JP2007270488A - High-strength and high-toughness cement-based soil improving body using fiber reinforcement - Google Patents

High-strength and high-toughness cement-based soil improving body using fiber reinforcement Download PDF

Info

Publication number
JP2007270488A
JP2007270488A JP2006096643A JP2006096643A JP2007270488A JP 2007270488 A JP2007270488 A JP 2007270488A JP 2006096643 A JP2006096643 A JP 2006096643A JP 2006096643 A JP2006096643 A JP 2006096643A JP 2007270488 A JP2007270488 A JP 2007270488A
Authority
JP
Japan
Prior art keywords
fiber
strength
cement
ground improvement
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006096643A
Other languages
Japanese (ja)
Other versions
JP4624292B2 (en
Inventor
Masao Kojima
正朗 小島
Tateo Mitsui
健郎 三井
Masahiro Wachi
正浩 和地
Masamichi Aoki
雅路 青木
Tsutomu Namikawa
努 並河
Hiroshi Kodaira
泰士 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2006096643A priority Critical patent/JP4624292B2/en
Publication of JP2007270488A publication Critical patent/JP2007270488A/en
Application granted granted Critical
Publication of JP4624292B2 publication Critical patent/JP4624292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength and high-toughness cement-based soil improving body using fiber reinforcement which is used for an underground structure of an earth-retaining wall/foundation etc. of a building or civil engineering structure. <P>SOLUTION: Polypropylene fibers are mixed by 0.4-2% based on the volume ratio of the soil improving body, and kneaded with soil so as to reinforce a matrix. In the polypropylene fibers with a fracture strength of 200-1,200 MPa, the ratio of the length of the fiber to the thickness of the fiber is adjusted to 1,000 or more so that the fibers can be intertwined with one another by being kneaded and agitated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、建築又は土木構造物の山留め壁・基礎等の地下構造に使用する、繊維補強による高強度、高靱性セメント系地盤改良体の技術分野に属する。   The present invention belongs to the technical field of a high-strength, high-toughness cement-based ground improvement body by fiber reinforcement used for underground structures such as mountain retaining walls and foundations of buildings or civil engineering structures.

地盤改良体は、現地の発生土にセメント系硬化材を加えて混練し固化させて製造する。一般的には撹拌翼を備えたロッドを軟弱地盤中へ貫入しながら、地上のプラントで製造したセメント系硬化材をロッド先端部から噴出させて掘削土壌と撹拌・混合することにより、軟弱地盤を補強した地盤改良体を製造する。或いは地上のサイロからセメント粉体を空気搬送して、前記攪拌翼を備えたロッドの先端から噴射させて、掘削土壌と攪拌・混合して地盤改良体を製造することも行われる。地盤改良体は、地盤支持力の向上、液状化の防止、あるいは山留め壁、止水壁など地下構造体の構築に広く利用されている。地盤改良体は、圧縮強度が0.5〜4MPa程度であり、地盤の種類に応じて、所要の強度が得られるセメント量をセメント系硬化材として混入する。
この地盤改良体は、最大荷重を超えると、脆性的な破壊を起こす。特に曲げや引っ張りを受ける場合は、最大耐力後に一気に破壊に至る。このため安全を考慮して、室内試験の圧縮強度の1/3〜1/10程度が許容圧縮応力度として用いられる。引っ張り強度は、前記許容圧縮応力度の0.1〜0.2倍、せん断強度は0.3倍として設計することが多い。
The ground improvement body is manufactured by adding cement-based hardener to the generated soil and kneading and solidifying. In general, while a rod equipped with a stirring blade penetrates into the soft ground, the cement-based hardened material produced in the plant on the ground is spouted from the tip of the rod and stirred and mixed with the excavated soil to Produces a reinforced ground improvement body. Alternatively, the cement powder is pneumatically conveyed from a ground silo, sprayed from the tip of the rod provided with the stirring blade, and stirred and mixed with the excavated soil to produce a ground improvement body. The ground improvement body is widely used for improvement of ground supporting force, prevention of liquefaction, or construction of underground structures such as mountain retaining walls and water blocking walls. The ground improvement body has a compressive strength of about 0.5 to 4 MPa, and a cement amount capable of obtaining a required strength is mixed as a cement-based hardener according to the type of the ground.
This ground improvement body causes brittle fracture when the maximum load is exceeded. In particular, when subjected to bending or pulling, it breaks at once after the maximum yield strength. For this reason, considering safety, about 1/3 to 1/10 of the compressive strength in the laboratory test is used as the allowable compressive stress level. In many cases, the tensile strength is designed to be 0.1 to 0.2 times the allowable compressive stress and the shear strength is 0.3 times.

地盤改良体の力学特性を改善する従来技術として、たとえば下記の特許文献1には、鋼繊維を混入した繊維補強ソイルセメントとその施工方法が開示されている。この従来技術は、強度レベルが10MPaと一般的な地盤改良体に比べて強度の大きいものについて、鋼繊維補強により、曲げ強度を圧縮強度の15〜30%高められる、との記載が認められる。水セメント比100%のセメント系硬化材に鋼繊維を1〜3%混入することも記載されている。   As a conventional technique for improving the mechanical properties of the ground improvement body, for example, Patent Document 1 below discloses a fiber-reinforced soil cement mixed with steel fibers and a construction method thereof. It is recognized that this conventional technology has a strength level of 10 MPa, which is higher than that of a general ground improvement body, and the steel fiber reinforcement can increase the bending strength by 15 to 30% of the compressive strength. It is also described that 1 to 3% of steel fibers are mixed in a cement-based hardener having a water cement ratio of 100%.

下記の特許文献2には、直径10〜20ミクロン、繊維長さ4〜10mm、破断強度1500〜2500MPaのビニロン繊維を用いた繊維補強ソイル固化体、或いは直径25〜50ミクロン、繊維長さ10〜20mm、破断強度800〜1500MPaのビニロン繊維を用いた繊維補強ソイル固化体を製造すると、圧縮強度に対する曲げ強度や引っ張り強度が向上し、靱性も向上できると記載されている。
地盤改良のソイル固化体は、地盤の土質に応じて、所要強度が得られるセメント量を決定して施工するのが一般的である。セメント量には幅があるが、例えば砂層では80〜300Kg/m 程度、粘性土では100〜300Kg/m 程度、シルトでは100〜300Kg/m 程度のセメント量である。しかし、特許文献2の開示技術は、全ての土質についてセメント量は350Kg/mと記載しているので、一般的に実施されている地盤改良体とは異質な調合となっている。セメント量が非常に多いことに加えて、高価なビニロン繊維を使用している点が注目される。
In the following Patent Document 2, a fiber-reinforced soil solidified body using a vinylon fiber having a diameter of 10 to 20 microns, a fiber length of 4 to 10 mm, and a breaking strength of 1500 to 2500 MPa, or a diameter of 25 to 50 microns and a fiber length of 10 It is described that when a fiber-reinforced soil solidified body using vinylon fibers having a breaking strength of 800 mm to 1500 mm is produced, bending strength and tensile strength against compressive strength can be improved and toughness can be improved.
The soil solidified body for ground improvement is generally constructed by determining the amount of cement that provides the required strength in accordance with the soil quality of the ground. Although the cement content may range, for example, in the sand layer 80~300Kg / m 3 approximately, in the cohesive soil 100 to 300 / m 3 approximately, a cement content of about 100 to 300 / m 3 in the silt. However, since the disclosed technique of Patent Document 2 describes that the cement amount is 350 kg / m 3 for all soils, it is a different composition from the generally improved ground improvement body. In addition to the very large amount of cement, it is noted that expensive vinylon fibers are used.

