JP2003230953A - Method of post-processing cast article - Google Patents

Method of post-processing cast article

Info

Publication number
JP2003230953A
JP2003230953A JP2002036231A JP2002036231A JP2003230953A JP 2003230953 A JP2003230953 A JP 2003230953A JP 2002036231 A JP2002036231 A JP 2002036231A JP 2002036231 A JP2002036231 A JP 2002036231A JP 2003230953 A JP2003230953 A JP 2003230953A
Authority
JP
Japan
Prior art keywords
sand
temperature
cast product
cast
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002036231A
Other languages
Japanese (ja)
Other versions
JP4078845B2 (en
Inventor
Naoaki Yamamoto
直彰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2002036231A priority Critical patent/JP4078845B2/en
Publication of JP2003230953A publication Critical patent/JP2003230953A/en
Application granted granted Critical
Publication of JP4078845B2 publication Critical patent/JP4078845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of post-processing a cast article capable of relieving internal stress accompanying cooling shrinkage at the timing of easily securing the elongation of the cast article by naturally cooling after shaking-out and capable of suppressing a rapid temperature change and ensuring the accurate dimension of the cast article when holding them at a resin disintegration temperature (shaking-out temperature) by holding and shaking out the article at the resin disintegration temperature of sand remaining on the article after sand mold casting in a temperature-decreasing process and naturally cooling the article after shaking-out. <P>SOLUTION: The method of post-processing the cast article produced by using a sand mold comprises a shaking-out process S2, a natural cooling process S3 subsequent to the process S2 and heat treatment processes S4, S5 and S6 for performing pre-determined heat treatments after the process S3 is completed. The shaking-out process S2 shakes out the cast article having sand remaining thereon while keeping it at the resin decomposition temperature in the course of a temperature decrease after casting S1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、砂型を用いて鋳
造されたシリンダブロックやその他の鋳造品を後処理す
るような鋳造品の後処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a post-treatment method for a cast product such as a post-treatment for a cylinder block or other cast product cast by using a sand mold.

【0002】[0002]

【従来の技術】従来、鋳造品の一例として鋳鉄製シリン
ダライナが鋳ぐるまれたアルミニウム合金製のシリンダ
ブロックを鋳造した場合、鋳造後および後処理工程とし
ての熱処理中における冷却過程で、シリンダブロック本
体を構成する母材としてのアルミニウム合金と、この母
材によって鋳ぐるまれた鋳鉄製のシリンダライナとの両
者の収縮率、収縮量の差異によって内部応力が発生し、
この内部応力が母材肉厚の最も小さいシリンダボア間に
集中して、クラック等の欠陥が発生する問題点があっ
た。
2. Description of the Related Art Conventionally, when a cylinder block made of an aluminum alloy in which a cast iron cylinder liner is encircled is cast as an example of a cast product, the cylinder block body is subjected to a cooling process after casting and during a heat treatment as a post-treatment process. Aluminum alloy as a base material constituting the, and the shrinkage rate of both the cast iron cylinder liner cast by this base material, internal stress due to the difference in the amount of shrinkage,
This internal stress is concentrated between the cylinder bores with the smallest base material thickness, and defects such as cracks occur.

【0003】このような問題点を解決するために、砂型
(詳しくは砂鋳型)で鋳造された鋳造品としてのシリンダ
ブロックを砂落し、熱処理する前段階で、鋳造品を砂型
のままで放冷(自然放冷)し、シリンダボア間に集中する
内部応力を母材の塑性変形により開放して、クラック等
の欠陥発生を防止するように成した方法があるが、この
場合にはクラック等の欠陥発生は防止されるものの、シ
リンダライナの背面と母材間に隙間g1〜g14(図9
参照)が発生するという新たな問題点が生ずる。
In order to solve such problems, sand mold
(For details, sand cast the cylinder block as a cast product, and before the heat treatment, let the casting product cool in the sand mold (natural cooling) to reduce the internal stress concentrated between the cylinder bores. There is a method that prevents the occurrence of defects such as cracks by opening by plastic deformation of the base material.In this case, although the occurrence of defects such as cracks is prevented, between the rear surface of the cylinder liner and the base material Gaps g1 to g14 (Fig. 9
(See) occurs, which causes a new problem.

【0004】以下、図7、図8、図9を参照して上述の
問題点発生について詳述する。図7は鋳造品の鋳造およ
び鋳造後の後処理方法を示す工程図、図8はその説明図
であって、鋳造工程S71で、予め鋳鉄製のシリンダラ
イナ81(図9参照)が中子で支持された砂型のキャビテ
ィ部に対して、溶湯の湯口、湯道、押し湯部、製品に対
する湯口を介して約750℃のアルミニウム合金の溶湯
を注入して、シリンダライナ81が鋳ぐるまれたシリン
ダブロック82(図9参照)を鋳造する。
Hereinafter, the occurrence of the above-mentioned problems will be described in detail with reference to FIGS. 7, 8 and 9. FIG. 7 is a process diagram showing the casting of a cast product and a post-treatment method after casting, and FIG. 8 is an explanatory diagram thereof. In the casting process S71, the cast iron cylinder liner 81 (see FIG. 9) is a core. A cylinder in which the cylinder liner 81 is cast into a supported sand mold cavity by injecting a molten aluminum alloy of about 750 ° C. through a molten metal spout, a runner, a riser, and a spout for the product. Block 82 (see FIG. 9) is cast.

【0005】次に図7に示す砂落し工程S73で、シリ
ンダブロック82を砂型のままで、約6時間かけて常温
〜220℃前後まで自然放冷し、シリンダボア83,8
4間、84,85間、85,86間(但し、シリンダボ
ア83は第1気筒に相当し、シリンダボア84は第2気
筒に相当し、シリンダボア85は第3気筒に相当し、シ
リンダボア86は第4気筒に相当する)に集中する内部
応力を母材の塑性変形により開放して、これらシリンダ
ボア間にクラック等の欠陥が発生するのを防止する。
Next, in a sand removing step S73 shown in FIG. 7, the cylinder block 82 is naturally left to cool from room temperature to about 220 ° C. for about 6 hours while the cylinder block 82 is kept in the sand mold, and the cylinder bores 83, 8 are cooled.
4th, 84th, 85th, 85th, 86th (where the cylinder bore 83 corresponds to the first cylinder, the cylinder bore 84 corresponds to the second cylinder, the cylinder bore 85 corresponds to the third cylinder, and the cylinder bore 86 corresponds to the fourth cylinder). Internal stress concentrated in (corresponding to the cylinder) is released by plastic deformation of the base material, and defects such as cracks are prevented from occurring between these cylinder bores.

【0006】次に図7に示す砂落し工程S73で、放冷
終了後のシリンダブロック82を砂型のままで流動床砂
落し炉に投入し、炉内の約500℃の砂に下方から熱風
を吹き上げて鋳砂の結合剤としてのレジンを崩壊し、砂
型をくずす所謂砂落しを実行すると、シリンダブロック
82の内外に残存する鋳砂が除去される。
Next, in a sand removing step S73 shown in FIG. 7, the cylinder block 82 after the cooling is finished is put into a fluidized bed sand removing furnace in a sand mold as it is, and hot air is blown from below at about 500 ° C. sand in the furnace. When the resin as the binder of the casting sand is blown up to collapse and the so-called sand removal is performed to break the sand mold, the casting sand remaining inside and outside the cylinder block 82 is removed.

