】この施設は、中央タワー最上部に設けた太
陽熱ボイラーに、多数の太陽追尾装置(ヘリオスタッ
ト)付き大型反射鏡で太陽光を集めて蒸気を発生し、そ
の蒸気でタービン・発電機を回すものであった。しか
し、反射鏡面を常に清浄に保つことが困難なため効率が
低下したことに加えて、多数のヘリオスタットの駆動に
大きな電力を要したため、ペイラインを上回る電力を外
部に取り出すことができなかったと伝えられる。同施設
が開業3年で運転中止されて以来、わが国の太陽熱発電
は事実上ストップしたままである。
[0005] In this facility, a solar heat boiler provided at the top of the central tower collects sunlight with a large reflector with a large number of sun tracking devices (heliostats) to generate steam, and the steam is used to generate turbines and generators. Was to turn. However, in addition to the fact that it was difficult to keep the reflecting mirror surface clean at all times, the efficiency decreased, and in addition to the fact that a large amount of power was required to drive a large number of heliostats, it was not possible to extract power beyond the payline to the outside. Can be Since the facility was shut down after three years of operation, Japan's solar thermal power generation has virtually stopped.

【0006】[0006]

【発明が解決しようとする課題】この発明の課題は小型
で構造簡単、かつ高効率の太陽熱ボイラーを提供するこ
とである。このような太陽熱ボイラーから蒸気を供給し
てタービン・発電機を回せば、小規模な家庭用太陽熱発
電システムを容易に実現することができる。なぜ家庭用
かといえば、過去の大型太陽熱発電設備で経験された困
難を、設備の小型化と分散化により解決するためであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small-sized, simple-structure, and high-efficiency solar boiler. By supplying steam from such a solar boiler and turning a turbine / generator, a small-scale household solar thermal power generation system can be easily realized. The reason for home use is to solve the difficulties experienced in large solar thermal power generation facilities in the past by reducing the size and decentralization of the facilities.

【0007】[0007]

【課題を解決するための手段】上記の課題は、トラフ状
をなす長形のパラボラ反射鏡の焦点を連ねた焦点軸上に
受熱流体が流れる集熱管を固定して配置し、パラボラ反
射鏡を前記焦点軸と一致する回動軸の回りに回動自在に
軸支し、かつ、パラボラ反射鏡に太陽追尾装置を共軸に
連結した太陽熱ボイラーにより達成される。
An object of the present invention is to provide a trough-shaped parabolic reflector, in which a heat-collecting tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points thereof. This is achieved by a solar boiler which is rotatably supported around a rotation axis coinciding with the focal axis, and in which a sun tracking device is coaxially connected to a parabolic reflector.

【0008】この太陽熱ボイラーの本体は集熱管であ
る。その中を水等の受熱流体が流れる間に、集熱管に加
えられる太陽熱で加熱されて蒸気になる。この蒸気を発
電用タービンへ供給する。集熱管の管壁は、太陽熱を効
率良く捉えると共に、捉えた熱を外部へ逃がさない断熱
性を持たせるため、内部を真空にした透明な二重壁にす
る。また、集熱管内に挿入したU字管を受熱流体が往復
流動するようにして、U字管の入口・出口受熱流体間で
熱交換を行わせて温度を平均化し、放熱ロスを軽減す
る。
The main body of the solar boiler is a heat collecting tube. While a heat-receiving fluid such as water flows through the inside, it is heated by the solar heat applied to the heat collection tube to be turned into steam. This steam is supplied to a power generation turbine. The tube wall of the heat collection tube is a transparent double wall with a vacuum inside in order to efficiently capture solar heat and provide heat insulation that does not allow the captured heat to escape to the outside. Further, the heat receiving fluid reciprocates through the U-shaped tube inserted into the heat collecting tube, and heat is exchanged between the inlet and outlet heat-receiving fluids of the U-shaped tube to average the temperatures, thereby reducing heat loss.

【0009】集熱管はこの太陽熱ボイラーの中心(焦点
軸上)に固定され、長形トラフ状のパラボラ反射鏡がこ
の集熱管を目がけて太陽光線を集める。パラボラ反射鏡
は後述する太陽追尾装置により、鏡面の湾曲中心を常に
太陽に向けるように駆動される。この運動が正しく行わ
れるためには、集熱管、すなわちパラボラ反射鏡の焦点
軸の、地表への投影線を正しく真北に向け、かつ太陽光
線が集熱管に直角に当たるように傾きを調整しなければ
ならない。この調整は数日おきに行えば良い。こうし
て、地球自転により刻々に移動する太陽の位置を、太陽
追尾装置で自動的に追尾できるようになる。
The heat collecting tube is fixed to the center (on the focal axis) of the solar boiler, and a long trough-shaped parabolic reflecting mirror collects the sunlight rays from the heat collecting tube. The parabolic reflector is driven by a sun tracking device to be described later so that the center of curvature of the mirror surface always faces the sun. In order for this movement to be performed correctly, the inclination of the focal axis of the heat collection tube, that is, the parabola reflector, must be adjusted so that the projection line on the ground surface is oriented exactly to the north, and the solar rays are directed perpendicular to the heat collection tube. Must. This adjustment may be made every few days. In this way, the position of the sun moving every moment due to the rotation of the earth can be automatically tracked by the sun tracking device.