下記の特許文献3には、上記特許文献2に記載された繊維補強ソイル固化体の施工法が開示されている。即ち、特許文献2に記載された繊維補強ソイル固化体の施工法では、セメント系硬化材の粘度が非常に低く、繊維の分散が困難であるので、特許文献3の発明は、水セメント比の下限値(60〜80%)で粘土の高い状態のセメント系硬化材に増粘剤、分散剤を加える。その上で、繊維を体積比率にして1%以下0.5%以上混入して分散させる。その後、加水して所要の水セメント比とし、所要の圧縮強度を発揮させると記載されている。   Patent Document 3 below discloses a method for applying the fiber-reinforced soil solidified body described in Patent Document 2. That is, in the construction method of the fiber reinforced soil solidified body described in Patent Document 2, the viscosity of the cement-based hardener is very low and fiber dispersion is difficult. A thickener and a dispersing agent are added to the cement-based hardener having a lower limit (60 to 80%) and high clay. Then, the fibers are mixed and dispersed in a volume ratio of 1% or less and 0.5% or more. Then, it is described that water is added to a required water-cement ratio and the required compressive strength is exhibited.

特開平6−228942号公報JP-A-6-228492 特開2001−48609号公報JP 2001-48609 A 特開2003−232032号公報JP 2003-232032 A

上記特許文献1に開示された繊維補強ソイルセメントとその施工方法は、水セメント比100%のセメント系硬化材に、鋼繊維を1〜3%混入すると記載しているが、水セメント比100%のセメント系硬化材に、体積比で1%を超える鋼繊維を混入して圧送することは甚だ困難である。曲げ強度の向上についても、圧縮強度の30%の向上を期待できると記載されている。しかし、地盤の種類によっては、地盤改良体の10%程度の体積比しかセメント系硬化材を使用しないため、補強繊維は、地盤改良体の体積に対して0.1〜0.3%しか混入されず、十分な繊維補強効果を期待できない。また、最大耐力が向上したとしても、最大耐力以降の靱性改善効果の有無は不明であり、靱性改善効果は検証できないままである。   The fiber reinforced soil cement and its construction method disclosed in Patent Document 1 describe that 1 to 3% of steel fibers are mixed in a cement-based hardened material having a water cement ratio of 100%, but the water cement ratio is 100%. It is extremely difficult to mix and feed steel fibers exceeding 1% by volume to a cement-based hardener. It also describes that an improvement of 30% in compressive strength can be expected with respect to an improvement in bending strength. However, depending on the type of ground, only 10% volume ratio of the ground improvement body uses cement-based hardener, so that the reinforcing fiber is mixed in only 0.1-0.3% with respect to the volume of the ground improvement body. And a sufficient fiber reinforcement effect cannot be expected. Moreover, even if the maximum yield strength is improved, the presence or absence of the toughness improvement effect after the maximum yield strength is unknown, and the toughness improvement effect remains unverifiable.

上記特許文献2に開示された繊維補強ソイル固化体は、いずれの土質に対しても、セメント量は350Kg/m と記載されており、一般的に実施されている地盤改良とは異質な調合となっている。地盤の土質に応じて、所要強度が得られるセメント量を決定して施工するのが一般的である。それにしても特許文献2の開示技術は、セメント量が非常に多い上に高価なビニロン繊維を使用するので、仮に高性能の繊維補強ソイル固化体が得られるとしても、地盤改良費用は大幅に高価になり、経済的ではない。
上記特許文献3に開示された繊維補強ソイル固化体の施工方法は、水セメント比が低く粘度が高いセメント系硬化材へ、繊維を体積比で1%以下0.5%以上混入して分散させるため、増粘剤や分散剤の使用が不可欠であるし、その後は均一に練り混ぜるため水を供給して所要の水セメント比にする必要があるので、現場での実施が面倒である。
The fiber-reinforced soil solidified body disclosed in Patent Document 2 is described as having a cement amount of 350 kg / m 3 with respect to any soil, and it is a different composition from the generally implemented ground improvement. It has become. In general, the amount of cement that provides the required strength is determined according to the soil quality of the ground. Even so, since the disclosed technology of Patent Document 2 uses a very large amount of cement and expensive vinylon fiber, even if a high-performance fiber-reinforced soil solidified body can be obtained, the ground improvement cost becomes significantly expensive. Not economical.
The construction method of the fiber-reinforced soil solidified body disclosed in Patent Document 3 disperses fibers by mixing them in a cement-based hardener having a low water-cement ratio and a high viscosity in a volume ratio of 1% or less and 0.5% or more. Therefore, it is indispensable to use a thickener or a dispersant, and after that, it is necessary to supply water to obtain a required water-cement ratio in order to knead uniformly, so that the on-site implementation is troublesome.

本発明の目的は、安価で簡便・確実に地盤改良体の靱性を向上させることができ、従来技術品に比較して一層大きな曲げ強度と引っ張り強度が得られる、高強度、高靱性セメント系地盤改良体を提供することである。
本発明の次の目的は、現在広い分野で大量に使用されており、安価で経済性に優れているポリプロピレン繊維を使用し、しかも練り混ぜ撹拌することにより、繊維が互いに絡み合って大きな繊維補強効果を発揮しマトリックスを補強して成る高強度、高靱性セメント系地盤改良体を提供することである。
An object of the present invention is to provide a high-strength, high-toughness cement-based ground that can improve the toughness of a ground improvement body inexpensively, simply and reliably, and can obtain a higher bending strength and tensile strength than conventional products. It is to provide an improved body.
The next object of the present invention is to be used in a large amount in a wide field at present, and using polypropylene fibers that are inexpensive and economical, and kneading and stirring, the fibers are entangled with each other, a great fiber reinforcing effect It is to provide a high-strength, high-toughness cementitious ground improvement body that is reinforced by reinforcing the matrix.

上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る繊維補強による高強度、高靱性セメント系地盤改良体は、
土壌とセメント系硬化材を混練して製造する地盤改良体において、
破断強度が200〜1200MPaで、練り混ぜ撹拌することにより繊維と繊維が相互に絡み合うように繊維1の太さに対する長さの比率(アスペクト比)を1000以上に調整したポリプロピレン繊維Pを、地盤改良体の体積比にして0.4〜2%混入して土壌と混練しマトリックス2を補強して成ることを特徴とする。
As a means for solving the problems of the prior art, a high-strength, high-toughness cement-based ground improvement body by fiber reinforcement according to the invention described in claim 1,
In the ground improvement body manufactured by kneading soil and cement-based hardener,
A polypropylene fiber P having a breaking strength of 200 to 1200 MPa and a length ratio (aspect ratio) with respect to the thickness of the fiber 1 adjusted to 1000 or more so that the fiber and the fiber are entangled with each other by kneading and stirring is improved. It is characterized in that the matrix 2 is reinforced by mixing with 0.4 to 2% of the body volume ratio and kneading with soil.

請求項2に記載した発明は、請求項1に記載した繊維補強による高強度、高靱性セメント系地盤改良体において、
ポリプロピレン繊維Pの太さは、直径が100ミクロン以下であることを特徴とする。
The invention described in claim 2 is a high-strength, high-toughness cement-based ground improvement body by fiber reinforcement described in claim 1,
The thickness of the polypropylene fiber P is characterized by having a diameter of 100 microns or less.