【0007】次に図7に示す各工程S74,S75,S
76により砂落し後のシリンダブロック82に対して熱
処理を施すか、まず溶体化工程S74で、鋳造品として
のシリンダブロック82を500℃前後に約2時加熱し
て、過飽和固溶体の状態を作り出す熱処理(溶体化)を実
行する。
Next, each step S74, S75, S shown in FIG.
Heat treatment is applied to the cylinder block 82 after sand removal by 76, or first, in the solution heat treatment step S74, the cylinder block 82 as a casting is heated to about 500 ° C. for about 2 hours to create a supersaturated solid solution state. Execute (solution treatment).

【0008】次に焼入れ工程S75で、500℃前後の
シリンダブロック82を約50℃まで急冷して焼入れを
行なう。次に人工時効工程S76で、焼入れ後のシリン
ダブロック82を約240℃に3.5時間前後加熱し
て、人工時効し、時効化(Aging)を図る。上述の各工程
S74〜S76から成るT6処理の後、シリンダブロッ
ク82を自然放冷する。
Next, in a quenching step S75, the cylinder block 82 at about 500 ° C. is rapidly cooled to about 50 ° C. to quench it. Next, in the artificial aging step S76, the cylinder block 82 after quenching is heated to about 240 ° C. for about 3.5 hours to perform artificial aging to achieve aging. After the T6 process including the above steps S74 to S76, the cylinder block 82 is naturally cooled.

【0009】しかし、上述の砂落し工程S73で用いら
れる流動床砂落し炉はその熱効率が極めて高いので、放
冷工程S72終了後の常温〜約220℃のシリンダブロ
ック82は砂落し炉内に投入されると、瞬時に500℃
前後に急加熱され(図8の温度変化ラインb参照)、アル
ミニウム合金の母材と鋳鉄製シリンダライナ81の膨張
率の差に起因して、このシリンダライナ81とアルミニ
ウム合金製のシリンダブロック本体87(図9参照)との
密着面に部分的な隙間g1〜g14が発生する。
However, since the fluidized bed sand removing furnace used in the above sand removing step S73 has extremely high thermal efficiency, the cylinder block 82 at room temperature to about 220 ° C. after the cooling step S72 is put into the sand removing furnace. When it is done, instantly 500 ℃
The cylinder liner 81 and the cylinder block body 87 made of aluminum alloy are rapidly heated back and forth (see the temperature change line b in FIG. 8), and due to the difference in expansion coefficient between the base material of aluminum alloy and the cylinder liner 81 made of cast iron. (See FIG. 9) Partial gaps g1 to g14 are generated in the contact surface.

【0010】図9はこの隙間g1〜g14の発生状態を
実測した結果を示し、砂落し工程S73の前段階におい
て鋳造後のシリンダブロック82を6時間かけて220
℃まで放冷し、その後流動床砂落し炉に投入したシリン
ダブロック82をそのヘッドデッキ(上端面)から約10
mmの高さで切断して、隙間発生状態を実測したものであ
る。
FIG. 9 shows the result of actual measurement of the state of occurrence of the gaps g1 to g14, and the cylinder block 82 after casting takes 220 hours for 6 hours before the sand removing step S73.
Cylinder block 82, which has been left to cool to ℃ and then put into a fluidized bed sand blast furnace, is removed from its head deck (upper end surface) by about 10
It was cut at a height of mm to measure the state of gap formation.

【0011】上述の各隙間はg1=30μm、g2=5
0μm、g3=50μm、g4=30μm、g5=80
μm、g6=50μm、g7=150μm、g8=50
μm、g9=80μm、g10=100μm、g11=
100μm、g12=30μm、g13=30μm、g
14=100μmであり、全気筒に30〜150μmの
隙間が発生した。
The above-mentioned gaps are g1 = 30 μm and g2 = 5.
0 μm, g3 = 50 μm, g4 = 30 μm, g5 = 80
μm, g6 = 50 μm, g7 = 150 μm, g8 = 50
μm, g9 = 80 μm, g10 = 100 μm, g11 =
100 μm, g12 = 30 μm, g13 = 30 μm, g
14 = 100 μm, and a gap of 30 to 150 μm was generated in all cylinders.

【0012】要するに、シリンダボア間にクラックが発
生するという従前の問題点を解決するために、鋳造後の
鋳造品を砂落し前において放冷した後に、砂落し炉に投
入すると、急激な温度上昇(温度変化)により、シリンダ
ライナ背面隙間欠陥が発生するという新たな問題点が生
ずるものである。
[0012] In short, in order to solve the conventional problem that cracks occur between cylinder bores, when a cast product after casting is allowed to cool before sand removal and then put into a sand removal furnace, a rapid temperature rise ( Due to the temperature change), a new problem arises that a rear surface gap defect of the cylinder liner occurs.

【0013】ところで、砂型を用いて鋳造された鋳造品
の後処理として熱処理および砂落しを実行する従来技術
としては特開平11−156528号公報に開示されて
いるように、溶体化処理時において鋳砂の排出つまり砂
落しを行なうように成したものであるが、同公報に開示
されたものは鋳造後の鋳造品の温度降下過程において砂
落しを実行するようなものではない。
By the way, as a conventional technique for carrying out heat treatment and sand removal as post-treatment of a cast product cast by using a sand mold, as disclosed in Japanese Patent Laid-Open No. 11-156528, casting is performed during solution treatment. Although the sand is discharged, that is, the sand is removed, the one disclosed in the publication is not such that the sand is removed in the temperature drop process of the cast product after casting.

【0014】[0014]

【発明が解決しようとする課題】この発明は、砂型鋳造
後の鋳造品をその温度降下過程で該鋳造品に残存する鋳
砂のレジン崩壊温度(砂落し温度)に保持して砂落しを行
ない、砂落し後に放冷を実行することにより、レジン崩
壊温度に保持する際、鋳造品の急激な温度変化を抑制す
ることができ、鋳造品の寸法精度を確保することができ
ると共に、砂落し後に放冷を行なうことで、鋳造品の伸
びが確保しやすいタイミングで冷却収縮にともなう内部
応力を開放することができる鋳造品の後処理方法の提供
を目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, sand casting is performed by holding the casting product after sand mold casting at the resin collapse temperature (sand removal temperature) of the casting sand remaining in the casting product during the temperature drop process. By performing cooling after sand removal, it is possible to suppress a rapid temperature change of the cast product when maintaining the resin collapse temperature, it is possible to ensure the dimensional accuracy of the cast product, and after sand removal An object of the present invention is to provide a post-treatment method for a cast product, which is capable of releasing internal stress associated with cooling shrinkage at a timing at which the elongation of the cast product is easily ensured by performing cooling.