【0010】[0010]

【発明の実施の形態】この太陽熱ボイラーでは、かつて
の大型反射鏡で経験された鏡面の清浄保持の困難性を低
コストで回避する方策を講じる。そのために、パラボラ
反射鏡の大きさを、鏡面に付着した埃を少ない人手で無
理なく拭き取ることができる大きさとする。そこから、
おおよそ1m×2mを超えない、家庭用に適した規模の
鏡面寸法とこれに伴うボイラー容量が定まる。また、鏡
面に埃が付着することを防止するために、パラボラ反射
鏡の端部に鏡面保護扉を設けて、反射鏡不使用時にはそ
の扉を閉じることにする。その場合、扉は手動で開閉で
きるよう軽量にする。なおこの保護扉の内面を鏡面にし
て、開扉時にパラボラ反射鏡の面積を実質的に増加させ
るような使い方をしてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In this solar boiler, a measure is taken at low cost to avoid the difficulty of maintaining and maintaining the mirror surface, which has been experienced with a large reflector in the past. For this reason, the size of the parabolic reflecting mirror is set to a size that can easily wipe off dust adhering to the mirror surface with a small number of hands. From there,
The mirror surface dimension of a scale suitable for home use, which does not exceed approximately 1 m × 2 m, and the boiler capacity associated therewith are determined. In order to prevent dust from adhering to the mirror surface, a mirror surface protection door is provided at the end of the parabolic reflector, and the door is closed when the reflector is not used. In that case, the door should be lightweight so that it can be opened and closed manually. The inner surface of the protective door may be made a mirror surface so as to substantially increase the area of the parabolic reflector when the door is opened.

【0011】上記の太陽追尾装置は、その出力軸に接し
て左右対称に配置した一対の同形同大の太陽電池を有す
る太陽電池パネルと、出力軸から太陽電池パネル受光面
の垂直上方に向けて凸設した薄い平板状の遮光板と、左
右の太陽電池の発電出力差に応じて付勢され、発電出力
差を実質的にゼロにする方向に太陽電池パネルを出力軸
の回りに回動させるモータとを有する。この太陽追尾装
置をパラボラ反射鏡に共軸に連結する。つまり、太陽追
尾装置の出力軸とパラボラ反射鏡の回動軸を直結する
か、又は両方の軸を平行にして互いに同一方向へ同一角
度回動するように連結する。
The above-described solar tracking device includes a solar cell panel having a pair of same-sized and same-sized solar cells arranged symmetrically in contact with an output shaft thereof, and a solar cell panel vertically extending from the output axis to a light receiving surface of the solar cell panel. The solar cell panel is rotated around the output shaft in a direction to make the power generation output difference substantially zero, being energized according to the power generation output difference between the left and right solar cells and the thin flat light shielding plate protruding And a motor that drives the motor. The sun tracker is coaxially connected to a parabolic reflector. That is, the output shaft of the sun tracking device is directly connected to the rotation axis of the parabolic reflector, or both are connected in parallel so as to rotate in the same direction at the same angle.

【0012】この太陽追尾装置における太陽電池パネル
を飛行機の水平尾翼にたとえれば、遮光板は垂直尾翼に
相当する。太陽電池パネルが太陽に正対するときは、遮
光板が太陽電池面に影を作らないから左右の太陽電池の
出力がバランスし、これに接続されたモーターは回転し
ない。もし太陽電池パネルが正対関係から外れると、遮
光板がどちらかの太陽電池面に影を作るので、太陽電池
の出力がアンバランスになりモーターが回転する。この
場合、モーターが太陽電池出力のアンバランスを縮小す
る方向に回転するように接続されているので、太陽電池
パネル面が太陽に追尾して正対関係を回復する。なお、
遮光板の両面を鏡面にしてもよい。遮光板に当たった光
を太陽電池面へ反射させれば、太陽電池出力のアンバラ
ンスを強調して追尾感度を高める効果がある。
If the solar cell panel in this sun tracking device is compared to the horizontal tail of an airplane, the light shielding plate corresponds to the vertical tail. When the solar panel faces the sun, the light shielding plate does not create a shadow on the solar cell surface, so that the outputs of the left and right solar cells are balanced, and the motor connected to this does not rotate. If the photovoltaic panel deviates from the facing relationship, the shading plate will create a shadow on one of the photovoltaic surfaces, causing the output of the photovoltaic cell to become unbalanced and the motor to rotate. In this case, since the motor is connected so as to rotate in a direction to reduce the unbalance of the solar cell output, the solar cell panel surface tracks the sun and recovers the facing relationship. In addition,
Both surfaces of the light shielding plate may be mirror surfaces. By reflecting the light hitting the light-shielding plate to the solar cell surface, there is an effect that the imbalance of the solar cell output is emphasized and the tracking sensitivity is increased.

【0013】この太陽追尾装置が偶々太陽とは反対方向
を向いてしまうと、左右の太陽電池が揃って出力を失う
のでモーターが回転せず、追尾機能を失う。この弱点を
解消するには、太陽電池パネルの裏面に第3の太陽電池
を設けて、その出力をモーターに接続すれば良い。この
太陽追尾装置が太陽とは反対方向を向いて第3の太陽電
池に光が当たると、その出力がゼロになるまでモーター
が回るので、太陽電池パネルの表面が太陽方向に向いて
追尾機能が復活する。
If this solar tracking device accidentally faces the opposite direction to the sun, the left and right solar cells are aligned and lose their output, so that the motor does not rotate and the tracking function is lost. In order to eliminate this weak point, a third solar cell may be provided on the back surface of the solar cell panel, and its output may be connected to a motor. When this sun tracking device is directed in the opposite direction to the sun and shines on the third solar cell, the motor rotates until its output becomes zero, so the surface of the solar cell panel faces the sun and the tracking function is performed. To be resurrected.

【0014】この太陽追尾装置は、太陽センサ兼動力源
としての太陽電池を内蔵しているので駆動力自給式であ
る。よって太陽追尾装置への電力供給が不要なので、か
つて仁尾町の施設で経験されたような、発電出力の大き
い部分が内部で消費されて外部へ取り出せないという事
態は回避される。しかも、この太陽追尾装置に使用する
太陽電池は小型のもので十分である。それは太陽追尾動
作が極めて低速で、モーターの回転を十分大きいギヤ比
で減速するので、太陽電池電流が小さくても所望のトル
クが得られるからである。
This sun tracking device is self-sufficient in driving force because it incorporates a solar cell as a solar sensor and power source. Therefore, since power supply to the sun tracking device is not required, a situation in which a large power generation output is consumed internally and cannot be taken out, as experienced in a facility in Nio-cho, is avoided. In addition, a small solar cell used for this solar tracking device is sufficient. This is because the sun tracking operation is extremely slow and the rotation of the motor is reduced at a sufficiently large gear ratio, so that a desired torque can be obtained even when the solar cell current is small.