請求項3に記載した発明は、請求項1又は2に記載した繊維補強による高強度、高靱性セメント系地盤改良体において、
ポリプロピレン繊維Pは、両端部に、繊維径より10ミクロン以上大きいこぶ状又は塊状のアンカー部を有することを特徴とする。
The invention described in claim 3 is a high-strength, high-toughness cement-based ground improvement body by fiber reinforcement described in claim 1 or 2,
The polypropylene fiber P is characterized by having a knot-like or massive anchor portion larger than the fiber diameter by 10 microns or more at both ends.

(発明の理論的根拠と産業上の利用可能性)
ポリプロピレン繊維は、表面が疎水性であり、破断強度は200〜1200MPa程度、ヤング係数は2〜15GPa程度であり、他の有機繊維と比較して機械的性質に劣る。そのためポリプロピレン繊維は、地盤改良体の繊維補強効果を得るためには大量に使用しなければならないと考えられてきた。
しかし、本発明では、このポリプロピレン繊維を地盤改良体の体積比にして0.4〜2%混入することで繊維補強効果を発揮させ、セメント系地盤改良体の靱性を大幅に向上させ、曲げ強度、引っ張り強度も大幅に向上させることに成功した。
即ち、一般的な繊維補強の原理は、マトリックス(この明細書で、マトリックスとは、セメント系地盤改良体組織の母材の意味で使用する。)と繊維との付着力や摩擦抵抗で応力を繊維に伝達して曲げ強度、引っ張り強度、靱性を高めると考えられている(図1B、図2Bを参照)。図1B、図2Bにおいて、符号1が繊維、2がマトリックス、3がひび割れを指す。
しかし、本発明では、地盤改良体の中で繊維1が屈曲した状態となり互いに絡み合うように混入されると、引き抜き時の抵抗が増大し同繊維1に応力を伝達してマトリックス2を補強する(図1B)という事実、効果に着眼している。
(Theoretical basis of the invention and industrial applicability)
Polypropylene fiber has a hydrophobic surface, a breaking strength of about 200 to 1200 MPa, a Young's modulus of about 2 to 15 GPa, and is inferior in mechanical properties as compared with other organic fibers. Therefore, it has been considered that polypropylene fibers must be used in a large amount in order to obtain the fiber reinforcing effect of the ground improvement body.
However, in the present invention, the polypropylene fiber is mixed in a volume ratio of 0.4 to 2% in the ground improvement body so that the fiber reinforcing effect is exhibited, the toughness of the cement ground improvement body is greatly improved, and the bending strength is increased. , Succeeded in greatly improving the tensile strength.
That is, the general principle of fiber reinforcement is that stress is applied by the adhesion force and friction resistance between the matrix (in this specification, the matrix is used to mean the base material of the cement-based ground improvement body structure) and the fiber. It is considered that the bending strength, tensile strength, and toughness are increased by transmitting to fibers (see FIGS. 1B and 2B). In FIGS. 1B and 2B, reference numeral 1 denotes fibers, 2 denotes a matrix, and 3 denotes cracks.
However, in the present invention, when the fibers 1 are bent in the ground improvement body and mixed so as to be entangled with each other, the resistance at the time of drawing increases, and stress is transmitted to the fibers 1 to reinforce the matrix 2 ( The fact of FIG. 1B) focuses on the effect.

セメント系地盤改良体に関する一般の繊維補強現象は、作用する応力が、マトリックスと繊維の間の付着力を介して繊維に応力が伝達されることにより生ずる。
マトリックスと繊維との間には十分な付着力が作用しており、ひび割れが発生するまでは、繊維とマトリックスが一体的に挙動すると仮定すると、歪みが同じでもヤング係数が大きい繊維ほど大きい応力を負担する。このためマトリックスがひび割れを生ずる歪みに達した際の応力は、ヤング係数が大きい繊維を用いるほどに高くなる。繊維補強マトリックスにひび割れが入る際の断面平均応力σcは、マトリックス単体のひび割れ発生応力σmに、繊維体積比Vf、繊維のヤング係数Ef、マトリックスのヤング係数Emを用い、繊維の配向による低減率を無視すると、下記の数式1で評価できる。
(数式1) σc =σm {1+Vf(Ef/Em−1)}
鋼繊維やビニロン繊維は、地盤改良体のマトリックスに対して、ヤング係数がそれぞれ250倍と50倍程度であり、繊維体積比Vf=1%とすると、ひび割れ発生時の断面平均応力σcはそれぞれ、3.5倍と1.5倍程度と予測される。一方、ポリプロピレン繊維は、ヤング係数が3倍程度であり、ひび割れ発生時の断面平均応力σcは1.02倍にすぎない。
また、繊維補強体の終局強度σuは、繊維の終局強度をσfuとして、下記の数式2で評価できる。
(数式2) σu =σfu・Vf
A general fiber reinforcement phenomenon related to a cement-based ground improvement body is caused by an applied stress being transmitted to a fiber through an adhesive force between the matrix and the fiber.
Sufficient adhesion force is acting between the matrix and the fiber, and it is assumed that the fiber and the matrix behave integrally until cracking occurs. bear. For this reason, the stress when the matrix reaches a strain causing cracks becomes higher as fibers having a higher Young's modulus are used. The average cross-sectional stress σc when cracks enter the fiber reinforced matrix is determined by the fiber orientation ratio using the fiber volume ratio Vf, fiber Young's modulus Ef, and matrix Young's modulus Em as the crack initiation stress σm of the matrix alone. If ignored, it can be evaluated by the following formula 1.
(Formula 1) (sigma) c = (sigma) m {1 + Vf (Ef / Em-1)}
Steel fibers and vinylon fibers have Young's moduli of about 250 times and 50 times, respectively, with respect to the matrix of the ground improvement body. When the fiber volume ratio Vf = 1%, the cross-sectional average stress σc at the time of crack occurrence is It is expected to be about 3.5 times and 1.5 times. On the other hand, the polypropylene fiber has a Young's modulus of about 3 times, and the cross-sectional average stress σc at the time of crack occurrence is only 1.02 times.
Further, the ultimate strength σu of the fiber reinforcement can be evaluated by the following formula 2 where the ultimate strength of the fiber is σfu.
(Formula 2) σu = σfu · Vf

