JP2003239276A - Construction method for road - Google Patents

Construction method for road

Info

Publication number
JP2003239276A
JP2003239276A JP2003014547A JP2003014547A JP2003239276A JP 2003239276 A JP2003239276 A JP 2003239276A JP 2003014547 A JP2003014547 A JP 2003014547A JP 2003014547 A JP2003014547 A JP 2003014547A JP 2003239276 A JP2003239276 A JP 2003239276A
Authority
JP
Japan
Prior art keywords
road
construction method
columnar body
soft ground
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003014547A
Other languages
Japanese (ja)
Other versions
JP3653083B2 (en
Inventor
Tetsuhiko Miura
哲彦 三浦
Kazuyuki Fujikawa
和之 藤川
Akira Hamatake
章 浜武
Hideki Tanaka
英樹 田中
Shigeru Yoshida
茂 吉田
Isao Kobayashi
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Consultant Kk
TENOTSUKUSU KYUSHU KK
TOKYO HOSO KOGYO
Mitsubishi Materials Corp
Tenox Corp
Dia Consultants Co Ltd
Tenox Kyusyu Corp
Original Assignee
Dia Consultant Kk
TENOTSUKUSU KYUSHU KK
TOKYO HOSO KOGYO
Mitsubishi Materials Corp
Tenox Corp
Dia Consultants Co Ltd
Tenox Kyusyu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Consultant Kk, TENOTSUKUSU KYUSHU KK, TOKYO HOSO KOGYO, Mitsubishi Materials Corp, Tenox Corp, Dia Consultants Co Ltd, Tenox Kyusyu Corp filed Critical Dia Consultant Kk
Priority to JP2003014547A priority Critical patent/JP3653083B2/en
Publication of JP2003239276A publication Critical patent/JP2003239276A/en
Application granted granted Critical
Publication of JP3653083B2 publication Critical patent/JP3653083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method for a road which can be inexpensively constructed in a relatively short construction period, suppresses consolidation settlement caused by a dynamic load in the use of the road constructed on soft ground by filling, and prevents a step from being generated in a boundary between an upper part of an underground structure of the road and a part adjacent to the upper part in the use of the road crossing an area above the underground structure such as a covered conduit provided on the soft ground. <P>SOLUTION: A plurality of columnar bodies 20, which are short enough to prevent an arrival at a bearing layer below the soft ground 11, are constructed in the soft ground 11 of a road foundation at an improvement rate of 10-50%, a net-like body 21 for reinforcement is laid on the columnar bodies 20; either or both of an additive material and an additive agent is or are further added to sediment and a solidifying material, and fixed for solidification, so that a shallow-layer improving soil layer 13 can be laid on the net-like body 21; and a road pavement 18 is constructed on the soil layer 13. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軟弱地盤上に盛土
により道路を構築する際の構築工法に関する。また軟弱
地盤上に設けられた暗渠などの地下構造物の上を横断す
る道路を盛土により構築する工法に関するものである。
TECHNICAL FIELD The present invention relates to a construction method for constructing a road by embankment on soft ground. The present invention also relates to a method of constructing a road crossing over an underground structure such as an underdrain provided on soft ground by embankment.

【0002】[0002]

【従来の技術】埋土層や沖積層の層厚が厚い軟弱地盤の
上に盛土により道路を構築する場合には次の工法が採ら
れている。先ず図9に示すように軟弱地盤1の浅層部分
にセメント系固化材を乾式混合した後固化して浅層改良
土層2aを形成することにより、浅層の剛性を高めた改
良地盤2とするか、或いは図10に示すように軟弱地盤
1の浅層部分に生石灰を乾式混合した後固化して浅層改
良土層2bを形成し、更にこの浅層改良土層2bの上に
Fe石灰を乾式混合した後固化して浅層改良土層2cを
形成することにより、浅層の剛性を高めた改良地盤2と
する。次いで図9及び図10に示すように、この改良地
盤2を路床として、この上にクラッシャーラン層3a及
び粒度調整用砕石層3bからなる盛土を設けて路盤3と
した後、路盤3の上にアスファルト・コンクリート層4
を設けて舗装している。なお、本明細書では、路盤と舗
装とを分離せずに両者を合せて道路舗装という。
2. Description of the Related Art The following construction method is adopted when constructing a road by embankment on a soft ground having a thick layer of buried soil or alluvium. First, as shown in FIG. 9, the cement-based solidifying material is dry-mixed in the shallow layer portion of the soft ground 1 and then solidified to form the shallow-layer improved soil layer 2a, thereby improving the rigidity of the shallow layer 2 and the improved ground 2. Alternatively, as shown in FIG. 10, quick lime is dry-mixed in the shallow layer portion of the soft ground 1 and then solidified to form a shallow improved soil layer 2b, and Fe lime is further formed on the shallow improved soil layer 2b. Is mixed by dry mixing and then solidified to form a shallow-layer improved soil layer 2c, thereby forming the improved ground 2 having an increased rigidity of the shallow layer. Next, as shown in FIGS. 9 and 10, the improved ground 2 is used as a subgrade, and an embankment composed of a crusher run layer 3a and a crushed stone layer 3b for particle size adjustment is provided on the subgrade to form the subbase 3 and then the subgrade 3 Asphalt concrete layer 4
Has been paved. In this specification, the roadbed and the pavement are not separated but are referred to as road pavement.

【0003】また図11又は図12に示すように、埋土
層や沖積層の層厚が厚い軟弱地盤1の浅層部分に沈下を
抑制された暗渠などの地下構造物6を設け、この地下構
造物6を横断する道路をこの地下構造物6及び地下構造
物以外の軟弱地盤1の上を道路舗装することにより構築
する場合には、先ず軟弱地盤1の深層部分に軟弱地盤の
下方の支持層7に到達する支持杭8で地下構造物6を支
持した後、地下構造物以外の軟弱地盤1の浅層部分に、
図9又は図10と同様に改良地盤2及び路盤3を形成し
た後、路盤3の上にアスファルト・コンクリート層4を
設けて舗装している。橋梁の取付部においては、橋台の
埋戻し土層或いは盛土層の沈下による橋台付近での段差
防止策として、踏掛版工法が用いられている。
Further, as shown in FIG. 11 or FIG. 12, an underground structure 6 such as an underdrain whose settlement is suppressed is provided in the shallow layer portion of the soft ground 1 where the buried soil layer and the alluvial layer are thick When constructing a road crossing the structure 6 by pavement on the soft ground 1 other than the underground structure 6 and the underground structure, first, in the deep portion of the soft ground 1, the lower part of the soft ground is supported. After supporting the underground structure 6 with the support piles 8 that reach the layer 7, in the shallow layer portion of the soft ground 1 other than the underground structure,
After forming the improved ground 2 and the roadbed 3 as in FIG. 9 or 10, the asphalt / concrete layer 4 is provided on the roadbed 3 for paving. At the mounting part of the bridge, the stepping method is used as a measure to prevent a step near the abutment due to the subsidence of the backfill soil layer or the embankment layer of the abutment.

【0004】[0004]

【発明が解決しようとする課題】道路の路床には盛土に
よる静的荷重とともに自動車の走行による動的荷重が加
わり、これらの荷重が路床に伝達される。動的荷重の大
きさは、盛土厚さが1.0m程度と薄い場合には、静的
荷重に匹敵し、かつ、長期間繰り返し作用する性質があ
る。そのため、地盤の改良の程度が十分でない場合、静
的荷重による圧密沈下には十分に耐えられても、その数
倍の動的荷重には耐えられず、道路が動的荷重により圧
密沈下し続けることになる。一方、地盤を十分に改良す
れば、動的荷重による圧密沈下を抑制することは可能で
あるが、地盤改良の程度と動的荷重による圧密沈下の抑
制効果との関連が十分に把握されていないため、圧密沈
下を抑制しようとするあまり、過剰に地盤改良を行って
無用に工期が長引かせ、無駄な工費の支出を招くことが
多かった。
A static load due to embankment and a dynamic load due to running of an automobile are applied to the roadbed of the road, and these loads are transmitted to the roadbed. When the embankment thickness is as thin as about 1.0 m, the dynamic load is comparable to the static load and has a property of repeatedly acting for a long period of time. Therefore, if the degree of ground improvement is not sufficient, even if it can sufficiently withstand the consolidation settlement due to static load, it will not be able to withstand several times that dynamic load, and the road will continue to undergo consolidation settlement due to the dynamic load. It will be. On the other hand, if the ground is sufficiently improved, it is possible to suppress consolidation settlement due to dynamic load, but the relationship between the degree of ground improvement and the suppression effect of consolidation settlement due to dynamic load is not fully understood. For this reason, excessive attempts were made to suppress consolidation settlement, resulting in excessive ground improvement and unnecessarily prolonging the construction period, resulting in wasted construction costs.

【0005】また地下構造物及び地下構造物以外の軟弱
地盤の上を道路舗装することにより構築する場合には、
地下構造物は支持杭で支持されているため、沈下するこ
とはなく、沈下してもごく僅かである。この殆ど沈下し
ない地下構造物を横断して構築した道路に上述した静的
荷重と動的荷重が加わると、図11又は図12の破線で
示すように道路の地下構造物6の上の部分とそれに隣接
する部分との境界に段差Aを生じ、自動車の円滑な走行
を阻害していた。このような段差は、補修しても繰り返
し生じる。
In the case of constructing by constructing an underground structure and a soft ground other than the underground structure by paving the road,
Since the underground structure is supported by the support piles, it does not sink, and even if it sinks, it is very small. When the static load and the dynamic load described above are applied to the road constructed by traversing the underground structure which hardly causes the subsidence, as shown by the broken line in FIG. 11 or FIG. A step A is formed at the boundary with the adjacent portion, which hinders smooth running of the automobile. Such steps are repeatedly generated even when repaired.

【0006】本発明の目的は、比較的短い工期で安価に
構築でき、軟弱地盤上に盛土により構築された道路が使
用された際に、動的荷重による圧密沈下を抑制する道路
の構築工法を提供することにある。本発明の別の目的
は、比較的短い工期で安価に構築でき、軟弱地盤上に設
けられた暗渠などの地下構造物の上を横断する道路が使
用された際に、道路の地下構造物の上の部分とそれに隣
接する部分との境界に段差を生じさせない道路の構築工
法を提供することにある。
An object of the present invention is to provide a road construction method which can be constructed at a relatively short construction period at low cost and which suppresses consolidation settlement due to dynamic load when a road constructed by embankment on soft ground is used. To provide. Another object of the present invention is a relatively short construction period, which can be constructed inexpensively, and when a road crossing over an underground structure such as an underdrain provided on soft ground is used, the underground structure of the road is used. It is to provide a road construction method that does not cause a step at the boundary between the upper portion and the adjacent portion.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、道路基礎の軟弱地盤11に複数本の
柱状体20を軟弱地盤下方の支持層に到達しない長さで
かつ10〜50%の改良率で構築し、これら複数本の柱
状体20の上に補強用網状体21を敷設し、この補強用
網状体21の上に土砂と固化材に添加材又は添加剤のい
ずれか一方又は双方を更に加えて混合して固化すること
により浅層改良土層13を敷設し、この浅層改良土層1
3の上に道路舗装18を構築することを特徴とする道路
の構築工法である。柱状体20の上に補強用網状体21
を敷設し、この上に土砂と固化材に添加材又は添加剤の
いずれか一方又は双方を更に加えて混合して固化するこ
とにより浅層改良土層13を敷設し、更に道路舗装18
を行うことにより、図9及び図10に示したクラッシャ
ーラン層3aの厚さを小さくして、道路の動的荷重によ
る圧密沈下をより一層抑制することができる。また柱状
体20は軟弱地盤11の下方の支持層に到達しない長さ
であるため、工期の短縮と工費の節減につながる。
The invention according to claim 1 is
As shown in FIG. 1, a plurality of pillars 20 are constructed on the soft ground 11 of the road foundation with a length that does not reach the supporting layer below the soft ground and with an improvement rate of 10 to 50%. By laying a reinforcing mesh body 21 on the body 20 and further adding either or both of an additive material and / or an additive to the earth and sand and the solidifying material on the reinforcing mesh body 21 to solidify The shallow improved soil layer 13 is laid, and this shallow improved soil layer 1
3 is a road construction method characterized in that a road pavement 18 is constructed on top of the construction No. 3. Reinforcing net 21 on top of column 20
Is laid, and one or both of the additive and the additive are further added to the soil and the solidifying material, and mixed and solidified to lay the shallow improved soil layer 13, and the road pavement 18
By doing so, the thickness of the crusher run layer 3a shown in FIGS. 9 and 10 can be reduced, and the consolidation settlement due to the dynamic load on the road can be further suppressed. Further, since the columnar body 20 has a length that does not reach the supporting layer below the soft ground 11, the construction period is shortened and the construction cost is reduced.

