JP3528950B2 - Road construction method - Google Patents

Road construction method

Info

Publication number
JP3528950B2
JP3528950B2 JP12844497A JP12844497A JP3528950B2 JP 3528950 B2 JP3528950 B2 JP 3528950B2 JP 12844497 A JP12844497 A JP 12844497A JP 12844497 A JP12844497 A JP 12844497A JP 3528950 B2 JP3528950 B2 JP 3528950B2
Authority
JP
Japan
Prior art keywords
columnar body
road
construction method
ground
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12844497A
Other languages
Japanese (ja)
Other versions
JPH10317307A (en
Inventor
哲彦 三浦
和之 藤川
章 浜武
英樹 田中
茂 吉田
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Tenox Corp
Tenox Kyusyu Corp
Original Assignee
Mitsubishi Materials Corp
Tenox Corp
Tenox Kyusyu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Tenox Corp, Tenox Kyusyu Corp filed Critical Mitsubishi Materials Corp
Priority to JP12844497A priority Critical patent/JP3528950B2/en
Publication of JPH10317307A publication Critical patent/JPH10317307A/en
Application granted granted Critical
Publication of JP3528950B2 publication Critical patent/JP3528950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軟弱地盤上に盛土
により道路を構築する際の構築工法に関するものであ
る。
The present invention relates also to a is about the construction method for building a road by embankment on soft ground.

【0002】[0002]

【従来の技術】埋土層や沖積層の層厚が厚い軟弱地盤の
上に盛土により道路を構築する場合には次の工法が採ら
れている。先ず図7に示すように軟弱地盤1の浅層部分
にセメント系固化材を乾式混合した後固化して浅層改良
土層2aを形成することにより、浅層の剛性を高めた改
良地盤2とするか、或いは図8に示すように軟弱地盤1
の浅層部分に生石灰を乾式混合した後固化して浅層改良
土層2bを形成し、更にこの浅層改良土層2bの上にF
e石灰を乾式混合した後固化して浅層改良土層2cを形
成することにより、浅層の剛性を高めた改良地盤2とす
る。次いで図7及び図8に示すように、この改良地盤2
を路床として、この上にクラッシャーラン層3a及び粒
度調整用砕石層3bからなる盛土を設けて路盤3とした
後、路盤3の上にアスファルト・コンクリート層4を設
けて舗装している。なお、本明細書では、路盤と舗装と
を分離せずに両者を合せて道路舗装とい
2. Description of the Related Art The following construction method is adopted when constructing a road by embankment on a soft ground having a thick layer of buried soil or alluvium. First, as shown in FIG. 7 , the cement-based solidifying material is dry-mixed in the shallow layer portion of the soft ground 1 and then solidified to form the shallow layer improved soil layer 2a, thereby improving the rigidity of the shallow layer 2 and the improved layer 2. Or, as shown in FIG. 8 , soft ground 1
Quick lime is dry-mixed in the shallow layer portion of No. 3 and then solidified to form a shallow layer improved soil layer 2b, and F is formed on the shallow layer improved soil layer 2b.
The dry ground of e-lime is solidified and then solidified to form the shallow-layer improved soil layer 2c, thereby forming the improved ground 2 having the increased rigidity of the shallow layer. Next, as shown in FIG. 7 and FIG.
Is used as a roadbed, and an embankment composed of a crusher run layer 3a and a crushed stone layer 3b for grain size adjustment is provided on the roadbed to form a roadbed 3, and then an asphalt concrete layer 4 is provided on the roadbed 3 for paving. In this specification, we combined the two leave road pavement without separating the pavement and roadbed.

【0003】[0003]

【発明が解決しようとする課題】道路の路床には盛土に
よる静的荷重とともに自動車の走行による動的荷重が加
わり、これらの荷重が路床に伝達される。動的荷重の大
きさは、盛土厚さが1.0m程度と薄い場合には、静的
荷重に匹敵し、かつ、長期間繰り返し作用する性質があ
る。そのため、地盤の改良の程度が十分でない場合、静
的荷重による圧密沈下には十分に耐えられても、その数
倍の動的荷重には耐えられず、道路が動的荷重により圧
密沈下し続けることになる。一方、地盤を十分に改良す
れば、動的荷重による圧密沈下を抑制することは可能で
あるが、地盤改良の程度と動的荷重による圧密沈下の抑
制効果との関連が十分に把握されていないため、圧密沈
下を抑制しようとするあまり、過剰に地盤改良を行って
無用に工期が長引かせ、無駄な工費の支出を招くことが
多かった。
A static load due to embankment and a dynamic load due to running of an automobile are applied to the roadbed of the road, and these loads are transmitted to the roadbed. When the embankment thickness is as thin as about 1.0 m, the dynamic load is comparable to the static load and has a property of repeatedly acting for a long period of time. Therefore, if the degree of ground improvement is not sufficient, even if it can sufficiently withstand the consolidation settlement due to static load, it will not be able to withstand several times that dynamic load, and the road will continue to undergo consolidation settlement due to the dynamic load. It will be. On the other hand, if the ground is sufficiently improved, it is possible to suppress consolidation settlement due to dynamic load, but the relationship between the degree of ground improvement and the suppression effect of consolidation settlement due to dynamic load is not fully understood. For this reason, excessive attempts were made to suppress consolidation settlement, resulting in excessive ground improvement and unnecessarily prolonging the construction period, resulting in wasted construction costs .

【0004】本発明の目的は、比較的短い工期で安価に
構築でき、軟弱地盤上に盛土により構築された道路が使
用された際に、動的荷重による圧密沈下を抑制する道路
の構築工法を提供することにある。
An object of the present invention is to provide a road construction method which can be constructed at a relatively short construction period at low cost and which suppresses consolidation settlement due to dynamic load when a road constructed by embankment on soft ground is used. Ru near to provide.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、道路基礎の軟弱地盤11に複数本の
柱状体20の全てを軟弱地盤下方の支持層に到達しな
さでかつ10〜50%の改良率で構築し、これら複数
本の柱状体20の上に直接補強用網状体21を敷設し、
この補強用網状体21の上に直接道路舗装18を構築す
る道路の構築工法である。柱状体20の上に直接補強用
網状体21を敷設し、この補強用網状体21の上に直接
道路舗装18を構築することにより、図7及び図8に示
した浅層改良地盤2aを省略して、道路の動的荷重によ
る圧密沈下を抑制することができる。また柱状体20は
軟弱地盤11の下方の支持層に到達しない長さであるた
め、工期の短縮と工費の節減につながる。
The invention according to claim 1 is
As shown in FIG. 1, has a reached all the plurality of pillars 20 to the support layer of soft soil below the soft ground 11 of the road foundation
Constructed with a length and an improvement rate of 10 to 50%, and laying a reinforcing mesh body 21 directly on these plural columnar bodies 20,
This is a road construction method in which the road pavement 18 is directly constructed on the reinforcing net 21. By laying the reinforcing net 21 directly on the columnar body 20 and constructing the road pavement 18 directly on the reinforcing net 21, the shallow layer improved ground 2a shown in FIGS. 7 and 8 is omitted. Thus, it is possible to suppress consolidation settlement due to the dynamic load on the road. Further, since the columnar body 20 has a length that does not reach the supporting layer below the soft ground 11, the construction period is shortened and the construction cost is reduced.

【0006】請求項2に係る発明は、図2に示すよう
に、道路基礎の軟弱地盤11に複数本の柱状体20の全
てを軟弱地盤下方の支持層に到達しない長さでかつ10
〜50%の改良率で構築し、これら複数本の柱状体20
の上に土砂と固化材を混合して固化することにより直接
浅層改良土層13を敷設し、この浅層改良土層13の上
に直接道路舗装18を構築する道路の構築工法であっ
て、土砂と固化材に更に添加材又は添加剤のいずれか一
方又は双方を加えて混合して固化することにより浅層改
良土層13を敷設し、道路舗装18を構成するクラッシ
ャーラン層18aの厚さを5〜15cmとすることを特
徴とする道路の構築工法である。柱状体20の上に、土
砂と固化材に添加材又は添加剤のいずれか一方又は双方
を更に加えて混合して固化することにより直接浅層改良
土層13を敷設し、この上に直接道路舗装18を構築す
ることにより、図7及び図8に示したクラッシャーラン
層3aの厚さを小さくして、道路の動的荷重による圧密
沈下を抑制することができる。また柱状体20は軟弱地
盤11の下方の支持層に到達しない長さであるため、工
期の短縮と工費の節減につながる。
[0006] The invention according to claim 2, as shown in FIG. 2, and 10 all the soft ground support layer length do not want to reach below the plurality of pillars 20 in soft ground 11 of the road foundation
These columnar bodies 20 are constructed with an improvement rate of up to 50%.
A method for constructing a road, in which a shallow improved soil layer 13 is directly laid by mixing and solidifying earth and sand and a solidifying material, and a road pavement 18 is directly constructed on the shallow improved soil layer 13. The thickness of the crusher run layer 18a that constitutes the road pavement 18 by laying the shallow improved soil layer 13 by adding one or both of the additive material and the additive agent to the earth and sand and the solidifying material and mixing and solidifying the mixture. Is 5 to 15 cm, which is a road construction method. A shallow improved soil layer 13 is laid directly on the columnar body 20 by further adding either one or both of the additive and the additive to the solidifying material and the solidifying material to solidify, and the direct road is directly laid on this. By constructing the pavement 18, it is possible to reduce the thickness of the crusher run layer 3a shown in FIGS. 7 and 8 and suppress consolidation settlement due to a dynamic load on the road. Further, since the columnar body 20 has a length that does not reach the supporting layer below the soft ground 11, the construction period is shortened and the construction cost is reduced.

