JP2003230895A - Method and apparatus for treating manganese-containing water - Google Patents

Method and apparatus for treating manganese-containing water

Info

Publication number
JP2003230895A
JP2003230895A JP2002031814A JP2002031814A JP2003230895A JP 2003230895 A JP2003230895 A JP 2003230895A JP 2002031814 A JP2002031814 A JP 2002031814A JP 2002031814 A JP2002031814 A JP 2002031814A JP 2003230895 A JP2003230895 A JP 2003230895A
Authority
JP
Japan
Prior art keywords
membrane
tank
manganese
chlorine
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002031814A
Other languages
Japanese (ja)
Inventor
Hiroshi Aizawa
拓 相澤
Masayuki Kitagawa
雅之 北川
Takahito Sugimoto
隆仁 杉本
Yukihiko Tsutsumi
行彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002031814A priority Critical patent/JP2003230895A/en
Publication of JP2003230895A publication Critical patent/JP2003230895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To remove soluble manganese under a low water temperature environment with high efficiency in a membrane treatment system. <P>SOLUTION: A membrane filter apparatus A is constituted by immersing membrane modules 21 having outer pressure tube type membrane elements 22 incorporated therein in a membrane immersion tank 20 and an air diffusion pipe 27 in the membrane immersion tank 20 and used as membrane treatment equipment. A chlorine contact basin, which has a hypochlorite blending tank 1 and a powder carbon adsorption tank 7 respectively provided to the front and rear parts thereof, is provided in combination with the membrane filter apparatus A. Chlorine is injected in raw water (a) to convert soluble manganese present in raw water to manganese dioxide. Then, the manganese dioxide- containing raw water is sent to the membrane filter apparatus A by suppressing the formation of a disinfection byproduct not only to perform treatment due to residual free chlorine and manganese oxide concentrated in the tank but also to perform the filtering and separation of a turbid substance (solid component) to take out clean water. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マンガンを含む河川水
や井水の膜ろ過を用いた水処理方法に関し、詳しくは、
槽浸漬式膜ろ過方法において、低水温環境化でも有機物
・マンガン・アンモニアを高率に除去できるようにした
マンガン含有水の処理方法及びその装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method using membrane filtration of river water or well water containing manganese.
The present invention relates to a method for treating manganese-containing water capable of removing organic matter, manganese, and ammonia at a high rate even in a low water temperature environment in a tank-immersed membrane filtration method, and an apparatus thereof.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】膜ろ過
による水処理方法は、従来の急速ろ過法に比べて維持管
理が容易で省スペース化が図れるなど低コストを実現で
きる方法として、浄水場への膜処理の導入が注目されて
いる。しかし、膜処理法には各種の形式があるが、これ
らは高濁度水や高マンガン水を直接ろ過できないという
問題点がある。
2. Description of the Related Art A water treatment method by membrane filtration is a method for realizing low cost such as easy maintenance and space saving as compared with the conventional rapid filtration method. Attention is being paid to the introduction of membrane treatment into the. However, there are various types of membrane treatment methods, but these have a problem that high turbidity water and high manganese water cannot be directly filtered.

【0003】しかし、浄水場で処理する原水は、高濁度
のものがあり、溶解性有機物やマンガンを多く含むこと
が多い。そのため、このような原水の処理においては、
膜処理の前に凝集沈澱などの前処理をする必要があると
ともに、溶解性有機物やマンガンに対しても専用の処理
装置が必要となる。そのため、処理設備全体として多段
の処理プロセスを経ることとなり、イニシャル、維持管
理でコスト高となり、また、スペース的な問題も生じる
ことになる。例えば、マンガン砂ろ過によるマンガン除
去設備を膜ろ過設備の前段に設ける場合(図4−(1)参
照)では、高濁時にろ床の閉塞を生じることになり、ま
た、マンガン除去設備を膜ろ過設備の後段に設ける場合
(図4−(2)参照)では、膜内に侵入するマンガンが膜
のファウリングを促進させることになり、膜処理の利点
が失われる。
However, the raw water treated in the water purification plant has high turbidity and often contains a large amount of soluble organic substances and manganese. Therefore, in the treatment of such raw water,
Pretreatment such as coagulation and precipitation is required before the membrane treatment, and a dedicated treatment device is also required for soluble organic substances and manganese. As a result, the entire processing equipment has to undergo a multi-step processing process, resulting in high cost for initial and maintenance, and a space problem. For example, if a manganese removal facility for manganese sand filtration is installed in the preceding stage of the membrane filtration facility (see Fig. 4- (1)), the filter bed will be clogged during high turbidity, and the manganese removal facility will be used for membrane filtration. When it is installed in the latter part of the equipment (see Fig. 4- (2)), the manganese penetrating into the membrane promotes fouling of the membrane, and the advantage of membrane treatment is lost.