【0015】[0015]

【実施例】添付図面を参照しつつ、この発明の一実施例
について説明する。図1は実施例としての太陽熱ボイラ
ーの構造を説明するための斜視図、図2は集熱管及びそ
の中に挿入されるU字管の説明図、図3はこの太陽熱ボ
イラーに含まれる太陽電池とモーターの結線図、図4は
この太陽熱ボイラーを含むタービン・発電機システムを
示す概念的配管図である。
An embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view for explaining the structure of a solar boiler as an embodiment, FIG. 2 is an explanatory view of a heat collecting tube and a U-shaped tube inserted therein, and FIG. 3 is a diagram showing a solar cell included in this solar boiler. FIG. 4 is a conceptual piping diagram showing a turbine / generator system including the solar boiler.

【0016】図1において、太陽熱ボイラー1は、トラ
フ状をなす長形のパラボラ反射鏡4を、架台2上の回動
軸21−21の回りに回動自在に軸支し、集熱管3を回
動軸21−21の位置に固定して配置し、さらに架台2
に固定した太陽追尾装置5の出力軸をパラボラ反射鏡4
の回動軸に直結して構成される。
In FIG. 1, a solar boiler 1 rotatably supports a trough-shaped long parabolic reflecting mirror 4 around a rotating shaft 21-21 on a gantry 2 so as to rotate freely. It is fixedly arranged at the position of the rotating shaft 21-21, and
The output shaft of the sun tracking device 5 fixed to the
It is configured to be directly connected to the rotating shaft of.

【0017】集熱管3の中を水等の受熱流体が流れる間
に、パラボラ反射鏡4により集熱管3に集光される太陽
熱で加熱されて蒸気になる。ここで図2を参照する。集
熱管3の管壁は内部を真空にした透明二重壁31からな
り、受熱流体は集熱管3内に挿入したU字管32を往復
流動して、U字管の入口・出口33、34の受熱流体間
で熱交換が行われて温度が平均化される。
While a heat-receiving fluid such as water flows through the heat collecting tube 3, it is heated by the solar heat condensed on the heat collecting tube 3 by the parabolic reflecting mirror 4 to become steam. Reference is now made to FIG. The tube wall of the heat collecting tube 3 is composed of a transparent double wall 31 whose inside is evacuated, and the heat receiving fluid reciprocates through a U-shaped tube 32 inserted into the heat collecting tube 3 to enter and exit the U-shaped tube at the entrance / exit 33, 34. Are exchanged between the heat receiving fluids and the temperatures are averaged.

【0018】再び図1に戻る。パラボラ反射鏡4は太陽
追尾装置5により、鏡面の湾曲中心を常に太陽に向ける
ように駆動される。この運動を実現するために、架台2
の底部中心線を真北に向け、架台2の傾き(図1におけ
る円弧状矢印)を調整して、太陽光線が集熱管3に対し
て直角に当たるようにする。この傾きの調整は太陽の高
さの季節変化に対する調整であるから、数日おきに手動
で行えば十分である。そうすれば、地球自転により刻々
に移動する太陽の位置を太陽追尾装置5が自動的に追尾
して、これに連動するパラボラ反射鏡4により集熱管3
へ集光することができる。
Returning to FIG. The parabolic reflecting mirror 4 is driven by the sun tracking device 5 so that the center of curvature of the mirror surface is always directed to the sun. In order to realize this movement,
The center line of the bottom is directed to the north, and the inclination of the gantry 2 (the arc-shaped arrow in FIG. 1) is adjusted so that the solar rays hit the heat collecting tube 3 at right angles. Since the adjustment of the inclination is an adjustment for seasonal changes in the height of the sun, it is sufficient to manually perform the adjustment every few days. Then, the sun tracking device 5 automatically tracks the position of the sun moving every moment due to the rotation of the earth, and the parabolic reflecting mirror 4 interlocked with the sun tracking device 5 automatically collects the heat collecting tube 3.
Can be collected.

【0019】パラボラ反射鏡4の鏡面と集熱管3の表面
を人手で掃除して常に清浄に保つ。この作業を少ない人
手でできるように、パラボラ反射鏡4の寸法を最大でも
1m×2mとする。また、パラボラ反射鏡4の鏡面を中
心部分41、両サイド部分42、43に3分割し、それ
ぞれの幅を1/2、1/4、1/4とする。両サイド部
分42、43を鏡面保護扉として、中心部分41に向か
って折り畳み可能にする。パラボラ反射鏡4の不使用時
にこれを閉じれば、反射鏡面と集熱管表面を埃の付着か
ら保護することができる。
The mirror surface of the parabolic reflector 4 and the surface of the heat collecting tube 3 are manually cleaned to keep them always clean. The size of the parabolic reflector 4 is at most 1 m × 2 m so that this operation can be performed with a small number of hands. Further, the mirror surface of the parabolic reflecting mirror 4 is divided into a central portion 41 and both side portions 42 and 43, and the widths thereof are 1 /, 4 and 1 /. Both side parts 42 and 43 are used as mirror surface protection doors so that they can be folded toward the central part 41. If the parabolic reflector 4 is closed when not in use, the surface of the reflector and the surface of the heat collecting tube can be protected from dust.