【0008】請求項2に係る発明は、図2に示すよう
に、道路基礎の軟弱地盤11に埋設され沈下を抑制され
た地下構造物12の近傍の軟弱地盤11に複数本の柱状
体20を軟弱地盤下方の支持層16に到達しない長さで
地下構造物12から遠ざかるに従って段々に短くなるよ
うに10〜50%の改良率で構築し、これら複数本の柱
状体20の上に補強用網状体21を敷設し、地下構造物
12及び補強用網状体21の上に道路舗装18を構築す
ることを特徴とする道路の構築工法である。柱状体20
の上に補強用網状体21を介して道路舗装18を行うこ
とにより、図11及び図12に示した改良地盤2を省略
して、道路の動的荷重による圧密沈下を抑制することが
でき、また複数本の柱状体20を地下構造物12から遠
ざかるに従って段々に短くなるようにしたので、道路が
使用された際に、地下構造物12の近傍では圧密沈下を
極力抑制し、離れるに従って徐々にある程度の圧密沈下
を許容するようにする。これにより、道路の地下構造物
12の上の部分とそれに隣接する部分との境界に発生す
る段差を抑制することができる。また柱状体20は軟弱
地盤11の下方の支持層16に到達しない長さであるた
め、工期の短縮と工費の節減につながる。
In the invention according to claim 2, as shown in FIG. 2, a plurality of columnar bodies 20 are provided in the soft ground 11 in the vicinity of the underground structure 12 which is buried in the soft ground 11 of the road foundation and whose settlement is suppressed. Constructed at an improvement rate of 10 to 50% such that the length does not reach the support layer 16 below the soft ground and becomes gradually shorter as the distance from the underground structure 12 increases, and the reinforcing net-like structure is provided on the plurality of columnar bodies 20. The road construction method is characterized in that a body 21 is laid and a road pavement 18 is constructed on the underground structure 12 and the reinforcing net 21. Columnar body 20
By performing the road pavement 18 through the reinforcing net 21 on the above, the improved ground 2 shown in FIGS. 11 and 12 can be omitted, and the consolidation settlement due to the dynamic load of the road can be suppressed, Moreover, since the plurality of columnar bodies 20 are gradually shortened as the distance from the underground structure 12 is increased, when the road is used, the consolidation settlement is suppressed as much as possible in the vicinity of the underground structure 12, and the distance is gradually increased as the distance increases. Allow a certain degree of consolidation settlement. Accordingly, it is possible to suppress the step generated at the boundary between the portion above the underground structure 12 of the road and the portion adjacent thereto. Further, since the columnar body 20 has a length that does not reach the support layer 16 below the soft ground 11, the construction period is shortened and the construction cost is reduced.

【0009】請求項3に係る発明は、図3に示すよう
に、道路基礎の軟弱地盤11に埋設され沈下を抑制され
た地下構造物12の近傍の軟弱地盤11に複数本の柱状
体20を軟弱地盤下方の支持層16に到達しない長さで
地下構造物12から遠ざかるに従って段々に短くなるよ
うに10〜50%の改良率で構築し、これら複数本の柱
状体20の上に土砂と固化材を混合して固化することに
より浅層改良土層13を敷設し、この地下構造物12及
び浅層改良土層13の上に道路舗装18を構築すること
を特徴とする道路の構築工法である。請求項4に係る発
明は、請求項3に係る発明であって、土砂と固化材に添
加材又は添加剤のいずれか一方又は双方を更に加えて混
合して固化することにより浅層改良土層13を敷設する
道路の構築工法である。柱状体20の上に、土砂と固化
材に添加材又は添加剤のいずれか一方又は双方を更に加
えて混合して固化することにより浅層改良土層13を敷
設し、この上に道路舗装18を行うことにより、図11
及び図12に示したクラッシャーラン層3aの厚さを小
さくして、道路の動的荷重による圧密沈下を抑制するこ
とができ、また複数本の柱状体20を地下構造物12か
ら遠ざかるに従って段々に短くなるようにしたので、請
求項2に係る発明と同様に、道路が使用された際に、道
路の地下構造物12の上の部分とそれに隣接する部分と
の境界に段差を生じさせない。また柱状体20は軟弱地
盤11の下方の支持層16に到達しない長さであるた
め、工期の短縮と工費の節減につながる。
In the invention according to claim 3, as shown in FIG. 3, a plurality of columnar bodies 20 are provided in the soft ground 11 near the underground structure 12 which is buried in the soft ground 11 of the road foundation and whose settlement is suppressed. Constructed at a rate of improvement of 10 to 50% so that the length does not reach the support layer 16 below the soft ground and becomes gradually shorter as it goes away from the underground structure 12, and solidification with earth and sand on these plural columnar bodies 20. A road construction method characterized by laying a shallow improved soil layer 13 by mixing and solidifying materials and constructing a road pavement 18 on the underground structure 12 and the shallow improved soil layer 13. is there. The invention according to claim 4 is the invention according to claim 3, wherein either one or both of the additive and the additive are further added to the earth and sand and the solidifying material, and they are mixed and solidified to form a shallow layer improved soil layer. It is a road construction method for laying 13. A shallow improved soil layer 13 is laid on the columnar body 20 by further adding one or both of the additive and the additive to the solidifying material and the solidifying material to solidify, and the road pavement 18 is laid on this. By performing
Also, the thickness of the crusher run layer 3a shown in FIG. 12 can be reduced to suppress consolidation settlement due to a dynamic load on the road, and the plurality of columnar bodies 20 are gradually shortened as they are moved away from the underground structure 12. Therefore, as in the invention according to claim 2, when the road is used, a step is not generated at the boundary between the portion above the underground structure 12 of the road and the portion adjacent thereto. Further, since the columnar body 20 has a length that does not reach the support layer 16 below the soft ground 11, the construction period is shortened and the construction cost is reduced.

【0010】請求項5に係る発明は、図4に示すよう
に、道路基礎の軟弱地盤11に埋設され沈下を抑制され
た地下構造物12の近傍の軟弱地盤11に複数本の柱状
体20を軟弱地盤下方の支持層16に到達しない長さで
地下構造物12から遠ざかるに従って段々に短くなるよ
うに10〜50%の改良率で構築し、これら複数本の柱
状体20の上に補強用網状体21を敷設し、この補強用
網状体21の上に土砂と固化材に添加材又は添加剤のい
ずれか一方又は双方を更に加えて混合して固化すること
により浅層改良土層13を敷設し、地下構造物12及び
浅層改良土層13の上に道路舗装18を構築することを
特徴とする道路の構築工法である。柱状体20の上に補
強用網状体21を敷設し、この上に土砂と固化材に添加
材又は添加剤のいずれか一方又は双方を更に加えて混合
して固化することにより浅層改良土層13を敷設し、更
に道路舗装18を行うことにより、図11及び図12に
示したクラッシャーラン層3aの厚さを小さくして、道
路の動的荷重による圧密沈下をより一層抑制することが
でき、また複数本の柱状体20を地下構造物12から遠
ざかるに従って段々に短くなるようにしたので、請求項
2に係る発明と同様に、道路が使用された際に、道路の
地下構造物12の上の部分とそれに隣接する部分との境
界に発生する段差を抑制することができる。また柱状体
20は軟弱地盤11の下方の支持層16に到達しない長
さであるため、工期の短縮と工費の節減につながる。
In the invention according to claim 5, as shown in FIG. 4, a plurality of columnar bodies 20 are provided in the soft ground 11 near the underground structure 12 which is buried in the soft ground 11 of the road foundation and whose settlement is suppressed. Constructed at an improvement rate of 10 to 50% such that the length does not reach the support layer 16 below the soft ground and becomes gradually shorter as the distance from the underground structure 12 increases, and the reinforcing net-like structure is provided on the plurality of columnar bodies 20. The body 21 is laid, and the shallow improved soil layer 13 is laid by further adding one or both of the additive and the additive to the solidifying material on the reinforcing net 21 and mixing and solidifying However, the road construction method is characterized in that the road pavement 18 is constructed on the underground structure 12 and the shallow layer improved soil layer 13. The reinforcing net 21 is laid on the columnar body 20, and the sand and the solidifying material are further added with either one or both of the additive material and the additive, and the mixture is mixed to solidify the shallow layer improved soil layer. By laying 13 and further performing road pavement 18, the thickness of the crusher run layer 3a shown in FIGS. 11 and 12 can be reduced, and the consolidation settlement due to the dynamic load of the road can be further suppressed. Further, since the plurality of columnar bodies 20 are gradually shortened as the distance from the underground structure 12 is increased, as in the invention according to claim 2, when the road is used, the top of the underground structure 12 of the road is increased. It is possible to suppress the step generated at the boundary between the portion of and the portion adjacent thereto. Further, since the columnar body 20 has a length that does not reach the support layer 16 below the soft ground 11, the construction period is shortened and the construction cost is reduced.

【0011】請求項6に係る発明は、請求項1、4又は
5に係る発明であって、土砂と固化材に添加材又は添加
剤のいずれか一方又は双方を更に加えて湿式混合して固
化することにより浅層改良土層13を敷設する道路の構
築工法である。湿式混合することにより、施工現場にお
ける粉体による発塵が抑制され、現場近隣の環境を粉体
で汚染することがなくなる。また湿式混合方式では締め
固めを必要とせず、品質のばらつきも少なくできる。
The invention according to claim 6 is the invention according to claim 1, 4 or 5, wherein either one or both of the additive and the additive are further added to the earth and sand and the solidifying material, and the mixture is wet-mixed and solidified. This is a road construction method for laying the improved shallow soil layer 13. By wet mixing, dust generation by powder at the construction site is suppressed, and the environment near the site is not contaminated with powder. In addition, the wet mixing method does not require compaction and can reduce variations in quality.

【0012】請求項7に係る発明は、請求項1、4、5
又は6に係る発明であって、添加材が発泡ビーズ又は籾
殻からなり、添加剤が気泡発生体からなり、添加材又は
添加剤のいずれか一方又は双方が発泡ビーズ、籾殻及び
気泡発生体からなる群より選ばれた1種又は2種以上の
低密度体である道路の構築工法である。添加材又は添加
剤として低密度体を加えることにより、浅層改良土層1
3を軽量化でき、浅層改良土層による静的荷重を低減す
ることができる。また低密度体が動的荷重による振動を
吸収するため、動的圧密沈下量を低減することができ
る。
The invention according to claim 7 relates to claims 1, 4, 5
Or the invention according to 6, wherein the additive material is foamed beads or rice husks, the additive is a bubble generator, and either one or both of the additive material and the additive is foamed beads, rice husks and bubble generators It is a road construction method that is one or more low-density bodies selected from the group. Shallow layer improved soil layer 1 by adding low density material as additive or additive
3 can be made lighter and the static load due to the shallow layer improved soil layer can be reduced. Further, since the low density body absorbs the vibration due to the dynamic load, the amount of dynamic consolidation settlement can be reduced.

【0013】請求項8に係る発明は、請求項1、4、5
又は6に係る発明であって、添加材が産業廃棄物の焼却
により形成されたクリンカである道路の構築工法であ
る。この工法によれば、産業廃棄物の焼却により形成さ
れた、処分に困窮しているクリンカを有効利用すること
ができる。
The invention according to claim 8 relates to claims 1, 4, and 5.
Or the invention according to 6, wherein the additive material is a road construction method in which the additive material is a clinker formed by incineration of industrial waste. According to this construction method, it is possible to effectively utilize the clinker which is formed by the incineration of industrial waste and is in need of disposal.