【0004】本発明は、上記従来の問題点を解決するた
めになされたもので、槽浸漬式膜ろ過法と塩素酸化また
は塩素酸化及び粉末活性炭吸着処理を組み合せることに
より、高濁で低水温の原水でも安定した運転を行うこと
ができ、また、有機物、マンガン、アンモニアの高除去
率を達成できるようにした水処理方法及びその装置を提
供しようとするものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and it is highly turbid and has a low water temperature by combining a tank-immersed membrane filtration method with chlorine oxidation or chlorine oxidation and powdered activated carbon adsorption treatment. It is intended to provide a water treatment method and an apparatus therefor capable of performing a stable operation even in raw water, and achieving a high removal rate of organic substances, manganese, and ammonia.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するため、数多の研究、実験を重ねた結果、膜
処理法として、精密ろ過の行える、膜浸漬槽内のSS濃度
を3000〜10000mg/lまで濃縮できる、ろ過膜を採用した
浸漬式膜ろ過装置を用い、これに塩素酸化及び粉末活性
炭吸着処理を組み合せることにより、極めて簡単なフロ
ーで、マンガンを含む高汚濁系原水に対しても高除去率
で処理のできる方法を見出し、本発明を形成するに至っ
た。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted a number of studies and experiments and as a result, as a membrane treatment method, SS in a membrane immersion tank capable of performing microfiltration High concentration of manganese-containing pollutants with extremely simple flow by using an immersion type membrane filtration device that employs a filtration membrane capable of concentrating the concentration to 3000 to 10,000 mg / l and combining this with chlorine oxidation and powdered activated carbon adsorption treatment. The inventors have found a method capable of treating system raw water at a high removal rate and have completed the present invention.

【0006】本発明では、膜処理として、曝気手段を備
えた浸漬式膜ろ過装置を使用する。この膜ろ過装置は、
ろ材が槽浸漬式で膜間隔が広く、かつ常時曝気するた
め、膜浸漬槽内のSS濃度を高めるととができるととも
に、アンモニアやマンガン(溶解性マンガン)の生物学的
処理を行うことが可能となる。また、ろ材としてはセラ
ミック膜や有機中空糸膜等が用いられる。
In the present invention, an immersion type membrane filtration device equipped with aeration means is used as the membrane treatment. This membrane filtration device
Since the filter medium is of the tank immersion type, the membrane spacing is wide, and it is constantly aerated, it is possible to increase the SS concentration in the membrane immersion tank and perform biological treatment of ammonia and manganese (soluble manganese). Becomes Further, a ceramic membrane, an organic hollow fiber membrane or the like is used as the filter medium.

【0007】そして、本発明では、上記膜ろ過装置と組
み合せ、その前段に、原水中の溶解性マンガンを酸化し
て二酸化マンガンとする次亜(遊離塩素)混和槽と、それ
に続いて次亜注入による消毒副生成物の生成を抑制する
粉末炭吸着槽を設けた塩素接触池を設置する。
In the present invention, in combination with the above-mentioned membrane filtration device, a hypochlorite (free chlorine) mixing tank for oxidizing soluble manganese in raw water into manganese dioxide is provided in the preceding stage, followed by hypoinjection. Install a chlorine contact pond equipped with a powdered coal adsorption tank that suppresses the generation of disinfection by-products.

【0008】原水は、塩素接触池を経て膜ろ過装置に供
給する。次亜混和池では、原水に塩素が注入され、原水
中の溶融性マンガンが一部酸化して二酸化マンガンとな
る。ついで粉末炭吸着槽では、粉末活性炭が投入、攪拌
され、消毒副生成物の生成を抑えた後、凝集剤を添加し
有機物を凝集させて前後の処理を終え、この原水を次の
膜ろ過装置に供給する。
Raw water is supplied to a membrane filter through a chlorine contact pond. In the Hyakuya mixing pond, chlorine is injected into the raw water, and the meltable manganese in the raw water is partially oxidized to become manganese dioxide. Then, in the powdered coal adsorption tank, powdered activated carbon is charged and stirred to suppress the production of disinfection by-products, and a coagulant is added to coagulate organic substances to complete the pre- and post-treatments. Supply to.

【0009】膜ろ過装置では、曝気により濁質(固形成
分)が流動し、その濃度が高められるとともに、微生物
量及び酸化マンガン量を高く維持することができる。ま
た、常時曝気しているため、アンモニアやマンガン及び
有機物の生物処理性が高められる。
In the membrane filtration device, the aeration causes the suspended solids (solid components) to flow, increasing the concentration thereof, while maintaining a high microbial content and a high manganese oxide content. In addition, since the aeration is constantly performed, the biological treatment properties of ammonia, manganese, and organic substances are improved.