【0007】請求項3に係る発明は、請求項2に係る発
明であって、土砂と固化材に添加材又は添加剤のいずれ
か一方又は双方を更に加えて湿式混合して固化すること
により浅層改良土層13を敷設する道路の構築工法であ
る。湿式混合することにより、施工現場における粉体に
よる発塵が抑制され、現場近隣の環境を粉体で汚染する
ことがなくなる。また湿式混合方式では締め固めを必要
とせず、品質のばらつきも少なくできる。
The invention according to claim 3 is the invention according to claim 2 , wherein either one or both of the additive and the additive are further added to the earth and sand and the solidifying material, and the mixture is wet-mixed to be solidified. This is a road construction method for laying the improved soil layer 13. By wet mixing, dust generation by powder at the construction site is suppressed, and the environment near the site is not contaminated with powder. In addition, the wet mixing method does not require compaction and can reduce variations in quality.

【0008】請求項4に係る発明は、請求項2又は3に
係る発明であって、添加材が発泡ビーズ又は籾殻からな
り、添加剤が気泡発生体からなる道路の構築工法であ
る。添加材又は添加剤として低密度体を加えることによ
り、浅層改良土層13を軽量化でき、浅層改良土層によ
る静的荷重を低減することができる。また低密度体が動
的荷重による振動を吸収するため、動的圧密沈下量を低
減することができる。
[0008] The invention according to claim 4 is the invention according to claim 2 or 3, the additional material is made of foam beads or chaff, the additive is a construction method of a road consisting of bubble generator. By adding a low-density material as an additive or an additive, the shallow layer improved soil layer 13 can be made lighter in weight, and the static load due to the shallow layer improved soil layer can be reduced. Further, since the low density body absorbs the vibration due to the dynamic load, the amount of dynamic consolidation settlement can be reduced.

【0009】請求項5に係る発明は、請求項2又は3
係る発明であって、添加材が産業廃棄物の焼却により形
成されたクリンカである道路の構築工法である。この工
法によれば、産業廃棄物の焼却により形成された、処分
に困窮しているクリンカを有効利用することができる。
The invention according to claim 5 is the invention according to claim 2 or 3 , which is a road construction method in which the additive material is a clinker formed by incineration of industrial waste. According to this construction method, it is possible to effectively utilize the clinker which is formed by the incineration of industrial waste and is in need of disposal.

【0010】請求項6に係る発明は、請求項2又は3
係る発明であって、添加材が無機繊維又は合成繊維であ
る道路の構築工法である。添加材として上記繊維を加え
ることにより、浅層改良土層13が補強され、交通荷重
による改良地盤の割れを防止し、改良地盤の耐久性が向
上する。また繊維を含まない浅層改良土層より層厚を薄
くしても繊維を含まない浅層改良土層と同等の耐久性が
得られる。
The invention according to claim 6 is the invention according to claim 2 or 3 , which is a road construction method in which the additive material is an inorganic fiber or a synthetic fiber. By adding the above fibers as an additive, the shallow-layer improved soil layer 13 is reinforced, cracking of the improved ground due to traffic load is prevented, and durability of the improved ground is improved. Further, even if the layer thickness is made thinner than the shallow improved soil layer containing no fibers, the same durability as that of the shallow improved soil layer containing no fibers can be obtained.

【0011】請求項7に係る発明は、請求項1又は2
係る発明であって、柱状体20が既製杭又は地盤改良柱
状体である道路の構築工法である。柱状体に既製杭を用
いることにより、より短い工期で安価に施工でき、地盤
改良柱状体を用いることにより、道路の圧密沈下をより
確実に防止できる。
The invention according to claim 7 is the invention according to claim 1 or 2 , which is a road construction method in which the columnar body 20 is a prefabricated pile or a ground improvement columnar body. By using ready-made piles for the pillars, it is possible to construct at a lower construction period and at a lower cost, and by using the ground improvement pillars, it is possible to more reliably prevent consolidation settlement of roads.

【0012】請求項8に係る発明は、図3に示すよう
に、請求項1又は2に係る発明であって、柱状体20が
地盤改良柱状体であって、この柱状体20の胴部20a
に節部20bを有する道路の構築工法である。地盤改良
柱状体の胴部に節部20bを設けることにより、地盤改
良柱状体の沈下抵抗力が高まり、道路の圧密沈下を更に
より確実に防止できる。
As shown in FIG. 3 , the invention according to claim 8 is the invention according to claim 1 or 2 , wherein the columnar body 20 is a ground improvement columnar body, and a body portion 20a of the columnar body 20 is provided.
It is a construction method of a road having a node portion 20b at the bottom. By providing the node portion 20b on the trunk of the ground improvement columnar body, the settlement resistance of the ground improvement columnar body is increased, and the consolidation settlement of the road can be prevented more reliably.

【0013】請求項9に係る発明は、図4に示すよう
に、請求項1、2又は8に係る発明であって、柱状体2
0が地盤改良柱状体であって、この柱状体20の先端が
胴部20aより大径の拡大部20cを有する道路の構築
工法である。地盤改良柱状体の先端に胴部より大径の拡
大部20cを設けることにより、地盤改良柱状体の沈下
抵抗力が高まり、道路の圧密沈下を更により確実に防止
できる。
The invention according to claim 9 is the invention according to claim 1, 2 or 8 as shown in FIG.
0 is a ground improvement columnar body, and is a road construction method in which the tip end of the columnar body 20 has an enlarged portion 20c having a larger diameter than the body portion 20a. By providing the enlarged portion 20c having a larger diameter than the trunk portion at the tip of the soil improvement columnar body, the settlement resistance of the soil improvement columnar body is increased, and the consolidation settlement of the road can be prevented more reliably.

【0014】請求項10に係る発明は、請求項1、2、
8又は9に係る発明であって、柱状体20が地盤改良柱
状体であって、柱状体20が無機繊維又は合成繊維を含
む道路の構築工法である。柱状体に上記繊維を含ませる
ことにより、軟弱地盤の側方流動により柱状体に亀裂が
生じても、柱状体の曲げ抵抗力が発揮されて、その後の
側方流動を抑えることができる。
The invention according to claim 10 includes claims 1, 2 and
8 is an invention according to 8 or 9 , wherein the columnar body 20 is a ground improvement columnar body, and the columnar body 20 is a road construction method including an inorganic fiber or a synthetic fiber. By including the fibers in the columnar body, even if a crack is generated in the columnar body due to the lateral flow of the soft ground, the bending resistance of the columnar body is exerted, and the lateral flow thereafter can be suppressed.

【0015】請求項11に係る発明は、請求項1、2、
8ないし10いずれか1項に係る発明であって、柱状体
20が地盤改良柱状体であって、この柱状体20を機械
撹拌法又は高圧噴射撹拌法により構築する道路の構築工
法である。地盤改良柱状体を機械撹拌法により構築する
ことにより、安価でかつ土質にかかわらず改良体の外径
を一定に築造することができる。また地盤改良柱状体を
高圧噴射撹拌法により構築することにより、施工機械を
小型化、軽量化することができるようになり、狭い場所
や既設の踏掛版の下にも施工することができる。
[0015] The invention according to claim 11, claim 1,
The invention according to any one of 8 to 10 , wherein the columnar body 20 is a ground improvement columnar body, and is a road construction method in which the columnar body 20 is constructed by a mechanical stirring method or a high-pressure injection stirring method. By constructing the ground improvement columnar body by the mechanical agitation method, it is possible to inexpensively build the outer diameter of the improvement body regardless of the soil quality. Further, by constructing the ground improvement columnar body by the high-pressure injection stirring method, the construction machine can be made smaller and lighter, and the construction machine can be constructed even in a narrow place or under an existing step plate.

【0016】[0016]

【発明の実施の形態】本発明は、軟弱地盤にこの軟弱地
盤下方の支持層に到達しない柱状体を構築し、柱状体の
上に補強用網状体又は浅層改良土層を敷設したものであ
る。この組合せを採用する際には、柱状体の長さと道路
舗装の厚さに、浅層改良土層の厚さを加えた値Lが交通
荷重、即ち動的荷重による圧密沈下を抑制するための大
きな条件である。柱状体の改良率を10〜50%の範囲
に構築し、かつこの値Lを4m以上にすれば、動的荷重
による圧密沈下を実質的に解消することができる。ここ
で、柱状体の改良率とは、図5及び図6に示すように柱
状体を上方から視たときの改良地盤の単位面積に占める
柱状体断面積の百分率をいう。柱状体の改良率が10%
未満では圧密沈下を十分に抑制することができず、50
%を越えた場合、かえって工期及び工費がかさむ不具合
がある。好ましくはこの改良率は15〜30%である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is one in which a columnar body which does not reach a supporting layer below the soft ground is constructed on a soft ground, and a reinforcing net or a shallow-improved soil layer is laid on the columnar body. is there. When this combination is adopted, the value L obtained by adding the thickness of the columnar body and the thickness of the road pavement to the thickness of the shallow improved soil layer is used to suppress the consolidation settlement due to the traffic load, that is, the dynamic load. It is a big condition. By setting the improvement rate of the columnar body in the range of 10 to 50% and setting this value L to 4 m or more, consolidation settlement due to a dynamic load can be substantially eliminated. Here, the improvement rate of the columnar body means the percentage of the cross-sectional area of the columnar body to the unit area of the improved ground when the columnar body is viewed from above as shown in FIGS. 5 and 6 . Columnar improvement rate is 10%
If it is less than 50, consolidation settlement cannot be sufficiently suppressed, and
When it exceeds%, there is a problem that the construction period and the construction cost are rather increased. Preferably, this improvement rate is 15 to 30%.