【0014】請求項9に係る発明は、請求項1、4、5
又は6に係る発明であって、添加材が無機繊維又は合成
繊維である道路の構築工法である。添加材として上記繊
維を加えることにより、浅層改良土層13が補強され、
交通荷重による改良地盤の割れを防止し、改良地盤の耐
久性が向上する。また繊維を含まない浅層改良土層より
層厚を薄くしても繊維を含まない浅層改良土層と同等の
耐久性が得られる。
The invention of claim 9 relates to claim 1, 4, 5
Or the invention according to 6, wherein the additive is an inorganic fiber or a synthetic fiber. By adding the above fibers as an additive, the shallow improved soil layer 13 is reinforced,
Prevents cracking of the improved ground due to traffic load and improves the durability of the improved ground. Further, even if the layer thickness is made thinner than the shallow improved soil layer containing no fibers, the same durability as that of the shallow improved soil layer containing no fibers can be obtained.

【0015】請求項10に係る発明は、請求項1ないし
3又は5いずれか1項に係る発明であって、柱状体20
が既製杭又は地盤改良柱状体である道路の構築工法であ
る。柱状体に既製杭を用いることにより、より短い工期
で安価に施工でき、地盤改良柱状体を用いることによ
り、道路の圧密沈下をより確実に防止できる。
The invention according to claim 10 is the invention according to any one of claims 1 to 3 or 5, which is a columnar body 20.
Is a road construction method with ready-made piles or ground improvement columns. By using ready-made piles for the pillars, it is possible to construct at a lower construction period and at a lower cost, and by using the ground improvement pillars, it is possible to more reliably prevent consolidation settlement of roads.

【0016】請求項11に係る発明は、図5に示すよう
に、請求項1ないし3又は5いずれか1項に係る発明で
あって、柱状体20が地盤改良柱状体であって、この柱
状体20の胴部20aに節部20bを有する道路の構築
工法である。地盤改良柱状体の胴部に節部20bを設け
ることにより、地盤改良柱状体の沈下抵抗力が高まり、
道路の圧密沈下を更により確実に防止できる。
As shown in FIG. 5, the invention according to claim 11 is the invention according to any one of claims 1 to 3 or 5, wherein the columnar body 20 is a ground improvement columnar body. This is a road construction method in which a body portion 20a of a body 20 has a node portion 20b. By providing the node portion 20b on the trunk of the ground improvement columnar body, the sinking resistance of the ground improvement columnar body is increased,
The settlement of roads can be prevented more reliably.

【0017】請求項12に係る発明は、図6に示すよう
に、請求項1ないし3、5又は11いずれか1項に係る
発明であって、柱状体20が地盤改良柱状体であって、
この柱状体20の先端が胴部20aより大径の拡大部2
0cを有する道路の構築工法である。地盤改良柱状体の
先端に胴部より大径の拡大部20cを設けることによ
り、地盤改良柱状体の沈下抵抗力が高まり、道路の圧密
沈下を更により確実に防止できる。
As shown in FIG. 6, the invention according to claim 12 is the invention according to any one of claims 1 to 3, 5 or 11, wherein the columnar body 20 is a ground improvement columnar body,
The tip of the columnar body 20 has an enlarged portion 2 having a diameter larger than that of the body portion 20a.
It is a road construction method with 0c. By providing the enlarged portion 20c having a larger diameter than the trunk portion at the tip of the soil improvement columnar body, the settlement resistance of the soil improvement columnar body is increased, and the consolidation settlement of the road can be prevented more reliably.

【0018】請求項13に係る発明は、請求項1ないし
3、5、11又は12いずれか1項に係る発明であっ
て、柱状体20が地盤改良柱状体であって、柱状体20
が無機繊維又は合成繊維を含む道路の構築工法である。
柱状体に上記繊維を含ませることにより、軟弱地盤の側
方流動により柱状体に亀裂が生じても、柱状体の曲げ抵
抗力が発揮されて、その後の側方流動を抑えることがで
きる。
The invention according to claim 13 is the invention according to any one of claims 1 to 3, 5, 11 or 12, wherein the columnar body 20 is a ground improvement columnar body.
Is a road construction method that includes inorganic fibers or synthetic fibers.
By including the fibers in the columnar body, even if a crack is generated in the columnar body due to the lateral flow of the soft ground, the bending resistance of the columnar body is exerted, and the lateral flow thereafter can be suppressed.

【0019】請求項14に係る発明は、請求項1ないし
3、5又は11ないし13いずれか1項に係る発明であ
って、柱状体20が地盤改良柱状体であって、この柱状
体20を機械撹拌法又は高圧噴射撹拌法により構築する
道路の構築工法である。地盤改良柱状体を機械撹拌法に
より構築することにより、安価でかつ土質にかかわらず
改良体の外径を一定に築造することができる。また地盤
改良柱状体を高圧噴射撹拌法により構築することによ
り、施工機械を小型化、軽量化することができるように
なり、狭い場所や既設の踏掛版の下にも施工することが
できる。
The invention according to claim 14 is the invention according to any one of claims 1 to 3, 5 or 11 to 13, wherein the columnar body 20 is a ground improvement columnar body. It is a road construction method constructed by mechanical stirring or high-pressure jet stirring. By constructing the ground improvement columnar body by the mechanical agitation method, it is possible to inexpensively build the outer diameter of the improvement body regardless of the soil quality. Further, by constructing the ground improvement columnar body by the high-pressure injection stirring method, the construction machine can be made smaller and lighter, and the construction machine can be constructed even in a narrow place or under an existing step plate.

【0020】[0020]

【発明の実施の形態】本発明は、軟弱地盤にこの軟弱地
盤下方の支持層に到達しない柱状体を構築し、柱状体の
上に補強用網状体又は浅層改良土層或いは補強用網状体
と浅層改良土層の双方を敷設したものである。上記組合
せを採用する際には、柱状体の長さと道路舗装の厚さ
に、浅層改良土層の厚さを加えた値Lが交通荷重、即ち
動的荷重による圧密沈下を抑制するための大きな条件で
ある。柱状体の改良率を10〜50%の範囲に構築し、
かつこの値Lを4m以上にすれば、動的荷重による圧密
沈下を実質的に解消することができる。ここで、柱状体
の改良率とは、図7及び図8に示すように柱状体を上方
から視たときの改良地盤の単位面積に占める柱状体断面
積の百分率をいう。柱状体の改良率が10%未満では圧
密沈下を十分に抑制することができず、50%を越えた
場合、かえって工期及び工費がかさむ不具合がある。好
ましくはこの改良率は15〜30%である。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a columnar body which does not reach a supporting layer below the soft ground is constructed on a soft ground, and a reinforcing net or a shallow improved soil layer or a reinforcing net is formed on the pillar. And the improved shallow soil layer. When the above-mentioned combination is adopted, the value L obtained by adding the thickness of the shallow layer improved soil layer to the length of the columnar body and the thickness of the road pavement suppresses the consolidation settlement due to the traffic load, that is, the dynamic load. It is a big condition. Build the improvement rate of the columnar body in the range of 10-50%,
Moreover, if this value L is set to 4 m or more, consolidation settlement due to a dynamic load can be substantially eliminated. Here, the improvement rate of the columnar body means the percentage of the cross-sectional area of the columnar body to the unit area of the improved ground when the columnar body is viewed from above as shown in FIGS. 7 and 8. If the improvement rate of the columnar body is less than 10%, consolidation settlement cannot be sufficiently suppressed, and if it exceeds 50%, there is a problem that the construction period and the construction cost are rather increased. Preferably, this improvement rate is 15 to 30%.

【0021】上記値Lは4m以上必要ではあるが、大き
くしてもそれ程動的圧密沈下の抑制効果は大きくならな
い。しかし、値Lが大きくなればそれに応じて静的圧密
沈下の抑制効果は大きくなる。本発明では、過剰な地盤
改良を避けるために、図2〜図4に示すように柱状体の
下端は軟弱地盤11の下方の支持層16にまで到達しな
い。図1には支持層を示していないが、同様に柱状体2
0は支持層まで到達しない。軟弱地盤の層厚及びその軟
弱程度、荷重条件、経済性などを考慮して、この値Lの
最大値は適宜決められる。図2に示すように浅層改良土
層を設けずに、補強用網状体21の上に直接道路舗装1
8が施される場合には、柱状体20の改良率を大きくす
る必要がある。図2〜図4に示すように、地下構造物の
近傍には長い柱状体を構築し、この地下構造物から離れ
るに従って段々に短い柱状体を構築する場合の段差解消
工法では、効率的かつ経済的に行う必要から、地下構造
物近傍の地盤改良の諸条件は、図1に示す道路全長にわ
たって改良する場合と同じ条件が適用され、地下構造物
から離れるに従って柱状体の長さが段々に短くなり、最
後にはゼロになる点が異なる。
The above value L is required to be 4 m or more, but even if it is increased, the effect of suppressing the dynamic consolidation settlement is not so great. However, as the value L increases, the effect of suppressing static consolidation settlement increases accordingly. In the present invention, in order to avoid excessive ground improvement, the lower end of the columnar body does not reach the support layer 16 below the soft ground 11 as shown in FIGS. Although the support layer is not shown in FIG.
0 does not reach the support layer. The maximum value of this value L is appropriately determined in consideration of the layer thickness of the soft ground and its softness, the load condition, the economical efficiency and the like. As shown in FIG. 2, the road improved pavement 1 is directly provided on the reinforcing net 21 without providing the improved shallow soil layer.
When 8 is applied, it is necessary to increase the improvement rate of the columnar body 20. As shown in Fig. 2 to Fig. 4, when the long pillars are constructed near the underground structure, and the pillars are gradually shortened as they are separated from the underground structure, the step eliminating method is efficient and economical. Since it is necessary to do so, the conditions for ground improvement near the underground structure are the same as those for the improvement over the entire length of the road shown in Fig. 1, and the length of the pillar gradually shortens as the distance from the underground structure increases. , And finally becomes zero.

【0022】図1、図2及び図4に示す、本発明の補強
用網状体21は無機繊維、合成繊維、合成樹脂、スチー
ルなどの材料から形成された網状体である。無機繊維又
は合成繊維からなる網状体は、この繊維から紐状体を作
り、これを製網したものである。無機繊維にはガラス繊
維が、また合成繊維にはポリアミド系のナイロン繊維、
ポリオレフィン系のポリエチレン繊維、ポリプロピレン
繊維等が例示される。合成樹脂にはポリエチレンやポリ
プロピレン樹脂等が例示される。スチールからなる網状
体は、板状のスチールに周縁を残して多数本の切れ目を
平行に入れた後、切れ目と直交する方向に板状のスチー
ルの両縁を引張ることにより形成される。上記網状体の
網目の間隔は10〜200mmであり、要求される補強
程度により、補強用網状体を1枚で使用するか、或いは
複数枚重ね合せて使用する。
The reinforcing net 21 of the present invention shown in FIGS. 1, 2 and 4 is a net formed of a material such as an inorganic fiber, a synthetic fiber, a synthetic resin or steel. The mesh-like body made of inorganic fibers or synthetic fibers is a string-like body made of the fibers and meshed. Inorganic fibers are glass fibers, synthetic fibers are polyamide-based nylon fibers,
Examples include polyolefin-based polyethylene fibers and polypropylene fibers. Examples of the synthetic resin include polyethylene and polypropylene resin. The reticulate body made of steel is formed by making a large number of cuts in parallel with each other in a plate-shaped steel leaving a peripheral edge and then pulling both edges of the plate-shaped steel in a direction orthogonal to the cuts. The mesh size of the mesh is 10 to 200 mm, and one reinforcing mesh or a plurality of reinforcing meshes may be used depending on the required degree of reinforcement.

【0023】図1、図3及び図4に示す、本発明の浅層
改良土層13は土砂と、粉体又はスラリー状のセメン
ト、セメント系固化材、生石灰等の固化材と、添加材又
は添加剤のいずれか一方又は双方とを均一に混合して固
化することにより敷設される。対象地盤の含水状態によ
り、混合して締め固めて浅層改良土層を形成する場合
と、締め固めずに形成する場合がある。対象地盤の含水
率が少ない場合で、スラリー状の固化材を用いて、この
固化材と土砂に添加材又は添加剤のいずれか一方又は双
方を更に加えて湿式混合すれば、施工現場における粉体
による発塵が抑制され、現場近隣の環境を粉体で汚染す
ることがなくなる。
The shallow improved soil layer 13 of the present invention shown in FIGS. 1, 3 and 4 is earth and sand, a cement in the form of powder or slurry, a cement-based solidifying material, a solidifying material such as quick lime, an additive material or It is laid by uniformly mixing one or both of the additives and solidifying. Depending on the water content of the target ground, it may be mixed and compacted to form a shallow improved soil layer, or it may be formed without compaction. When the water content of the target ground is low, if a solidifying material in the form of a slurry is used, and either one or both of the additional material or the additive is further added to this solidifying material and earth and sand and wet mixed, powder at the construction site Dust generation is suppressed and the environment near the site is not contaminated with powder.