【0010】上記膜ろ過装置では、曝気、流動、生物処
理、マンガンの接触酸化が行えることから、それ自体で
マンガン接触池としての機能性を有しているので、浸漬
槽内で濁質と微生物量を高く維持できる高水温期におい
ては、マンガンの除去を相当程度行えるのであるが、低
水温期においては、微生物の働きが弱くなるので、マン
ガンの除去が不十分となる。
Since the above-mentioned membrane filtration device can perform aeration, flow, biological treatment, and catalytic oxidation of manganese, it has a function as a manganese contact pond by itself, so that turbidity and microorganisms in the immersion tank can be reduced. Manganese can be removed to a considerable extent in the high water temperature period when the amount can be maintained at a high level, but in the low water temperature period, the action of microorganisms is weakened, so that the removal of manganese is insufficient.

【0011】本発明では、浸漬式の膜ろ過処理法の前段
に、塩素酸化法と粉末活性炭注入法を組み込んだシステ
ムとすることにより、膜ろ過装置のマンガン接触池とし
ての機能が増大される。すなわち、前段において次亜
(遊離塩素)を注入することで、膜ろ過装置での濁質成分
及び酸化マンガンと溶解性マンガンとの接触酸化効率が
高められ、微生物の働きの弱くなる低水温期において
も、マンガンの除去が十分に行い得ることになる。
In the present invention, the function of the membrane filtration device as a manganese contact pond is increased by providing a system in which the chlorine oxidation method and the powdered activated carbon injection method are incorporated in the preceding stage of the immersion type membrane filtration treatment method. That is, in the previous stage
By injecting (free chlorine), the efficiency of contact oxidation of suspended manganese components and manganese oxide in the membrane filtration device with soluble manganese is increased, and the removal of manganese is possible even in the low water temperature period when the action of microorganisms becomes weak. You can do it enough.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本発明水処理方法を
実施するための水処理装置の一実施態様を示し、図2は
同装置中の浸漬式膜ろ過装置で使用する膜モジュールを
示したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows one embodiment of a water treatment apparatus for carrying out the water treatment method of the present invention, and FIG. 2 shows a membrane module used in the immersion type membrane filtration apparatus in the apparatus.

【0013】水処理設備は、原水に含まれる固体成分の
分離除去のほか生物処理も同時に行える、浸漬式セラミ
ック膜ろ過装置(以下膜ろ過装置という)Aの前段に、次
亜混和槽1と粉末炭吸着槽7とよりなる塩素接触池Bを
備えている。
The water treatment facility has a sub-mixing tank 1 and a powder in front of a submerged ceramic membrane filtration device (hereinafter referred to as a membrane filtration device) A, which can perform separation and removal of solid components contained in raw water as well as biological treatment at the same time. A chlorine contact tank B composed of a charcoal adsorption tank 7 is provided.

【0014】膜ろ過装置Aは、膜浸漬槽20内の水中に、
複数の膜モジュール21が上下に積み重ねて配置されてい
る。膜モジュール21には、外圧式管型2層構造のセラミ
ック製膜エレメント(以下膜エレメントという)22が用い
られている。この膜エレメント22の多数をヘッダにまと
め、ヘッダには、各膜エレメント22と連通する吸引パイ
プ23が設けられており、各膜モジュール21の吸引パイプ
23は集合管24に、そしてろ過水管25に接続されて、膜内
外に圧力差をかけることにより、膜エレメント22を透過
したろ過処理水を槽20外に取り出すようになっている。
この圧力差は、ろ過水管25に設けた吸引ポンプ26によっ
てなされる。
The membrane filtration device A is constructed by submerging water in the membrane dipping tank 20 into
A plurality of membrane modules 21 are vertically stacked and arranged. The membrane module 21 uses a ceramic membrane element (hereinafter referred to as a membrane element) 22 having an external pressure type tubular two-layer structure. A large number of the membrane elements 22 are collected in a header, and the header is provided with a suction pipe 23 communicating with each membrane element 22. The suction pipe of each membrane module 21 is provided.
Reference numeral 23 is connected to a collecting pipe 24 and to a filtered water pipe 25, and the filtered water having permeated through the membrane element 22 is taken out of the tank 20 by applying a pressure difference between the inside and outside of the membrane.
This pressure difference is made by the suction pump 26 provided in the filtered water pipe 25.

【0015】そして、上記の積み重ねられた膜モジュー
ル21の下方には、曝気兼攪拌用の散気管27が配設され、
槽20外に設置したブロワ28により空気(または酸素)を供
給するようになっている。また、槽20の上部には、後述
する塩素接触池Bを経た原水の流入管12が接続されてい
る。また、槽20の底部には、堆積した汚泥を排出するた
めの、ポンプ31を備えた排泥管30が設けられている。
Below the stacked membrane modules 21, an air diffuser 27 for aeration and stirring is provided.
Air (or oxygen) is supplied by a blower 28 installed outside the tank 20. Further, an inflow pipe 12 for raw water that has passed through a chlorine contact pond B described later is connected to the upper portion of the tank 20. In addition, a sludge pipe 30 provided with a pump 31 for discharging the accumulated sludge is provided at the bottom of the tank 20.