鋼繊維やビニロン繊維は、地盤改良体のマトリックスに対しては、終局強度がそれぞれ1000MPaと2000MPa倍程度である。繊維体積比Vf=1%として、単純化のために繊維の配向による低減率を無視して終局強度σuを求めると、それぞれ10MPaと20MPaとなる。一方、ポロプロピレン繊維は、終局強度が500〜1000MPa程度であり、同繊維による補強体の終局強度σuは5〜10MPaとなる。
しかし、実際に試験を行ってみると、作用応力が大きくなるとマトリックスと繊維の間の付着が切れ繊維が抜け出しはじめるため、繊維の抜けだし時の摩擦抵抗のみが繊維に伝達されて外力に抵抗するにすぎないことが確認された。結局、強度やヤング係数の大きな繊維を使用しても、上記した期待通りのひび割れ強度や終局強度は得られないことがわかった。これを逆にいうと、強度やヤング係数が低く、繊維補強のためには大量に(例えば3%以上)も添加しないと効果が生じないと考えられてきたポリプロプピレン繊維であっても、強度の低いセメント系地盤改良体の補強には比較的少量の添加でも補強に有効であることを見出し、高靱性化を実現できることが確認されたのである。
Steel fibers and vinylon fibers have an ultimate strength of about 1000 MPa and 2000 MPa times with respect to the matrix of the ground improvement body, respectively. If the fiber volume ratio Vf = 1% and the ultimate strength σu is determined for simplicity, ignoring the reduction rate due to fiber orientation, they are 10 MPa and 20 MPa, respectively. On the other hand, the final strength of the polypropylene fiber is about 500 to 1000 MPa, and the final strength σu of the reinforcing body made of the fiber is 5 to 10 MPa.
However, when the test is actually performed, if the applied stress increases, the adhesion between the matrix and the fiber breaks and the fiber begins to come out, so only the frictional resistance when the fiber is pulled out is transmitted to the fiber and resists external force. It was confirmed that it was only. As a result, it was found that even if fibers having a large strength and Young's modulus were used, the above-described expected crack strength and ultimate strength could not be obtained. In other words, polypropylene fibers having low strength and Young's modulus and thought to have no effect unless added in large quantities (for example, 3% or more) for fiber reinforcement, It was found that a relatively small amount of addition was effective for reinforcing a cement-based ground improvement body having low strength, and it was confirmed that high toughness could be realized.

かくして本発明者らは、セメント系地盤改良体は、セメントコンクリートに比較すると構造組織が粗であるため、マトリックスと繊維の界面に隙間や空隙があり、作用応力の低い時点から付着切れが発生し、部分的に繊維が抜け出してしまい、上記数式1の関係が成り立たないことから、ひび割れ発生応力に繊維とマトリックスのヤング係数比の影響がほとんど無いことを見出した。
最も重要なことは、繊維の強度やヤング係数よりも、最大応力以降には摩擦により繊維に応力を伝達しやすいことである。この現象により繊維補強マトリックスの曲げ強度、引っ張り強度、靱性の向上が可能になるのである。
繊維の強度は、摩擦抵抗で生ずる応力によって破断しなければよいと考えられる。地盤改良体自体の強度が0.5〜4MPa程度として、繊維補強マトリックスの引っ張り応力度1MPaを実現できるとしても、繊維体積比1%で繊維強度は100MPa、繊維体積比0.5%としても必要繊維強度は200MPa程度であればよい。ヤング係数が大きい繊維は、早い段階で繊維とマトリックスの付着破壊が発生し、繊維強度を有効に発揮できず、補強の効率は低下してしまう。
Thus, the present inventors have found that the cement-based ground improvement body has a rough structure compared to cement concrete, and therefore there are gaps and voids at the interface between the matrix and the fibers, and the adhesion breakage occurs from the time when the working stress is low. Since the fibers are partially pulled out and the relationship of the above formula 1 is not established, it has been found that there is almost no influence of the Young's modulus ratio between the fibers and the matrix on the cracking stress.
Most importantly, stress is more easily transmitted to the fiber by friction after the maximum stress than the strength and Young's modulus of the fiber. This phenomenon makes it possible to improve the bending strength, tensile strength and toughness of the fiber reinforced matrix.
It is considered that the strength of the fiber should not be broken by the stress generated by the frictional resistance. Even if the strength of the ground improvement body itself is about 0.5-4 MPa and the tensile stress of the fiber reinforced matrix is 1 MPa, the fiber strength ratio is 1%, the fiber strength is 100 MPa, and the fiber volume ratio is 0.5%. The fiber strength may be about 200 MPa. A fiber having a large Young's modulus will cause an adhesion failure between the fiber and the matrix at an early stage, so that the fiber strength cannot be effectively exhibited, and the efficiency of reinforcement is reduced.

本発明者らは、地盤改良体の組織構造および地盤改良体マトリックスと繊維の界面について研究した結果、マトリックスには10%以上の空隙が存在し、マトリックスと繊維の界面には脆弱で5〜10ミクロン程度の空隙が存在することがわかった。そのため繊維径が小さいとマトリックスと繊維の接触度が不十分となるので、応力を伝達するためには繊維直径が5ミクロン以上であるべきことを確認した。   As a result of studying the structure of the ground improvement body and the interface between the ground improvement body matrix and the fiber, the present inventors have found that the matrix has 10% or more voids, and the interface between the matrix and the fiber is fragile and 5-10. It was found that micron-sized voids exist. For this reason, when the fiber diameter is small, the contact degree between the matrix and the fiber becomes insufficient. Therefore, it was confirmed that the fiber diameter should be 5 microns or more in order to transmit the stress.

次に、マトリックスと繊維との間の摩擦抵抗によって高い(又は効率の良い)繊維補強効果を得るためには、繊維直径を上記した条件下で適切な太さにしても、図1のように直線状の繊維では、マトリックス2と繊維1の間に十分大きな摩擦抵抗を得られない。図2のように繊維1が屈曲され、繊維と繊維が相互に絡み合う条件を整えることが、引き抜き時の摩擦抵抗を増すことにすこぶる有効であることが確認された。マトリックス2と繊維1との界面で摩擦抵抗を得るため、図2のように繊維1を屈曲させた状態にするには、アスペクト比(繊維の太さに対する長さの比率)が大きいほど有利である。繊維の材質とアスペクト比が同じで、施工時の撹拌力が同じであれば、繊維直径が太くなるにつれ、繊維を屈曲させて相互に絡み合わせた状態にすることが難しくなる。現状、工業的に安価な繊維を大量生産(連続成形)する場合、単糸の直径は100ミクロン程度が限界と知られている。一方で、地盤改良体の施工時の撹拌性、地盤改良体マトリックスの流動性、繊維を混入した後の流動性などを考慮すると、引き抜きに対して十分な摩擦抵抗が得られるように屈曲させるための繊維直径の上限は、100ミクロンを上限とする必要がある。好ましくは50ミクロン以下であるといえる。   Next, in order to obtain a high (or efficient) fiber reinforcing effect by the frictional resistance between the matrix and the fiber, even if the fiber diameter is set to an appropriate thickness under the above-described conditions, as shown in FIG. With a straight fiber, a sufficiently large frictional resistance cannot be obtained between the matrix 2 and the fiber 1. As shown in FIG. 2, it was confirmed that adjusting the conditions in which the fiber 1 is bent and the fibers are intertwined with each other is extremely effective in increasing the frictional resistance during drawing. In order to obtain frictional resistance at the interface between the matrix 2 and the fiber 1, in order to obtain a state in which the fiber 1 is bent as shown in FIG. 2, it is advantageous that the aspect ratio (the ratio of the length to the thickness of the fiber) is large. is there. If the fiber material and the aspect ratio are the same and the stirring force during construction is the same, it becomes difficult to bend the fibers so that they are intertwined with each other as the fiber diameter increases. At present, when mass-producing industrially inexpensive fibers (continuous molding), it is known that the diameter of a single yarn is about 100 microns. On the other hand, in consideration of the stirrability during construction of the ground improvement body, the fluidity of the ground improvement body matrix, the fluidity after mixing the fibers, etc., in order to bend so as to obtain sufficient friction resistance against drawing The upper limit of the fiber diameter must be 100 microns. It can be said that it is preferably 50 microns or less.