【0015】[0015]

【課題を解決するための手段】この発明による鋳造品の
後処理方法は、砂型を用いて鋳造された鋳造品の後処理
方法であって、鋳造後の該鋳造品の温度降下過程で該鋳
造品に残存する鋳砂のレジン崩壊温度に所定時間保持し
て砂落しを行なう砂落し工程と、上記砂落し工程の後に
放冷を行なう放冷工程と、上記放冷工程の後に所定の熱
処理を行なう熱処理工程とを備えたものである。
A post-treatment method for a cast article according to the present invention is a post-treatment method for a cast article cast by using a sand mold, wherein the casting step is performed during the temperature drop process of the cast article after casting. A sand removal step of performing sand removal by maintaining the resin collapse temperature of the casting sand remaining in the product for a predetermined time, a cooling step of allowing cooling after the sand removal step, and a predetermined heat treatment after the cooling step. And a heat treatment step to be performed.

【0016】上記構成の放冷工程における放冷は、自然
放冷としての徐冷に設定してもよい。上記構成によれ
ば、鋳砂(中子砂)をレジンで結合させた砂型を用いて鋳
造された鋳造品を、レジン崩壊温度(砂落し温度)に保持
する際、鋳造品の急激な温度変化(特に、温度上昇)を抑
制することができ、鋳造品の寸法精度を確保することが
できると共に、砂落し後に放冷を行なうので、鋳造品の
伸びが確保しやすいタイミングで冷却収縮にともなう内
部応力を開放することができる。
The cooling in the cooling step of the above construction may be set to slow cooling as natural cooling. According to the above configuration, the casting product cast by using the sand mold in which the casting sand (core sand) is bonded with the resin is held at the resin collapse temperature (sand removal temperature), and the rapid temperature change of the casting product. (In particular, temperature rise) can be suppressed, the dimensional accuracy of the cast product can be ensured, and since cooling is performed after sand removal, the inside of the cast product due to cooling shrinkage can be easily secured at the timing when expansion is easily secured. The stress can be released.

【0017】この発明の一実施態様においては、上記レ
ジン崩壊温度への移行は放冷を経ることなく、かつ上記
温度降下過程において再加熱することなく実行するもの
である。
In one embodiment of the present invention, the transition to the resin collapse temperature is carried out without allowing cooling and without reheating in the temperature lowering process.

【0018】上記構成によれば、鋳造後、鋳造品が直ち
にレジン崩壊温度に保持されるので、後処理全体のサイ
クルタイムの短縮を図ることができると共に、温度変化
を可及的小さくすることができるので、換言すれば砂落
し後においても鋳造品が伸びるタイミングを確保し得る
ので、鋳造品に発生する内部応力も少なくすることがで
きる。
According to the above construction, since the cast product is maintained at the resin collapse temperature immediately after casting, the cycle time of the entire post-treatment can be shortened and the temperature change can be minimized. Therefore, in other words, it is possible to secure the timing at which the cast product extends even after sand removal, so that the internal stress generated in the cast product can be reduced.

【0019】この発明の一実施態様においては、上記鋳
造品は母材に対して冷却収縮率の異なる鋳ぐるみ部材が
鋳ぐるまれたものである。上記構成によれば、冷却収集
率が異なる鋳ぐるみ部材と母材とを有することで、クラ
ック等の欠陥や両者(鋳ぐるみ部材と母材)間の隙間発生
に対して不利な条件となるが、鋳造後の放冷工程の前段
階で砂落しを行なうことにより、鋳造後の母材の凝固収
縮と、鋳ぐるみ部材の冷却収縮との両者の収縮率の差異
にともなう内部応力の発生によって生ずるクラック等の
欠陥や、レジン崩壊温度(砂落し温度)への移行にともな
う両者(母材と鋳ぐるみ部材)の膨張率の差異により、こ
れら両者間に隙間が発生することを防止することができ
る。
In one embodiment of the present invention, the above-mentioned cast product is formed by surrounding a base material with a cast-in member having different cooling shrinkage rates. According to the above configuration, by having the cast iron member and the base metal having different cooling collection rates, it is a disadvantageous condition for defects such as cracks and the like (the cast iron member and the base metal) to generate a gap. , It is caused by the generation of internal stress due to the difference in shrinkage rate between the solidification shrinkage of the base material after casting and the cooling shrinkage of the cast-molded member by performing sand removal in the stage before the cooling process after casting. Defects such as cracks and the difference in expansion coefficient between the two (base metal and cast-in-mold member) due to transition to the resin collapse temperature (sand removal temperature) can prevent the formation of a gap between the two. .

【0020】この発明の一実施態様においては、上記母
材はアルミニウム合金製シリンダブロック本体に設定さ
れ、上記鋳ぐるみ部材は鉄製のシリンダライナに設定さ
れたものである。上記構成のシリンダライナは鋳鉄製に
設定してもよい。
In one embodiment of the present invention, the base material is set in an aluminum alloy cylinder block main body, and the cast-molded member is set in an iron cylinder liner. The cylinder liner configured as described above may be made of cast iron.

【0021】上記構成によれば、アルミニウム合金は鉄
に対して収縮率および膨張率が大きく、斯るシリンダブ
ロック本体とシリンダライナとを有することで、シリン
ダボア間に対するクラック等の欠陥や両者(シリンダブ
ロック本体とシリンダライナ)間の隙間発生に対して不
利な条件となるが、鋳造後の放冷工程の前段階で砂落し
を行なうので、鋳造後のアルミニウム合金製シリンダブ
ロック本体の凝固収縮と、鉄製シリンダライナの冷却収
縮との両者の収縮率の差異にともなう内部応力の発生に
よって生ずるシリンダボア間のクラック等の欠陥や、レ
ジン崩壊温度(砂落し温度)への移行にともなう両者(シ
リンダブロック本体とシリンダライナ)の膨張率の差異
に起因して、シリンダライナ背面に隙間が発生するのを
防止することができる。
According to the above construction, the aluminum alloy has a large shrinkage rate and expansion rate with respect to iron, and by having such a cylinder block body and cylinder liner, defects such as cracks between the cylinder bores and both (cylinder block). Although it is a disadvantageous condition for creating a gap between the main body and the cylinder liner, sand removal is performed before the cooling process after casting, so solidification shrinkage of the aluminum alloy cylinder block body after casting and iron Defects such as cracks between the cylinder bores caused by the generation of internal stress due to the difference in shrinkage between the cylinder liner and the cooling shrinkage, and both due to the transition to the resin collapse temperature (sand removal temperature) (cylinder block body and cylinder It is possible to prevent a gap from being generated on the rear surface of the cylinder liner due to the difference in expansion coefficient of the liner).

【0022】この発明の一実施態様においては、上記熱
処理工程は、溶体化処理後に焼入れを行ない、その後、
人工時効処理を施すT6処理に設定されたものである。
上記構成によれば、T6処理によりシリンダブロックの
強度向上、硬さ向上を図ることができる。
In one embodiment of the present invention, in the heat treatment step, quenching is performed after the solution treatment, and then,
It is set to T6 processing for performing artificial aging processing.
According to the above structure, the strength and hardness of the cylinder block can be improved by the T6 process.