【0016】上記膜ろ過装置Aの後段には、消毒槽35と
浄水槽36が連設されており、膜ろ過装置Aでろ過処理さ
れた処理水はろ過水管25より消毒槽35に流入して殺菌処
理されて次の浄水槽36に留められ、そこから浄水として
取り出されることになる。また、消毒槽35または浄水槽
36とろ過水管25の吸引ポンプ26より集合管寄りの個所と
が、逆洗ポンプ38を有する配管39で接続され、消毒槽35
または浄水槽36内の水で膜モジュール21を逆洗できるよ
うになっている。
A disinfection tank 35 and a water purification tank 36 are connected in a subsequent stage of the membrane filtration apparatus A, and the treated water filtered by the membrane filtration apparatus A flows into the disinfection tank 35 from the filtration water pipe 25. After being sterilized, it will be retained in the next water purification tank 36 and will be taken out as purified water from there. Also, disinfection tank 35 or water purification tank
36 and a portion of the filtered water pipe 25 closer to the collecting pipe than the suction pump 26 are connected by a pipe 39 having a backwash pump 38, and a disinfection tank 35
Alternatively, the membrane module 21 can be backwashed with the water in the water purification tank 36.

【0017】塩素接触池Bは、次亜混和槽1と粉末炭吸
着槽7が連設して設けられている。次亜混和槽1には、
その上流側に下部を開口した第1の阻流壁2と、下流側
に槽底から液面下方まで延びる第2の阻流壁3が設けら
れ、そして、次亜混和槽1の上流側端部には、開閉バル
ブ41を備えた原水aの供給管4と次亜(遊離塩素)イの注
入手段5が設けられている。次の粉末炭吸着槽7には、
粉末活性炭ロの注入手段8及び次亜混和槽1から流入し
た原水と粉末活性炭ロとを攪拌混合するための攪拌機9
が設けられており、次亜混和槽1よりの原水は隔壁6の
上端を越流して粉末炭吸着槽7に流入するようになって
いる。
The chlorine contact tank B is provided with a hypo-admixture tank 1 and a powdered coal adsorption tank 7 connected in series. In the hyposia mixing tank 1,
A first baffle wall 2 having a lower opening on the upstream side and a second baffle wall 3 extending from the tank bottom to a lower surface of the liquid are provided on the downstream side, and an upstream end of the sub-mixing tank 1 The section is provided with a raw water a supply pipe 4 equipped with an opening / closing valve 41 and a hypochlorite (free chlorine) injection means 5. In the next powder coal adsorption tank 7,
An injecting means 8 for the powdered activated carbon and a stirrer 9 for stirring and mixing the raw water flowing in from the sub-mixing tank 1 and the powdered activated carbon.
The raw water from the sub-mixing tank 1 overflows the upper end of the partition wall 6 and flows into the powder coal adsorption tank 7.

【0018】また、粉末炭吸着槽7と膜ろ過装置Aとの
間には、凝集剤ハの添加手段11を備えたスタティックミ
キサ−あるいは攪拌槽等の混合装置10が設けられてお
り、粉末炭吸着槽5を出た原水中の有機物を凝集させて
膜ろ過での目詰まりを軽減するようにしている。そし
て、供給管4の開閉バルブ41より上流側の個所と、粉末
炭吸着槽7と混合装置10を結ぶ管路の中途を接続して、
開閉バルブ42を備えたバイパス管路40が設けられてい
る。
A mixing device 10 such as a static mixer or a stirring tank provided with a coagulant ha adding means 11 is provided between the powdered coal adsorption tank 7 and the membrane filtration device A. The organic substances in the raw water that have flowed out of the adsorption tank 5 are aggregated to reduce clogging during membrane filtration. Then, a portion of the supply pipe 4 upstream of the on-off valve 41 is connected to the middle of a pipe line connecting the powder coal adsorption tank 7 and the mixing device 10,
A bypass line 40 having an opening / closing valve 42 is provided.

【0019】処理を必要とする原水は供給管4から塩素
接触池Bの次亜混和槽1内に流入して、遊離塩素イの注
入により、槽1内を上下に迂回して流れながら、原水中
に溶解しているマンガンを一部酸化して二酸化マンガン
に変化させ、生成した二酸化マンガン及び残留塩素、溶
解性マンガンを含む水が、次の粉末炭吸着槽7に流入す
る。粉末炭吸着槽7では、粉末活性炭ロが供給され、攪
拌機9により混合攪拌される。それにより、原水中の有
機物が速やかに除去され、消毒副生成物の生成を抑える
ことができることになるとともに、粉末活性炭に溶解性
有機物が吸着して除去が容易となる。
Raw water that requires treatment flows from the supply pipe 4 into the hyposubmixing tank 1 of the chlorine contact pond B, and by injecting free chlorine, it flows up and down in the tank 1, The manganese dissolved in the water is partially oxidized to be converted to manganese dioxide, and the water containing the generated manganese dioxide, residual chlorine, and soluble manganese flows into the next powdered coal adsorption tank 7. In the powdered coal adsorption tank 7, powdered activated carbon (II) is supplied and mixed and stirred by a stirrer 9. As a result, the organic matter in the raw water can be promptly removed, the production of disinfection by-products can be suppressed, and the soluble organic matter is adsorbed to the powdered activated carbon to facilitate the removal.