【0017】上記値Lは4m以上必要ではあるが、大き
くしてもそれ程動的圧密沈下の抑制効果は大きくならな
い。しかし、値Lが大きくなればそれに応じて静的圧密
沈下の抑制効果は大きくなる。本発明では、過剰な地盤
改良を避けるために、柱状体の下端は軟弱地盤11の下
方の支持層(図示せず)にまで到達しない。図1及び図
には支持層を示していないが、同様に柱状体20は支
持層まで到達しない。軟弱地盤の層厚及びその軟弱程
度、荷重条件、経済性などを考慮して、この値Lの最大
値は適宜決められる。図1に示すように浅層改良土層を
設けずに、補強用網状体21の上に直接道路舗装18が
施される場合には、柱状体20の改良率を大きくする必
要がある。
The above value L is required to be 4 m or more, but even if it is increased, the effect of suppressing dynamic consolidation settlement is not so great. However, as the value L increases, the effect of suppressing static consolidation settlement increases accordingly. In the present invention, in order to avoid excessive ground improvement, it does not reach to the supporting layer below the lower end soft ground 11 of the column-like body (not shown). Figure 1 and Figure
2 does not show a supporting layer, the columnar body 20 does not reach the supporting layer in the same manner. The maximum value of this value L is appropriately determined in consideration of the layer thickness of the soft ground and its softness, the load condition, the economical efficiency and the like. As shown in FIG. 1, when the road pavement 18 is directly provided on the reinforcing net 21 without providing the shallow improved soil layer, it is necessary to increase the improvement rate of the columnar body 20.

【0018】図1に示す、本発明の補強用網状体21は
無機繊維、合成繊維、合成樹脂、スチールなどの材料か
ら形成された網状体である。無機繊維又は合成繊維から
なる網状体は、この繊維から紐状体を作り、これを製網
したものである。無機繊維にはガラス繊維が、また合成
繊維にはポリアミド系のナイロン繊維、ポリオレフィン
系のポリエチレン繊維、ポリプロピレン繊維等が例示さ
れる。合成樹脂にはポリエチレンやポリプロピレン樹脂
等が例示される。スチールからなる網状体は、板状のス
チールに周縁を残して多数本の切れ目を平行に入れた
後、切れ目と直交する方向に板状のスチールの両縁を引
張ることにより形成される。上記網状体の網目の間隔は
10〜200mmであり、要求される補強程度により、
補強用網状体を1枚で使用するか、或いは複数枚重ね合
せて使用する。
The reinforcing mesh body 21 of the present invention shown in FIG . 1 is a mesh body formed of a material such as inorganic fiber, synthetic fiber, synthetic resin or steel. The mesh-like body made of inorganic fibers or synthetic fibers is a string-like body made of the fibers and meshed. Examples of the inorganic fiber include glass fiber, and examples of the synthetic fiber include polyamide-based nylon fiber, polyolefin-based polyethylene fiber, polypropylene fiber and the like. Examples of the synthetic resin include polyethylene and polypropylene resin. The reticulate body made of steel is formed by making a large number of cuts in parallel with each other in a plate-shaped steel leaving a peripheral edge and then pulling both edges of the plate-shaped steel in a direction orthogonal to the cuts. The mesh size of the mesh is 10 to 200 mm, and depending on the required degree of reinforcement,
Use one reinforcing net or a plurality of overlapping nets.

【0019】図2に示す、本発明の浅層改良土層13は
土砂と、粉体又はスラリー状のセメント、セメント系固
化材、生石灰等の固化材と、添加材又は添加剤のいずれ
か一方又は双方とを均一に混合して固化することにより
敷設される。対象地盤の含水状態により、混合して締め
固めて浅層改良土層を形成する場合と、締め固めずに形
成する場合がある。対象地盤の含水率が少ない場合で、
スラリー状の固化材を用いて、この固化材と土砂に添加
材又は添加剤のいずれか一方又は双方を更に加えて湿式
混合すれば、施工現場における粉体による発塵が抑制さ
れ、現場近隣の環境を粉体で汚染することがなくなる。
As shown in FIG . 2, the shallow improved soil layer 13 of the present invention comprises earth and sand, a cement in the form of powder or slurry, a cement-based solidifying material, a solidifying material such as quick lime, and either an additive or an additive. Alternatively, it is laid by uniformly mixing both and solidifying. Depending on the water content of the target ground, it may be mixed and compacted to form a shallow improved soil layer, or it may be formed without compaction. When the water content of the target ground is low,
If a solidifying material in the form of a slurry is used and then either one or both of the additive and the additive are further added to the solidifying material and earth and sand and wet-mixed, dust generation by powder at the construction site is suppressed, and No more polluting the environment with powder.

【0020】本発明の添加材には、発泡ビーズ、籾殻等
の低密度体や、産業廃棄物の焼却により形成されたクリ
ンカや、無機繊維又は合成繊維等が挙げられる。また本
発明の添加剤には気泡発生体が挙げられる。上記添加材
又は添加剤は1種類でも、2種以上混合して添加しても
よい。添加材と添加剤とを混合してもよい。発泡ビーズ
は浅層改良土層を形成する材料100体積%に対して2
0〜50体積%添加する。20体積%未満では添加目的
を達成できず、50体積%を越えると固化したときの浅
層改良土層の強度が低下する。上記低密度体を加えるこ
とによって、浅層改良土層が軽量化され、静的圧密沈下
量を小さくできるとともに、浅層改良土層の弾性係数が
小さくなり、交通荷重による動的荷重を吸収する。これ
に伴って柱状体の長さを短くしても圧密沈下を防止する
ことができる。
Examples of the additive of the present invention include foamed beads, low-density materials such as rice husks, clinker formed by incineration of industrial waste, inorganic fibers or synthetic fibers. Further, the additive of the present invention includes a bubble generator. The above-mentioned additives or additives may be added singly or as a mixture of two or more kinds. You may mix an additive and an additive. Foamed beads are 2 per 100% by volume of the material forming the shallow soil layer.
Add 0-50% by volume. If it is less than 20% by volume, the purpose of addition cannot be achieved, and if it exceeds 50% by volume, the strength of the shallow-layer improved soil layer when solidified decreases. By adding the low density body, the shallow layer improved soil layer can be made lighter in weight, the static consolidation settlement amount can be reduced, and the elastic coefficient of the shallow layer improved soil layer can be reduced to absorb the dynamic load due to traffic load. . Along with this, even if the length of the columnar body is shortened, consolidation settlement can be prevented.

【0021】低密度体の気泡発生体としてはポリオキシ
エチレンアルキルエーテル系化合物や高級アルコール硫
酸エステル系化合物等が例示される。この気泡発生体は
混合前は液体であるが、浅層改良土層を造成するときに
層中に気泡を連行させる物質である。籾殻を低密度体と
した場合、籾殻はSiO2分を多く含むため、耐食性が
大きく、かつその形状から長期にわたって浅層改良土層
の剪断強度を増大させるために交通荷重に対して抵抗力
が大きい。産業廃棄物の焼却により形成された直径が5
mm以下のクリンカを添加材とする場合、この処分に困
窮しているクリンカを有効利用することができる。
Examples of the low density air bubble generator include polyoxyethylene alkyl ether compounds and higher alcohol sulfate ester compounds. This bubble generator is a liquid before mixing, but is a substance that entrains bubbles in the layer when forming the shallow improved soil layer. When the rice husk is made into a low-density body, the rice husk contains a large amount of SiO 2 so that it has a high corrosion resistance, and because of its shape, it has a resistance to traffic load in order to increase the shear strength of the shallow improved soil layer for a long time. large. The diameter formed by incineration of industrial waste is 5
When a clinker having a diameter of mm or less is used as the additive, the clinker that is in need of disposal can be effectively used.

【0022】無機繊維又は合成繊維を添加材とする場
合、好ましくは長さ2〜4cm程度のスチール繊維等の
無機繊維、又は長さ4〜7cm程度のポリアミド系のナ
イロン繊維、ポリオレフィン系のポリエチレン繊維、ポ
リプロピレン繊維からなる合成繊維が用いられる。長さ
が上記下限値未満では補強効果に乏しく、上記上限値を
越えると、他の材料との混合時に取扱いにくくなる。添
加材として上記繊維を加えることにより、浅層改良土層
が補強され、交通荷重による改良地盤の割れを防止し、
改良地盤の耐久性が向上する。また繊維を含まない浅層
改良土層より層厚を薄くしても繊維を含まない浅層改良
土層と同等の耐久性が得られる。上記目的を達成するた
めに、浅層改良土層を形成する材料100体積%に対し
て、籾殻、無機繊維又は合成繊維等は0.1〜5.0体
積%、好ましくは0.2〜2.0体積%添加し、クリン
カは30体積%以下で添加する。また気泡発生体は浅層
改良土層を形成する材料100重量%に対して0.01
〜1.0重量%、好ましくは0.1〜0.5重量%添加
する。
When an inorganic fiber or a synthetic fiber is used as the additive, the inorganic fiber such as a steel fiber having a length of about 2 to 4 cm, or the polyamide type nylon fiber or the polyolefin type polyethylene fiber having a length of about 4 to 7 cm is preferable. A synthetic fiber made of polypropylene fiber is used. When the length is less than the above lower limit, the reinforcing effect is poor, and when the length exceeds the above upper limit, it becomes difficult to handle when mixing with other materials. By adding the above fibers as an additive, the shallow improved soil layer is reinforced and cracks of the improved ground due to traffic loads are prevented,
The durability of the improved ground is improved. Further, even if the layer thickness is made thinner than the shallow improved soil layer containing no fibers, the same durability as that of the shallow improved soil layer containing no fibers can be obtained. In order to achieve the above object, rice husks, inorganic fibers or synthetic fibers are 0.1 to 5.0% by volume, preferably 0.2 to 2 with respect to 100% by volume of the material for forming the shallow layer improved soil layer. 0.0% by volume, and the clinker is added at 30% by volume or less. The bubble generator is 0.01 with respect to 100% by weight of the material forming the shallow soil layer.
.About.1.0 wt%, preferably 0.1 to 0.5 wt%.

【0023】柱状体の構築工法には、木杭、既製コンク
リート杭、鋼杭等のような既製杭を深層地盤に打込む工
法と、地盤改良柱状体を構築する工法がある。柱状体に
既製杭を用いることにより、より短い工期で安価に施工
でき、地盤改良柱状体を用いることにより、道路の圧密
沈下をより確実に防止できる。この地盤改良柱状体を構
築工法には機械撹拌法と高圧噴射撹拌法があるが、機械
撹拌法により地盤改良柱状体を構築すると、安価でかつ
土質にかかわらず改良体の外径を一定に築造することが
できる。また高圧噴射撹拌法により構築することによ
り、施工機械を小型化、軽量化することができるように
なり、狭い場所や既設の踏掛版の下にも施工することが
できる。この地盤改良柱状体を構築する場合、図3に示
すように地盤改良柱状体20の胴部20aに節部20b
を形成することもできる。これにより地盤改良柱状体の
周面の摩擦力が大きくなり、沈下抵抗力が高まって道路
の圧密沈下を更により確実に防止できる。また軟弱地盤
の側方流動を発生しにくくする利点もある。また地盤改
良柱状体を構築する場合に、図4に示すように地盤改良
柱状体20の先端に胴部20aより大径の拡大部20c
を形成することもできる。これにより、地盤改良柱状体
の沈下抵抗力がより高まり、道路の圧密沈下を更により
確実に防止できる。
The columnar construction method includes a method of driving ready-made piles such as wooden piles, ready-made concrete piles, and steel piles into the deep ground, and a method of constructing ground-improved pillars. By using ready-made piles for the pillars, it is possible to construct at a lower construction period and at a lower cost, and by using the ground improvement pillars, it is possible to more reliably prevent consolidation settlement of roads. There are mechanical agitation method and high-pressure jet agitation method as construction methods for constructing this soil improvement columnar body, but if the soil improvement columnar body is constructed by the mechanical agitation method, it will be cheaper and the outer diameter of the improvement body will be constant regardless of the soil quality. can do. Further, by constructing by a high-pressure jet agitation method, the construction machine can be made smaller and lighter, and the construction machine can be constructed even in a narrow place or under an existing step plate. When constructing this soil improvement columnar body, as shown in FIG. 3 , the node portion 20b is provided on the body portion 20a of the soil improvement columnar body 20.
Can also be formed. As a result, the frictional force on the peripheral surface of the soil improvement columnar body increases, the settlement resistance increases, and the consolidation settlement of the road can be prevented more reliably. There is also an advantage that lateral flow of soft ground is less likely to occur. Further, when constructing the soil improvement columnar body, as shown in FIG. 4 , an enlarged portion 20c having a diameter larger than that of the trunk portion 20a is provided at the tip of the soil improvement columnar body 20.
Can also be formed. As a result, the settlement resistance of the ground improvement columnar body is further increased, and the consolidation settlement of the road can be prevented more reliably.

【0024】更に地盤改良柱状体20に無機繊維又は合
成繊維を含ませることもできる。この場合、好ましく
は、無機繊維に長さ2〜4cm程度のスチール繊維が、
また合成繊維に長さ4〜7cm程度のポリアミド系のナ
イロン繊維、ポリオレフィン系のポリエチレン繊維、ポ
リプロピレン繊維が用いられる。長さが上記下限値未満
では補強効果に乏しく、上記上限値を越えると、他の材
料との混合時に取扱いにくくなる。この繊維は地盤改良
柱状体を形成する全ての材料に対して0.2〜2.0体
積%程度含有する。柱状体に上記繊維を含ませることに
より、軟弱地盤の側方流動により柱状体に亀裂が生じて
も、柱状体の曲げ抵抗力が発揮されて、その後の側方流
動を抑えることができる。
Further, the ground improvement columnar body 20 may contain inorganic fibers or synthetic fibers. In this case, preferably, the inorganic fibers are steel fibers having a length of about 2 to 4 cm,
As the synthetic fiber, polyamide-based nylon fiber, polyolefin-based polyethylene fiber or polypropylene fiber having a length of about 4 to 7 cm is used. When the length is less than the above lower limit, the reinforcing effect is poor, and when the length exceeds the above upper limit, it becomes difficult to handle when mixing with other materials. This fiber is contained in an amount of about 0.2 to 2.0% by volume based on all materials forming the ground improvement columnar body. By including the fibers in the columnar body, even if a crack is generated in the columnar body due to the lateral flow of the soft ground, the bending resistance of the columnar body is exerted, and the lateral flow thereafter can be suppressed.

【0025】柱状体を構築することにより、動的荷重に
よる地盤の側方流動を防止することができる。上方から
視た場合の柱状体の構築の仕方を図5及び図6に基づい
て説明する。工事の効率及び経済性を考慮して、柱状体
の平面配置は図5に示すような格子状配置にするか、或
いは図6に示すような非接触形千鳥配置にして、改良率
をできるだけ低く抑えるのが好ましい。改良率を10〜
50%の範囲にして図5に示す格子状配置にした場合に
は、格子間隔d1(但し、格子間隔d1≧格子間隔d2
が柱状体の上端から道路舗装面までの高さの2倍以下で
あれば、また同様に改良率を10〜50%の範囲にして
図6に示す非接触形千鳥配置にした場合にも、道路の方
向をDとしたときに、柱状体間隔d3(但し、柱状体間
隔d3≧柱状体間隔d4)が柱状体の上端から道路舗装面
までの高さの2倍以下であれば、それぞれ静的荷重、動
的荷重は柱状体に確実に伝達され、十分地盤の側方流動
を防止することができる。
By constructing the columnar body, lateral flow of the ground due to dynamic load can be prevented. A method of constructing the columnar body when viewed from above will be described based on FIGS. 5 and 6 . Considering the efficiency and economy of construction, the planar arrangement of the pillars should be a lattice arrangement as shown in Fig. 5 or a non-contact staggered arrangement as shown in Fig. 6 so that the improvement rate is as low as possible. It is preferable to suppress it. Improvement rate of 10
When the lattice-like arrangement shown in FIG. 5 is made in the range of 50%, the lattice spacing d 1 (however, the lattice spacing d 1 ≧ the lattice spacing d 2 )
Is less than twice the height from the upper end of the pillar to the road pavement surface, the improvement rate is set in the range of 10 to 50%.
Also in the case of the non-contact staggered arrangement shown in FIG. 6 , when the road direction is D, the columnar body spacing d 3 (wherein the columnar body spacing d 3 ≧ columnar body spacing d 4 ) is the upper end of the columnar body. If the height is less than twice the height from the road to the pavement surface, the static load and the dynamic load are surely transmitted to the columnar body, and the lateral flow of the ground can be sufficiently prevented.

【0026】図1及び図2に示すように、本発明の道路
舗装18はクラッシャーラン層18a、粒度調整砕石層
18b及びアスファルト・コンクリート18cからな
る。図1及び図2において、クラッシャーラン層18a
は5〜15cmの厚さに、粒度調整砕石層18bは10
〜30cmの厚さに、またアスファルト・コンクリート
18cは10〜40cmの厚さにそれぞれ敷設される。
As shown in FIGS. 1 and 2 , the road pavement 18 of the present invention comprises a crusher run layer 18a, a particle size adjusting crushed stone layer 18b and an asphalt concrete 18c. 1 and 2 , the crusher run layer 18a
Has a thickness of 5 to 15 cm, and the particle size adjusting crushed stone layer 18b has a thickness of 10
The asphalt concrete 18c is laid to a thickness of -30 cm, and the asphalt concrete 18c is laid to a thickness of 10-40 cm.

【0027】[0027]

【実施例】次に本発明の実施例を比較例とともに図面に
基づいて説明する。 <実施例1> 図1に示すように、対象軟弱地盤11に機械撹拌法によ
り地盤改良柱状体20を軟弱地盤11の下方の支持層に
到達しない長さで構築した。このとき柱状体はそれぞれ
直径aが80cm、長さL1が400cmであって、
に示す間隔d3,d4がそれぞれ125cm、改良率2
5.7%で、非接触形千鳥配置に構築した。地盤改良柱
状体20の上にガラス繊維からなる補強用網状体21を
敷設し、この上にクラッシャーラン層18aを30cm
の厚さに敷設し、更にこの上に粒度調整砕石層18bを
10cmの厚さに敷設し、その上を5cmの厚さのアス
ファルト・コンクリート18cで舗装した。図1に示す
総合長さLは445cmであった。
Embodiments of the present invention will now be described with reference to the drawings together with comparative examples. <Example 1> As shown in FIG. 1, a ground improvement columnar body 20 was constructed on the target soft ground 11 by a mechanical stirring method with a length that did not reach the support layer below the soft ground 11. At this time, the columnar bodies each had a diameter a of 80 cm and a length L 1 of 400 cm .
The distances d 3 and d 4 shown in 6 are 125 cm, respectively, and the improvement rate is 2
5.7%, non-contact staggered construction. The reinforcing net 21 made of glass fiber is laid on the ground improvement columnar body 20, and the crusher run layer 18a is placed on the grounding net 21 for 30 cm.
Of the asphalt concrete 18c having a thickness of 5 cm. The total length L shown in FIG. 1 was 445 cm.

【0028】<実施例2> 実施例1と同一の軟弱地盤に高圧噴射撹拌法により地盤
改良柱状体を構築し、スチールを加工した補強用網状体
を敷設した。それ以外は実施例1と同様にして地盤を改
良した。
<Example 2> On the same soft ground as in Example 1, a ground improvement columnar body was constructed by a high-pressure injection stirring method, and a reinforcing mesh body made of steel was laid. The ground was improved in the same manner as in Example 1 except for the above.

【0029】<実施例3> 実施例1と同一の軟弱地盤に図3に示すように節部20
bの直径bが100cm、厚さcが50cm、節部と節
部の間隔dが80cmとなるように、また柱状体の長さ
1が400cmになるように節部付きの地盤改良柱状
体20を構築した。それ以外は実施例1と同様にして地
盤を改良した。総合長さLは445cmであった。
<Embodiment 3> On the same soft ground as that of Embodiment 1, as shown in FIG.
Ground improvement columnar body with nodes so that the diameter b of b is 100 cm, the thickness c is 50 cm, the distance d between the nodes is 80 cm, and the length L 1 of the columnar body is 400 cm. Twenty built. The ground was improved in the same manner as in Example 1 except for the above. The total length L was 445 cm.

【0030】<実施例4> 実施例1と同一の軟弱地盤に図4に示すように拡大部2
0cの直径eが100cm、厚さfが50cmとなるよ
うに、また柱状体の長さL1が400cmになるように
拡大部付きの地盤改良柱状体20を構築した。それ以外
は実施例1と同様にして地盤を改良した。総合長さLは
445cmであった。
<Embodiment 4> On the same soft ground as in Embodiment 1, as shown in FIG.
A ground-improved columnar body 20 with an enlarged portion was constructed so that the diameter e of 0c was 100 cm, the thickness f was 50 cm, and the length L 1 of the columnar body was 400 cm. The ground was improved in the same manner as in Example 1 except for the above. The total length L was 445 cm.

【0031】<実施例5> 実施例1と同一の軟弱地盤に機械撹拌法により地盤改良
柱状体を構築する際に、柱状体を構築する材料に平均長
さ6cm、太さ0.8mmのスチール繊維を材料全体の
0.2重量%含有させ、柱状体の長さL1が400cm
になるようにした。それ以外は実施例1と同様にして地
盤を改良した。総合長さLは445cmであった。
<Example 5> When a ground improvement columnar body is constructed on the same soft ground as in Example 1 by a mechanical stirring method, the material for constructing the columnar body is made of steel having an average length of 6 cm and a thickness of 0.8 mm. The fiber contains 0.2% by weight of the whole material, and the length L 1 of the columnar body is 400 cm.
I tried to become. The ground was improved in the same manner as in Example 1 except for the above. The total length L was 445 cm.

【0032】<実施例6> 実施例1と同一の軟弱地盤に機械撹拌法により地盤改良
柱状体を構築する際に、柱状体を構築する材料に平均長
さ3cm、太さ350デニールのビニロン繊維を材料全
体の1.0体積%含有させ、柱状体の長さL1が400
cmになるようにした。それ以外は実施例1と同様にし
て地盤を改良した。総合長さLは445cmであった。
<Example 6> When a ground improving columnar body is constructed on the same soft ground as in Example 1 by a mechanical stirring method, a vinylon fiber having an average length of 3 cm and a thickness of 350 denier is used as a material for constructing the columnar body. 1.0% by volume of the entire material, the length L 1 of the columnar body is 400
I made it cm. The ground was improved in the same manner as in Example 1 except for the above. The total length L was 445 cm.

【0033】<実施例7> 図2に示すように、実施例1と同一の軟弱地盤11に機
械撹拌法により地盤改良柱状体20を軟弱地盤11の下
方の支持層に到達しない長さで構築した。このとき柱状
体はそれぞれ直径aが80cm、長さL2が400cm
であって、図6に示す間隔d3,d4がそれぞれ125c
m、改良率25.7%で、非接触形千鳥配置に構築し
た。地盤改良柱状体20の上に、掘削土及び別に用意し
た土砂にスラリー状のセメント系固化材を加え、更に添
加材として低密度体である発泡ビーズを材料全体の30
体積%加えて、湿式混合し、浅層改良土層13をL3
30cmの厚さに敷設した。この上にクラッシャーラン
層18aを30cmの厚さに敷設し、更にこの上に粒度
調整砕石層18bを10cmの厚さに敷設し、その上を
5cmの厚さのアスファルト・コンクリート18cで舗
装した。図2に示す総合長さLは475cmであった。
<Embodiment 7> As shown in FIG. 2, a soil improvement columnar body 20 is constructed on the same soft soil 11 as in Embodiment 1 by a mechanical stirring method with a length that does not reach the supporting layer below the soft soil 11. did. At this time, each columnar body has a diameter a of 80 cm and a length L 2 of 400 cm.
And the intervals d 3 and d 4 shown in FIG.
m, improvement rate 25.7%, non-contact staggered construction. On the ground improvement columnar body 20, slurry-like cement-based solidifying material is added to excavated soil and separately prepared earth and sand, and foamed beads of low density are added as an additive material to the whole material 30
Add 3% by volume and wet mix to form a shallow improved soil layer 13 with L 3 =
It was laid in a thickness of 30 cm. A crusher run layer 18a was laid on this to a thickness of 30 cm, a particle size adjusting crushed stone layer 18b was further laid on this to a thickness of 10 cm, and an asphalt concrete 18c having a thickness of 5 cm was paved on it. The total length L shown in FIG. 2 was 475 cm.

【0034】<実施例8> 地盤改良柱状体の長さL2を400cmにし、添加材と
して籾殻を材料全体の20体積%加えて湿式混合し厚さ
3が30cmの浅層改良土層を実施例1と同一の軟弱
地盤に敷設した。それ以外は実施例7と同様にして地盤
を改良した。総合長さLは475cmであった。
<Embodiment 8> The length L 2 of the ground improvement columnar body was set to 400 cm, and rice husk as an additive was added in an amount of 20% by volume of the whole material and wet mixed to form a shallow improved soil layer having a thickness L 3 of 30 cm. It was laid on the same soft ground as in Example 1. The ground was improved in the same manner as in Example 7 except for the above. The total length L was 475 cm.

【0035】<実施例9> 地盤改良柱状体の長さL2を400cmにし、添加剤と
して気泡発生体である液状の高級アルコール硫酸エステ
ル系化合物(商品名:ファインフォーム #606、N.
M.B社製)を材料全体の0.3重量%加えて湿式混合
し厚さL3が30cmの浅層改良土層を実施例1と同一
の軟弱地盤に敷設した。それ以外は実施例7と同様にし
て地盤を改良した。総合長さLは475cmであった。
<Example 9> The length L 2 of the ground improvement columnar body was set to 400 cm, and a liquid higher alcohol sulfate ester compound (trade name: Fine Foam # 606, N.
(Manufactured by M.B.) was added in an amount of 0.3% by weight based on the total amount of the material, and the mixture was wet mixed to lay a shallow improved soil layer having a thickness L 3 of 30 cm on the same soft ground as in Example 1. The ground was improved in the same manner as in Example 7 except for the above. The total length L was 475 cm.

【0036】<実施例10> 地盤改良柱状体の長さL2を400cmにし、添加材と
して産業廃棄物の焼却により形成された平均粒径が20
mmのクリンカを材料全体の20体積%加えて湿式混合
し厚さL3が30cmの浅層改良土層を実施例1と同一
の軟弱地盤に敷設した。それ以外は実施例7と同様にし
て地盤を改良した。総合長さLは475cmであった。
<Example 10> The length L 2 of the ground improvement columnar body was set to 400 cm, and the average particle size formed by incineration of industrial waste as an additive was 20.
A clinker of mm was added in an amount of 20% by volume of the whole material and wet-mixed, and a shallow improved soil layer having a thickness L 3 of 30 cm was laid on the same soft ground as in Example 1. The ground was improved in the same manner as in Example 7 except for the above. The total length L was 475 cm.

【0037】<実施例11> 地盤改良柱状体の長さL2を400cmにし、添加材と
して平均長さ3cm、太さ公称0.8mmのスチール繊
維を材料全体の1.0体積%加えて湿式混合し厚さL3
が30cmの浅層改良土層を実施例1と同一の軟弱地盤
に敷設した。それ以外は実施例7と同様にして地盤を改
良した。総合長さLは475cmであった。
<Example 11> The length L 2 of the ground improvement columnar body was set to 400 cm, and a steel fiber having an average length of 3 cm and a nominal thickness of 0.8 mm was added as an additive material by 1.0% by volume of the whole material, and then wet. Mixed thickness L 3
A shallow improved soil layer of 30 cm was laid on the same soft ground as in Example 1. The ground was improved in the same manner as in Example 7 except for the above. The total length L was 475 cm.

【0038】<実施例12> 地盤改良柱状体の長さL2を400cmにし、添加材と
して平均長さ3cm、太さ350デニールのビニロン繊
維を材料全体の1.0体積%加えて湿式混合し厚さL3
が30cmの浅層改良土層を実施例1と同一の軟弱地盤
に敷設した。それ以外は実施例7と同様にして地盤を改
良した。総合長さLは475cmであった。
<Example 12> The length L 2 of the ground improvement columnar body was set to 400 cm, and vinylon fiber having an average length of 3 cm and a thickness of 350 denier was added as an additive material in an amount of 1.0% by volume of the entire material and wet mixed. Thickness L 3
A shallow improved soil layer of 30 cm was laid on the same soft ground as in Example 1. The ground was improved in the same manner as in Example 7 except for the above. The total length L was 475 cm .

【0039】<比較例1>図7 に示すように、実施例1と同一の対象軟弱地盤1を
掘削し、この掘削土及び別に用意した土砂にセメント系
固化材を加えて、乾式混合した後、締め固めることによ
り浅層改良土層2aを60cmの厚さに敷設した。この
上にクラッシャーラン層3aを30cmの厚さに設けた
後、更にこの上に粒度調整用砕石層3bを10cmの厚
さに敷設し、その上を5cmの厚さのアスファルト・コ
ンクリート4で舗装した。図7に示す総合長さLは10
5cmであった。
<Comparative Example 1> As shown in FIG. 7 , the same target soft ground 1 as in Example 1 was excavated, a cement-based solidifying material was added to the excavated soil and separately prepared soil, and the mixture was dry-mixed. The compacted improved soil layer 2a was laid to a thickness of 60 cm by compaction. A crusher run layer 3a having a thickness of 30 cm is provided thereon, and a crushed stone layer 3b for particle size adjustment is further laid thereon to have a thickness of 10 cm, and the upper layer is paved with asphalt concrete 4 having a thickness of 5 cm. . The total length L shown in FIG. 7 is 10
It was 5 cm.

【0040】<比較例2>図8 に示すように、実施例1と同一の対象軟弱地盤1を
掘削し、この掘削土及び別に用意した土砂に生石灰を固
化材として加えて、乾式混合した後、締め固めることに
より浅層改良土層2bを150cmの厚さに敷設した。
この浅層改良土層2bの上にFe石灰を乾式混合した後
固化して浅層改良土層2cを30cmの厚さに形成し
た。この浅層改良土層2cの上にクラッシャーラン層3
aを30cmの厚さに設けた後、更にこの上に粒度調整
用砕石層3bを10cmの厚さに敷設し、その上を5c
mの厚さのアスファルト・コンクリート4で舗装した。
図8に示す総合長さLは225cmであった。
<Comparative Example 2> As shown in FIG. 8 , the same target soft ground 1 as in Example 1 was excavated, and quick lime was added as a solidifying material to the excavated soil and separately prepared soil, and after dry mixing. The compacted improved soil layer 2b was laid to a thickness of 150 cm by compaction.
Fe lime was dry-mixed on the shallow improved soil layer 2b and then solidified to form a shallow improved soil layer 2c having a thickness of 30 cm. Crusher run layer 3 on this improved shallow soil layer 2c
After a is provided with a thickness of 30 cm, a crushed stone layer 3b for grain size adjustment is further laid on this with a thickness of 10 cm, and 5 c
It was paved with m-thick asphalt concrete 4.
The total length L shown in FIG. 8 was 225 cm.

【0041】<比較例3> 図2に示した地盤改良柱状体20を長くして、その柱状
体の下端を軟弱地盤の下部の支持層(図示せず)に埋設
するようにした以外は、実施例7と同様にして地盤を改
良した。
COMPARATIVE EXAMPLE 3 Except that the ground improving columnar body 20 shown in FIG. 2 is elongated and the lower end of the columnar body is buried in the lower support layer (not shown) of the soft ground. The ground was improved in the same manner as in Example 7 .

【0042】<比較試験とその結果> 実施例1〜実施例12及び比較例1〜比較例3の各種工
法で構築された道路の沈下量及び段差の発生状況につい
て、構築してから使用開始されるまでの間と、使用開始
してから720日経過するまでの間を測定した。また道
路構築に要した工費について、実施例1を100とした
ときの他の実施例及び比較例の概算値について調べた。
これらの結果を表1に示す。
<Comparative Test and Results> Regarding the subsidence amount and the occurrence status of steps of roads constructed by the various construction methods of Examples 1 to 12 and Comparative Examples 1 to 3 , it is started after construction. The measurement was performed for a period of time until 720 days after the start of use. Further, with respect to the construction cost required for road construction, the estimated values of other examples and comparative examples when Example 1 was set to 100 were examined.
The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】(a) 沈下量及び段差の発生状況について: 表1から明らかなように、実施例1〜12の工法により
構築された道路も、比較例1〜3の工法により構築され
た道路も、使用が開始されるまでの静的荷重による沈下
量はいずれも小さく、実施例1〜12の工法と比較例1
〜3の工法との間に有意差は認められなかった。また
2個の実施例の間でも有意差があるとは言えなかった。
しかし、道路が使用されてからは動的荷重に起因して、
比較例1,2の工法による道路の沈下量が大きかったの
に対して、実施例1〜12及び比較例3の工法による道
路の沈下量はすべて小さかった。実施例1〜12の工法
による道路の中で、特に実施例3はその沈下量が最も小
さかった。 (b) 工費について: 実施例1の工法の工費を100としたときの他の実施例
2〜12の各工法の工費の概算値は、沈下量の大きな
較例1及び2の各工法の工費の概算値よりも高価であっ
たが、柱状体の下端を支持層に埋設するようにした比較
例3の工法の工費の概算値の約20%〜約40%の低い
ものであった。
(A) Regarding the amount of subsidence and occurrence of steps: As is clear from Table 1, both roads constructed by the construction methods of Examples 1 to 12 and roads constructed by the construction methods of Comparative Examples 1 to 3 The settling amount due to static load until the start of use is small, and the construction methods of Examples 1 to 12 and Comparative Example 1
No significant difference was observed between the construction methods of No. 3 and No. 3. Again 1
It could not be said that there was a significant difference between the two examples.
But since the road was used, due to dynamic loading,
The road subsidence by the construction methods of Comparative Examples 1 and 2 was large, whereas the road subsidence by the construction methods of Examples 1 to 12 and Comparative Example 3 were all small. Among the roads produced by the construction methods of Examples 1 to 12 , particularly, Example 3 had the smallest subsidence amount . (b) Construction cost: When the construction cost of the construction method of Example 1 is 100, the estimated construction cost of each construction method of other Examples 2 to 12 is a large ratio of the settlement amount.
Although more expensive than the estimated construction cost of each construction method of Comparative Examples 1 and 2 , about 20% to about 20% of the construction cost of the construction method of Comparative Example 3 in which the lower end of the columnar body is embedded in the support layer. It was as low as 40%.

【0045】[0045]

【発明の効果】以上述べたように、本発明によれば、工
期を無用に長引かせる過剰な地盤改良を行わずに、比較
的短い工期で安価に道路を構築することができ、軟弱地
盤上に盛土により構築された道路が使用された際に、動
的荷重による圧密沈下を抑制することができる。 より具
体的には、請求項1に係る発明によれば、柱状体の上に
直接補強用網状体を敷設し、この補強用網状体の上に直
接道路舗装を構築することにより、図7及び図8に示し
た浅層改良地盤2を省略して、道路の動的荷重による圧
密沈下を抑制することができる。また柱状体は軟弱地盤
の下方の支持層に到達しない長さであるため、工期の短
縮と工費の節減につながる。 また請求項2に係る発明に
よれば、柱状体の上に、土砂と固化材に添加材又は添加
剤のいずれか一方又は双方を更に加えて混合して固化す
ることにより直接浅層改良土層を敷設し、この上に直接
道路舗装を構築することにより、図7及び図8に示した
クラッシャーラン層3aの厚さを小さくして、道路の動
的荷重による圧密沈下を抑制することができる。また柱
状体は軟弱地盤の下方の支持層に到達しない長さである
ため、工期の短縮と工費の節減につながる。
As described above, according to the present invention, a road can be constructed at a low cost in a relatively short construction period without excessive ground improvement that unnecessarily prolongs the construction period. road constructed by embankment when used, Ru can be suppressed consolidation settlement by dynamic load. Twist
Physically, according to the invention of claim 1,
Lay the reinforcing net directly and place it directly on top of this reinforcing net.
Shown in Figures 7 and 8 by building a roadside pavement
The shallow ground improvement ground 2 is omitted and the pressure due to the dynamic load on the road is reduced.
Dense settlement can be suppressed. The columnar body is soft ground
Since the length does not reach the supporting layer below the
This will lead to reductions in cost and construction costs. The invention according to claim 2
According to the above, on the columnar body, add or
Add either or both of the agents and mix to solidify
By laying a shallow improved soil layer directly on the
By building the road pavement shown in Figures 7 and 8
Decrease the thickness of the crusher run layer 3a,
It is possible to suppress consolidation settlement due to static load. Pillar
The shape is a length that does not reach the supporting layer below the soft ground
Therefore, the construction period is shortened and the construction cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の工法で構築した道路方向に
直交する方向から視た断面図。
FIG. 1 is a cross-sectional view seen from a direction orthogonal to a road direction constructed by a construction method according to a first embodiment of the present invention.

【図2】本発明の実施例7の工法で構築した道路方向に
直交する方向から視た断面図。
FIG. 2 is a cross-sectional view seen from a direction orthogonal to a road direction constructed by a construction method according to a seventh embodiment of the present invention.

【図3】本発明の胴部に節部を有する地盤改良柱状体の
正面図。
FIG. 3 is a front view of a ground improvement columnar body having a joint portion in a body portion of the present invention.

【図4】本発明の先端に拡大部を有する地盤改良柱状体
の正面図。
FIG. 4 is a front view of a ground improvement columnar body having an enlarged portion at the tip of the present invention.

【図5】本発明の格子状に配置した地盤改良柱状体の平
面図。
FIG. 5 is a plan view of a ground improvement columnar body arranged in a grid pattern according to the present invention.

【図6】本発明の非接触形千鳥に配置した地盤改良柱状
体の平面図。
FIG. 6 is a plan view of a ground improvement columnar body arranged in the non-contact staggered pattern of the present invention.

【図7】比較例1の工法で構築した道路方向に直交する
方向から視た断面図。
FIG. 7 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the method of Comparative Example 1.

【図8】比較例2の工法で構築した道路方向に直交する
方向から視た断面図。
FIG. 8 is a cross-sectional view seen from a direction orthogonal to the road direction constructed by the construction method of Comparative Example 2.

【符号の説明】[Explanation of symbols]

11 軟弱地 13 浅層改良土 18 道路舗装 18a クラッシャーラン層 18b 粒度調整砕石層 18c アスファルト・コンクリート 20 柱状体 20a 胴部 20b 節部 20c 拡大部 21 補強用網状体11 soft ground plate 13 shallow improved soil layer 18 paving 18a Kurassharan layer 18b crushed stone for mechanical stabilization layer 18c asphalt concrete 20 columnar body 20a barrel 20b knuckles 20c enlarged portion 21 reinforcing mesh body

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000133881 株式会社テノックス 東京都港区赤坂6丁目13番7号 (73)特許権者 000006264 三菱マテリアル株式会社 東京都千代田区大手町1丁目5番1号 (72)発明者 三浦 哲彦 佐賀県佐賀市中の館町12番4号 (72)発明者 藤川 和之 東京都豊島区南池袋2丁目34番5号 株 式会社ダイヤコンサルタント内 (72)発明者 浜武 章 東京都千代田区外神田2丁目4番4号 東京鋪装工業株式会社内 (72)発明者 田中 英樹 福岡県福岡市中央区天神4丁目1番17号 株式会社テノックス九州内 (72)発明者 吉田 茂 東京都港区赤坂6丁目13番7号 株式会 社テノックス内 (72)発明者 小林 功 東京都千代田区大手町1丁目5番1号 三菱マテリアル株式会社内 (56)参考文献 特開 平4−73310(JP,A) 特開 平2−108722(JP,A) 特開 平6−212619(JP,A) 特開 平10−280433(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (73) Patent holder 000133881               Tenox Co., Ltd.               6-13-7 Akasaka, Minato-ku, Tokyo (73) Patent holder 000006264               Mitsubishi Materials Corporation               1-5-1 Otemachi, Chiyoda-ku, Tokyo (72) Inventor Tetsuhiko Miura               12-4 Tatemachi, Saka City, Saga Prefecture (72) Inventor Kazuyuki Fujikawa               2-34-5 Minamiikebukuro, Toshima-ku, Tokyo               Inside the ceremony company Diamond Consultant (72) Inventor Takeaki Hama               2-4 Sotokanda, Chiyoda-ku, Tokyo               Within Tokyo Tsubasa Kogyo Co., Ltd. (72) Inventor Hideki Tanaka               4-1-1 Tenjin, Chuo-ku, Fukuoka City, Fukuoka Prefecture                 Tenox Kyushu Co., Ltd. (72) Inventor Shigeru Yoshida               6-13-7 Akasaka, Minato-ku, Tokyo Stock market               Inside the company Tenox (72) Inventor Isao Kobayashi               1-5-1 Otemachi, Chiyoda-ku, Tokyo               Within Mitsubishi Materials Corporation                (56) References JP-A-4-73310 (JP, A)                 JP-A-2-108722 (JP, A)                 JP-A-6-212619 (JP, A)                 JP 10-280433 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 道路基礎の軟弱地盤(11)に複数本の柱状
体(20)の全てを前記軟弱地盤(11)の下方の支持層に到達
しない長さでかつ10〜50%の改良率で構築し、前記
複数本の柱状体(20)の上に直接補強用網状体(21)を敷設
し、前記補強用網状体(21)の上に直接道路舗装(18)を構
築することを特徴とする道路の構築工法。
1. A and 10 all the soft ground (11) of the support layer to the length brewing reach <br/> Shinano lower plurality of columnar bodies in soft ground road foundation (11) (20) Constructed with an improvement rate of -50%, laying a reinforcing netting (21) directly on the plurality of columnar bodies (20), and directly road paving (18) on the reinforcing netting (21). ) Is a road construction method.
【請求項2】 道路基礎の軟弱地盤(11)に複数本の柱状
体(20)の全てを前記軟弱地盤(11)の下方の支持層に到達
しない長さでかつ10〜50%の改良率で構築し、前記
複数本の柱状体(20)の上に土砂と固化材を混合して固化
することにより直接浅層改良土層(13)を敷設し、前記浅
層改良土層(13)の上に直接道路舗装(18)を構築する道路
の構築工法であって、 前記土砂と固化材に添加材又は添加剤のいずれか一方又
は双方を更に加えて混合して固化することにより浅層改
良土層(13)を敷設し、 前記道路舗装(18)を構成するクラッシャーラン層(18a)
の厚さを5〜15cmとすることを特徴とする道路の構
築工法。
2. A and 10 all the soft ground (11) of the support layer to the length brewing reach <br/> Shinano lower plurality of columnar bodies in soft ground road foundation (11) (20) ˜50% improvement rate, and the shallow layer improved soil layer (13) is laid directly on the plurality of columnar bodies (20) by mixing soil and solidifying material to solidify, A method for constructing a road for directly constructing a road pavement (18) on an improved soil layer (13), in which one or both of an additive material and an additive agent are added to the soil and solidifying material and mixed. The improved soil layer (13) is laid by solidification, and the crusher run layer (18a) that constitutes the road pavement (18).
The construction method of the road is characterized in that the thickness is 5 to 15 cm.
【請求項3】 土砂と固化材に添加材又は添加剤のいず
れか一方又は双方を更に加えて湿式混合して固化するこ
とにより浅層改良土層(13)を敷設する請求項2記載の道
路の構築工法。
3. The road according to claim 2, wherein the shallow-improved soil layer (13) is laid by further adding one or both of the additive and the additive to the soil and the solidifying material and wet-mixing to solidify. Construction method.
【請求項4】 添加材が発泡ビーズ又は籾殻からなり、
添加剤が気泡発生体からなる請求項2又は3記載の道路
の構築工法。
4. The additive material comprises foam beads or rice husks,
Construction method of road according to claim 2 or 3, wherein the additive consists bubble generator.
【請求項5】 添加材が産業廃棄物の焼却により形成さ
れたクリンカである請求項2又は3記載の道路の構築工
法。
5. The road construction method according to claim 2, wherein the additive material is a clinker formed by incineration of industrial waste.
【請求項6】 添加材が無機繊維又は合成繊維である請
求項2又は3記載の道路の構築工法。
6. The road construction method according to claim 2, wherein the additive material is an inorganic fiber or a synthetic fiber.
【請求項7】 柱状体(20)が既製杭又は地盤改良柱状体
である請求項1又は2記載の道路の構築工法。
7. The road construction method according to claim 1, wherein the columnar body (20) is a prefabricated pile or a ground improvement columnar body.
【請求項8】 柱状体(20)が地盤改良柱状体であって、
前記柱状体(20)の胴部(20a)に節部(20b)を有する請求項
1又は2記載の道路の構築工法。
8. The columnar body (20) is a ground improvement columnar body,
The road construction method according to claim 1 or 2, wherein the body portion (20a) of the columnar body (20) has a node portion (20b).
【請求項9】 柱状体(20)が地盤改良柱状体であって、
前記柱状体(20)の先端が胴部(20a)より大径の拡大部(20
c)を有する請求項1、2又は8記載の道路の構築工法。
9. The columnar body (20) is a ground improvement columnar body,
The tip of the columnar body (20) has an enlarged portion (20) having a diameter larger than that of the body portion (20a).
The road construction method according to claim 1, 2 or 8 having c).
【請求項10】 柱状体(20)が地盤改良柱状体であっ
て、前記柱状体(20)が無機繊維又は合成繊維を含む請求
項1、2、8又は9記載の道路の構築工法。
10. The road construction method according to claim 1, wherein the columnar body (20) is a ground improvement columnar body, and the columnar body (20) contains an inorganic fiber or a synthetic fiber.
【請求項11】 柱状体(20)が地盤改良柱状体であっ
て、前記柱状体(20)を機械撹拌法又は高圧噴射撹拌法に
より構築する請求項1、2、8ないし10いずれか1項
に記載の道路の構築工法。
11. The columnar body (20) is a ground improvement columnar body, and the columnar body (20) is constructed by a mechanical stirring method or a high-pressure jet stirring method. Road construction method described in.
JP12844497A 1997-05-19 1997-05-19 Road construction method Expired - Lifetime JP3528950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12844497A JP3528950B2 (en) 1997-05-19 1997-05-19 Road construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12844497A JP3528950B2 (en) 1997-05-19 1997-05-19 Road construction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003014547A Division JP3653083B2 (en) 2003-01-23 2003-01-23 Road construction method

Publications (2)

Publication Number Publication Date
JPH10317307A JPH10317307A (en) 1998-12-02
JP3528950B2 true JP3528950B2 (en) 2004-05-24

Family

ID=14984882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12844497A Expired - Lifetime JP3528950B2 (en) 1997-05-19 1997-05-19 Road construction method

Country Status (1)

Country Link
JP (1) JP3528950B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425297A (en) * 2017-02-14 2018-08-21 北京房建建筑股份有限公司 The construction technology of soft base
CN109112918A (en) * 2018-09-19 2019-01-01 洛阳理工学院 A kind of anti-settling roadbed and its construction method
JP2021031985A (en) * 2019-08-27 2021-03-01 株式会社テノックス九州 Soil improvement body, and construction method of the same
WO2021072941A1 (en) * 2019-10-18 2021-04-22 中国有色金属工业昆明勘察设计研究院有限公司 Method for replacing and reinforcing coastal silt soft soil foundation by performing two-time dynamic rubble compaction

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3758871B2 (en) * 1998-12-28 2006-03-22 日立造船株式会社 Viaduct basic structure
JP2001019956A (en) * 1999-07-12 2001-01-23 Okutama Kogyo Co Ltd Lime-improved soil mortar, its production and fluidization treating method of construction using the same
JP3598342B2 (en) * 2000-01-31 2004-12-08 独立行政法人土木研究所 Methods of containment of underground pollutants by impermeable walls
JP3847302B2 (en) * 2003-03-18 2006-11-22 株式会社加藤建設 Soft ground countermeasure method using lightweight soil and its construction equipment
JP4876761B2 (en) * 2006-08-03 2012-02-15 鹿島建設株式会社 Structure of arch-shaped improved ground and its construction method
KR100689220B1 (en) 2006-11-23 2007-03-02 동남이엔씨(주) Smooth area construction of road
JP2008280828A (en) * 2007-04-12 2008-11-20 Kinji Takeuchi Soil improvement body, foundation structure of building comprising mat foundation, and construction method of soil improvement mat foundation
JP2013221347A (en) * 2012-04-18 2013-10-28 Nishimatsu Constr Co Ltd Ground structure and ground improvement method
CN102797208A (en) * 2012-08-15 2012-11-28 广东冠生土木工程技术有限公司 Method for filling deep soft foundation zero additional load bubble mixed lightweight soil subgrade
CN102926304B (en) * 2012-11-28 2015-02-04 中铁第四勘察设计院集团有限公司 Reinforcement method and reinforcement structure for treating railway soft soil roadbed settlement overweight before operation
CN103526662A (en) * 2013-11-05 2014-01-22 中国铁建港航局集团有限公司 Method for reinforcing firm soft foundation operating road
JP2015218460A (en) * 2014-05-15 2015-12-07 株式会社竹中工務店 Ground improvement structure
CN106049213B (en) * 2016-07-27 2018-03-20 宁波市交通规划设计研究院有限公司 A kind of control method and structure of highway soft soil settlement of subgrade
CN106284011B (en) * 2016-08-16 2018-08-28 桐城市永锦建筑工程有限公司 Roadbed construction method
CN106320123B (en) * 2016-08-16 2018-07-31 桐城市永锦建筑工程有限公司 Construction of Soft Soil Subgrade method
CN106400636B (en) * 2016-10-20 2018-08-21 宁波市交通规划设计研究院有限公司 A kind of control method of the soft soil roadbed differential settlement of Multi-layer road
CN106592363B (en) * 2016-11-29 2019-04-26 滨州交通工程公司 A kind of construction method that municipal administration is soft soil roadbed
CN106676992B (en) * 2017-02-14 2018-11-09 湖南大学 A kind of pull-type pile Reinforced Embankment design method of anchor that punishment bank is soft soil roadbed
CN109667207B (en) * 2017-10-16 2021-04-02 广东建咨工程管理有限公司 Construction method for paving road on debris flow soft foundation
CN109162161B (en) * 2018-10-25 2020-07-14 江西博慧工程技术服务有限公司 Road structure containing structural object road section and construction method thereof
JP2021055300A (en) * 2019-09-27 2021-04-08 有限会社久美川鉄工所 Liquefaction countermeasure ground
CN112609665B (en) * 2020-12-17 2022-02-15 广东港丰建设有限公司 Construction structure for constructing road on soft soil foundation of wharf
CN112921729B (en) * 2021-02-03 2022-08-16 阳江市第四建筑工程有限公司 Construction method for constructing road on soft soil foundation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2819025B2 (en) * 1988-10-14 1998-10-30 清水建設株式会社 Soft ground improvement method
JPH0473310A (en) * 1990-07-12 1992-03-09 Nishi Nippon Eng Kk Construction technique of structure in wear subsoil
JP2842747B2 (en) * 1993-01-18 1999-01-06 株式会社テノックス Ground improvement body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425297A (en) * 2017-02-14 2018-08-21 北京房建建筑股份有限公司 The construction technology of soft base
CN108425297B (en) * 2017-02-14 2020-12-15 北京房建建筑股份有限公司 Construction process of soft foundation
CN109112918A (en) * 2018-09-19 2019-01-01 洛阳理工学院 A kind of anti-settling roadbed and its construction method
JP2021031985A (en) * 2019-08-27 2021-03-01 株式会社テノックス九州 Soil improvement body, and construction method of the same
KR20220050092A (en) 2019-08-27 2022-04-22 가부시키가이샤 테녹스 큐슈 Ground improvement body and its construction method
WO2021072941A1 (en) * 2019-10-18 2021-04-22 中国有色金属工业昆明勘察设计研究院有限公司 Method for replacing and reinforcing coastal silt soft soil foundation by performing two-time dynamic rubble compaction

Also Published As

Publication number Publication date
JPH10317307A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP3528950B2 (en) Road construction method
JP3653083B2 (en) Road construction method
CN110578290A (en) Abutment back backfilling structure of bridgehead and construction method thereof
CN106894442A (en) A kind of reinforced sand soil barricade and construction method
CN210066390U (en) Punishment structure suitable for deep weak soil roadbed
JP5300015B2 (en) Cover structure of the surface of the levee body
JP2005264718A (en) Ground foundation reinforcing structure
CN102839647A (en) Stirring pile-permeable concrete pile compound foundation and treatment method thereof
CN103195051A (en) Limestone soil and pervious concrete pile composite foundation and treatment method thereof
CN217078704U (en) Steel slag pile composite foundation structure
CN112501969B (en) Prevent frostbite and anti vibration and consolidate roadbed structure
CN215210264U (en) Bridge abutment backfill treatment device
CN209975286U (en) Embankment structure based on foam concrete
CN113529523A (en) Soft foundation reinforcement treatment method based on highway engineering
JP2839986B2 (en) Retaining wall construction method
JP3583181B2 (en) Embankment construction method
CN210797245U (en) Structure is backfilled to bridgehead abutment back of body
KR101251440B1 (en) A method for hardened pavement using improved soil
JP2001073305A (en) Road construction body
JPH11190019A (en) Creation method for soil-improved artificial ground
JP4021252B2 (en) Construction method of block pavement of slope section
CN106906712B (en) Bamboo reinforced concrete pavement structure and its design method
CN212582315U (en) Roadbed widening structure with road shoulders
CN215051688U (en) Shallow soft soil foundation foam light soil embankment structure
CN106894310A (en) Concrete road surface structure and its method for designing based on PVA and PAN materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370