【0020】太陽追尾装置5は、その出力軸56に接し
て左右対称に配置した一対の同形同大の太陽電池51、
52を有する太陽電池パネル50と、出力軸56から太
陽電池パネル50の受光面の垂直上方に向けて凸設した
薄い平板状の遮光板54と、左右の太陽電池51、52
の発電出力差に応じて付勢され、発電出力差を実質的に
ゼロにする方向に太陽電池パネル50を出力軸56の回
りに回動させるモータ55とを有する。太陽電池パネル
50の裏面には第3の太陽電池53が取り付けられてお
り、その出力もモーター55に接続される。モータ55
は架台2上に固定され、モータ55の軸と出力軸56と
は大小の歯車からなる減速装置57を介して連結され、
出力軸56はパラボラ反射鏡4の回動軸に直結される。
The sun tracking device 5 includes a pair of same-shaped and same-sized solar cells 51 arranged symmetrically in contact with the output shaft 56 thereof.
52, a thin flat light-shielding plate 54 protruding from the output shaft 56 vertically upward of the light receiving surface of the solar cell panel 50, and left and right solar cells 51 and 52.
And a motor 55 that is energized in accordance with the power generation output difference and rotates the solar cell panel 50 around the output shaft 56 in a direction to make the power generation output difference substantially zero. A third solar cell 53 is attached to the back surface of the solar cell panel 50, and its output is also connected to the motor 55. Motor 55
Is fixed on the gantry 2, and the shaft of the motor 55 and the output shaft 56 are connected via a reduction gear 57 composed of large and small gears,
The output shaft 56 is directly connected to the rotation shaft of the parabolic reflector 4.

【0021】太陽電池パネル50が太陽に正対するとき
は、遮光板54が太陽電池面に影を作らないから左右の
太陽電池51、52の出力がバランスし、これに接続さ
れたモーター55は回転しない。もし太陽電池パネル5
0が正対関係から外れると、遮光板54がどちらかの太
陽電池面に影を作るので、太陽電池51、52の出力が
アンバランスになりモーター55が回転する。この場
合、モーター55が太陽電池出力のアンバランスを縮小
する方向に回転するように接続されているので、太陽電
池パネル50の面が太陽に追尾して正対関係を回復す
る。遮光板54の両面を鏡面にして、遮光板54に当た
った光を太陽電池面へ反射させ、太陽電池出力のアンバ
ランスを強調して追尾感度を高める。
When the solar cell panel 50 faces the sun, the light shielding plate 54 does not create a shadow on the solar cell surface, so that the outputs of the left and right solar cells 51 and 52 are balanced, and the motor 55 connected to this rotates. do not do. If solar panel 5
When 0 deviates from the facing relationship, the light shielding plate 54 creates a shadow on one of the solar cell surfaces, so that the outputs of the solar cells 51 and 52 become unbalanced and the motor 55 rotates. In this case, since the motor 55 is connected so as to rotate in a direction to reduce the unbalance of the solar cell output, the surface of the solar cell panel 50 tracks the sun and recovers the facing relationship. Both surfaces of the light-shielding plate 54 are mirror surfaces, and the light hitting the light-shielding plate 54 is reflected to the solar cell surface, thereby enhancing the imbalance of the solar cell output and increasing the tracking sensitivity.

【0022】太陽電池パネル50が太陽の反対方向を向
いてしまったときは、第3の太陽電池53に太陽光が当
たり、その発電出力がモーター55を回転させる。第3
の太陽電池53が出力電圧を出し続ける間モーター55
は回転を続けるので、やがて太陽電池パネル50が太陽
の方向に向いて、正常な太陽追尾動作が回復する。
When the solar cell panel 50 faces in the direction opposite to the sun, the third solar cell 53 is exposed to sunlight, and the power generation output causes the motor 55 to rotate. Third
While the solar cell 53 continues to output the output voltage,
Continues rotating, the solar cell panel 50 eventually faces the sun, and the normal solar tracking operation is restored.

【0023】図3は各太陽電池51,52,53とモー
ター55の接続関係を示す結線図である。各太陽電池は
ダイオードとして表示してある。太陽電池51と52
は、それぞれ極性を逆にしてモーター55に接続され
る。太陽電池53の極性は任意であるが、例えば太陽電
池51と同じにすればよい。なお、モーター55の回転
の向きは太陽電池51と52の発電出力差を縮小する向
きでなければならないが、もし逆方向に回転するような
ら、モーターの接続端子の正負を逆にする。
FIG. 3 is a connection diagram showing a connection relationship between each of the solar cells 51, 52, 53 and the motor 55. Each solar cell is shown as a diode. Solar cells 51 and 52
Are connected to the motor 55 with their polarities reversed. The polarity of the solar cell 53 is arbitrary, but may be the same as the solar cell 51, for example. The direction of rotation of the motor 55 must be such that the difference between the power generation outputs of the solar cells 51 and 52 is reduced. If the motor 55 rotates in the opposite direction, the polarity of the connection terminal of the motor is reversed.

【0024】図4はこの太陽熱ボイラー1を含むタービ
ン・発電機システムを示す概念的配管図である。図にお
いて、太陽熱ボイラー1の集熱管3の出口34を出た蒸
気は止め弁6を経てタービン7へ供給される。タービン
7の回転出力は減速機8を介して発電機9へ供給され
る。タービン7の排気はコンデンサ10へ入り、冷却水
で冷やされて復水する。復水はポンプ11で汲み上げら
れて集熱管3の入口33へ戻る。
FIG. 4 is a conceptual piping diagram showing a turbine / generator system including the solar boiler 1. In the figure, steam flowing out of an outlet 34 of a heat collecting tube 3 of a solar boiler 1 is supplied to a turbine 7 via a stop valve 6. The rotational output of the turbine 7 is supplied to a generator 9 via a speed reducer 8. The exhaust gas of the turbine 7 enters the condenser 10 and is cooled by cooling water to be condensed. The condensed water is pumped up by the pump 11 and returns to the inlet 33 of the heat collecting tube 3.

【0025】[0025]

【発明の効果】この発明によれば、小規模な家庭用太陽
熱発電システムを容易に構築できる小型で構造簡単、か
つ高効率の太陽熱ボイラーが提供される。
According to the present invention, there is provided a small-sized, simple-structure, and high-efficiency solar thermal boiler that can easily construct a small-scale household solar thermal power generation system.

【0026】特にこの太陽熱ボイラーでは、トラフ状を
なす長形のパラボラ反射鏡を、小型太陽電池を内蔵した
駆動力自給式太陽追尾装置で駆動して太陽光線を集熱管
に集め、集熱管は吸収した熱を逃がさない構造にしたの
で、太陽エネルギーを効率良く利用できると共に、ポン
プ用動力等以外の発電出力のほとんど全てを外部へ取り
出すことができる。
In particular, in this solar boiler, a long trough-shaped parabolic reflector is driven by a self-sufficient solar tracking device having a built-in small-sized solar cell to collect solar rays into a heat collecting tube. The structure that does not dissipate the generated heat allows the solar energy to be used efficiently and almost all of the power generation output other than the power for the pump to be taken out.