【0020】上記のように、塩素接触池Bでは、塩素添
加後に粉末活性炭を注入するため、有機物と塩素、結合
塩素との接触時間を短くすることができ、トリハロメタ
ンの生成が抑えられる。また、消費されずに残留した塩
素と、未反応の溶解性マンガンが、膜浸漬槽20に濃縮さ
れた酸化マンガンを利用した接触酸化により速やかに酸
化され、膜モジュ−ル21の膜内部への進入を抑えること
ができ、膜ファウリングを抑えることができる。また、
高水温時には、塩素及び粉末活性炭の注入を止めるか、
または、開閉バルブ41を閉じて開閉バルブ42を開とし、
原水aを塩素接触池Bをバイパスして、バイパス管路40
より混合装置10に流入させる。
As described above, in the chlorine contact pond B, since the powdered activated carbon is injected after the chlorine is added, the contact time between the organic matter, chlorine and bound chlorine can be shortened, and the production of trihalomethane can be suppressed. In addition, chlorine remaining without being consumed and unreacted soluble manganese are rapidly oxidized by catalytic oxidation using manganese oxide concentrated in the membrane dipping tank 20, so that the inside of the membrane of the membrane module 21 is Ingress can be suppressed and membrane fouling can be suppressed. Also,
At high water temperature, stop injection of chlorine and powdered activated carbon,
Or, close the open / close valve 41 and open the open / close valve 42,
Bypass the raw water a through the chlorine contact pond B, and
Further flow into the mixing device 10.

【0021】粉末炭吸着槽7を出た原水は、次に、混合
装置10に流入して、さらに凝集剤ハの添加により有機物
の吸着がさらに進み、固液の分離性が向上される。
The raw water discharged from the powdered coal adsorption tank 7 then flows into the mixing device 10 and the organic substances are further adsorbed by the addition of the coagulant C to improve the solid-liquid separation property.

【0022】混合装置10よりの原水bは、次段の膜ろ過
装置Aに流入する。膜ろ過装置Aに流入した原水(被処
理水)bは、散気管27よりの散気により攪拌されなが
ら、積み重ねられた膜モジュール21の下方から上方へと
流れ、膜エレメント22のろ過膜を透過して固液分離さ
れ、その処理水は吸引パイプ23から集合管24へそしてろ
過水管25へと取り出されることになる。
Raw water b from the mixing device 10 flows into the next stage membrane filtration device A. The raw water (water to be treated) b that has flowed into the membrane filtration device A flows from the lower side to the upper side of the stacked membrane modules 21 while being agitated by the air diffuser 27, and permeates the filtration membrane of the membrane element 22. Then, solid-liquid separation is performed, and the treated water is taken out from the suction pipe 23 to the collecting pipe 24 and then to the filtered water pipe 25.

【0023】膜ろ過装置Aは、外圧式管型のセラミック
製膜エレメント22を備えた膜モジュール21を浸漬して設
けるとともに、散気管27によって常時曝気しているの
で、膜浸漬槽20内を高濃度に保つことができる。それに
より、一定以上の水温下では、マンガンやアンモニアの
生物学的処理及び濁質への吸着除去が行えるので、膜ろ
過装置Aは生物処理槽として機能することができる。そ
のため、従来法におけるマンガン接触池が不要となるの
である。
The membrane filtration device A is provided by immersing the membrane module 21 equipped with the external pressure type tube-type ceramic membrane element 22 and constantly aeration by the air diffuser 27. Can be kept at a concentration. As a result, at a water temperature above a certain level, biological treatment of manganese and ammonia and adsorption / removal to the suspended matter can be performed, so that the membrane filtration device A can function as a biological treatment tank. Therefore, the manganese contact pond in the conventional method becomes unnecessary.

【0024】しかし、低水温期では、微生物の生物活性
が低下するため、処理機能が低下する。そこで、膜ろ過
装置Aの前段に、次亜混和槽と粉末炭吸着槽とによる接
触池を設けることにより、機能低下が補われることにな
る。
However, in the low water temperature period, the biological activity of the microorganisms is lowered, so that the treatment function is lowered. Therefore, by providing a contact basin composed of a hypo-mixing tank and a powdered coal adsorption tank in the preceding stage of the membrane filtration device A, the functional deterioration is compensated.

【0025】[0025]

【実験例】本発明の効果確認のため、図1に示す処理装
置及び前塩素なしの膜ろ過装置による処理を比較例とし
て実験を行った。この実験で用いた高汚濁原水(河川水)
と目標水質、通常の河川水の水質を表1に示す。
[Experimental Example] In order to confirm the effect of the present invention, an experiment was conducted by using the treatment apparatus shown in FIG. Highly polluted raw water (river water) used in this experiment
Table 1 shows the target water quality and normal river water quality.