【0023】この発明の一実施態様においては、上記砂
落し工程においては流動床砂落し炉を用いて砂落しを行
なうものである。上記構成によれば、流動床砂落し炉を
用いることにより、その高い熱効率で鋳造品を入炉する
と瞬時に砂落し温度に達するが、鋳造後直ちに砂落し温
度に保持することで、鋳造品の急激な温度上昇がなく、
鋳造品の寸法精度を確保することができると共に、後処
理全体のサイクルタイムをさらに短縮させることができ
る。
In one embodiment of the present invention, in the sand removal step, sand removal is performed using a fluidized bed sand removal furnace. According to the above configuration, by using the fluidized bed sand blasting furnace, when the cast product is put into the furnace with its high thermal efficiency, the sand blasting temperature is instantly reached, but by holding the sand blasting temperature immediately after casting, There is no sudden temperature rise,
The dimensional accuracy of the cast product can be ensured, and the cycle time of the entire post-treatment can be further shortened.

【0024】この発明の一実施態様においては、上記放
冷工程終了から熱処理工程における溶体化処理温度への
移行は、鋳造品の温度上昇勾配が緩勾配に設定されたも
のである。
In one embodiment of the present invention, the transition from the end of the cooling step to the solution treatment temperature in the heat treatment step is such that the temperature rising gradient of the cast product is set to a gentle gradient.

【0025】上記構成によれば、放冷終了から溶体化処
理の温度に対して鋳造品の温度を緩やかに立ち上げるこ
とことができるので、シリンダボア周囲のひずみの発生
を防止することができる。すなわち、シリンダライナと
シリンダブロック本体との密着面に隙間が発生するの
を、より一層確実に防止することができる。
According to the above construction, since the temperature of the cast product can be gently raised with respect to the temperature of the solution heat treatment from the end of cooling, it is possible to prevent the occurrence of strain around the cylinder bore. That is, it is possible to more reliably prevent the occurrence of a gap on the contact surface between the cylinder liner and the cylinder block body.

【0026】[0026]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は鋳造品の鋳造および後処理方法を示し、
図1は工程図、図5はその説明図であって、まず図1に
示す工程図の鋳造工程S1で鋳造品の一例として直列4
気筒エンジンのシリンダブロックを鋳造する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. The drawings show the casting and post-treatment methods of castings,
FIG. 1 is a process diagram, and FIG. 5 is an explanatory diagram thereof. First, in a casting process S1 of the process diagram shown in FIG.
Cast cylinder block of cylinder engine.

【0027】この鋳造工程S1で用いられる鋳造構造
(砂型構造)は図2に示すように構成している。すなわ
ち、シリンダブロック本体11(図4参照)を形成するキ
ャビティ部12と、このキャビティ部12と押し湯部1
3とを連続接続する湯口部(製品に対する湯口)14と、
上述の押し湯部13と湯口(溶湯の湯口)15とを連通接
続する湯道16とを鋳砂にて形成すると共に、同じ鋳砂
にて形成された中子17により鋳鉄製のシリンダライナ
18を支持して、図4に示すシリンダブロック19を形
成するように砂型20を構成したものである。
Casting structure used in this casting step S1
The (sand type structure) is configured as shown in FIG. That is, the cavity portion 12 forming the cylinder block body 11 (see FIG. 4), and the cavity portion 12 and the riser portion 1
A sprue part (spout for products) 14 that continuously connects 3 and
The runner 16 which connects the above-mentioned riser section 13 and the sprue (spout of molten metal) 15 is formed by casting sand, and a cylinder liner 18 made of cast iron is formed by the core 17 formed by the same casting sand. The sand mold 20 is configured so as to support the above and form the cylinder block 19 shown in FIG.

【0028】ここで、上述の鋳砂は結合剤としてのレジ
ンにより結合されて、図2に示すような中子17を備え
た砂型20が形成される。また直列4気筒エンジンのシ
リンダブロック19(図6参照)を鋳造する場合には、上
述の湯口部14は第2気筒と第3気筒との間(つまり中
央部間)を除くシリンダボア1〜4(図6参照)側部に気
筒列と直交する方向(いわゆる幅方向)に向けて合計4個
形成される。
Here, the above-mentioned casting sand is bonded by a resin as a binder to form a sand mold 20 having a core 17 as shown in FIG. When casting the cylinder block 19 (see FIG. 6) of the in-line four-cylinder engine, the above-mentioned sprue part 14 is the cylinder bores 1 to 4 (excluding the part between the second cylinder and the third cylinder (that is, the part between the central parts)). (See FIG. 6) A total of four side portions are formed in a direction orthogonal to the cylinder row (so-called width direction).

【0029】さらに上述の押し湯部13はひけ巣欠陥を
防止するために第1気筒、第2気筒用のものと、第3気
筒、第4気筒用のものとに2分割してもよい。さらに
は、図3に示すように上述の押し湯部13をその下部一
部を残して気筒列方向に分割すべく該押し湯部13に所
定深さの切込み部21(鋳砂による仕切り壁)を形成し、
鋳造後の母材の凝固収縮とシリンダライナ18の冷却収
縮の差による応力の作用方向を該切込み部21にて2分
して、母材のある程度の塑性変形を許容すべく構成して
もよい。
Further, the above-mentioned riser section 13 may be divided into two for the first cylinder and the second cylinder and for the third cylinder and the fourth cylinder in order to prevent the shrinkage cavity defect. Further, as shown in FIG. 3, in order to divide the above-mentioned riser portion 13 in the cylinder row direction while leaving a part of the lower portion thereof, a cut portion 21 (partition wall made of casting sand) having a predetermined depth in the riser portion 13 To form
The action direction of the stress due to the difference between the solidification shrinkage of the base material after casting and the cooling shrinkage of the cylinder liner 18 may be divided into two at the cut portion 21 so as to allow some plastic deformation of the base material. .

【0030】上述の鋳造工程S1では、図2または図3
に示す砂型20の湯口15(いわゆるゲート)から約75
0℃のアルミニウム合金の溶湯を注湯し、この溶湯を、
湯道16、押し湯部13、複数の湯口部14を介してキ
ャビティ部12に充満させると共に、押し湯部13の溶
湯の重力によりキャビティ部12の溶湯に圧力を付勢す
る。
In the above-mentioned casting step S1, in FIG. 2 or FIG.
About 75 from the gate 15 (so-called gate) of the sand mold 20 shown in
Pour the molten aluminum alloy of 0 ℃, this molten metal,
The cavity portion 12 is filled with the melt through the runner 16, the riser portion 13, and the plurality of sprue portions 14, and pressure is applied to the melt in the cavity portion 12 by the gravity of the melt in the pusher portion 13.

【0031】上述のキャビティ部12に注湯された溶湯
は注湯後、時間経過とともに凝固し、またシリンダライ
ナ18は時間経過とともに冷却されて、母材としてのア
ルミニウム合金に対して冷却収縮率の異なる鋳ぐるみ部
材(シリンダライナ18)が鋳ぐるまれたシリンダブロッ
ク19が鋳造される。
The molten metal poured into the above-mentioned cavity 12 is solidified with time after pouring, and the cylinder liner 18 is cooled with time, so that the aluminum alloy as the base material has a cooling shrinkage ratio. A cylinder block 19 in which different cast-in member (cylinder liner 18) is cast is cast.