【0024】本発明の添加材には、発泡ビーズ、籾殻等
の低密度体や、産業廃棄物の焼却により形成されたクリ
ンカや、無機繊維又は合成繊維等が挙げられる。また本
発明の添加剤には気泡発生体が挙げられる。上記添加材
又は添加剤は1種類でも、2種以上混合して添加しても
よい。添加材と添加剤とを混合してもよい。発泡ビーズ
は浅層改良土層を形成する材料100体積%に対して2
0〜50体積%添加する。20体積%未満では添加目的
を達成できず、50体積%を越えると固化したときの浅
層改良土層の強度が低下する。上記低密度体を加えるこ
とによって、浅層改良土層が軽量化され、静的圧密沈下
量を小さくできるとともに、浅層改良土層の弾性係数が
小さくなり、交通荷重による動的荷重を吸収する。これ
に伴って柱状体の長さを短くしても圧密沈下を防止する
ことができる。
Examples of the additive of the present invention include foamed beads, low-density materials such as rice husks, clinker formed by incineration of industrial waste, inorganic fibers or synthetic fibers. Further, the additive of the present invention includes a bubble generator. The above-mentioned additives or additives may be added singly or as a mixture of two or more kinds. You may mix an additive and an additive. Foamed beads are 2 per 100% by volume of the material forming the shallow soil layer.
Add 0-50% by volume. If it is less than 20% by volume, the purpose of addition cannot be achieved, and if it exceeds 50% by volume, the strength of the shallow-layer improved soil layer when solidified decreases. By adding the low density body, the shallow layer improved soil layer can be made lighter in weight, the static consolidation settlement amount can be reduced, and the elastic coefficient of the shallow layer improved soil layer can be reduced to absorb the dynamic load due to traffic load. . Along with this, even if the length of the columnar body is shortened, consolidation settlement can be prevented.

【0025】低密度体の気泡発生体としてはポリオキシ
エチレンアルキルエーテル系化合物や高級アルコール硫
酸エステル系化合物等が例示される。この気泡発生体は
混合前は液体であるが、浅層改良土層を造成するときに
層中に気泡を連行させる物質である。籾殻を低密度体と
した場合、籾殻はSiO2分を多く含むため、耐食性が
大きく、かつその形状から長期にわたって浅層改良土層
の剪断強度を増大させるために交通荷重に対して抵抗力
が大きい。産業廃棄物の焼却により形成された直径が5
mm以下のクリンカを添加材とする場合、この処分に困
窮しているクリンカを有効利用することができる。
Examples of the low-density air bubble generator include polyoxyethylene alkyl ether compounds and higher alcohol sulfate ester compounds. This bubble generator is a liquid before mixing, but is a substance that entrains bubbles in the layer when forming the shallow improved soil layer. When the rice husk is made into a low-density body, the rice husk contains a large amount of SiO 2 so that it has a high corrosion resistance, and because of its shape, it has a resistance to traffic load in order to increase the shear strength of the shallow improved soil layer for a long time. large. The diameter formed by incineration of industrial waste is 5
When a clinker having a diameter of mm or less is used as the additive, the clinker that is in need of disposal can be effectively used.

【0026】無機繊維又は合成繊維を添加材とする場
合、好ましくは長さ2〜4cm程度のスチール繊維等の
無機繊維、又は長さ4〜7cm程度のポリアミド系のナ
イロン繊維、ポリオレフィン系のポリエチレン繊維、ポ
リプロピレン繊維からなる合成繊維が用いられる。長さ
が上記下限値未満では補強効果に乏しく、上記上限値を
越えると、他の材料との混合時に取扱いにくくなる。添
加材として上記繊維を加えることにより、浅層改良土層
が補強され、交通荷重による改良地盤の割れを防止し、
改良地盤の耐久性が向上する。また繊維を含まない浅層
改良土層より層厚を薄くしても繊維を含まない浅層改良
土層と同等の耐久性が得られる。上記目的を達成するた
めに、浅層改良土層を形成する材料100体積%に対し
て、籾殻、無機繊維又は合成繊維等は0.1〜5.0体
積%、好ましくは0.2〜2.0体積%添加し、クリン
カは30体積%以下で添加する。また気泡発生体は浅層
改良土層を形成する材料100重量%に対して0.01
〜1.0重量%、好ましくは0.1〜0.5重量%添加
する。
When an inorganic fiber or a synthetic fiber is used as the additive, the inorganic fiber such as a steel fiber having a length of about 2 to 4 cm, or the polyamide type nylon fiber or the polyolefin type polyethylene fiber having a length of about 4 to 7 cm is preferable. A synthetic fiber made of polypropylene fiber is used. When the length is less than the above lower limit, the reinforcing effect is poor, and when the length exceeds the above upper limit, it becomes difficult to handle when mixing with other materials. By adding the above fibers as an additive, the shallow improved soil layer is reinforced and cracks of the improved ground due to traffic loads are prevented,
The durability of the improved ground is improved. Further, even if the layer thickness is made thinner than the shallow improved soil layer containing no fibers, the same durability as that of the shallow improved soil layer containing no fibers can be obtained. In order to achieve the above object, rice husks, inorganic fibers or synthetic fibers are 0.1 to 5.0% by volume, preferably 0.2 to 2 with respect to 100% by volume of the material for forming the shallow layer improved soil layer. 0.0% by volume, and the clinker is added at 30% by volume or less. The bubble generator is 0.01 with respect to 100% by weight of the material forming the shallow soil layer.
.About.1.0 wt%, preferably 0.1 to 0.5 wt%.

【0027】柱状体の構築工法には、木杭、既製コンク
リート杭、鋼杭等のような既製杭を深層地盤に打込む工
法と、地盤改良柱状体を構築する工法がある。柱状体に
既製杭を用いることにより、より短い工期で安価に施工
でき、地盤改良柱状体を用いることにより、道路の圧密
沈下をより確実に防止できる。この地盤改良柱状体を構
築工法には機械撹拌法と高圧噴射撹拌法があるが、機械
撹拌法により地盤改良柱状体を構築すると、安価でかつ
土質にかかわらず改良体の外径を一定に築造することが
できる。また高圧噴射撹拌法により構築することによ
り、施工機械を小型化、軽量化することができるように
なり、狭い場所や既設の踏掛版の下にも施工することが
できる。この地盤改良柱状体を構築する場合、図5に示
すように地盤改良柱状体20の胴部20aに節部20b
を形成することもできる。これにより地盤改良柱状体の
周面の摩擦力が大きくなり、沈下抵抗力が高まって道路
の圧密沈下を更により確実に防止できる。また軟弱地盤
の側方流動を発生しにくくする利点もある。また地盤改
良柱状体を構築する場合に、図6に示すように地盤改良
柱状体20の先端に胴部20aより大径の拡大部20c
を形成することもできる。これにより、地盤改良柱状体
の沈下抵抗力がより高まり、道路の圧密沈下を更により
確実に防止できる。
The method of constructing the columnar body includes a method of driving a prefabricated pile such as a wooden pile, a prefabricated concrete pile, and a steel pile into the deep ground, and a method of constructing a ground improvement columnar body. By using ready-made piles for the pillars, it is possible to construct at a lower construction period and at a lower cost, and by using the ground improvement pillars, it is possible to more reliably prevent consolidation settlement of roads. There are mechanical agitation method and high-pressure jet agitation method as construction methods for constructing this soil improvement columnar body, but if the soil improvement columnar body is constructed by the mechanical agitation method, it will be cheaper and the outer diameter of the improvement body will be constant regardless of the soil quality. can do. Further, by constructing by a high-pressure jet agitation method, the construction machine can be made smaller and lighter, and the construction machine can be constructed even in a narrow place or under an existing step plate. When constructing this soil improvement columnar body, as shown in FIG. 5, the node portion 20b is provided on the body portion 20a of the soil improvement columnar body 20.
Can also be formed. As a result, the frictional force on the peripheral surface of the soil improvement columnar body increases, the settlement resistance increases, and the consolidation settlement of the road can be prevented more reliably. There is also an advantage that lateral flow of soft ground is less likely to occur. Further, when constructing the soil improvement columnar body, as shown in FIG. 6, an enlarged portion 20c having a diameter larger than the trunk portion 20a is provided at the tip of the soil improvement columnar body 20.
Can also be formed. As a result, the settlement resistance of the ground improvement columnar body is further increased, and the consolidation settlement of the road can be prevented more reliably.

【0028】更に地盤改良柱状体20に無機繊維又は合
成繊維を含ませることもできる。この場合、好ましく
は、無機繊維に長さ2〜4cm程度のスチール繊維が、
また合成繊維に長さ4〜7cm程度のポリアミド系のナ
イロン繊維、ポリオレフィン系のポリエチレン繊維、ポ
リプロピレン繊維が用いられる。長さが上記下限値未満
では補強効果に乏しく、上記上限値を越えると、他の材
料との混合時に取扱いにくくなる。この繊維は地盤改良
柱状体を形成する全ての材料に対して0.2〜2.0体
積%程度含有する。柱状体に上記繊維を含ませることに
より、軟弱地盤の側方流動により柱状体に亀裂が生じて
も、柱状体の曲げ抵抗力が発揮されて、その後の側方流
動を抑えることができる。
Further, the ground improvement columnar body 20 may contain inorganic fibers or synthetic fibers. In this case, preferably, the inorganic fibers are steel fibers having a length of about 2 to 4 cm,
As the synthetic fiber, polyamide-based nylon fiber, polyolefin-based polyethylene fiber or polypropylene fiber having a length of about 4 to 7 cm is used. When the length is less than the above lower limit, the reinforcing effect is poor, and when the length exceeds the above upper limit, it becomes difficult to handle when mixing with other materials. This fiber is contained in an amount of about 0.2 to 2.0% by volume based on all materials forming the ground improvement columnar body. By including the fibers in the columnar body, even if a crack is generated in the columnar body due to the lateral flow of the soft ground, the bending resistance of the columnar body is exerted, and the lateral flow thereafter can be suppressed.

【0029】柱状体を構築することにより、動的荷重に
よる地盤の側方流動を防止することができる。上方から
視た場合の柱状体の構築の仕方を図7及び図8に基づい
て説明する。工事の効率及び経済性を考慮して、柱状体
の平面配置は図7に示すような格子状配置にするか、或
いは図8に示すような非接触形千鳥配置にして、改良率
をできるだけ低く抑えるのが好ましい。改良率を10〜
50%の範囲にして図7に示す格子状配置にした場合に
は、格子間隔d1(但し、格子間隔d1≧格子間隔d2
が柱状体の上端から道路舗装面までの高さの2倍以下で
あれば、また同様に改良率を10〜50%の範囲にして
図8に示す非接触形千鳥配置にした場合にも、道路の方
向をDとしたときに、柱状体間隔d3(但し、柱状体間
隔d3≧柱状体間隔d4)が柱状体の上端から道路舗装面
までの高さの2倍以下であれば、それぞれ静的荷重、動
的荷重は柱状体に確実に伝達され、十分地盤の側方流動
を防止することができる。
By constructing the columnar body, lateral flow of the ground due to dynamic load can be prevented. A method of constructing the columnar body when viewed from above will be described based on FIGS. 7 and 8. Considering the efficiency and economy of construction, the planar arrangement of the pillars should be a lattice arrangement as shown in FIG. 7 or a non-contact staggered arrangement as shown in FIG. It is preferable to suppress it. Improvement rate of 10
When the lattice-like arrangement shown in FIG. 7 is set in the range of 50%, the lattice spacing d 1 (however, the lattice spacing d 1 ≧ the lattice spacing d 2 )
Is less than or equal to twice the height from the upper end of the columnar body to the road pavement surface, and similarly, when the improvement rate is in the range of 10 to 50% and the non-contact staggered arrangement shown in FIG. When the direction of the road is D and the columnar body spacing d 3 (wherein the columnar body spacing d 3 ≧ columnar body spacing d 4 ) is not more than twice the height from the upper end of the columnar body to the road pavement surface. The static load and the dynamic load, respectively, are reliably transmitted to the columnar body, and the lateral flow of the ground can be sufficiently prevented.