繊維直径が10〜50ミクロンで、繊維直径に対する繊維長さの比率(アスペクト比)が1000以上のポリプロピレン繊維を、地盤改良体の体積に対する体積比0.4〜2%で混入すると、セメント系地盤改良体の繊維補強効果が特に高いことを確認できた。前記アスペクト比を1200程度にすると、高い繊維補強効果が得られることも確認した。
以上の繊維補強効果を得る繊維の材質は、破断強度が200〜1200MPa程度、ヤング係数が2〜15GPaと比較的低強度で、低剛性の繊維でよく、工業的に広く使用されて安価に入手できるポリプロピレン繊維が適合することが判明した。
When a polypropylene fiber having a fiber diameter of 10 to 50 microns and a ratio of fiber length to fiber diameter (aspect ratio) of 1000 or more is mixed in a volume ratio of 0.4 to 2% with respect to the volume of the ground improvement body, cement-based ground It was confirmed that the fiber reinforcing effect of the improved body was particularly high. It was also confirmed that when the aspect ratio is about 1200, a high fiber reinforcing effect can be obtained.
The fiber material for obtaining the above fiber reinforcement effect may be a low-rigidity fiber having a relatively low strength with a breaking strength of about 200 to 1200 MPa and a Young's modulus of 2 to 15 GPa. It has been found that polypropylene fibers that can be adapted.

その他、セメント系地盤改良体のマトリックス2と繊維1との間の界面における引き抜き摩擦抵抗を増大させる他の方法として、繊維の表面に凹凸を設けたり、繊維の両端にこぶ状又は塊状のアンカー部(引っ掛かり部)を設けることが有効的であることも確認された。繊維1とマトリックス2の界面には5〜10ミクロンの空隙や脆弱部が存在するが、繊維径に少なくとも10ミクロン加えた大きさのこぶ状又は塊状のアンカー部を両端に設けることにより、繊維の引き抜き抵抗を増大してマトリックス2を補強する効果の大きいことを確認できた。   In addition, as another method for increasing the pulling frictional resistance at the interface between the matrix 2 and the fiber 1 of the cement-based ground improvement body, unevenness is provided on the surface of the fiber, or a knot-like or lump-like anchor part is provided at both ends of the fiber. It was also confirmed that it is effective to provide a (hook portion). There are 5 to 10 micron voids and fragile parts at the interface between the fiber 1 and the matrix 2, but by providing a knot-like or massive anchor part with a size that is at least 10 microns added to the fiber diameter at both ends, It was confirmed that the effect of reinforcing the matrix 2 by increasing the pulling resistance was great.

請求項1〜3に記載した発明に係る繊維補強による高強度、高靱性セメント系地盤改良体は、地盤改良体に不足する引っ張り強度、曲げ強度、靱性を効果的に大幅に向上させることができ、優れた力学特性を発揮させることが出来る。
したがって、セメント系地盤改良体についての優れた力学特性を有効活用する設計法を採用することで、自立山留めや液状化防止を目的とする地盤改良体断面の低減化(経済設計)、あるいは中層、高層建物への直接基礎形式の採用、更に杭状改良体や壁杭の水平支持力の増大による地下構工法の合理化を達成することが可能となる。
The high-strength, high-toughness cement-based ground improvement body by fiber reinforcement according to the first to third aspects of the invention can effectively greatly improve the tensile strength, bending strength, and toughness that the ground improvement body lacks. , Can exhibit excellent mechanical properties.
Therefore, by adopting a design method that makes effective use of the excellent mechanical properties of cement-based ground improvement bodies, it is possible to reduce the cross-section of the ground improvement body (economic design) for the purpose of self-supporting mountain retaining and liquefaction prevention, It is possible to achieve rationalization of the underground construction method by adopting the direct foundation type for high-rise buildings and further increasing the horizontal bearing capacity of pile-shaped improved bodies and wall piles.

土壌とセメント系硬化材を混練して製造する地盤改良体に、破断強度が200〜1200MPaで、練り混ぜ撹拌することにより繊維と繊維が相互に絡み合うように繊維の太さに対する長さの比率(アスペクト比)を1000以上に調整したポリプロピレン繊維Pを、地盤改良体との体積比にして0.4〜2%混入して土壌と混練しマトリックス2を繊維補強する。
前記ポリプロピレン繊維Pの太さは、直径が好ましくは50ミクロン以上、100ミクロンまでとする。
また、ポリプロピレン繊維Pは、両端部に、繊維径より10ミクロン以上大きいこぶ状又は塊状のアンカー部を有するものを使用するのが好ましい。
The ratio of length to the thickness of the fiber so that the fiber and the fiber are entangled with each other by kneading and stirring the ground improvement body produced by kneading the soil and the cement-based hardener with a breaking strength of 200 to 1200 MPa. Polypropylene fiber P having an aspect ratio adjusted to 1000 or more is mixed in a volume ratio of 0.4 to 2% with the ground improvement body and mixed with soil to reinforce matrix 2.
The thickness of the polypropylene fiber P is preferably 50 microns or more and up to 100 microns.
Moreover, it is preferable to use the polypropylene fiber P which has a knot-like or massive anchor part larger than the fiber diameter by 10 microns or more at both ends.

下記の表1中に示した実施例1〜12は、高炉セメントBを使用し、土質種類(粘土、シルト、砂)に応じて、3〜4MPaの圧縮強度が得られるようにセメント量を170〜300Kg/m と定めた水セメント比100%のセメント系硬化材を、それぞれの土質土壌と混練すると共に、破断強度が647MPa、935MPaである2種類のポリプロピレン繊維(表1中の繊維種類記号P)を混入し練り混ぜ撹拌した。
ちなみに、ポリプロピレン繊維をセメント系硬化材および各土質土壌へ混入し練り混ぜ撹拌する手法としては、地盤改良装置の撹拌掘削翼で掘削した原位置土壌中へセメント系硬化材の注入管とは別系統の例えば少し太めの空気圧搬送管を通じて圧送供給して直接混入する直接方式と、原位置の掘削土壌を掘削して一旦は地上へ排出し、地上の混練プラントに収容した上で、セメント系硬化材と上記ポリプロピレン繊維を混入して混練する地上方式などを実施条件に応じて選択的に実施する。実施例1〜12は後者の地上方式を採用して実施した場合を示す。
Examples 1 to 12 shown in Table 1 below use blast furnace cement B, and the amount of cement is 170 so that a compressive strength of 3 to 4 MPa can be obtained according to the soil type (clay, silt, sand). Two types of polypropylene fibers having a breaking strength of 647 MPa and 935 MPa (fiber type symbols in Table 1) while kneading a cement-based hardener having a water cement ratio of 100% determined to ˜300 kg / m 3 with each soil soil P) was mixed, kneaded and stirred.
By the way, as a method of mixing polypropylene fiber with cement hardener and each soil soil, mixing and stirring, separate system from cement hardener injection pipe into in situ soil excavated with stirring excavation blade of ground improvement equipment For example, the direct method of pumping and feeding directly through a slightly thicker pneumatic conveying pipe, and excavating the original excavated soil, discharging it to the ground once, storing it in the ground kneading plant, and then cementing hardened material And the above-mentioned ground method in which the polypropylene fibers are mixed and kneaded are selectively carried out according to the working conditions. Examples 1 to 12 show the case where the latter ground system is adopted.