【0032】次に図1に示す工程図の砂落し工程S2
で、鋳造後のシリンダブロック19の温度降下過程で該
シリンダブロック19の内部、外部に残存する鋳砂を砂
落しすべく、該鋳砂を結合していたレジンの崩壊温度に
所定時間保持して砂落しを行なう。
Next, the sand removal step S2 in the process diagram shown in FIG.
Then, in order to remove the sand that remains inside and outside the cylinder block 19 during the temperature drop process of the cylinder block 19 after casting, hold the temperature at the collapse temperature of the resin that bound the sand for a predetermined time. Remove the sand.

【0033】つまり、鋳造後のシリンダブロック19が
その温度降下によりレジン崩壊温度(砂落し温度)として
の500℃付近に達した時に、砂型20のままで該シリ
ンダブロック19を流動床砂落し炉に投入し、炉内の約
500℃の砂に下方から熱風を吹き上げて鋳砂の給合剤
としてのレジンを崩壊し、砂型20をくずす所謂砂落し
を実行すると、シリンダブロック19の内外に残存する
鋳砂が除去される。
That is, when the cylinder block 19 after casting reaches a resin collapse temperature (sand removal temperature) of about 500 ° C. due to the temperature drop, the cylinder block 19 is left in the sand mold 20 as it is in the fluidized bed sand removal furnace. It is left inside and outside of the cylinder block 19 when it is charged, and hot air is blown up from below to the sand of about 500 ° C. in the furnace to collapse the resin as a filler of the casting sand and to break the sand mold 20, so-called sand removal. Casting sand is removed.

【0034】上述の鋳造後からレジン崩壊温度(砂落し
温度)への移行(工程S1から工程S2への移行)は図
1、図5に示すように、放冷工程を経ることなく、かつ
上述の温度降下過程において再加熱することなく実行さ
れる。
As shown in FIGS. 1 and 5, the transition from the above-mentioned casting to the resin collapse temperature (sand removal temperature) (transition from the step S1 to the step S2) is performed without passing through the cooling step, and It is executed without reheating in the temperature drop process of.

【0035】次に図1に示す工程図の放冷工程S3で、
流動床砂落し炉から取出したシリンダブロック19を約
4時間かけて常温〜220℃(望ましくは常温〜100
℃)に放冷(徐冷)し、図6に示すシリンダボア1,2
間、2,3間、3,4間(但し、シリンダボア1は第1
気筒に相当し、シリンダボア2は第2気筒に相当し、シ
リンダボア3は第3気筒に相当し、シリンダボア4は第
4気筒に相当する)に集中する内部応力を母材の塑性変
形により開放して、これらシリンダボア間にクラック等
の欠陥が発生するのを防止する。
Next, in the cooling step S3 of the process chart shown in FIG.
The cylinder block 19 taken out of the fluidized bed sand removing furnace is at room temperature to 220 ° C (preferably at room temperature to 100 ° C) for about 4 hours.
(° C) to allow cooling (gradual cooling), and then use the cylinder bores 1 and 2 shown in FIG.
Space, 2, 3 space, 3 space, 4 space (however, cylinder bore 1
Corresponding to the cylinder, the cylinder bore 2 corresponds to the second cylinder, the cylinder bore 3 corresponds to the third cylinder, and the cylinder bore 4 corresponds to the fourth cylinder). It prevents the occurrence of defects such as cracks between these cylinder bores.

【0036】次に図1に示す工程図の各工程S4,S
5,S6により放冷後のシリンダブロック19に対して
所定の熱処理(T6処理)を施すが、放冷工程S3終了か
ら熱処理工程S4,S5,S6における溶体化処理温度
への移行は、鋳造品としてのシリンダブロック19の温
度上昇勾配が図5の温度変化ラインaと図8の温度変化
ラインbとの比較から明らかなように相対的に緩勾配に
設定されている。
Next, the steps S4 and S in the process diagram shown in FIG.
A predetermined heat treatment (T6 treatment) is performed on the cylinder block 19 after being left to cool by S5 and S6, but the transition from the end of the left cooling process S3 to the solution treatment temperature in the heat treating processes S4, S5 and S6 is performed by casting. The temperature rise gradient of the cylinder block 19 is set to a relatively gentle gradient as is clear from the comparison between the temperature change line a in FIG. 5 and the temperature change line b in FIG.

【0037】上述の熱処理工程においては、まず溶体化
工程S4で、放冷終了後のシリンダブロック19を溶体
化炉に投入し、シリンダブロック19をエア雰囲気中に
て500℃前後に約2時間加熱して、過飽和固溶体の状
態を作り出す熱処理(溶体化)を実行する。
In the heat treatment step described above, first, in the solution heat treatment step S4, the cylinder block 19 after cooling is put into the solution heat treatment furnace, and the cylinder block 19 is heated in an air atmosphere at about 500 ° C. for about 2 hours. Then, heat treatment (solution treatment) for producing a supersaturated solid solution state is performed.

【0038】次に焼入れ工程S5で、500℃前後のシ
リンダブロック19を焼入れ炉に投入して、約50℃ま
で急冷して焼入れを施す。次に人工時効工程S6で、焼
入れ後のシリンダブロック19を時効炉に投入して、約
240℃に3.5時間前後加熱して、人工時効し、時効
化(Aging)を図る。
Next, in the quenching step S5, the cylinder block 19 at about 500 ° C. is put into a quenching furnace and quenched by quenching to about 50 ° C. Next, in the artificial aging step S6, the quenched cylinder block 19 is put into an aging furnace and heated to about 240 ° C. for about 3.5 hours to perform artificial aging to achieve aging.

【0039】この溶体化→焼入れ→時効処理からなるT
6処理により、シリンダブロック19の強度向上、硬さ
向上を図ることができる。上述の各工程S4,S5,S
6から成るT6処理(熱処理)の後、図1の工程図の放冷
工程S7で、シリンダブロック19を自然放冷する。
T consisting of this solution treatment → quenching → aging treatment
The six treatments can improve the strength and hardness of the cylinder block 19. Each of the above steps S4, S5, S
After the T6 treatment (heat treatment) of No. 6, the cylinder block 19 is naturally cooled in the cooling step S7 in the process chart of FIG.

【0040】図6は鋳鉄製シリンダライナ18とアルミ
ニウム合金製のシリンダブロック本体11との密着面の
隙間の発生状態を実測した結果を示し、砂落し工程S2
の後に鋳造品としてのシリンダブロック19を4時間か
けて100℃まで徐冷(放冷工程S3参照)し、このシリ
ンダブロック19をそのヘッドデッキ(上端部)から約1
0mmの高さで切断して、隙間発生状態を実測したもので
あり、上述の後処理方法によるこの実施例品においては
シリンダボア1〜4の全気筒において一切隙間が発生し
ないことが確認できた。
FIG. 6 shows the result of actual measurement of the state of the gap between the contact surfaces of the cast iron cylinder liner 18 and the aluminum alloy cylinder block body 11, and the sand removal step S2.
After that, the cylinder block 19 as a cast product is gradually cooled to 100 ° C. over 4 hours (see the cooling step S3), and the cylinder block 19 is removed from its head deck (upper end) by about 1
It was cut at a height of 0 mm and the state of gap formation was measured, and it was confirmed that no gap was generated in all cylinders of the cylinder bores 1 to 4 in this example product by the above-mentioned post-treatment method.