【0030】図1〜図4に示すように、本発明の道路舗
装18はクラッシャーラン層18a、粒度調整砕石層1
8b及びアスファルト・コンクリート18cからなる。
図1〜図4において、クラッシャーラン層18aは5〜
15cmの厚さに、粒度調整砕石層18bは10〜30
cmの厚さに、またアスファルト・コンクリート18c
は10〜40cmの厚さにそれぞれ敷設される。
As shown in FIGS. 1 to 4, the road pavement 18 of the present invention comprises a crusher run layer 18a and a particle size adjusting crushed stone layer 1
8b and asphalt concrete 18c.
1 to 4, the crusher run layer 18a is 5 to
The thickness of the crushed stone layer 18b is 10 to 30
cm thickness, asphalt concrete 18c
Are laid to a thickness of 10 to 40 cm.

【0031】[0031]

【実施例】次に本発明の実施例を比較例とともに図面に
基づいて説明する。 <実施例1>図1に示すように、対象軟弱地盤11に機
械撹拌法により地盤改良柱状体20を軟弱地盤11の下
方の支持層に到達しない長さで構築した。このとき柱状
体はそれぞれ直径aが80cm、長さL4が400cm
であって、図8に示す間隔d3,d4がそれぞれ125c
m、改良率25.7%で、非接触形千鳥配置に構築し
た。地盤改良柱状体20の上に、ガラス繊維からなる補
強用網状体21を敷設し、この上に、掘削土及び別に用
意した土砂にセメント粉を加え、更に添加材として低密
度体である籾殻を材料全体の20重量%加えて、乾式混
合した後、締め固めることにより浅層改良土層13をL
5=60cmの厚さに敷設した。この上にクラッシャー
ラン層18aを30cmの厚さに敷設し、更にこの上に
粒度調整砕石層18bを10cmの厚さに敷設し、その
上を5cmの厚さのアスファルト・コンクリート18b
で舗装した。図1に示す総合長さLは505cmであっ
た。 <比較例1>図9に示すように、実施例1と同一の対象
軟弱地盤1を掘削し、この掘削土及び別に用意した土砂
にセメント系固化材を加えて、乾式混合した後、締め固
めることにより浅層改良土層2aを60cmの厚さに敷
設した。この上にクラッシャーラン層3aを30cmの
厚さに設けた後、更にこの上に粒度調整用砕石層3bを
10cmの厚さに敷設し、その上を5cmの厚さのアス
ファルト・コンクリート4で舗装した。図9に示す総合
長さLは105cmであった。 <比較例2>図10に示すように、実施例1と同一の対
象軟弱地盤1を掘削し、この掘削土及び別に用意した土
砂に生石灰を固化材として加えて、乾式混合した後、締
め固めることにより浅層改良土層2bを150cmの厚
さに敷設した。この浅層改良土層2bの上にFe石灰を
乾式混合した後固化して浅層改良土層2cを30cmの
厚さに形成した。この浅層改良土層2cの上にクラッシ
ャーラン層3aを30cmの厚さに設けた後、更にこの
上に粒度調整用砕石層3bを10cmの厚さに敷設し、
その上を5cmの厚さのアスファルト・コンクリート4
で舗装した。図10に示す総合長さLは225cmであ
った。 <実施例2>図2に示すように、実施例1と同一の軟弱
地盤11を掘削し、地下構造物12である暗渠を支持杭
17を介して支持層16に支持した後、この暗渠の近傍
の対象軟弱地盤11に機械撹拌法によりそれぞれ直径a
が80cmの地盤改良柱状体20を軟弱地盤11の下方
の支持層16に到達しない長さで構築した。このとき柱
状体が暗渠から遠ざかるに従って段々に短くなるように
地盤改良柱状体20を構築した。暗渠に最も近い柱状体
の長さL7は400cmであって、柱状体は図8に示す
間隔d1,d2がそれぞれ125cm、改良率25.7%
で、非接触形千鳥配置に構築した。地盤改良柱状体20
の上にガラス繊維からなる補強用網状体21を敷設し、
この上にクラッシャーラン層18aを30cmの厚さに
敷設し、更にこの上に粒度調整砕石層18bを10cm
の厚さに敷設し、その上を5cmの厚さのアスファルト
・コンクリート18cで舗装した。図2に示す最長の地
盤改良柱状体の下端から支持層16までの深さL6は2
0mであり、総合長さLは445cmであった。 <実施例3>図3に示すように、実施例1と同一の軟弱
地盤11を掘削し、実施例2と同様にして暗渠12を支
持層16に支持した後、この暗渠の近傍の軟弱地盤11
に機械撹拌法によりそれぞれ直径aが80cmの地盤改
良柱状体20を実施例2と同様に柱状体が暗渠から遠ざ
かるに従って段々に短くなるようにかつ軟弱地盤11の
下方の支持層16に到達しない長さで構築した。暗渠に
最も近い柱状体の長さL9は400cmであって、柱状
体は図8に示す間隔d3,d4がそれぞれ125cm、改
良率25.7%で、非接触形千鳥配置に構築した。地盤
改良柱状体20の上に、掘削土及び別に用意した土砂に
スラリー状のセメント系固化材を加え、更に添加材とし
て低密度体である発泡ビーズを材料全体の30体積%加
えて、湿式混合し浅層改良土層13をL10=30cmの
厚さに敷設した。この上にクラッシャーラン層18aを
30cmの厚さに敷設し、更にこの上に粒度調整砕石層
18bを10cmの厚さに敷設し、その上を5cmの厚
さのアスファルト・コンクリート18cで舗装した。図
3に示す最長の地盤改良柱状体の下端から支持層16ま
での深さL8は20mであり、総合長さLは475cm
であった。 <実施例4>図4に示すように、実施例1と同一の軟弱
地盤11を掘削し、実施例2と同様にして暗渠12を支
持層16に支持した後、この暗渠の近傍の軟弱地盤11
に機械撹拌法によりそれぞれ直径aが80cmの地盤改
良柱状体20を実施例2と同様に柱状体が暗渠から遠ざ
かるに従って段々に短くなるようにかつ軟弱地盤11の
下方の支持層16に到達しない長さで構築した。暗渠に
最も近い柱状体の長さL12は400cmであって、柱状
体は図8に示す間隔d3,d4がそれぞれ125cm、改
良率25.7%で、非接触形千鳥配置に構築した。地盤
改良柱状体20の上に、ガラス繊維からなる補強用網状
体21を敷設し、この上に、掘削土及び別に用意した土
砂にセメント粉を加え、更に添加材として低密度体であ
る籾殻を材料全体の20体積%加えて、乾式混合した
後、締め固めることにより浅層改良土層13をL13=3
0cmの厚さに敷設した。この上にクラッシャーラン層
18aを30cmの厚さに敷設し、更にこの上に粒度調
整砕石層18bを10cmの厚さに敷設し、その上を5
cmの厚さのアスファルト・コンクリート18cで舗装
した。図4に示す最長の地盤改良柱状体の下端から支持
層16までの深さL11は20mであり、総合長さLは4
75cmであった。 <比較例3>図11に示すように、実施例1と同一の軟
弱地盤1を掘削し、実施例2と同様にして暗渠6を支持
杭8を介して支持層7に支持した後、この暗渠の近傍の
軟弱地盤1を掘削し、この掘削土及び別に用意した土砂
にセメント系固化材を加えて、乾式混合した後、締め固
めることにより浅層改良土層2aを60cmの厚さに敷
設した。この上にクラッシャーラン層3aを30cmの
厚さに設けた後、更にこの上に粒度調整用砕石層3bを
10cmの厚さに敷設し、その上を5cmの厚さのアス
ファルト・コンクリート4で舗装した。図11に示す総
合長さLは105cmであった。 <比較例4>図12に示すように、実施例1と同一の軟
弱地盤1を掘削し、実施例2と同様にして暗渠6を支持
杭8を介して支持層7に支持した後、この暗渠の近傍の
軟弱地盤1を掘削し、この掘削土及び別に用意した土砂
に生石灰を固化材として加えて、乾式混合した後、締め
固めることにより浅層改良土層2bを150cmの厚さ
に敷設した。この浅層改良土層2bの上にFe石灰を乾
式混合した後固化して浅層改良土層2cを30cmの厚
さに形成した。この浅層改良土層2cの上にクラッシャ
ーラン層3aを30cmの厚さに設けた後、更にこの上
に粒度調整用砕石層3bを10cmの厚さに敷設し、そ
の上を5cmの厚さのアスファルト・コンクリート4で
舗装した。図12に示す総合長さLは225cmであっ
た。 <比較例5>図3に示した地盤改良柱状体20を長くし
て、その柱状体の下端を軟弱地盤の下部の支持層16に
埋設するようにした(図示せず)以外は、実施例3と同
様にして地盤を改良した。 <比較試験とその結果>実施例1〜実施例4及び比較例
1〜比較例5の各種工法で構築された道路の沈下量及び
段差の発生状況について、構築してから使用開始される
までの間と、使用開始してから720日経過するまでの
間を測定した。また道路構築に要した工費について、実
施例1を100としたときの他の実施例及び比較例の概
算値について調べた。これらの結果を表1に示す。
Embodiments of the present invention will now be described with reference to the drawings together with comparative examples. <Example 1> As shown in FIG. 1, a ground improvement columnar body 20 was constructed on a target soft ground 11 by a mechanical stirring method with a length that did not reach a supporting layer below the soft ground 11. At this time, each columnar body has a diameter a of 80 cm and a length L 4 of 400 cm.
And the intervals d 3 and d 4 shown in FIG.
m, improvement rate 25.7%, non-contact staggered construction. On the ground improvement columnar body 20, a reinforcing net 21 made of glass fiber is laid, on which cement powder is added to excavated soil and separately prepared earth and sand, and rice husk as a low density body is further added as an additive. After adding 20% by weight of the whole material, dry-mixing, and compacting
It was laid to a thickness of 5 = 60 cm. A crusher run layer 18a is laid on this layer with a thickness of 30 cm, and a particle size adjusting crushed stone layer 18b is laid on it with a thickness of 10 cm, and an asphalt concrete 18b with a thickness of 5 cm is laid on it.
Paved with. The total length L shown in FIG. 1 was 505 cm. <Comparative Example 1> As shown in FIG. 9, the same target soft ground 1 as in Example 1 is excavated, a cement-based solidifying material is added to the excavated soil and separately prepared earth and sand, and the mixture is dry-mixed and then compacted. As a result, the shallow layer improved soil layer 2a was laid in a thickness of 60 cm. A crusher run layer 3a having a thickness of 30 cm is provided thereon, and a crushed stone layer 3b for particle size adjustment is further laid thereon to have a thickness of 10 cm, and the upper layer is paved with asphalt concrete 4 having a thickness of 5 cm. . The total length L shown in FIG. 9 was 105 cm. <Comparative Example 2> As shown in FIG. 10, the same target soft ground 1 as in Example 1 was excavated, and quick lime was added as a solidifying material to the excavated soil and separately prepared earth and sand, and the mixture was dry-mixed and then compacted. Thus, the shallow layer improved soil layer 2b was laid to a thickness of 150 cm. Fe lime was dry-mixed on the shallow improved soil layer 2b and then solidified to form a shallow improved soil layer 2c having a thickness of 30 cm. After providing the crusher run layer 3a with a thickness of 30 cm on the shallow improved soil layer 2c, a crushed stone layer 3b for grain size adjustment is further laid with a thickness of 10 cm on the crusher run layer 3a.
5 cm thick asphalt concrete on it 4
Paved with. The total length L shown in FIG. 10 was 225 cm. <Example 2> As shown in FIG. 2, the same soft ground 11 as in Example 1 was excavated, and the underdrain which was the underground structure 12 was supported on the support layer 16 through the support piles 17. Each of the target soft ground 11 in the vicinity has a diameter a by mechanical stirring method.
A ground improvement columnar body 20 having a length of 80 cm was constructed with a length that does not reach the support layer 16 below the soft ground 11. At this time, the ground improvement columnar body 20 was constructed so that the columnar body was gradually shortened as the columnar body moved away from the underdrain. The length L 7 of the columnar body closest to the underdrain is 400 cm, and the columnar bodies have the intervals d 1 and d 2 shown in FIG. 8 of 125 cm, respectively, and the improvement rate is 25.7%.
Then, it was constructed in a non-contact staggered arrangement. Ground improvement columnar body 20
Laying a reinforcing net 21 made of glass fiber on the
A crusher run layer 18a having a thickness of 30 cm is laid on the crusher run layer 18a, and a crushed stone layer 18b having a particle size adjustment of 10 cm is further provided on the crusher run layer 18a.
Of the asphalt concrete 18c having a thickness of 5 cm. The depth L 6 from the lower end of the longest ground improvement column shown in FIG. 2 to the support layer 16 is 2
It was 0 m, and the total length L was 445 cm. <Embodiment 3> As shown in FIG. 3, the same soft ground 11 as in Embodiment 1 is excavated, and after supporting the underdrain 12 on the support layer 16 in the same manner as in Embodiment 2, the soft ground in the vicinity of this underdrain. 11
As in Example 2, the ground-improving columnar bodies 20 each having a diameter a of 80 cm were mechanically agitated so that the columnar bodies gradually became shorter as they moved away from the underdrain, and did not reach the supporting layer 16 below the soft ground 11. I built it. The length L 9 of the columnar body closest to the underdrain was 400 cm, and the columnar bodies were constructed in a non-contact staggered arrangement with intervals d 3 and d 4 shown in FIG. 8 of 125 cm and an improvement rate of 25.7%. . On the ground improvement columnar body 20, the slurry type cement-based solidifying material is added to the excavated soil and the separately prepared earth and sand, and 30% by volume of the low-density foamed beads as an additive material is added to the whole material, and the mixture is wet mixed. Then, the improved shallow soil layer 13 was laid in a thickness of L 10 = 30 cm. A crusher run layer 18a was laid on this to a thickness of 30 cm, a particle size adjusting crushed stone layer 18b was further laid on this to a thickness of 10 cm, and an asphalt concrete 18c having a thickness of 5 cm was paved on it. The depth L 8 from the lower end of the longest ground improvement column shown in FIG. 3 to the support layer 16 is 20 m, and the total length L is 475 cm.
Met. <Embodiment 4> As shown in FIG. 4, the same soft ground 11 as in Embodiment 1 is excavated, and after supporting the underdrain 12 on the support layer 16 in the same manner as in Embodiment 2, the soft ground in the vicinity of this underdrain. 11
As in Example 2, the ground-improving columnar bodies 20 each having a diameter a of 80 cm were mechanically agitated so that the columnar bodies gradually became shorter as they moved away from the underdrain, and did not reach the supporting layer 16 below the soft ground 11. I built it. The length L 12 of the columnar body closest to the underdrain was 400 cm, and the columnar bodies were constructed in a non-contact staggered arrangement with intervals d 3 and d 4 shown in FIG. 8 of 125 cm and an improvement rate of 25.7%. . On the ground improvement columnar body 20, a reinforcing net 21 made of glass fiber is laid, on which cement powder is added to excavated soil and separately prepared earth and sand, and rice husk as a low density body is further added as an additive. 20% by volume of the entire material was added, dry-mixed, and then compacted to form a shallow-layer improved soil layer 13 with L 13 = 3.
It was laid to a thickness of 0 cm. A crusher run layer 18a is laid on this to a thickness of 30 cm, and a particle size adjusting crushed stone layer 18b is further laid on this to a thickness of 10 cm, and 5
It was paved with 18 cm thick asphalt concrete 18c. The depth L 11 from the lower end of the longest soil improvement columnar body to the support layer 16 shown in FIG. 4 is 20 m, and the total length L is 4
It was 75 cm. <Comparative Example 3> As shown in FIG. 11, the same soft ground 1 as in Example 1 was excavated, and the underdrain 6 was supported on the support layer 7 via the support piles 8 in the same manner as in Example 2, and then, The soft ground 1 near the underdrain is excavated, the cement-based solidifying material is added to the excavated soil and the separately prepared soil, the mixture is dry-mixed, and then the shallow-improved soil layer 2a is laid to a thickness of 60 cm by compaction. did. A crusher run layer 3a having a thickness of 30 cm is provided thereon, and a crushed stone layer 3b for particle size adjustment is further laid thereon to have a thickness of 10 cm, and the upper layer is paved with asphalt concrete 4 having a thickness of 5 cm. . The total length L shown in FIG. 11 was 105 cm. <Comparative Example 4> As shown in FIG. 12, the same soft ground 1 as in Example 1 was excavated, and the underdrain 6 was supported on the support layer 7 via the support piles 8 in the same manner as in Example 2, and then, Excavating the soft ground 1 in the vicinity of the underdrain, adding quicklime to the excavated soil and separately prepared earth and sand as a solidifying material, dry-mixing, and then compacting to lay a shallow improved soil layer 2b to a thickness of 150 cm. did. Fe lime was dry-mixed on the shallow improved soil layer 2b and then solidified to form a shallow improved soil layer 2c having a thickness of 30 cm. A crusher run layer 3a having a thickness of 30 cm is provided on the shallow improved soil layer 2c, and a crushed stone layer 3b for particle size adjustment is further laid on the crusher run layer 3a having a thickness of 10 cm. Paved with asphalt concrete 4. The total length L shown in FIG. 12 was 225 cm. <Comparative Example 5> An example except that the ground improvement columnar body 20 shown in FIG. 3 was elongated and the lower end of the columnar body was embedded in the lower support layer 16 of the soft ground (not shown). The ground was improved in the same manner as 3. <Comparative Test and Results> Regarding the amount of subsidence and the occurrence of steps of roads constructed by the various construction methods of Examples 1 to 4 and Comparative Examples 1 to 5, from the time of construction to the time of starting use And the period from the start of use until 720 days have passed. Further, with respect to the construction cost required for road construction, the estimated values of other examples and comparative examples when Example 1 was set to 100 were examined. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】(a) 沈下量及び段差の発生状況について:
表1から明らかなように、実施例1の工法により構築さ
れた道路も、比較例1及び2の工法により構築された道
路も、使用が開始されるまでの静的荷重による沈下量は
いずれも小さく、実施例1の工法と比較例1及び2の工
法との間に有意差は認められなかった。しかし、道路が
使用されてからは動的荷重に起因して、比較例1,2の
工法による道路の沈下量が大きかったのに対して、実施
例1の工法による道路の沈下量は小さかった。
(A) About the amount of subsidence and occurrence of steps:
As is clear from Table 1, both the road constructed by the construction method of Example 1 and the road constructed by the construction methods of Comparative Examples 1 and 2 have a settlement amount by static load until the start of use. It was small, and no significant difference was observed between the construction method of Example 1 and the construction methods of Comparative Examples 1 and 2. However, after the road was used, due to the dynamic load, the road subsidence by the construction method of Comparative Examples 1 and 2 was large, whereas the road subsidence by the construction method of Example 1 was small. .