【0026】[0026]

【表1】 [Table 1]

【0027】実験は、中高水温期(12月以前)と低水温期
(12月以降・原水水温0.5〜4.0℃)とにおいて行った。こ
の実験で得られた季別による溶解性マンガンの処理性及
び塩素注入率別にみたマンガンの処理性について表2、
図3及び表3に示す。
The experiment was conducted in the middle and high water temperature period (before December) and the low water temperature period.
(After December, raw water temperature was 0.5-4.0 ℃). Regarding the treatability of soluble manganese according to the seasons obtained in this experiment and the treatability of manganese according to the chlorine injection rate, Table 2,
It is shown in FIG. 3 and Table 3.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】上記の実験によれば、低水温期において
は、前塩素注入により、溶解性マンガンの除去率87%、
処理水の平均濃度0.008mg/lを達成した。これに対し、
前塩素注入をしない膜ろ過装置だけによる処理だけの場
合は、特に、低水温期ではマンガン除去率は22%、処理
水平均濃度は0.055mg/lであり、本発明ではマンガンの
処理性が大巾に優れていることが裏付けられた。
According to the above experiment, in the low water temperature period, the removal rate of soluble manganese was 87% by pre-chlorine injection,
An average concentration of treated water of 0.008 mg / l was achieved. In contrast,
In the case of only treatment with a membrane filtration device without pre-chlorination, the manganese removal rate is 22% and the average concentration of treated water is 0.055 mg / l, especially in the low water temperature period. This proves that the width is excellent.

【0031】また、次亜注入によるトリハロメタン生成
量の変化について、測定を行った結果を表4に示す。こ
の表が示すように、前塩素注入時において処理水のトリ
ハロメタン生成能の合計値0.008〜0.042mg/lと、水質基
準値0.1mg/lを下回ることができた。
Table 4 shows the results of measurement of changes in the amount of trihalomethane produced by hypochlorous injection. As shown in this table, the total value of trihalomethane formation ability of treated water at the time of pre-chlorination was 0.008 to 0.042 mg / l, which was lower than the water quality standard value of 0.1 mg / l.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
高濃度の濁質精密ろ過の行える、膜ろ過装置を採用し、
曝気手段を設けた浸漬式の膜ろ過装置に、塩素酸化と粉
末活性炭吸着を行う塩素接触池を組み合せ、アンモニア
を酸化し原水中の溶解性マンガンを塩素と接触させた
後、これを膜ろ過装置に送って処理するようにしたの
で、膜ろ過装置にマンガン接触池としての機能を持たせ
ることができ、濁質成分及び酸化マンガンと溶解性マン
ガンとの接触効率が高められ、マンガンやアンモニアの
除去が良好に行われることになる。
As described above, according to the present invention,
Employs a membrane filtration device that can perform high-concentration turbidity microfiltration,
Immersion type membrane filter equipped with aeration means is combined with chlorine contact tank for chlorine oxidation and adsorption of powdered activated carbon to oxidize ammonia and bring soluble manganese in raw water into contact with chlorine. Since it is sent to the tank for treatment, the membrane filtration device can be made to function as a manganese contact pond, the contact efficiency between suspended manganese components and manganese oxide and soluble manganese is increased, and manganese and ammonia are removed. Will be done well.

【0034】そして、溶解性マンガンをろ過膜面に到達
する前に酸化マンガンとすることができるので、溶解性
マンガンの膜内への浸入を低減することができるととも
に、膜ファウリングを抑えることができる。また、塩素
注入後に粉末活性炭を注入するので、有機物を低減する
ことができ、消毒副生成物の生成を抑えることができ
る。
Since the soluble manganese can be converted to manganese oxide before it reaches the filtration membrane surface, the infiltration of the soluble manganese into the membrane can be reduced and the membrane fouling can be suppressed. it can. Moreover, since the powdered activated carbon is injected after chlorine is injected, organic substances can be reduced and the production of disinfection by-products can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための処理装置の一例を
示したものである。
FIG. 1 shows an example of a processing apparatus for carrying out the method of the present invention.

【図2】同装置において使用する膜ろ過装置における膜
モジュールを示した側断面図である。
FIG. 2 is a side sectional view showing a membrane module in a membrane filtration device used in the same device.

【図3】水温と溶解性マンガンの除去率との関係を示し
た図である。
FIG. 3 is a diagram showing the relationship between water temperature and the removal rate of soluble manganese.

【図4】(1)、(2)はそれぞれ膜処理を用いた従来の
マンガン含有水の処理設備を示したものである。
[FIG. 4] (1) and (2) respectively show conventional treatment facilities for manganese-containing water using membrane treatment.