Figure 2007270488
Figure 2007270488

ポリプロピレン繊維Pに関しては、上記練り混ぜ撹拌の結果において、繊維と繊維が相互に絡み合うようにする条件として、繊維の太さに対する長さの比率(アスペクト比)を、1000、1200、1770、1786に調整したポリプロピレン繊維を用いた。そして、ポリプロピレン繊維は、地盤改良体に対する体積比にして0.5%、又は1.0%混入し、前記土壌と混練してマトリックス2を繊維補強するセメント系地盤改良体を製造した。
かくして製造したセメント系地盤改良体の繊維分散状態は、およそ図2A、Bに示すように、各繊維1はそれぞれ湾曲状態となり、しかも繊維と繊維が相互に絡み合った状況でマトリックス2中に内在することを確認できた。
Regarding the polypropylene fiber P, the ratio of the length to the thickness of the fiber (aspect ratio) is set to 1000, 1200, 1770, and 1786 as a condition for the fibers to be intertwined with each other in the result of the kneading and stirring. The adjusted polypropylene fiber was used. And the polypropylene fiber mixed 0.5% or 1.0% by volume ratio with respect to the ground improvement body, knead | mixed with the said soil, and manufactured the cement-type ground improvement body which carries out fiber reinforcement of the matrix 2.
As shown in FIGS. 2A and 2B, the fiber dispersion state of the cement-based ground improvement body thus manufactured is that each fiber 1 is in a curved state, and the fibers are inherently entangled with each other in the matrix 2. I was able to confirm that.

他方、表1中に示した比較例1〜17は、同じく高炉セメントBを使用し、土質の種類(粘土、シルト、砂)に応じて、3〜4MPaの圧縮強度が得られるようにセメント量を170〜300Kg/m と定めたセメント系硬化材を、各土質土壌と混練したものである。
比較例1、7、14、17は、従来用いられている地盤改良体で、繊維を混入していない。その他の比較例へ混入した繊維は、ビニロン繊維とナイロン繊維およびポリプロピレン繊維の3種類である。
更に詳細には破断強度960MPaのナイロン繊維、同1950MPaのビニロン繊維、同311〜935MPaのポリプロピレン繊維をそれぞれ選択使用して練り混ぜ撹拌した。各繊維の太さに対する長さの比率(アスペクト比)は、210〜800とした。これらを体積比にして1.0%混入して、前記土壌と混練しマトリックスを補強するセメント系地盤改良体を製造した。もっとも、各比較例2〜6、8〜13、および15、16の繊維分散状態は、およそ図1A、Bに示すとおりで、各繊維1、1は直線状態を保ち、繊維と繊維が絡み合うことなく、マトリックス2中に分散した状況であることを確認した。
On the other hand, Comparative Examples 1 to 17 shown in Table 1 also use blast furnace cement B, and the amount of cement so that a compressive strength of 3 to 4 MPa can be obtained according to the type of soil (clay, silt, sand). Is obtained by kneading a cement-based hardener with 170 to 300 kg / m 3 with each soil soil.
Comparative Examples 1, 7, 14, and 17 are ground improvement bodies that have been used conventionally, and no fibers are mixed therein. There are three types of fibers mixed into other comparative examples: vinylon fibers, nylon fibers, and polypropylene fibers.
More specifically, nylon fibers with a breaking strength of 960 MPa, vinylon fibers with 1950 MPa, and polypropylene fibers with 311 to 935 MPa were selectively used and mixed and stirred. The ratio of length to the thickness of each fiber (aspect ratio) was 210-800. A cement-based ground improvement body in which 1.0% of these were mixed by volume and kneaded with the soil to reinforce the matrix was produced. However, the fiber dispersion states of Comparative Examples 2 to 6, 8 to 13, and 15, 16 are as shown in FIGS. 1A and 1B, and the fibers 1 and 1 are kept in a linear state, and the fibers and the fibers are intertwined. It was confirmed that the situation was dispersed in the matrix 2.

表1中の右欄に併記した各実施例1〜12および各比較例1〜17の力学性能における曲げ、および引っ張りの判定結果を示す◎印、○印と×印および△印の意味内容は、判定例を図3に「曲げ・引っ張り・靱性の判定例」として示したとおりである。
即ち、最大耐力に至った直後に破断して全く靱性のないものを×印とし、最大耐力に達した直後に、破断はしないが、耐力が大きく低下するものを△印、最大耐力に達した後に歪みが2%に至った時点でも最大耐力の50%以上を保持するものを○印、そして、歪みが2%を超えても耐力低下が殆ど見られず靱性が優れているものを◎印で表している。
The meaning contents of ◎, ○, ×, and △ indicate the determination results of bending and tension in the mechanical performance of each of Examples 1 to 12 and Comparative Examples 1 to 17 shown in the right column of Table 1. The determination example is as shown in FIG. 3 as a “bending / tensile / toughness determination example”.
In other words, those that fractured immediately after reaching the maximum yield strength were marked as x, and those that did not break immediately after the maximum yield strength was reached, but those that had a significant decrease in yield strength were marked with Δ, and reached the maximum yield strength A mark that retains 50% or more of the maximum proof stress even when the strain reaches 2% later, and a ◎ mark that has excellent toughness with almost no decrease in proof stress even when the strain exceeds 2%. It is represented by

更に、図4〜図9は、各実施例および比較例における繊維のアスペクト比の影響を示したグラフである。このグラフによれば、セメント系地盤改良体における強度、靱性に関する改善効果を、次のように評価することが出来る。
先ず、図4の場合はシルトに水セメント比100%のセメント系硬化材を170Kg/m 混入したが、繊維の混入は無い比較例1をマトリックスとして、これに直径17ミクロンで長さ20mm(アスペクト比が1190)であるポリプロピレン繊維Pを体積比で1%混入した本発明の実施例1と、一方、アスペクト比が210〜600の範囲で、ポリプロピレン繊維P、ビニロン繊維B、ナイロン繊維Nをそれぞれ体積比1%混入した比較例2〜6の引っ張り試験および曲げ試験における応力と歪みの関係を示している。
本発明の実施例1は、大きな歪みを生じた時点でも高い耐力を保持しており、優れた靱性を発揮することがわかる。
Furthermore, FIG. 4 to FIG. 9 are graphs showing the influence of the fiber aspect ratio in each example and comparative example. According to this graph, the improvement effect regarding the strength and toughness of the cement-based ground improvement body can be evaluated as follows.
First, in the case of FIG. 4, 170 kg / m 3 of a cement-based hardener having a water cement ratio of 100% was mixed in silt, but the comparative example 1 having no fiber mixing was used as a matrix, and this had a diameter of 17 microns and a length of 20 mm ( Example 1 of the present invention in which polypropylene fiber P having an aspect ratio of 1190) was mixed by 1% by volume, while polypropylene fiber P, vinylon fiber B, and nylon fiber N were mixed in an aspect ratio of 210 to 600. The relationship between the stress and the strain in the tensile test and the bending test of Comparative Examples 2 to 6 each containing 1% by volume is shown.
It can be seen that Example 1 of the present invention retains a high yield strength even when a large strain occurs and exhibits excellent toughness.