【0041】このように図1〜図6で示した実施例の鋳
造品の後処理方法は、砂型20を用いて鋳造された鋳造
品(シリンダブロック19参照)の後処理方法であって、
鋳造後の該鋳造品の温度降下過程で該鋳造品(シリンダ
ブロック19参照)に残存する鋳砂のレジン崩壊温度(砂
落し温度)に所定時間保持して砂落しを行なう砂落し工
程S2と、上記砂落し工程S2の後に放冷を行なう放冷
工程S3と、上記放冷工程S3の後に所定の熱処理を行
なう熱処理工程S4,S5,S6とを備えたものであ
る。
As described above, the post-treatment method of the cast product of the embodiment shown in FIGS. 1 to 6 is the post-treatment method of the cast product (see the cylinder block 19) cast by using the sand mold 20.
A sand removal step S2 of performing sand removal by holding for a predetermined time at the resin collapse temperature (sand removal temperature) of the casting sand remaining in the casting (see cylinder block 19) during the temperature drop process of the cast product after casting, It is provided with a cooling step S3 for cooling after the sand removal step S2 and heat treatment steps S4, S5, S6 for performing a predetermined heat treatment after the cooling step S3.

【0042】この構成によれば、鋳砂(中子砂)をレジン
で結合させた砂型20を用いて鋳造された鋳造品(シリ
ンダブロック19参照)を、レジン崩壊温度(砂落し温
度)に保持する際、鋳造品の急激な温度変化(特に、温度
上昇)を抑制することができ、鋳造品の寸法精度を確保
することができると共に、砂落し後に放冷を行なうの
で、鋳造品(シリンダブロック19参照)の伸びが確保し
やすいタイミングで冷却収縮にともなう内部応力を開放
することができる。
According to this structure, the casting product (see the cylinder block 19) cast by using the sand mold 20 in which the casting sand (core sand) is bonded with the resin is maintained at the resin collapse temperature (sandfall temperature). At the time of casting, it is possible to suppress a sudden temperature change (especially temperature rise) of the cast product, to ensure the dimensional accuracy of the cast product, and to cool the sand after the sand is removed. The internal stress associated with cooling shrinkage can be released at a timing at which it is easy to secure the elongation (see 19).

【0043】しかも、上記レジン崩壊温度(砂落し温度)
への移行は放冷(放冷工程S3参照)を経ることなく、か
つ上記温度降下過程において再加熱することなく実行す
るものである。
Moreover, the resin collapse temperature (sand removal temperature)
The shift to (4) is performed without cooling (see cooling step S3) and without reheating in the temperature lowering process.

【0044】この構成によれば、鋳造後、鋳造品(シリ
ンダブロック19参照)が直ちにレジン崩壊温度に保持
されるので、後処理全体のサイクルタイムの短縮を図る
ことができると共に、温度変化を可及的小さくすること
ができるので、換言すれば砂落し後においても鋳造品
(シリンダブロック19参照)が伸びるタイミング(塑性
変形可能なタイミング)を確保し得るので、鋳造品に発
生する内部応力も少なくすることができ、さらには、再
加熱を実行することはなく、レジン崩壊温度へ移行する
ので消費熱エネルギの低減を図ることができる。
According to this structure, since the cast product (see the cylinder block 19) is immediately maintained at the resin collapse temperature after casting, the cycle time of the entire post-treatment can be shortened and the temperature can be changed. Since it can be made as small as possible, in other words, it is a cast product even after sand removal.
Since it is possible to secure the timing of expansion (see cylinder block 19) (timing capable of plastic deformation), it is possible to reduce the internal stress generated in the cast product, and further, it is possible to reduce the resin collapse without performing reheating. Since the temperature is changed to the temperature, it is possible to reduce the consumed heat energy.

【0045】また、上記鋳造品は母材(シリンダブロッ
ク本体11参照)に対して冷却収縮率の異なる鋳ぐるみ
部材(シリンダライナ18参照)が鋳ぐるまれたものであ
る。この構成によれば、冷却収集率が異なる鋳ぐるみ部
材と母材とを有することで、クラック等の欠陥や両者
(鋳ぐるみ部材と母材)間の隙間発生に対して不利な条件
となるが、鋳造後の放冷工程S3の前段階で砂落しを行
なうことにより、鋳造後の母材の凝固収縮と、鋳ぐるみ
部材の冷却収縮との両者の収縮率の差異にともなう内部
応力の発生によって生ずるクラック等の欠陥や、レジン
崩壊温度(砂落し温度)への移行にともなう両者(母材と
鋳ぐるみ部材)の膨張率の差異により、これら両者間(各
要素11,18間参照)に隙間が発生することを防止す
ることができる。
Further, the above cast product is a cast metal member (see cylinder liner 18) having different cooling shrinkage rates which is cast into a base material (see cylinder block body 11). According to this configuration, by having the cast-metal member and the base material having different cooling collection rates, defects such as cracks and both
Although it is a disadvantageous condition for generation of a gap between the (casting member and the base metal), by performing sand removal in the stage before the cooling step S3 after casting, solidification shrinkage of the base metal after casting, Defects such as cracks caused by the generation of internal stress due to the difference in shrinkage rate between the cooling and shrinkage of the cast metal member, and both due to the transition to the resin collapse temperature (sand removal temperature) (base material and cast metal member) Due to the difference in expansion coefficient between the two, it is possible to prevent a gap from occurring between them (see between the elements 11 and 18).

【0046】さらに、上記母材はアルミニウム合金製シ
リンダブロック本体11に設定され、上記鋳ぐるみ部材
は鉄製のシリンダライナ18に設定されたものである。
この構成によれば、アルミニウム合金は鉄に対して収縮
率および膨張率か大きく、斯るシリンダブロック本体1
1とシリンダライナ18とを有することで、シリンダボ
ア1,2間、2,3間、3,4間に対するクラック等の
欠陥や両者(シリンダブロック本体11とシリンダライ
ナ18)間の隙間発生に対して不利な条件となるが、鋳
造後の放冷工程S3の前段階で砂落しを行なうので、鋳
造後のアルミニウム合金製シリンダブロック本体11の
凝固収縮と、鉄製シリンダライナ18の冷却収縮との両
者11,18の収縮率の差異にともなう内部応力の発生
によって生ずるシリンダボア1,2間、2,3間、3,
4間のクラック等の欠陥や、レジン崩壊温度(砂落し温
度)への移行にともなう両者(シリンダブロック本体11
とシリンダライナ18)の膨張率の差異に起因して、シ
リンダライナ18の背面に隙間が発生するのを防止する
ことができる。
Further, the base material is set in the aluminum alloy cylinder block body 11, and the cast-in member is set in the iron cylinder liner 18.
According to this structure, the aluminum alloy has a large contraction rate and a large expansion rate with respect to iron.
By having 1 and the cylinder liner 18, it is possible to prevent defects such as cracks between the cylinder bores 1 and 2, between the cylinder bores 2, 3 and 4, and between the cylinder bores 11 (the cylinder block body 11 and the cylinder liner 18). Although it is a disadvantageous condition, since sand is removed before the cooling step S3 after casting, both the solidification shrinkage of the aluminum alloy cylinder block body 11 after casting and the cooling shrinkage of the iron cylinder liner 11 are performed. , 18 between the cylinder bores 1 and 2, between 2 and 3, caused by the generation of internal stress due to the difference in contraction rate
Defects such as cracks between No. 4 and both due to transition to resin collapse temperature (sand removal temperature) (cylinder block body 11
It is possible to prevent a gap from being formed on the back surface of the cylinder liner 18 due to the difference in expansion coefficient between the cylinder liner 18) and the cylinder liner 18).