【符号の説明】[Explanation of symbols]

A 膜ろ過装置 B 塩素接触池 1 次亜混和槽 5 遊離塩素注入手段 7 粉末炭吸着槽 8 粉末炭注入手段 9 攪拌機 混合装置 20 膜浸漬槽 21 膜モジュール 22 膜エレメント 23 吸引パイプ ろ過水管 27 散気管 30 排泥管 35 消毒槽 浄水槽 A membrane filtration device B chlorine contact pond Primary submixing tank 5 Free chlorine injection means 7 Powdered coal adsorption tank 8 Powdered coal injection means 9 stirrer Mixing equipment 20 membrane immersion tank 21 membrane module 22 Membrane element 23 Suction pipe Filtered water pipe 27 Air diffuser 30 sludge pipe 35 Disinfection tank Water tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 503 C02F 9/00 503A 504 504A 504E B01D 65/08 B01D 65/08 C02F 1/28 C02F 1/28 B 1/44 1/44 B 1/76 1/76 Z 3/06 3/06 (72)発明者 杉本 隆仁 東京都中央区日本橋室町3−1−3 株式 会社クボタ東京本社内 (72)発明者 堤 行彦 東京都中央区日本橋室町3−1−3 株式 会社クボタ東京本社内 Fターム(参考) 4D003 AA01 AB02 BA02 EA15 EA24 EA30 4D006 GA07 HA28 JA31Z JA53Z JA71 KA01 KA12 KA31 KA44 KA71 KB12 KB13 KB25 KB30 MA01 MA02 MC03X PA01 PB04 PB05 PB70 4D024 AA02 AA05 AB17 BA02 BB01 BC04 CA06 DB05 DB15 DB21 DB23 4D050 AA02 AB55 BB04 BD02 BD06 CA06 CA08 CA12 CA16 CA17─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 9/00 503 C02F 9/00 503A 504 504A 504E B01D 65/08 B01D 65/08 C02F 1/28 C02F 1 / 28 B 1/44 1/44 B 1/76 1/76 Z 3/06 3/06 (72) Inventor Takahito Sugimoto 3-1-3 Nihombashi Muromachi, Chuo-ku, Tokyo Kubota Tokyo Head Office (72) Inventor Yukihiko 3-1-3 Nihonbashi Muromachi, Chuo-ku, Tokyo F-term (reference) Kubota Tokyo headquarters 4D003 AA01 AB02 BA02 EA15 EA24 EA30 4D006 GA07 HA28 JA31Z JA53Z JA71 KA01 KA12 KA31 KA44 KA71 KB12 KB13 KB25 KB30 MA01 MA02 MC03X PA01 PB04 PB05 PB70 4D024 AA02 AA05 AB17 BA02 BB01 BC04 CA06 DB05 DB15 DB21 DB23 4D050 AA02 AB55 BB04 BD02 BD06 CA06 CA08 CA12 CA16 CA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 膜浸漬槽内に、外圧式管型の膜エレメン
トを多数組み入れた膜モジュールと、その下方部に散気
手段を配設した膜ろ過装置の前段に、次亜混和槽または
次亜混和槽と粉末炭吸着槽による塩素接触池を設け、原
水に、塩素についで粉末活性炭を注入し、原水中の溶解
性マンガンを酸化して二酸化マンガンとするとともに、
塩素の注入による消毒副生成物の生成を抑制した後、こ
れを膜ろ過装置に送って、生物学的処理及び固体成分の
分離除去を行うことを特徴とする、マンガン含有水の処
理方法。
1. A membrane sub-mixing tank or a sub-mixing tank in front of a membrane module in which a large number of external pressure type tubular membrane elements are incorporated in a membrane dipping tank and a diffusing means is disposed below the membrane module. A chlorine contact basin with a sub-mixing tank and a powdered coal adsorption tank was set up, and chlorine was added to raw water followed by powdered activated carbon to oxidize soluble manganese in the raw water into manganese dioxide.
A method for treating manganese-containing water, which comprises suppressing the generation of disinfection by-products by injecting chlorine, and then sending this to a membrane filtration device for biological treatment and separation and removal of solid components.
【請求項2】 原水が高温の場合は、原水を直接に膜浸
漬槽に入れるか、または、次亜混和槽の塩素と粉末活性
炭の注入を止めることを特徴とする、請求項1記載のマ
ンガン含有水の処理方法。
2. The manganese according to claim 1, wherein when the raw water is at a high temperature, the raw water is directly put into the membrane dipping tank, or the injection of chlorine and powdered activated carbon in the hyposubmixing tank is stopped. Method for treating contained water.
【請求項3】 膜浸漬槽内に、外圧式管型の膜エレメン
トを多数組み入れた膜モジュールと、その下方部に散気
手段を配設した膜ろ過装置の前段に、原水への遊離塩素
の注入手段を設けた次亜混和槽または、この次亜混和槽
と粉末活性炭の注入手段及び攪拌機を設けた粉末炭吸着
槽よりなる塩素接触池を設置するとともに、これを膜ろ
過装置に供給する手段を設けたことを特徴とする、マン
ガン含有水の処理装置。
3. A membrane module in which a large number of external pressure type tubular membrane elements are incorporated in a membrane dipping tank and a membrane filtration device provided with an air diffusing means below the membrane module are provided in front of free chlorine of raw water. A hypochlorite tank equipped with a pouring means, or a chlorine contact pond consisting of the hypocarburizing tank and a powdered charcoal adsorption tank equipped with a pouring means for powdered activated carbon and a stirrer, and means for supplying this to a membrane filtration device An apparatus for treating manganese-containing water, comprising:
【請求項4】 原水が高温の場合は、塩素接触池をバイ
パスさせて原水を直接膜浸漬槽に切り換える配管とバル
ブ、または次亜混和槽の塩素と粉末活性炭の注入を止め
る手段を設けることを特徴とする、請求項3記載のマン
ガン含有水の処理装置。
4. When the raw water has a high temperature, pipes and valves for bypassing the chlorine contact pond and directly switching the raw water to the membrane dipping tank, or means for stopping the injection of chlorine and powdered activated carbon in the hyposubmixing tank should be provided. The manganese-containing water treatment device according to claim 3, which is characterized in that.
JP2002031814A 2002-02-08 2002-02-08 Method and apparatus for treating manganese-containing water Pending JP2003230895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031814A JP2003230895A (en) 2002-02-08 2002-02-08 Method and apparatus for treating manganese-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031814A JP2003230895A (en) 2002-02-08 2002-02-08 Method and apparatus for treating manganese-containing water