【0027】また、パラボラ反射鏡の鏡面及び集熱管表
面を容易に清浄に保つことができる装置サイズと構造を
採用したことにより、過去の大型太陽熱発電設備で経験
された清浄保持に関する問題点が低コストで解決されて
いる。
Also, by adopting an apparatus size and structure that can easily keep the mirror surface of the parabolic reflector and the surface of the heat collecting tube clean, problems with clean maintenance experienced in past large-scale solar thermal power generation equipment are reduced. The cost has been solved.

【0028】[0028]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例としての太陽熱ボイラーの構造を説明す
るための斜視図である。
FIG. 1 is a perspective view illustrating the structure of a solar boiler as an embodiment.

【図2】集熱管及びその中に挿入されるU字管の説明図
である。
FIG. 2 is an explanatory view of a heat collecting tube and a U-shaped tube inserted therein.

【図3】この太陽熱ボイラーに含まれる太陽電池とモー
ターの結線図である。
FIG. 3 is a connection diagram of a solar cell and a motor included in the solar boiler.

【図4】太陽熱ボイラーを含むタービン・発電機システ
ムを示す概念的配管図である。
FIG. 4 is a conceptual piping diagram showing a turbine / generator system including a solar boiler.

【符号の説明】[Explanation of symbols]

1:太陽熱ボイラー 2:架台 3:集熱管 4:パラボラ反射鏡 5:太陽追尾装置 6:止め弁 7:タービン 8:減速機 9:発電機 10:コンデンサ 11:ポンプ 1: Solar boiler 2: Stand 3: Heat collecting tube 4: Parabolic reflector 5: Sun tracking device 6: Stop valve 7: Turbine 8: Reduction gear 9: Generator 10: Condenser 11: Pump