【0034】また地下構造物である暗渠の近傍に柱状体
を構築した場合、実施例2〜4の工法により構築された
道路も、比較例5の工法により構築された道路も、使用
が開始されるまでの静的荷重による沈下量はいずれも小
さく、図11及び図12に示される段差Aは見られず、
実施例2〜4の工法と比較例5の工法との間に有意差は
認められなかった。また3個の実施例の間でも有意差が
あるとは言えなかった。しかし比較例3及び4の工法に
より構築された道路は使用が開始されるまでの静的荷重
による沈下量が比較的大きく、他の実施例2〜4の工法
と比較例5の工法との間に有意差が認められた。また道
路が使用されてからは動的荷重に起因して、比較例3,
4の工法による道路の沈下量は著しく大きく、段差Aが
はっきりと現れたのに対して、実施例2〜4及び比較例
5の工法による道路の沈下量はすべて小さく、段差は全
く生じなかった。実施例2〜4の工法による道路の中
で、特に実施例2及び3はその沈下量が比較的小さく、
比較例5に匹敵する値を示した。 (b) 工費について:実施例1の工法の工費を100とし
たときの他の実施例2〜4の各工法の工費の概算値は、
沈下量の大きな比較例1〜4の各工法の工費の概算値よ
りも高価であったが、柱状体の下端を支持層に埋設する
ようにした比較例5の工法の工費の概算値の約20%〜
約27%の低いものであった。
When a columnar body is constructed in the vicinity of the underdrain which is an underground structure, the road constructed by the construction method of Examples 2 to 4 and the road constructed by the construction method of Comparative Example 5 are started to be used. The amount of subsidence due to the static load up to the point is small, and the step A shown in FIGS. 11 and 12 is not seen,
No significant difference was found between the construction method of Examples 2 to 4 and the construction method of Comparative Example 5. Moreover, it cannot be said that there is a significant difference among the three examples. However, the roads constructed by the construction methods of Comparative Examples 3 and 4 have a relatively large subsidence amount due to static load until the start of use, and thus the roads between the construction methods of the other Examples 2 to 4 and the construction method of Comparative Example 5 are relatively large. There was a significant difference. In addition, after the road was used, due to the dynamic load, Comparative Example 3,
The subsidence amount of the road by the construction method of No. 4 was remarkably large, and the step A clearly appeared, whereas the subsidence amount of the roads by the construction methods of Examples 2 to 4 and Comparative Example 5 were all small, and no step was generated. . Among the roads produced by the construction methods of Examples 2 to 4, particularly, Examples 2 and 3 have a relatively small subsidence amount,
The value was comparable to that of Comparative Example 5. (b) Construction cost: When the construction cost of the construction method of Example 1 is 100, the estimated construction cost of each construction method of other Examples 2 to 4 is:
Although it was more expensive than the estimated value of the construction cost of each of the construction methods of Comparative Examples 1 to 4 with a large subsidence amount, about the estimated value of the construction cost of the construction method of Comparative Example 5 in which the lower end of the columnar body was embedded in the support layer. 20% ~
It was as low as about 27%.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、工
期を無用に長引かせる過剰な地盤改良を行わずに、比較
的短い工期で安価に道路を構築することができ、軟弱地
盤上に盛土により構築された道路が使用された際に、動
的荷重による圧密沈下を抑制することができる。また、
軟弱地盤上に設けられた暗渠などの地下構造物の上を横
断する道路が使用された際に、道路の地下構造物の上の
部分とそれに隣接する部分との境界に段差を生じさせる
ことがない優れた効果を奏する。
As described above, according to the present invention, a road can be constructed at a low cost in a relatively short construction period without excessive ground improvement that unnecessarily prolongs the construction period. It is possible to suppress consolidation settlement due to dynamic load when a road constructed by embankment is used. Also,
When a road crossing an underground structure such as an underdrain installed on soft ground is used, a step may be created at the boundary between the upper part of the underground structure and the adjacent part. There is no excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の工法で構築した道路方向に
直交する方向から視た断面図。
FIG. 1 is a cross-sectional view seen from a direction orthogonal to a road direction constructed by a construction method according to a first embodiment of the present invention.

【図2】本発明の実施例2の工法で構築した道路方向に
直交する方向から視た断面図。
FIG. 2 is a cross-sectional view seen from a direction orthogonal to a road direction constructed by a construction method according to a second embodiment of the present invention.

【図3】本発明の実施例3の工法で構築した道路方向に
直交する方向から視た断面図。
FIG. 3 is a cross-sectional view seen from a direction orthogonal to a road direction constructed by a construction method according to a third embodiment of the present invention.

【図4】本発明の実施例4の工法で構築した道路方向に
直交する方向から視た断面図。
FIG. 4 is a cross-sectional view seen from a direction orthogonal to a road direction constructed by a construction method according to a fourth embodiment of the present invention.

【図5】本発明の胴部に節部を有する地盤改良柱状体の
正面図。
FIG. 5 is a front view of a ground improvement columnar body having a knotted portion on the body of the present invention.

【図6】本発明の先端に拡大部を有する地盤改良柱状体
の正面図。
FIG. 6 is a front view of a ground improvement columnar body having an enlarged portion at the tip of the present invention.

【図7】本発明の格子状に配置した地盤改良柱状体の平
面図。
FIG. 7 is a plan view of a ground improvement columnar body arranged in a grid pattern according to the present invention.