図5の場合は、粘性土に水セメント比100%のセメント系硬化材を200Kg/m 混入したが、繊維の混入は無い比較例7をマトリックスとして、これに繊維強度が935MPa、直径17ミクロンのポリプロピレン繊維Pを、アスペクト比400、600、800、1000、1200、1786として、地盤改良体に対する体積比1%混入した試験材の引っ張り試験および曲げ試験における応力と歪みの関係を示している。
アスペクト比が1000の本発明実施例4は、歪みが2%に達した時点でも耐力低下は50%未満を維持している。更に大きなアスペクト比1200、1786の本発明実施例3と2は、一層優れた靱性を発揮することがわかる。
In the case of FIG. 5, 200 kg / m 3 of cement-based hardener having a water cement ratio of 100% was mixed in the viscous soil, but the fiber of Comparative Example 7 having no fiber mixing was used as a matrix, and the fiber strength was 935 MPa and the diameter was 17 microns. The relationship between stress and strain in a tensile test and a bending test of a test material mixed with 1% by volume of the polypropylene fiber P with an aspect ratio of 400, 600, 800, 1000, 1200, 1786 with respect to the ground improvement body is shown.
In Example 4 of the present invention having an aspect ratio of 1000, the decrease in yield strength is maintained below 50% even when the strain reaches 2%. It can be seen that the inventive examples 3 and 2 having larger aspect ratios of 1200 and 1786 exhibit even better toughness.

図6は、図5と同じ比較例7のマトリックスに、繊維強度が647MPa、直径11ミクロンのポリプロピレン繊維Pを用いて、アスペクト比と靱性改善効果を確認したグラフである。
図5と同様に、アスペクト比が1000の本発明実施例7は、歪みが2%に達した時点でも耐力低下は50%未満を維持している。更に大きなアスペクト比1200、1770の本発明実施例6と5は、非常に優れた靱性を発揮することがわかる。
FIG. 6 is a graph in which the aspect ratio and the toughness improving effect are confirmed by using polypropylene fiber P having a fiber strength of 647 MPa and a diameter of 11 microns in the same matrix of Comparative Example 7 as FIG.
In the same manner as in FIG. 5, Example 7 of the present invention with an aspect ratio of 1000 maintains a decrease in yield strength of less than 50% even when the strain reaches 2%. It can be seen that the inventive Examples 6 and 5 having larger aspect ratios of 1200 and 1770 exhibit very good toughness.

図7の場合は、シルトに水セメント比100%のセメント系硬化材を200Kg/m 混入したものをマトリックスとし、これに繊維強度が935MPa、直径17ミクロンのポリプロピレン繊維Pを、アスペクト比800、1200、1786として、体積比1%混入した試験材の曲げ試験の応力と撓み/載荷スパンの関係を示している。アスペクト比が1200、1786の本発明実施例9、11と8の場合は、繊維混入量が0.5%でも、歪みが2%に達した時点の耐力低下は50%未満を維持しており、優れた靱性を発揮することがわかる。 In the case of FIG. 7, 200 kg / m 3 of cement-based hardener with a water cement ratio of 100% mixed in silt is used as a matrix, and polypropylene fiber P having a fiber strength of 935 MPa and a diameter of 17 microns is used with an aspect ratio of 800, As 1200 and 1786, the relationship between the bending test stress and the bending / loading span of the test material mixed with a volume ratio of 1% is shown. In the case of Inventive Examples 9, 11 and 8 with aspect ratios of 1200 and 1786, even when the fiber mixing amount is 0.5%, the yield strength decrease when strain reaches 2% is maintained below 50%. It can be seen that it exhibits excellent toughness.

最後に、図8は、砂に水セメント比100%のセメント系硬化材を300Kg/m 混入した比較例17と、前記比較例17をマトリックスとし、これに繊維強度が935MPa、直径17ミクロン、アスペクト比1200のポリプロピレン繊維Pを、地盤改良体に対する体積比1%混入した実施例12の曲げ試験の応力と撓み/載荷スパンとの関係を示している。
以上のとおり、本発明によれば、ポリプロピレン繊維Pを用いて、いかなる土壌でも、優れた靱性と高強度が得られることが明らかである。
Finally, FIG. 8 shows a comparative example 17 in which a cement-based hardener having a water cement ratio of 100% is mixed with 300 kg / m 3 in sand and the comparative example 17 as a matrix, and has a fiber strength of 935 MPa, a diameter of 17 microns, The relationship between the stress of the bending test of Example 12 which mixed polypropylene fiber P of aspect ratio 1200 with a volume ratio of 1% with respect to a ground improvement body, and bending / loading span is shown.
As described above, according to the present invention, it is clear that excellent toughness and high strength can be obtained in any soil using the polypropylene fiber P.

以上に本発明を実施例と試験例に基づいて説明したが、もとより本発明は実施例と試験例の構成に限定する意味ではない。本発明の目的と要旨を変更しない範囲で、当業者が必要に応じて通常行う設計変更や、応用、利用の範囲を含むものであることを、念のため申し添える。   Although the present invention has been described based on the examples and test examples, the present invention is not limited to the configurations of the examples and test examples. It should be noted that the scope of the present invention includes a range of design changes, applications, and uses that are usually made by those skilled in the art without changing the object and gist of the present invention.

A・Bは、一般的な繊維補強における、繊維分散状態と応力伝達メカニズムを模式的に表した説明図である。A and B are explanatory views schematically showing a fiber dispersion state and a stress transmission mechanism in general fiber reinforcement. A・Bは本発明の実施例における、繊維分散状態と応力伝達メカニズムを模式的に表した説明図である。A and B are explanatory views schematically showing a fiber dispersion state and a stress transmission mechanism in an example of the present invention. 曲げ・引っ張り・靱性の判定図を示す。The figure of judgment of bending, tension, and toughness is shown. A・Bは本発明実施例1と比較例1〜6の引っ張り試験結果と曲げ試験結果を示すグラフである。A and B are graphs showing the tensile test results and the bending test results of Example 1 of the present invention and Comparative Examples 1 to 6, respectively. A・Bは本発明実施例2〜4と比較例7〜10の引っ張り試験結果と曲げ試験結果を示すグラフである。A and B are graphs showing tensile test results and bending test results of Examples 2 to 4 and Comparative Examples 7 to 10 of the present invention. A・Bは本発明実施例5〜7と比較例7および11〜13の引張り試験結果と曲げ試験結果を示すグラフである。A and B are graphs showing the tensile test results and bending test results of Examples 5 to 7 and Comparative Examples 7 and 11 to 13 of the present invention. 本発明実施例8、9、11と比較例10、15、16の曲げ試験結果を示すグラフである。It is a graph which shows the bending test result of this invention Example 8, 9, and 11 and Comparative Examples 10, 15, and 16. FIG. 本発明実施例12と比較例17の曲げ試験結果を示すグラフである。It is a graph which shows the bending test result of this invention Example 12 and the comparative example 17. FIG.

符号の説明Explanation of symbols

1 繊維
2 マトリックス
3 ひび割れ
1 Fiber 2 Matrix 3 Crack

Claims (3)

土壌とセメント系硬化材を混練して製造する地盤改良体において、
破断強度が200〜1200MPaで、練り混ぜ撹拌することにより繊維と繊維が相互に絡み合うように繊維の太さに対する長さの比率(アスペクト比)を1000以上に調整したポリプロピレン繊維を、地盤改良体の体積比にして0.4〜2%混入して土壌と混練しマトリックスを補強して成ることを特徴とする、繊維補強による高強度、高靱性セメント系地盤改良体。
In the ground improvement body manufactured by kneading soil and cement-based hardener,
A polypropylene fiber having a breaking strength of 200 to 1200 MPa and a length ratio (aspect ratio) with respect to the thickness of the fiber adjusted to 1000 or more so that the fiber and the fiber are entangled with each other by mixing and stirring, A high-strength, high-toughness cement-based ground improvement body by fiber reinforcement, comprising 0.4-2% in volume ratio and kneaded with soil to reinforce the matrix.
ポリプロピレン繊維の太さは、直径が100ミクロン以下であることを特徴とする、請求項1に記載した繊維補強による高強度、高靱性セメント系地盤改良体。   The high-strength, high-toughness cement-based ground improvement material by fiber reinforcement according to claim 1, wherein the polypropylene fiber has a diameter of 100 microns or less. ポリプロピレン繊維は、両端部に、繊維径より10ミクロン以上大きいこぶ状又は塊状のアンカー部を有することを特徴とする、請求項1又は2に記載した繊維補強による高強度、高靱性セメント系地盤改良体。


































3. The high strength and high toughness cement-based ground improvement by fiber reinforcement according to claim 1 or 2, wherein the polypropylene fiber has a knot-like or massive anchor portion larger than the fiber diameter by 10 microns or more at both ends. body.


