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】トラフ状をなす長形のパラボラ反射鏡の焦
点を連ねた焦点軸上に、受熱流体が流れる集熱管を固定
して配置し、前記パラボラ反射鏡を前記焦点軸と一致す
る回動軸の回りに回動自在に軸支し、かつ、前記パラボ
ラ反射鏡に太陽追尾装置を共軸に連結してなる太陽熱ボ
イラーであって、 前記パラボラ反射鏡がその鏡面端部に開閉自在に設けた
鏡面保護扉を有し、 前記集熱管の管壁が内部を真空にした透明二重壁からな
り、 前記受熱流体が前記集熱管内に設けたU字管を往復流動
し、 前記太陽追尾装置が、その出力軸に接して左右対称に配
置した一対の同形同大の太陽電池を有する太陽電池パネ
ルと、前記出力軸から太陽電池パネル受光面の垂直上方
に向けて凸設した薄い平板状の遮光板と、左右の太陽電
池の発電出力差に応じて付勢され該発電出力差を実質的
にゼロにする方向に太陽電池パネルを出力軸の回りに回
動させるモータとを有し、 前記遮光板の両面が鏡面であり、 さらに前記太陽追尾装置が、太陽電池パネルの裏面に第
3の太陽電池を有し、前記モータが該第3の太陽電池か
らの発電出力によっても付勢され該第3の太陽電池の発
電出力が実質的にゼロになるまで太陽電池パネルを出力
軸の回りに回動させることを特徴とする太陽熱ボイラ
ー。
1. A heat collection tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points of a long trough-shaped parabolic reflector, and the parabolic reflector is turned at a time corresponding to the focal axis. A solar boiler rotatably supported around a moving axis, and a sun-tracking device coaxially connected to the parabolic reflector, wherein the parabolic reflector is openable and closable at its mirror end. A mirror surface protection door provided, wherein a tube wall of the heat collection tube is formed of a transparent double wall having an interior vacuum, and the heat receiving fluid reciprocally flows through a U-shaped tube provided in the heat collection tube, and the sun tracking is performed. A solar cell panel having a pair of same-shaped and same-sized solar cells arranged symmetrically in contact with the output shaft of the device, and a thin flat plate protruding from the output shaft to a direction vertically above the light receiving surface of the solar cell panel; According to the power generation output difference between the right and left solar cells A motor that is energized and rotates the solar cell panel around an output shaft in a direction to make the power generation output difference substantially zero, wherein both surfaces of the light shielding plate are mirror surfaces, and the sun tracking device is And a third solar cell on the back surface of the solar cell panel, wherein the motor is energized also by the power output from the third solar cell, and the power output of the third solar cell becomes substantially zero. A solar boiler characterized by rotating a solar cell panel around an output shaft up to that point.
【請求項2】トラフ状をなす長形のパラボラ反射鏡の焦
点を連ねた焦点軸上に、受熱流体が流れる集熱管を固定
して配置し、前記パラボラ反射鏡を前記焦点軸と一致す
る回動軸の回りに回動自在に軸支し、かつ、前記パラボ
ラ反射鏡に太陽追尾装置を共軸に連結してなる太陽熱ボ
イラーであって、 前記パラボラ反射鏡がその鏡面端部に開閉自在に設けた
鏡面保護扉を有し、 前記集熱管の管壁が内部を真空にした透明二重壁からな
り、 前記受熱流体が前記集熱管内に設けたU字管を往復流動
し、 前記太陽追尾装置が、その出力軸に接して左右対称に配
置した一対の同形同大の太陽電池を有する太陽電池パネ
ルと、前記出力軸から太陽電池パネル受光面の垂直上方
に向けて凸設した薄い平板状の遮光板と、左右の太陽電
池の発電出力差に応じて付勢され該発電出力差を実質的
にゼロにする方向に太陽電池パネルを出力軸の回りに回
動させるモータとを有し、 さらに前記太陽追尾装置が、太陽電池パネルの裏面に第
3の太陽電池を有し、前記モータが該第3の太陽電池か
らの発電出力によっても付勢され該第3の太陽電池の発
電出力が実質的にゼロになるまで太陽電池パネルを出力
軸の回りに回動させることを特徴とする太陽熱ボイラ
ー。
2. A heat-collecting tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points of a long trough-shaped parabolic reflector, and the parabolic reflector is rotated by a time corresponding to the focal axis. A solar boiler rotatably supported around a moving axis, and a sun-tracking device coaxially connected to the parabolic reflector, wherein the parabolic reflector is openable and closable at its mirror end. A mirror surface protection door provided, wherein a tube wall of the heat collection tube is formed of a transparent double wall having an interior vacuum, and the heat receiving fluid reciprocally flows through a U-shaped tube provided in the heat collection tube, and the sun tracking is performed. A solar cell panel having a pair of same-shaped and same-sized solar cells arranged symmetrically in contact with the output shaft of the device, and a thin flat plate protruding from the output shaft to a direction vertically above the light receiving surface of the solar cell panel; According to the power generation output difference between the right and left solar cells A motor that is energized to rotate the solar cell panel around an output shaft in a direction to make the power generation output difference substantially zero, further comprising a third solar tracking device on a back surface of the solar cell panel. A solar cell, wherein the motor is also energized by the power output from the third solar cell and moves the solar panel around the output axis until the power output of the third solar cell is substantially zero. A solar boiler characterized by rotating.
【請求項3】トラフ状をなす長形のパラボラ反射鏡の焦
点を連ねた焦点軸上に、受熱流体が流れる集熱管を固定
して配置し、前記パラボラ反射鏡を前記焦点軸と一致す
る回動軸の回りに回動自在に軸支し、かつ、前記パラボ
ラ反射鏡に太陽追尾装置を共軸に連結してなる太陽熱ボ
イラーであって、 前記パラボラ反射鏡がその鏡面端部に開閉自在に設けた
鏡面保護扉を有し、 前記集熱管の管壁が内部を真空にした透明二重壁からな
り、 前記太陽追尾装置が、その出力軸に接して左右対称に配
置した一対の同形同大の太陽電池を有する太陽電池パネ
ルと、前記出力軸から太陽電池パネル受光面の垂直上方
に向けて凸設した薄い平板状の遮光板と、左右の太陽電
池の発電出力差に応じて付勢され該発電出力差を実質的
にゼロにする方向に太陽電池パネルを出力軸の回りに回
動させるモータとを有し、 さらに前記太陽追尾装置が、太陽電池パネルの裏面に第
3の太陽電池を有し、前記モータが該第3の太陽電池か
らの発電出力によっても付勢され該第3の太陽電池の発
電出力が実質的にゼロになるまで太陽電池パネルを出力
軸の回りに回動させることを特徴とする太陽熱ボイラ
ー。
3. A heat-collecting tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points of a long trough-shaped parabolic reflector, and the parabolic reflector is rotated by a turn corresponding to the focal axis. A solar boiler rotatably supported around a moving axis, and a sun-tracking device coaxially connected to the parabolic reflector, wherein the parabolic reflector is openable and closable at its mirror end. A mirror surface protection door provided, wherein the tube wall of the heat collection tube is formed of a transparent double wall having an interior evacuated, and the sun tracking device is in contact with its output shaft and is symmetrically arranged in a pair of the same shape. A solar cell panel having a large solar cell, a thin flat light-shielding plate projecting vertically from the output shaft to the solar cell panel light-receiving surface, and biased according to the power generation output difference between the left and right solar cells. The solar cell in a direction to make the power generation output difference substantially zero. A motor for rotating the panel around an output shaft; and the sun tracking device further includes a third solar cell on a back surface of a solar cell panel, wherein the motor generates electric power from the third solar cell. A solar boiler which is energized by the output and rotates the solar cell panel around an output shaft until the power output of the third solar cell becomes substantially zero.
【請求項4】トラフ状をなす長形のパラボラ反射鏡の焦
点を連ねた焦点軸上に、受熱流体が流れる集熱管を固定
して配置し、前記パラボラ反射鏡を前記焦点軸と一致す
る回動軸の回りに回動自在に軸支し、かつ、前記パラボ
ラ反射鏡に太陽追尾装置を共軸に連結してなる太陽熱ボ
イラーであって、 前記パラボラ反射鏡がその鏡面端部に開閉自在に設けた
鏡面保護扉を有し、 前記集熱管の管壁が内部を真空にした透明二重壁からな
り、 前記太陽追尾装置が、その出力軸に接して左右対称に配
置した一対の同形同大の太陽電池を有する太陽電池パネ
ルと、前記出力軸から太陽電池パネル受光面の垂直上方
に向けて凸設した薄い平板状の遮光板と、左右の太陽電
池の発電出力差に応じて付勢され該発電出力差を実質的
にゼロにする方向に太陽電池パネルを出力軸の回りに回
動させるモータとを有することを特徴とする太陽熱ボイ
ラー。
4. A heat collecting tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points of a long trough-shaped parabolic reflecting mirror, and the parabolic reflecting mirror is rotated by a time corresponding to the focal axis. A solar boiler rotatably supported around a moving axis, and a sun-tracking device coaxially connected to the parabolic reflector, wherein the parabolic reflector is openable and closable at its mirror end. A mirror surface protection door provided, wherein the tube wall of the heat collection tube is formed of a transparent double wall having an interior evacuated, and the sun tracking device is in contact with its output shaft and is symmetrically arranged in a pair of the same shape. A solar cell panel having a large solar cell, a thin flat light-shielding plate projecting vertically from the output shaft to the solar cell panel light-receiving surface, and biased according to the power generation output difference between the left and right solar cells. The solar cell in a direction to make the power generation output difference substantially zero. Solar boiler and having a motor for rotating the panel about the output shaft.
【請求項5】トラフ状をなす長形のパラボラ反射鏡の焦
点を連ねた焦点軸上に、受熱流体が流れる集熱管を固定
して配置し、前記パラボラ反射鏡を前記焦点軸と一致す
る回動軸の回りに回動自在に軸支し、かつ、前記パラボ
ラ反射鏡に太陽追尾装置を共軸に連結してなる太陽熱ボ
イラーであって、 前記パラボラ反射鏡がその鏡面端部に開閉自在に設けた
鏡面保護扉を有し、 前記太陽追尾装置が、その出力軸に接して左右対称に配
置した一対の同形同大の太陽電池を有する太陽電池パネ
ルと、前記出力軸から太陽電池パネル受光面の垂直上方
に向けて凸設した薄い平板状の遮光板と、左右の太陽電
池の発電出力差に応じて付勢され該発電出力差を実質的
にゼロにする方向に太陽電池パネルを出力軸の回りに回
動させるモータとを有することを特徴とする太陽熱ボイ
ラー。
5. A heat-collecting tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points of a long trough-shaped parabolic reflector, and the parabolic reflector is rotated by a turn that coincides with the focal axis. A solar boiler rotatably supported around a moving axis, and a sun-tracking device coaxially connected to the parabolic reflector, wherein the parabolic reflector is openable and closable at its mirror end. A solar panel having a pair of same-sized and same-sized solar cells arranged symmetrically in contact with the output shaft thereof, and a solar cell panel receiving light from the output shaft. A thin flat light-shielding plate protruding vertically upward from the surface, and a solar cell panel that is energized in accordance with a difference in power generation output between the left and right solar cells and outputs the power generation output difference substantially to zero. Having a motor to rotate about an axis. Solar boiler and butterflies.
【請求項6】トラフ状をなす長形のパラボラ反射鏡の焦
点を連ねた焦点軸上に、受熱流体が流れる集熱管を固定
して配置し、前記パラボラ反射鏡を前記焦点軸と一致す
る回動軸の回りに回動自在に軸支し、かつ、前記パラボ
ラ反射鏡に太陽追尾装置を共軸に連結してなる太陽熱ボ
イラーであって、 前記太陽追尾装置が、その出力軸に接して左右対称に配
置した一対の同形同大の太陽電池を有する太陽電池パネ
ルと、前記出力軸から太陽電池パネル受光面の垂直上方
に向けて凸設した薄い平板状の遮光板と、左右の太陽電
池の発電出力差に応じて付勢され該発電出力差を実質的
にゼロにする方向に太陽電池パネルを出力軸の回りに回
動させるモータとを有することを特徴とする太陽熱ボイ
ラー。
6. A heat collection tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points of a long trough-shaped parabolic reflector, and the parabolic reflector is rotated by a turn that coincides with the focal axis. A solar boiler rotatably supported around a moving axis, and having a sun tracking device coaxially connected to the parabolic reflector, wherein the sun tracking device is in contact with its output shaft and is left and right. A solar cell panel having a pair of symmetrically arranged same-sized and same-sized solar cells, a thin flat light-shielding plate protruding from the output shaft vertically upward of the solar cell panel light-receiving surface, and left and right solar cells And a motor which is energized in accordance with the power generation output difference and rotates the solar cell panel around an output shaft in a direction to make the power generation output difference substantially zero.
【請求項7】トラフ状をなす長形のパラボラ反射鏡の焦
点を連ねた焦点軸上に、受熱流体が流れる集熱管を固定
して配置し、前記パラボラ反射鏡を前記焦点軸と一致す
る回動軸の回りに回動自在に軸支し、かつ、前記パラボ
ラ反射鏡に太陽追尾装置を共軸に連結してなる太陽熱ボ
イラー。
7. A heat collecting tube through which a heat-receiving fluid flows is fixedly arranged on a focal axis connecting the focal points of a long trough-shaped parabolic reflecting mirror, and the parabolic reflecting mirror is rotated by a time corresponding to the focal axis. A solar heat boiler rotatably supported around a moving axis and having a sun tracking device coaxially connected to the parabolic reflector.
【請求項8】前記遮光板の両面が鏡面である請求項2な
いし7のいずれかに記載の太陽熱ボイラー。
8. The solar boiler according to claim 2, wherein both surfaces of said light shielding plate are mirror surfaces.
【請求項9】前記受熱流体が前記集熱管内に設けたU字
管を往復流動することを特徴とする請求項3ないし7の
いずれかに記載の太陽熱ボイラー。
9. A solar boiler according to claim 3, wherein said heat receiving fluid reciprocates in a U-shaped tube provided in said heat collecting tube.
【請求項10】前記太陽追尾装置が太陽電池パネルの裏
面に第3の太陽電池を有し、前記モータが該第3の太陽
電池からの発電出力によっても付勢され、該第3の太陽
電池の発電出力が実質的にゼロになるまで太陽電池パネ
ルを出力軸の回りに回動させることを特徴とする請求項
4ないし7のいずれかに記載の太陽熱ボイラー。
10. The solar tracking device has a third solar cell on a back surface of a solar cell panel, and the motor is also energized by a power output from the third solar cell, and the third solar cell The solar thermal boiler according to any one of claims 4 to 7, wherein the solar cell panel is rotated around an output shaft until the power generation output of the solar battery panel becomes substantially zero.
【請求項11】前記集熱管の管壁が内部を真空にした透
明二重壁からなる請求項5ないし7のいずれかに記載の
太陽熱ボイラー。
11. The solar heat boiler according to claim 5, wherein a wall of the heat collecting tube is a transparent double wall whose inside is evacuated.
【請求項12】前記パラボラ反射鏡がその鏡面端部に開
閉自在に設けた鏡面保護扉を有する請求項6又は7記載
の太陽熱ボイラー。
12. The solar heat boiler according to claim 6, wherein said parabolic reflector has a mirror surface protective door provided at the mirror surface end so as to be openable and closable.
【請求項13】前記太陽追尾装置が、その出力軸に接し
て左右対称に配置した一対の同形同大の太陽電池を有す
る太陽電池パネルと、前記出力軸から太陽電池パネル受
光面の垂直上方に向けて凸設した薄い平板状の遮光板
と、左右の太陽電池の発電出力差に応じて付勢され該発
電出力差を実質的にゼロにする方向に太陽電池パネルを
出力軸の回りに回動させるモータとを有することを特徴
とする請求項7記載の太陽熱ボイラー。
13. A solar cell panel comprising: a pair of same-sized and same-sized solar cells arranged symmetrically in contact with an output shaft of the solar tracking device; and a vertically above a light receiving surface of the solar cell panel from the output shaft. A thin flat light-shielding plate projecting toward the solar cell panel is energized according to the power generation output difference between the left and right solar cells and the solar cell panel is rotated around the output shaft in a direction to make the power generation output difference substantially zero. The solar heat boiler according to claim 7, further comprising a motor for rotating.
JP2000012891A 2000-01-21 2000-01-21 Solar heat boiler Pending JP2001201187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000012891A JP2001201187A (en) 2000-01-21 2000-01-21 Solar heat boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000012891A JP2001201187A (en) 2000-01-21 2000-01-21 Solar heat boiler

Publications (1)

Publication Number Publication Date
JP2001201187A true JP2001201187A (en) 2001-07-27

Family

ID=18540556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000012891A Pending JP2001201187A (en) 2000-01-21 2000-01-21 Solar heat boiler

Country Status (1)

Country Link
JP (1) JP2001201187A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103424A (en) * 2007-10-19 2009-05-14 Kokusai Gijutsu Kaihatsu Co Ltd Vacuum solar heat collecting system
CN102122176A (en) * 2010-12-16 2011-07-13 王新庚 Method for tracking sun by using special single axis according to time variable control and high-temperature heat-collecting device
KR101111975B1 (en) * 2011-03-22 2012-02-14 (주)파크이즈건축사사무소 heat storage device using a parabolic mirror
WO2012070436A1 (en) * 2010-11-26 2012-05-31 コニカミノルタオプト株式会社 Reflecting mirror, mirror structure, and solar thermal power generation system
WO2012076949A1 (en) * 2010-12-07 2012-06-14 Electrotherm Renewables A solar parabolic trough collector or reflector system
CN105222358A (en) * 2015-09-21 2016-01-06 成都申川节能环保工程有限公司 A kind of controlled inverter energy-saving control system integrating solar energy and boiler
CN106403313A (en) * 2016-11-21 2017-02-15 西北农林科技大学 Paraboloidal groove type vertical-shaft tracking solar thermal collector
CN107101404A (en) * 2017-02-26 2017-08-29 西北农林科技大学 A kind of paraboloid trough type omnidirectional tracking solar thermal collector
FR3114379A1 (en) * 2020-09-22 2022-03-25 Isaac WOERLEN SOLAR DEVICE WITH CYLINDRO-PARABOLIC MIRRORS FOR HEATING A HEAT TRANSFER FLUID

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103424A (en) * 2007-10-19 2009-05-14 Kokusai Gijutsu Kaihatsu Co Ltd Vacuum solar heat collecting system
WO2012070436A1 (en) * 2010-11-26 2012-05-31 コニカミノルタオプト株式会社 Reflecting mirror, mirror structure, and solar thermal power generation system
WO2012076949A1 (en) * 2010-12-07 2012-06-14 Electrotherm Renewables A solar parabolic trough collector or reflector system
CN102122176A (en) * 2010-12-16 2011-07-13 王新庚 Method for tracking sun by using special single axis according to time variable control and high-temperature heat-collecting device
KR101111975B1 (en) * 2011-03-22 2012-02-14 (주)파크이즈건축사사무소 heat storage device using a parabolic mirror
CN105222358A (en) * 2015-09-21 2016-01-06 成都申川节能环保工程有限公司 A kind of controlled inverter energy-saving control system integrating solar energy and boiler
CN106403313A (en) * 2016-11-21 2017-02-15 西北农林科技大学 Paraboloidal groove type vertical-shaft tracking solar thermal collector
CN106403313B (en) * 2016-11-21 2018-04-17 西北农林科技大学 A kind of paraboloid trough type vertical shaft tracks solar thermal collector
CN107101404A (en) * 2017-02-26 2017-08-29 西北农林科技大学 A kind of paraboloid trough type omnidirectional tracking solar thermal collector
FR3114379A1 (en) * 2020-09-22 2022-03-25 Isaac WOERLEN SOLAR DEVICE WITH CYLINDRO-PARABOLIC MIRRORS FOR HEATING A HEAT TRANSFER FLUID

Similar Documents

Publication Publication Date Title
US9140468B2 (en) Solar power unit
US8104465B2 (en) Small-scale, concentrating, solar CHP system
JP5797737B2 (en) Solar heat collection system
JP3091001U (en) Solar power generator
WO2017063603A1 (en) Plane-erected wind-solar-electric-heat energy multiplier
CN106403313B (en) A kind of paraboloid trough type vertical shaft tracks solar thermal collector
JP2003113771A (en) Power generating device using solar energy
JP2001201187A (en) Solar heat boiler
JP4621857B2 (en) Solar thermal energy collector
Kalogirou Recent patents in solar energy collectors and applications
JP3315108B1 (en) Seesaw type solar power generation water heater system
EP3423710A1 (en) A combined solar and wind energy collecting apparatus
MX2014006740A (en) Hybrid solar energy recovery system.
JP2004271063A (en) Solar power generation device
CN102654112A (en) Solar power generating station
JP5869284B2 (en) Solar collector
CN211011959U (en) Triangular heat collection and power generation integrated system based on linear Fresnel lens
CN208952437U (en) Photovoltaic-photo-thermal-hot wind integrated heat-collection device
JP2014052171A (en) Light collecting device, solar heat power generation device, photovoltaic power generation device
Sukhatme Solar thermal power generation
CN105577032A (en) Unit type photoelectric-thermoelectric-hot water composite system by use of solar energy full spectrum
WO2008118217A2 (en) Generation of electricity and thermal energy from renewable energy sources
CN109000379A (en) Photovoltaic-photo-thermal-hot wind integrated heat-collection device
CN205425472U (en) Photoelectricity - thermal electricity - hot water integration's unit formula solar energy set composite
CN204304844U (en) Low-temperature solar energy light and heat collection type semiconductor thermo-electric generation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118