【図8】本発明の非接触形千鳥に配置した地盤改良柱状
体の平面図。
FIG. 8 is a plan view of a ground improvement columnar body arranged in the non-contact staggered pattern of the present invention.

【図9】比較例1の工法で構築した道路方向に直交する
方向から視た断面図。
FIG. 9 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the method of Comparative Example 1.

【図10】比較例2の工法で構築した道路方向に直交す
る方向から視た断面図。
FIG. 10 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the construction method of Comparative Example 2.

【図11】比較例3の工法で構築した道路方向に直交す
る方向から視た断面図。
FIG. 11 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the method of Comparative Example 3.

【図12】比較例4の工法で構築した道路方向に直交す
る方向から視た断面図。
FIG. 12 is a cross-sectional view seen from a direction orthogonal to a road direction constructed by a construction method of Comparative Example 4.

【符号の説明】[Explanation of symbols]

11 軟弱地盤 12 地下構造物 13 浅層改良土層 16 支持層 17 支持杭 18 道路舗装 18a クラッシャーラン層 18b 粒度調整砕石層 18c アスファルト・コンクリート 20 柱状体 20a 胴部 20b 節部 20c 拡大部 21 補強用網状体 11 soft ground 12 Underground structure 13 Shallow layer improved soil layer 16 Support layer 17 Support pile 18 road pavement 18a Crusher run layer 18b Grain size adjusted crushed stone layer 18c asphalt concrete 20 columns 20a body 20b node 20c Enlarged section 21 Reinforcing mesh

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000133881 株式会社テノックス 東京都港区赤坂6丁目13番7号 (71)出願人 000006264 三菱マテリアル株式会社 東京都千代田区大手町1丁目5番1号 (72)発明者 三浦 哲彦 佐賀県佐賀市中の館町12番4号 (72)発明者 藤川 和之 東京都豊島区南池袋2丁目34番5号 株式 会社ダイヤコンサルタント内 (72)発明者 浜武 章 東京都千代田区外神田2丁目4番4号 東 京鋪装工業株式会社内 (72)発明者 田中 英樹 福岡県福岡市中央区天神4丁目1番17号 株式会社テノックス九州内 (72)発明者 吉田 茂 東京都港区赤坂6丁目13番7号 株式会社 テノックス内 (72)発明者 小林 功 東京都千代田区大手町1丁目5番1号 三 菱マテリアル株式会社内 Fターム(参考) 2D040 AB05 AB14 AB16 AC05 BB02 BD00 BD02 BD05 BD06 CA01 CA03 CA10 CB01 CB03 2D051 AA09 AD07 AE04 AF01 AF02 AH01 CA01 CA04 CA05 CA09   ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000133881             Tenox Co., Ltd.             6-13-7 Akasaka, Minato-ku, Tokyo (71) Applicant 000006264             Mitsubishi Materials Corporation             1-5-1 Otemachi, Chiyoda-ku, Tokyo (72) Inventor Tetsuhiko Miura             12-4 Tatemachi, Saka City, Saga Prefecture (72) Inventor Kazuyuki Fujikawa             Stock number 2-34-5 Minamiikebukuro, Toshima-ku, Tokyo             Company Diamond Consultant (72) Inventor Takeaki Hama             2-4-4 Sotokanda East, Chiyoda-ku, Tokyo             Inside Kyoho Co., Ltd. (72) Inventor Hideki Tanaka             4-1-1 Tenjin, Chuo-ku, Fukuoka City, Fukuoka Prefecture             Tenox Kyushu Co., Ltd. (72) Inventor Shigeru Yoshida             6-13-7 Akasaka, Minato-ku, Tokyo Co., Ltd.             In Tenox (72) Inventor Isao Kobayashi             3-5-1 Otemachi, Chiyoda-ku, Tokyo             Ryo Materials Co., Ltd. F-term (reference) 2D040 AB05 AB14 AB16 AC05 BB02                       BD00 BD02 BD05 BD06 CA01                       CA03 CA10 CB01 CB03                 2D051 AA09 AD07 AE04 AF01 AF02                       AH01 CA01 CA04 CA05 CA09

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 道路基礎の軟弱地盤(11)に複数本の柱状
体(20)を前記軟弱地盤(11)の下方の支持層に到達しない
長さでかつ10〜50%の改良率で構築し、前記複数本
の柱状体(20)の上に補強用網状体(21)を敷設し、前記補
強用網状体(21)の上に土砂と固化材に添加材又は添加剤
のいずれか一方又は双方を更に加えて混合して固化する
ことにより浅層改良土層(13)を敷設し、前記浅層改良土
層(13)の上に道路舗装(18)を構築することを特徴とする
道路の構築工法。
1. Construction of a plurality of pillars (20) on a soft ground (11) of a road foundation with a length not reaching a supporting layer below the soft ground (11) and with an improvement rate of 10 to 50%. Then, the reinforcing net (21) is laid on the plurality of columnar bodies (20), and either one of the additive or the additive to the earth and sand and the solidifying material on the reinforcing net (21). Alternatively, both are further added and mixed to solidify to lay a shallow improved soil layer (13), and a road pavement (18) is constructed on the shallow improved soil layer (13). Road construction method.
【請求項2】 道路基礎の軟弱地盤(11)に埋設され沈下
を抑制された地下構造物(12)の近傍の前記軟弱地盤(11)
に複数本の柱状体(20)を前記軟弱地盤(11)の下方の支持
層(16)に到達しない長さで前記地下構造物(12)から遠ざ
かるに従って段々に短くなるように10〜50%の改良
率で構築し、前記複数本の柱状体(20)の上に補強用網状
体(21)を敷設し、前記地下構造物(12)及び補強用網状体
(21)の上に道路舗装(18)を構築することを特徴とする道
路の構築工法。
2. The soft ground (11) in the vicinity of an underground structure (12) embedded in the soft ground (11) of a road foundation and restrained from sinking.
A plurality of columnar bodies (20) in a length that does not reach the supporting layer (16) below the soft ground (11) and becomes 10 to 50% so as to become gradually shorter as the distance from the underground structure (12) increases. Constructed at an improvement rate of, the reinforcing net (21) is laid on the plurality of columnar bodies (20), and the underground structure (12) and the reinforcing net.
Road construction method characterized by constructing road pavement (18) on (21).
【請求項3】 道路基礎の軟弱地盤(11)に埋設され沈下
を抑制された地下構造物(12)の近傍の前記軟弱地盤(11)
に複数本の柱状体(20)を前記軟弱地盤(11)の下方の支持
層(16)に到達しない長さで前記地下構造物(12)から遠ざ
かるに従って段々に短くなるように10〜50%の改良
率で構築し、前記複数本の柱状体(20)の上に土砂と固化
材を混合して固化することにより浅層改良土層(13)を敷
設し、前記地下構造物(12)及び浅層改良土層(13)の上に
道路舗装(18)を構築することを特徴とする道路の構築工
法。
3. The soft ground (11) in the vicinity of an underground structure (12) embedded in the soft ground (11) of a road foundation and restrained from sinking.
A plurality of columnar bodies (20) in a length that does not reach the supporting layer (16) below the soft ground (11) and becomes 10 to 50% so as to become gradually shorter as the distance from the underground structure (12) increases. Constructed at a rate of improvement of, the shallow improved soil layer (13) is laid by mixing and solidifying earth and sand and a solidifying material on the plurality of columnar bodies (20), and the underground structure (12) And a road construction method characterized by constructing a road pavement (18) on the shallow improved soil layer (13).
【請求項4】 土砂と固化材に添加材又は添加剤のいず
れか一方又は双方を更に加えて混合して固化することに
より浅層改良土層(13)を敷設する請求項3記載の道路の
構築工法。
4. The shallow improved soil layer (13) is laid by further adding one or both of an additive and an additive to the soil and the solidifying material and mixing and solidifying them. Construction method.
【請求項5】 道路基礎の軟弱地盤(11)に埋設され沈下
を抑制された地下構造物(12)の近傍の前記軟弱地盤(11)
に複数本の柱状体(20)を前記軟弱地盤(11)の下方の支持
層(16)に到達しない長さで前記地下構造物(12)から遠ざ
かるに従って段々に短くなるように10〜50%の改良
率で構築し、前記複数本の柱状体(20)の上に補強用網状
体(21)を敷設し、前記補強用網状体(21)の上に土砂と固
化材に添加材又は添加剤のいずれか一方又は双方を更に
加えて混合して固化することにより浅層改良土層(13)を
敷設し、前記地下構造物(12)及び浅層改良土層(13)の上
に道路舗装(18)を構築することを特徴とする道路の構築
工法。
5. The soft ground (11) in the vicinity of an underground structure (12) embedded in the soft ground (11) of a road foundation and suppressed in settlement.
A plurality of columnar bodies (20) in a length that does not reach the supporting layer (16) below the soft ground (11) and becomes 10 to 50% so as to become gradually shorter as the distance from the underground structure (12) increases. Constructed at a rate of improvement, laying a reinforcing mesh body (21) on the plurality of columnar bodies (20), and adding material or addition to earth and sand and solidifying material on the reinforcing mesh body (21). Lay the shallow improved soil layer (13) by further adding either one or both of the agents and solidifying, and road over the underground structure (12) and the shallow improved soil layer (13). Road construction method characterized by building pavement (18).
【請求項6】 土砂と固化材に添加材又は添加剤のいず
れか一方又は双方を更に加えて湿式混合して固化するこ
とにより浅層改良土層(13)を敷設する請求項1、4又は
5記載の道路の構築工法。
6. The shallow improved soil layer (13) is laid by further adding either one or both of the additive and the additive to the soil and the solidifying material and wet mixing to solidify. Road construction method described in 5.
【請求項7】 添加材が発泡ビーズ又は籾殻からなり、
添加剤が気泡発生体からなり、前記添加材又は添加剤の
いずれか一方又は双方が発泡ビーズ、籾殻及び気泡発生
体からなる群より選ばれた1種又は2種以上の低密度体
である請求項1、4、5又は6記載の道路の構築工法。
7. The additive comprises foam beads or rice husks,
The additive comprises a bubble generator, and one or both of the additive and the additive are one or more low-density substances selected from the group consisting of foam beads, chaff and bubble generator. The road construction method according to Item 1, 4, 5 or 6.
【請求項8】 添加材が産業廃棄物の焼却により形成さ
れたクリンカである請求項1、4、5又は6記載の道路
の構築工法。
8. The road construction method according to claim 1, 4, 5 or 6, wherein the additive material is a clinker formed by incineration of industrial waste.
【請求項9】 添加材が無機繊維又は合成繊維である請
求項1、4、5又は6記載の道路の構築工法。
9. The road construction method according to claim 1, 4, 5 or 6, wherein the additive material is an inorganic fiber or a synthetic fiber.
【請求項10】 柱状体(20)が既製杭又は地盤改良柱状
体である請求項1ないし3又は5いずれか1項に記載の
道路の構築工法。
10. The road construction method according to claim 1, wherein the pillars (20) are ready-made piles or ground improvement pillars.
【請求項11】 柱状体(20)が地盤改良柱状体であっ
て、前記柱状体(20)の胴部(20a)に節部(20b)を有する請
求項1ないし3又は5いずれか1項に記載の道路の構築
工法。
11. The columnar body (20) is a ground improvement columnar body, and a trunk portion (20a) of the columnar body (20) has a node portion (20b), according to any one of claims 1 to 3 or 5. Road construction method described in.
【請求項12】 柱状体(20)が地盤改良柱状体であっ
て、前記柱状体(20)の先端が胴部(20a)より大径の拡大
部(20c)を有する請求項1ないし3、5又は11いずれ
か1項に記載の道路の構築工法。
12. The columnar body (20) is a ground improvement columnar body, and the tip of the columnar body (20) has an enlarged portion (20c) having a larger diameter than the trunk portion (20a). The road construction method according to any one of 5 and 11.
【請求項13】 柱状体(20)が地盤改良柱状体であっ
て、前記柱状体(20)が無機繊維又は合成繊維を含む請求
項1ないし3、5、11又は12いずれか1項に記載の
道路の構築工法。
13. The columnar body (20) is a ground improvement columnar body, and the columnar body (20) contains an inorganic fiber or a synthetic fiber, according to any one of claims 1 to 3, 5, 11 or 12. Road construction method.
【請求項14】 柱状体(20)が地盤改良柱状体であっ
て、前記柱状体(20)を機械撹拌法又は高圧噴射撹拌法に
より構築する請求項1ないし3、5、又は11ないし1
3いずれか1項に記載の道路の構築工法。
14. The columnar body (20) is a ground improvement columnar body, and the columnar body (20) is constructed by a mechanical stirring method or a high-pressure jet stirring method.
3. The road construction method according to any one of items.
JP2003014547A 2003-01-23 2003-01-23 Road construction method Expired - Lifetime JP3653083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014547A JP3653083B2 (en) 2003-01-23 2003-01-23 Road construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014547A JP3653083B2 (en) 2003-01-23 2003-01-23 Road construction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12844497A Division JP3528950B2 (en) 1997-05-19 1997-05-19 Road construction method

Publications (2)

Publication Number Publication Date
JP2003239276A true JP2003239276A (en) 2003-08-27
JP3653083B2 JP3653083B2 (en) 2005-05-25

Family

ID=27785729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014547A Expired - Lifetime JP3653083B2 (en) 2003-01-23 2003-01-23 Road construction method

Country Status (1)

Country Link
JP (1) JP3653083B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270488A (en) * 2006-03-31 2007-10-18 Takenaka Komuten Co Ltd High-strength and high-toughness cement-based soil improving body using fiber reinforcement
CN102296509A (en) * 2011-06-21 2011-12-28 北京航空航天大学 Foundation treatment method for exactly regulating foundation settlement, and construction device
CN102505598A (en) * 2011-10-09 2012-06-20 中铁六局集团有限公司 Method for reinforcement construction of soft soil foundation by exchange-filling with foam lightweight soil
CN102767128A (en) * 2012-08-14 2012-11-07 天津二十冶建设有限公司 Construction method capable of controlling top surface elevation for surcharge load soil of subgrade
CN102817298A (en) * 2012-08-29 2012-12-12 中铁十五局集团有限公司 Construction method on permafrost
CN102900001A (en) * 2012-10-22 2013-01-30 中国水电建设集团路桥工程有限公司 Construction method for road foundation
CN103572680A (en) * 2012-08-02 2014-02-12 五冶集团上海有限公司 Road roadbed filling construction method of coal mine gob
CN103726425A (en) * 2013-12-23 2014-04-16 中铁四局集团第一工程有限公司 Foamed light soil construction method
CN104746399A (en) * 2015-04-10 2015-07-01 成军 Construction method for preventing vehicle bump at bridge head
CN105113350A (en) * 2015-08-27 2015-12-02 苏州同尚工程设计咨询有限公司 Pier abutment roadbed structure and construction method
CN105220620A (en) * 2015-10-20 2016-01-06 合肥市市政设计院有限公司 The bumping at bridge-head processing method of darker mud soft soil foundation after platform
CN105780619A (en) * 2014-12-26 2016-07-20 上海勘测设计研究院有限公司 Seaside soft foundation road structure
CN105926395A (en) * 2016-06-22 2016-09-07 山西省交通科学研究院 Roadbed structure capable of eliminating consolidation settlement of newly-built roadbed and construction method of roadbed structure
CN106381774A (en) * 2016-08-30 2017-02-08 中铁十九局集团矿业投资有限公司 Construction method and device for soft foundation reinforced by filmed geotextile
CN106381790A (en) * 2016-10-26 2017-02-08 朱育盼 Method and device for reinforcing foundation bed
CN109826066A (en) * 2019-03-14 2019-05-31 广西双象建设工程有限责任公司 A kind of road structure and construction method of light soil roadbed combination steel-pipe pile
CN110670435A (en) * 2019-09-19 2020-01-10 东南大学 Method for treating collapsible loess subgrade through dynamic compaction and curing
CN113584979A (en) * 2021-06-25 2021-11-02 中冶天工集团有限公司 Collapsible loess area road construction method
CN113718569A (en) * 2021-08-16 2021-11-30 广东万业建设集团有限公司 Construction method for constructing road on soft soil foundation
CN114016493A (en) * 2021-09-23 2022-02-08 中国化学工程重型机械化有限公司 Soft foundation replacement construction method
CN114575209A (en) * 2022-03-31 2022-06-03 浙江数智交院科技股份有限公司 Road rigid pile and preloading soft foundation treatment transition structure and construction method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605699A (en) * 2012-03-23 2012-07-25 河海大学 Technology for settlement control of hollow rigid plate after construction of deep soft soil foundation of high-level embankment
CN103334357B (en) * 2013-06-07 2015-07-15 上海嘉实(集团)有限公司 Viaduct road embankment structure with lower pile foundation bearing platform extending in roadbed, and construction method
CN103290751B (en) * 2013-06-13 2016-03-02 铁道第三勘察设计院集团有限公司 Inclining anchor cable cement earth pile subgrade strengthening structure
CN103556554B (en) * 2013-10-09 2016-05-11 广州市市政集团有限公司 Reinforce the construction method of the drilled pile composite foundation structure of the soft base of embankment
CN103628378B (en) * 2013-11-12 2015-09-09 江苏省镇江市路桥工程总公司 One is highway widening embankment structure and construction method near water
CN103993533B (en) * 2014-06-13 2016-03-02 北京市政建设集团有限责任公司 For the comprehensive debulking methods of Canal in Loess Area high-filled embankment
CN108951334B (en) * 2016-11-21 2020-12-08 惠州大亚湾市政基础设施有限公司 Construction method of road subgrade structure
CN106522074A (en) * 2016-11-21 2017-03-22 苏交科集团股份有限公司 Construction technology for gravel-pebble-soil roadbed of expressway
CN109958016A (en) * 2017-12-22 2019-07-02 张远凤 A kind of extremely frigid zones marshland roadbed anti-sedimentation structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108722A (en) * 1988-10-14 1990-04-20 Shimizu Corp Weak ground improving technique
JPH0473310A (en) * 1990-07-12 1992-03-09 Nishi Nippon Eng Kk Construction technique of structure in wear subsoil
JPH06212619A (en) * 1993-01-18 1994-08-02 Tenox Corp Foundation improving body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108722A (en) * 1988-10-14 1990-04-20 Shimizu Corp Weak ground improving technique
JPH0473310A (en) * 1990-07-12 1992-03-09 Nishi Nippon Eng Kk Construction technique of structure in wear subsoil
JPH06212619A (en) * 1993-01-18 1994-08-02 Tenox Corp Foundation improving body

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624292B2 (en) * 2006-03-31 2011-02-02 株式会社竹中工務店 High-strength, high-toughness cementitious ground improvement by fiber reinforcement
JP2007270488A (en) * 2006-03-31 2007-10-18 Takenaka Komuten Co Ltd High-strength and high-toughness cement-based soil improving body using fiber reinforcement
CN102296509A (en) * 2011-06-21 2011-12-28 北京航空航天大学 Foundation treatment method for exactly regulating foundation settlement, and construction device
CN102296509B (en) * 2011-06-21 2013-09-18 北京航空航天大学 Foundation treatment method for exactly regulating foundation settlement, and construction device
CN102505598A (en) * 2011-10-09 2012-06-20 中铁六局集团有限公司 Method for reinforcement construction of soft soil foundation by exchange-filling with foam lightweight soil
CN102505598B (en) * 2011-10-09 2014-03-19 中铁六局集团有限公司 Method for reinforcement construction of soft soil foundation by exchange-filling with foam lightweight soil
CN103572680A (en) * 2012-08-02 2014-02-12 五冶集团上海有限公司 Road roadbed filling construction method of coal mine gob
CN103572680B (en) * 2012-08-02 2016-01-20 五冶集团上海有限公司 The roadbed filling construction method of coal mine gob
CN102767128A (en) * 2012-08-14 2012-11-07 天津二十冶建设有限公司 Construction method capable of controlling top surface elevation for surcharge load soil of subgrade
CN102767128B (en) * 2012-08-14 2014-10-29 天津二十冶建设有限公司 Construction method capable of controlling top surface elevation for surcharge load soil of subgrade
CN102817298B (en) * 2012-08-29 2014-12-10 中铁十五局集团有限公司 Construction method on permafrost
CN102817298A (en) * 2012-08-29 2012-12-12 中铁十五局集团有限公司 Construction method on permafrost
CN102900001A (en) * 2012-10-22 2013-01-30 中国水电建设集团路桥工程有限公司 Construction method for road foundation
CN103726425A (en) * 2013-12-23 2014-04-16 中铁四局集团第一工程有限公司 Foamed light soil construction method
CN103726425B (en) * 2013-12-23 2016-06-08 中铁四局集团第一工程有限公司 Foam lightweight soil construction method
CN105780619A (en) * 2014-12-26 2016-07-20 上海勘测设计研究院有限公司 Seaside soft foundation road structure
CN104746399A (en) * 2015-04-10 2015-07-01 成军 Construction method for preventing vehicle bump at bridge head
CN105113350A (en) * 2015-08-27 2015-12-02 苏州同尚工程设计咨询有限公司 Pier abutment roadbed structure and construction method
CN105220620A (en) * 2015-10-20 2016-01-06 合肥市市政设计院有限公司 The bumping at bridge-head processing method of darker mud soft soil foundation after platform
CN105926395A (en) * 2016-06-22 2016-09-07 山西省交通科学研究院 Roadbed structure capable of eliminating consolidation settlement of newly-built roadbed and construction method of roadbed structure
CN105926395B (en) * 2016-06-22 2018-01-02 山西省交通科学研究院 A kind of road structure and construction method for eliminating newly-built roadbed consolidation settlement
CN106381774A (en) * 2016-08-30 2017-02-08 中铁十九局集团矿业投资有限公司 Construction method and device for soft foundation reinforced by filmed geotextile
CN106381790A (en) * 2016-10-26 2017-02-08 朱育盼 Method and device for reinforcing foundation bed
CN109826066A (en) * 2019-03-14 2019-05-31 广西双象建设工程有限责任公司 A kind of road structure and construction method of light soil roadbed combination steel-pipe pile
CN110670435A (en) * 2019-09-19 2020-01-10 东南大学 Method for treating collapsible loess subgrade through dynamic compaction and curing
CN113584979A (en) * 2021-06-25 2021-11-02 中冶天工集团有限公司 Collapsible loess area road construction method
CN113718569A (en) * 2021-08-16 2021-11-30 广东万业建设集团有限公司 Construction method for constructing road on soft soil foundation
CN114016493A (en) * 2021-09-23 2022-02-08 中国化学工程重型机械化有限公司 Soft foundation replacement construction method
CN114016493B (en) * 2021-09-23 2023-09-12 中国化学工程重型机械化有限公司 Soft foundation reclamation construction method
CN114575209A (en) * 2022-03-31 2022-06-03 浙江数智交院科技股份有限公司 Road rigid pile and preloading soft foundation treatment transition structure and construction method

Also Published As

Publication number Publication date
JP3653083B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3653083B2 (en) Road construction method
JP3528950B2 (en) Road construction method
CN104278608A (en) Novel highway embankment widened structure and construction method
JP6335569B2 (en) Ground preparation method and ground structure
CN210238178U (en) Siltation soil reinforcing and treating device
TW200412388A (en) Vibration-proof construction method
CN210066390U (en) Punishment structure suitable for deep weak soil roadbed
RU102220U1 (en) ROAD DESIGN
CN102839683B (en) Granular pile-permeable concrete stake dual compound foundation and processing method
CN102839647B (en) Stirring pile-permeable concrete pile compound foundation and treatment method thereof
JP2005264718A (en) Ground foundation reinforcing structure
JPS62260919A (en) Small pile for reinforcing foundation ground to earthquake
CN209975286U (en) Embankment structure based on foam concrete
JP2839986B2 (en) Retaining wall construction method
JP2001073305A (en) Road construction body
JP3583181B2 (en) Embankment construction method
CN113529523A (en) Soft foundation reinforcement treatment method based on highway engineering
KR101251440B1 (en) A method for hardened pavement using improved soil
JP2013238034A (en) Soil structure and soil improvement method
JP2013221347A (en) Ground structure and ground improvement method
CN215051688U (en) Shallow soft soil foundation foam light soil embankment structure
CN113463457B (en) Roadbed structure for penetrating through slurry section and construction method thereof
KR100451092B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
KR100462529B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
JP3224503B2 (en) Road construction method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370