JP2006096643A 2006-03-31 2006-03-31 High-strength, high-toughness cementitious ground improvement by fiber reinforcement Active JP4624292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096643A JP4624292B2 (en) 2006-03-31 2006-03-31 High-strength, high-toughness cementitious ground improvement by fiber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096643A JP4624292B2 (en) 2006-03-31 2006-03-31 High-strength, high-toughness cementitious ground improvement by fiber reinforcement

Publications (2)

Publication Number Publication Date
JP2007270488A true JP2007270488A (en) 2007-10-18
JP4624292B2 JP4624292B2 (en) 2011-02-02

Family

ID=38673575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096643A Active JP4624292B2 (en) 2006-03-31 2006-03-31 High-strength, high-toughness cementitious ground improvement by fiber reinforcement

Country Status (1)

Country Link
JP (1) JP4624292B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057334A (en) * 2010-09-07 2012-03-22 Takenaka Komuten Co Ltd Impermeable wall, double impermeable wall, floor slab integrated impermeable wall and construction method of impermeable wall
JP2012102573A (en) * 2010-11-11 2012-05-31 Takenaka Komuten Co Ltd Construction method of horizontal force transmission structure
JP2012136898A (en) * 2010-12-27 2012-07-19 Takenaka Komuten Co Ltd Earth retaining wall
JP2012140826A (en) * 2011-01-05 2012-07-26 Takenaka Komuten Co Ltd Bracing wall and building
JP2012219540A (en) * 2011-04-11 2012-11-12 Takenaka Komuten Co Ltd Fiber incorporated improvement body
CN104099921A (en) * 2014-07-24 2014-10-15 南京大学(苏州)高新技术研究院 Wavy fiber reinforced soil and preparation method for same
CN106638559A (en) * 2017-01-09 2017-05-10 许昌学院 Hardening method of oil for civil engineering
JP2020147455A (en) * 2019-03-12 2020-09-17 株式会社テノックス Cement milk with fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257135A (en) * 1993-03-08 1994-09-13 Kurimoto Kensetsu Kogyo Kk Columnar ground improving body and building method thereof and sheathing wall
JP2001048609A (en) * 1999-08-10 2001-02-20 Kajima Corp Fiber-reinforced soil cement solidified body
JP2001355233A (en) * 2000-06-14 2001-12-26 East Japan Railway Co Forming method for cast-in-place pile by mixing and stirring
JP2003239276A (en) * 2003-01-23 2003-08-27 Dia Consultant:Kk Construction method for road

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257135A (en) * 1993-03-08 1994-09-13 Kurimoto Kensetsu Kogyo Kk Columnar ground improving body and building method thereof and sheathing wall
JP2001048609A (en) * 1999-08-10 2001-02-20 Kajima Corp Fiber-reinforced soil cement solidified body
JP2001355233A (en) * 2000-06-14 2001-12-26 East Japan Railway Co Forming method for cast-in-place pile by mixing and stirring
JP2003239276A (en) * 2003-01-23 2003-08-27 Dia Consultant:Kk Construction method for road

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057334A (en) * 2010-09-07 2012-03-22 Takenaka Komuten Co Ltd Impermeable wall, double impermeable wall, floor slab integrated impermeable wall and construction method of impermeable wall
JP2012102573A (en) * 2010-11-11 2012-05-31 Takenaka Komuten Co Ltd Construction method of horizontal force transmission structure
JP2012136898A (en) * 2010-12-27 2012-07-19 Takenaka Komuten Co Ltd Earth retaining wall
JP2012140826A (en) * 2011-01-05 2012-07-26 Takenaka Komuten Co Ltd Bracing wall and building
JP2012219540A (en) * 2011-04-11 2012-11-12 Takenaka Komuten Co Ltd Fiber incorporated improvement body
CN104099921A (en) * 2014-07-24 2014-10-15 南京大学(苏州)高新技术研究院 Wavy fiber reinforced soil and preparation method for same
CN104099921B (en) * 2014-07-24 2016-05-11 南京大学(苏州)高新技术研究院 A kind of undulated fibre reinforced earth and preparation method thereof
CN106638559A (en) * 2017-01-09 2017-05-10 许昌学院 Hardening method of oil for civil engineering
JP2020147455A (en) * 2019-03-12 2020-09-17 株式会社テノックス Cement milk with fiber
JP7228416B2 (en) 2019-03-12 2023-02-24 株式会社テノックス Fiber-containing cement milk and method for injecting fiber-containing cement milk using pressure pump

Also Published As

Publication number Publication date
JP4624292B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4624292B2 (en) High-strength, high-toughness cementitious ground improvement by fiber reinforcement
US20020019465A1 (en) Self-compacting engineered cementitious composite (ECC)
JP6669862B2 (en) Stabilized aqueous composition for initiating coagulation and hardening of alumina cement composition
JP2009203106A (en) Polymer cement material of high toughness for reinforcing bending of concrete frame and method for reinforcing bending of concrete frame using polymer cement material of high toughness
JP5861985B2 (en) Seismic reinforcement method and repair method for reinforced concrete members
JPH09227191A (en) Steel fiber-reinforced high-fluidity high-strength concrete
WO2022022092A1 (en) Earthquake-resistant synchronous grouting material
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
CN111196701B (en) Polymer modified hybrid microfiber cementitious composites
CN112456868B (en) Fabric reinforced cement composite and method of making same
JP5415015B2 (en) Spray repair method
JP2006321664A (en) Fiber-reinforced lightweight cement-based hardened body
JP5615015B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP4986924B2 (en) Seismic reinforcement method
KR101874380B1 (en) Point Foundation Structure Construction Method
JP4817304B2 (en) Fiber reinforced mortar or fiber reinforced concrete, and method for constructing a frame using the same
JP2016138007A (en) Additive for hydraulic material for cast-in-place concrete-based pile, hydraulic material for cast-in-place concrete-based pile and cast-in-place concrete-based pile
KR101958356B1 (en) Synthetic fiber shotcrete composition with high strength spiral fiber composite
CN107489431A (en) A kind of large deformation country rock stage composite lining cutting
CN102912892A (en) High-ductility fiber concrete combined brick masonry wall and method for constructing same
CN102912893A (en) High-ductility fiber concrete combination block masonry wall and construction method thereof
JP2011121832A (en) Kneaded material for cement composite material excellent in shear break resistance, composite material, and bridge beam member
JP6214393B2 (en) Multiple fine cracked fiber reinforced cement composites
Tatnall et al. Developments and applications of high performance polymer fibres in shotcrete
JP3723385B2 (en) Fiber reinforced soil cement solidified body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4624292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3