Publications (1)

Publication Number Publication Date
JP2003230895A true JP2003230895A (en) 2003-08-19

Family

ID=27775109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031814A Pending JP2003230895A (en) 2002-02-08 2002-02-08 Method and apparatus for treating manganese-containing water

Country Status (1)

Country Link
JP (1) JP2003230895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1516856A1 (en) * 2003-09-16 2005-03-23 Baumann, Markus Membrane separation device for water treatment plants
CN103395942A (en) * 2013-08-09 2013-11-20 湖北理工学院 Method and device for realizing lasting and stable accumulation of nitrite nitrogen under low-temperature condition
KR101611189B1 (en) * 2015-06-30 2016-04-11 회명마루지오㈜ Continuous leachate treatment apparatus and using method of the same
WO2018198714A1 (en) 2017-04-24 2018-11-01 メタウォーター株式会社 Method for removing soluble manganese

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1516856A1 (en) * 2003-09-16 2005-03-23 Baumann, Markus Membrane separation device for water treatment plants
CN103395942A (en) * 2013-08-09 2013-11-20 湖北理工学院 Method and device for realizing lasting and stable accumulation of nitrite nitrogen under low-temperature condition
KR101611189B1 (en) * 2015-06-30 2016-04-11 회명마루지오㈜ Continuous leachate treatment apparatus and using method of the same
WO2018198714A1 (en) 2017-04-24 2018-11-01 メタウォーター株式会社 Method for removing soluble manganese
CN110520385A (en) * 2017-04-24 2019-11-29 美得华水务株式会社 The minimizing technology of soluble manganese
JPWO2018198714A1 (en) * 2017-04-24 2020-03-05 メタウォーター株式会社 How to remove soluble manganese
US11459248B2 (en) 2017-04-24 2022-10-04 Metawater Co., Ltd. Method of removing soluble manganese

Similar Documents

Publication Publication Date Title
JP4690265B2 (en) Wastewater treatment method
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
WO2017219892A1 (en) Raw ecological water treatment process and treatment system adopting the same
JP2019068772A (en) Water treatment device and water treatment method
JP2009090276A (en) System for filtering raw water for drinking water
JP2007245003A (en) Seawater desalination method
JP5001923B2 (en) Water treatment apparatus and water treatment method
JPH07185546A (en) Purifying treatment of sewage
JP3712110B2 (en) Purification method of sewage secondary treated water
JP4318518B2 (en) Water purification treatment method and water purification treatment system
JP2007268342A (en) Filtration system
JP4215381B2 (en) Water treatment method and apparatus
JP4013565B2 (en) Manganese removal method and apparatus
JP2003230895A (en) Method and apparatus for treating manganese-containing water
ZA200201560B (en) Method and device for purifying and treating waste water in order to obtain drinking water.
JPH10192851A (en) Water purifying treatment apparatus
JP2003290784A (en) Iron and manganese remover and method for the same
CN215798920U (en) Drinking water purification device capable of preventing membrane pollution
JPH07232197A (en) Advanced treatment of water and its device
JPH09253456A (en) Treatment of organic drain
JP4373871B2 (en) Activated sludge treatment equipment
JP3356928B2 (en) Operating method of water treatment equipment using immersion type membrane filtration device
JP2003033764A (en) Method and apparatus for washing filtration body by using ozone
JP3438508B2 (en) Advanced water treatment method and apparatus
JP3986370B2 (en) Cleaning method for membrane filter module

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080806