【0047】加えて、上記熱処理工程S4,S5,S6
は、溶体化処理(工程S4参照)後に焼入れ(工程S5参
照)を行ない、その後、人工時効処理(工程S6参照)を
施すT6処理に設定されたものである。この構成によれ
ば、T6処理(各工程S4〜S6から成る熱処理参照)に
よりシリンダブロック19の強度向上、硬さ向上を図る
ことができる。
In addition, the above heat treatment steps S4, S5 and S6
Is set to T6 treatment in which quenching (see step S5) is performed after solution treatment (see step S4) and then artificial aging treatment (see step S6) is performed. According to this configuration, the strength and hardness of the cylinder block 19 can be improved by the T6 process (see the heat treatment including the steps S4 to S6).

【0048】また、上記砂落し工程S2においては流動
床砂落し炉を用いて砂落しを行なうものである。この構
成によれば、流動床砂落し炉を用いることにより、その
高い熱効率で鋳造品(シリンダブロック19参照)を入炉
すると瞬時に砂落し温度に達するが、鋳造後直ちに砂落
し温度に保持することで、鋳造品の急激な温度上昇がな
く、鋳造品の寸法精度を確保することができると共に、
後処理全体のサイクルタイムをさらに短縮させることが
できる。
In the sand removing step S2, sand is removed using a fluidized bed sand removing furnace. According to this configuration, by using the fluidized bed sand blasting furnace, when the cast product (see the cylinder block 19) is charged with high thermal efficiency, the sand blasting temperature is instantly reached, but the sand blasting temperature is maintained immediately after casting. As a result, the dimensional accuracy of the cast product can be secured without a sudden rise in temperature of the cast product,
The cycle time of the entire post-treatment can be further shortened.

【0049】さらに、上記放冷工程S3終了から熱処理
工程S4,S5,S6における溶体化処理(工程S4参
照)の温度への移行は、鋳造品の温度上昇勾配が相対的
に緩勾配(図5の温度変化ラインa参照)に設定されたも
のである。
Furthermore, the transition from the end of the cooling step S3 to the temperature of the solution treatment (see step S4) in the heat treatment steps S4, S5 and S6 is such that the temperature rise gradient of the cast product is relatively gentle (see FIG. 5). Temperature change line a)).

【0050】この構成によれば、放冷(放冷工程S3参
照)終了から溶体化処理(工程S4参照)の温度に対して
鋳造品(シリンダブロック19参照)の温度を緩やかに立
ち上げることことができるので、シリンダボア1〜4周
囲のひずみの発生を防止することができる。すなわち、
シリンダライナ18とシリンダブロック本体11との密
着面に隙間が発生するのを、より一層確実に防止するこ
とができる。
According to this structure, the temperature of the cast product (see the cylinder block 19) is gradually raised with respect to the temperature of the solution treatment (see the process S4) from the end of the cooling (see the cooling process S3). Therefore, it is possible to prevent the occurrence of strain around the cylinder bores 1 to 4. That is,
It is possible to more reliably prevent the occurrence of a gap on the contact surface between the cylinder liner 18 and the cylinder block body 11.

【0051】この発明の構成と、上述の実施例との対応
において、この発明の鋳造品は、実施例のシリンダブロ
ック19に対応し、以下同様に、レジン崩壊温度は、砂
落し温度に対応し、所定の熱処理は、T6処理に対応
し、母材は、アルミニウム合金製のシリンダブロック本
体11に対応し、鋳ぐるみ部材は、鋳鉄製のシリンダラ
イナ18に対応するも、この発明は、上述の実施例の構
成のみに限定されるものではない。
In the correspondence between the structure of the present invention and the above-described embodiment, the cast product of the present invention corresponds to the cylinder block 19 of the embodiment, and hereinafter, the resin collapse temperature corresponds to the sand removal temperature. The predetermined heat treatment corresponds to the T6 treatment, the base material corresponds to the aluminum alloy cylinder block main body 11, and the cast body member corresponds to the cast iron cylinder liner 18. It is not limited to the configuration of the embodiment.

【0052】[0052]

【発明の効果】この発明によれば、砂型鋳造後の鋳造品
をその温度降下過程で該鋳造品に残存する鋳砂のレジン
崩壊温度(砂落し温度)に保持して砂落しを行ない、砂落
し後に放冷を実行するので、レジン崩壊温度に保持する
際、鋳造品の急激な温度変化を抑制することができ、鋳
造品の寸法精度を確保することができると共に、砂落し
後に放冷を行なうことで、鋳造品の伸び(塑性変形)が確
保しやすいタイミングで冷却収縮にともなう内部応力を
開放することができる効果がある。
According to the present invention, sand casting is performed by holding the casting product after sand mold casting at the resin collapse temperature (sand removal temperature) of the casting sand remaining in the casting product during the temperature drop process. Since cooling is performed after dropping, it is possible to suppress a rapid temperature change of the cast product when maintaining the resin collapse temperature, it is possible to ensure the dimensional accuracy of the cast product, and to cool the sand after removing the sand. By doing so, there is an effect that the internal stress due to cooling shrinkage can be released at a timing at which the elongation (plastic deformation) of the cast product can be easily secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の鋳造品の後処理方法を示す工程図。FIG. 1 is a process diagram showing a post-treatment method of a cast product of the present invention.

【図2】 砂型鋳造に用いる鋳型構造の説明図。FIG. 2 is an explanatory view of a mold structure used for sand mold casting.

【図3】 鋳型構造の他の実施例を示す断面図。FIG. 3 is a sectional view showing another embodiment of the mold structure.

【図4】 鋳造品の一例を示すシリンダブロックの断面
図。
FIG. 4 is a sectional view of a cylinder block showing an example of a cast product.

【図5】 鋳造品の後処理方法を示す説明図。FIG. 5 is an explanatory diagram showing a post-treatment method for a cast product.

【図6】 シリンダブロックの平面図。FIG. 6 is a plan view of a cylinder block.

【図7】 従来の鋳造品の後処理方法を示す工程図。FIG. 7 is a process diagram showing a post-treatment method of a conventional cast product.

【図8】 従来の鋳造品の後処理方法を示す説明図。FIG. 8 is an explanatory view showing a conventional post-treatment method for a cast product.

【図9】 従来方法による隙間発生状態を示すシリンダ
ブロックの平面図。
FIG. 9 is a plan view of a cylinder block showing a state where a gap is generated by a conventional method.

【符号の説明】[Explanation of symbols]

S2…砂落し工程 S3…放冷工程 S4〜S6…熱処理工程 1〜4…シリンダボア 11…シリンダブロック本体(母材) 18…シリンダライナ(鋳ぐるみ部材) 19…シリンダブロック(鋳造品) 20…砂型 S2 ... Sand removal process S3 ... Cooling process S4 to S6 ... Heat treatment step 1 to 4 ... Cylinder bore 11 ... Cylinder block body (base material) 18 ... Cylinder liner (casting member) 19 ... Cylinder block (cast product) 20 ... Sand mold

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02F 1/00 F02F 1/00 K ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02F 1/00 F02F 1/00 K

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】砂型を用いて鋳造された鋳造品の後処理方
法であって、鋳造後の該鋳造品の温度降下過程で該鋳造
品に残存する鋳砂のレジン崩壊温度に所定時間保持して
砂落しを行なう砂落し工程と、上記砂落し工程の後に放
冷を行なう放冷工程と、上記放冷工程の後に所定の熱処
理を行なう熱処理工程とを備えた鋳造品の後処理方法。
1. A method for post-treating a cast product cast by using a sand mold, which is maintained for a predetermined time at the resin collapse temperature of the casting sand remaining in the cast product during the temperature drop process of the cast product after casting. A post-processing method for a cast product, comprising: a sand removing step for removing sand by means of cooling, a cooling step for performing cooling after the removing sand step, and a heat treatment step for performing a predetermined heat treatment after the cooling step.
【請求項2】上記レジン崩壊温度への移行は放冷を経る
ことなく、かつ上記温度降下過程において再加熱するこ
となく実行する請求項1記載の鋳造品の後処理方法。
2. The post-treatment method for a cast product according to claim 1, wherein the transition to the resin collapse temperature is carried out without cooling and without reheating in the temperature lowering process.
【請求項3】上記鋳造品は母材に対して冷却収縮率の異
なる鋳ぐるみ部材が鋳ぐるまれた請求項1記載の鋳造品
の後処理方法。
3. The post-processing method for a cast product according to claim 1, wherein the cast product is a cast-in member having a different cooling shrinkage with respect to the base material.
【請求項4】上記母材はアルミニウム合金製シリンダブ
ロック本体に設定され、上記鋳ぐるみ部材は鉄製のシリ
ンダライナに設定された請求項3記載の鋳造品の後処理
方法。
4. The post-processing method for a cast product according to claim 3, wherein the base material is set in a cylinder block body made of an aluminum alloy, and the cast-molded member is set in a cylinder liner made of iron.
【請求項5】上記熱処理工程は、溶体化処理後に焼入れ
を行ない、その後、人工時効処理を施すT6処理に設定
された請求項4記載の鋳造品の後処理方法。
5. The post-treatment method for a cast product according to claim 4, wherein the heat treatment step is set to T6 treatment in which quenching is performed after solution treatment and then artificial aging treatment is performed.
【請求項6】上記砂落し工程においては流動床砂落し炉
を用いて砂落しを行なう請求項1または2記載の鋳造品
の後処理方法。
6. The post-treatment method for a cast product according to claim 1, wherein in the sand removal step, sand removal is performed using a fluidized bed sand removal furnace.
【請求項7】上記放冷工程終了から熱処理工程における
溶体化処理温度への移行は、鋳造品の温度上昇勾配が緩
勾配に設定された請求項5記載の鋳造品の後処理方法。
7. The post-processing method for a cast product according to claim 5, wherein the transition from the end of the cooling step to the solution treatment temperature in the heat treatment step is performed by setting the temperature rising gradient of the cast product to a gentle gradient.
JP2002036231A 2002-02-14 2002-02-14 Post-processing method for castings Expired - Fee Related JP4078845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002036231A JP4078845B2 (en) 2002-02-14 2002-02-14 Post-processing method for castings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002036231A JP4078845B2 (en) 2002-02-14 2002-02-14 Post-processing method for castings

Publications (2)

Publication Number Publication Date
JP2003230953A true JP2003230953A (en) 2003-08-19
JP4078845B2 JP4078845B2 (en) 2008-04-23

Family

ID=27778174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002036231A Expired - Fee Related JP4078845B2 (en) 2002-02-14 2002-02-14 Post-processing method for castings

Country Status (1)

Country Link
JP (1) JP4078845B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360040B1 (en) 2011-12-06 2014-02-07 현대자동차주식회사 Heat treatment for cylinder block casted with high pressure die-casiting
WO2014027598A1 (en) * 2012-08-16 2014-02-20 日産自動車株式会社 Method for quenching cylinder head, and thermal insulation member using same
CN104619442A (en) * 2012-09-18 2015-05-13 马自达汽车株式会社 Cooling method and cooling device for Al alloy manufactured casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360040B1 (en) 2011-12-06 2014-02-07 현대자동차주식회사 Heat treatment for cylinder block casted with high pressure die-casiting
WO2014027598A1 (en) * 2012-08-16 2014-02-20 日産自動車株式会社 Method for quenching cylinder head, and thermal insulation member using same
JP5892431B2 (en) * 2012-08-16 2016-03-23 日産自動車株式会社 Cylinder head quenching method and heat retaining member used therefor
CN104619442A (en) * 2012-09-18 2015-05-13 马自达汽车株式会社 Cooling method and cooling device for Al alloy manufactured casting
US10000835B2 (en) 2012-09-18 2018-06-19 Mazda Motor Corporation Cooling method and cooling device for Al alloy manufactured casting

Also Published As

Publication number Publication date
JP4078845B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
CN101530892B (en) Investment casting thin-walled part casting method
JP4781721B2 (en) Recovery method of ceramic core
US6588487B2 (en) Methods and apparatus for utilization of chills for casting
JP2005169498A (en) Method for producing light alloy casting
JP2009274098A (en) Sand mold for low-pressure casting and low-pressure casting apparatus utilizing the same
JP2003230953A (en) Method of post-processing cast article
CN106623810A (en) Casting method for motorcycle aluminum alloy wheel with hollow hub
JPH07155897A (en) Mold structure and casting method
US11235379B2 (en) Foundry process with hot mold casting
US5213149A (en) Mold and method for making variable thickness cast articles
CN105478671A (en) Microseismic casting process for aluminum alloy precision-investment casting
US5706881A (en) Heat treatment of superalloy casting with partial mold removal
CN112548043B (en) Anti-cracking method for complex-structure steel castings based on embedded anti-cracking ribs
JP2005502473A (en) Casting production method, mold sand, and use of the mold sand in the production method
JPH01298139A (en) Manufacture of aluminum alloy castings
JP5352786B2 (en) Cast iron casting method, feeder, mold and mold making method
JP4029626B2 (en) Mold structure
US11745254B2 (en) Foundry mold, method for manufacturing the mold and foundry method
KR102588736B1 (en) Manufacture method of TiAl base plate for 3D printer
US20210346945A1 (en) Thermal management in lost wax casting
JP2004114159A (en) Pressure-resistant high-strength cast aluminum cylinder head
RU2427445C1 (en) Method of producing brake shoes with lined working surfaces
RU2722956C1 (en) Cast multilayer shell mold
JPH0691340A (en) Expendable pattern for precision casting
JPH06210437A (en) Production of casting product

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20071101

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Effective date: 20071205

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110215

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees