JP2003230830A - Insulating structure of plasma reactor - Google Patents

Insulating structure of plasma reactor

Info

Publication number
JP2003230830A
JP2003230830A JP2002030486A JP2002030486A JP2003230830A JP 2003230830 A JP2003230830 A JP 2003230830A JP 2002030486 A JP2002030486 A JP 2002030486A JP 2002030486 A JP2002030486 A JP 2002030486A JP 2003230830 A JP2003230830 A JP 2003230830A
Authority
JP
Japan
Prior art keywords
treated
insulating
plasma reactor
plasma
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002030486A
Other languages
Japanese (ja)
Other versions
JP4670215B2 (en
Inventor
Toshio Tanaka
利夫 田中
Kanji Mogi
完治 茂木
Kenkichi Kagawa
謙吉 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002030486A priority Critical patent/JP4670215B2/en
Publication of JP2003230830A publication Critical patent/JP2003230830A/en
Application granted granted Critical
Publication of JP4670215B2 publication Critical patent/JP4670215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfactorily ensure an insulation distance for ensuring satisfactory insulating properties while minimizing an increase in the size of a plasma reactor. <P>SOLUTION: Terminals (30, 31) of both electrodes (26, 27) disposed in a space surrounded by a plurality of insulating walls (25) are provided respectively on upper and lower opposed faces of the insulating wall (25). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、被処理ガス中の
被処理成分(臭気成分及び有害成分)を低温プラズマに
より分解するプラズマ反応器の絶縁構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating structure of a plasma reactor for decomposing components to be treated (odorous components and harmful components) in a gas to be treated by low temperature plasma.

【0002】[0002]

【従来の技術】一般に、プラズマ反応器では、被処理ガ
ス中の被処理成分(臭気成分及び有害成分)を低温プラ
ズマにより分解するために放電電極と対向電極と間に高
電圧が印加されることから、上記両電極は碍子等の絶縁
壁で囲まれた空間に配置されて外部と電気的に絶縁され
ている。
2. Description of the Related Art Generally, in a plasma reactor, a high voltage is applied between a discharge electrode and a counter electrode for decomposing components to be treated (odorous components and harmful components) in a gas to be treated by low temperature plasma. Therefore, both electrodes are arranged in a space surrounded by an insulating wall such as an insulator and electrically insulated from the outside.

【0003】[0003]

【発明が解決しようとする課題】しかし、プラズマ反応
器を長期間使用すると、空気中の様々な汚れがプラズマ
反応器の内外に付着して絶縁性が低下する場合がある。
例えば、十分な絶縁性を有する碍子でも、導電性の汚れ
が付着すると電極間の空間よりも汚れ面の方が電気が流
れやすくなり、所望の放電を維持できなくなる。また、
プラズマ反応器の外部に対する絶縁性が低下すれば、放
電部の外周りにある部材や空間へのリークが発生して機
器取扱者に対する安全性が低下する。
However, when the plasma reactor is used for a long period of time, various contaminants in the air may adhere to the inside and outside of the plasma reactor to deteriorate the insulation.
For example, even with an insulator having a sufficient insulating property, when conductive dirt adheres, electricity flows more easily on the dirty surface than on the space between the electrodes, making it impossible to maintain a desired discharge. Also,
If the insulation of the plasma reactor from the outside is reduced, leakage to members and spaces around the outer periphery of the discharge part occurs and the safety for the equipment operator is reduced.

【0004】また、ストリーマ放電を利用したプラズマ
反応器の場合、上記の問題は特に重要になる。すなわ
ち、ストリーマ放電を安定して発生させるためには、電
極を精度良く構成する必要があり、また、ストリーマ放
電は空間に広くプラズマ領域を形成し、その領域内で被
処理ガス中の被処理成分(臭気成分及び有害成分)を分
解するものであることから、電極間距離をできるだけ広
くしてプラズマ領域を広げるのが望ましい。そのため、
十分な性能を発揮させるには、ある程度の大きさを持っ
た電極が必要となり、結果として放電電圧が高くなる。
Further, in the case of a plasma reactor using streamer discharge, the above problem becomes particularly important. That is, in order to stably generate the streamer discharge, it is necessary to accurately configure the electrodes, and the streamer discharge forms a wide plasma region in the space, and the component to be treated in the gas to be treated is formed in the region. Since it decomposes (odorous components and harmful components), it is desirable to widen the plasma region by widening the distance between the electrodes as much as possible. for that reason,
An electrode having a certain size is required to exhibit sufficient performance, resulting in a high discharge voltage.

【0005】ところで、通常の絶縁設計では、汚れが付
着しても支障がないように直流電圧の場合で使用電圧(k
V)×4(mm)程度の沿面距離を確保する必要がある。しか
し、ストリーマ放電は数+kVという高い電圧になる場合
もあり、十分な沿面距離を確保した電極構造にしようと
すると、プラズマ反応器の大型化を招く。
By the way, in the normal insulation design, the operating voltage (k
It is necessary to secure a creepage distance of approximately V) x 4 (mm). However, the streamer discharge may have a high voltage of several + kV, and if an electrode structure with a sufficient creepage distance is secured, the plasma reactor becomes large.

【0006】この発明はかかる点に鑑みてなされたもの
であり、その目的とするところは、プラズマ反応器の大
型化を最小限に留めつつ、絶縁距離を十分に確保して絶
縁性に万全を期そうとすることである。
The present invention has been made in view of the above points, and an object thereof is to ensure a sufficient insulation distance while ensuring the insulation property while keeping the size of the plasma reactor large. It is about to come.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明は、放電電極及び対向電極の端子の位置関
係や、両電極を囲む絶縁壁の構造、さらには、電極の位
置決め部材の位置関係等を適切に設定したことを特徴と
する。
In order to achieve the above object, the present invention is directed to a positional relationship between terminals of a discharge electrode and a counter electrode, a structure of an insulating wall surrounding both electrodes, and an electrode positioning member. It is characterized by properly setting the positional relationship and the like.

【0008】具体的には、この発明は、複数の絶縁壁(2
5)で囲まれた空間で互いに対向する放電電極(26)と対向
電極(27)との間で放電電圧を印加して被処理ガス中の被
処理成分を低温プラズマにより分解するプラズマ反応器
(16)の絶縁構造を前提とし、次のような解決手段を講じ
た。
Specifically, the present invention provides a plurality of insulating walls (2
Plasma reactor for decomposing the components to be treated in the gas to be treated by low temperature plasma by applying a discharge voltage between the discharge electrode (26) and the counter electrode (27) facing each other in the space surrounded by 5)
Based on the insulation structure of (16), the following solutions were taken.

【0009】すなわち、請求項1に記載の発明は、上記
前提において、上記両電極(26,27)の端子(30,31)は、上
記絶縁壁(25)の異なる面に設けられていることを特徴と
する。
That is, according to the first aspect of the invention, on the above-mentioned premise, the terminals (30, 31) of the electrodes (26, 27) are provided on different surfaces of the insulating wall (25). Is characterized by.

【0010】上記の構成により、請求項1に記載の発明
では、両電極(26,27)の端子(30,31)が絶縁壁(25)の異な
る面に設けられることにより、両端子(30,31)間の距離
が拡がり、絶縁距離が確保される。
With the above structure, in the invention according to claim 1, since the terminals (30, 31) of both electrodes (26, 27) are provided on different surfaces of the insulating wall (25), both terminals (30 , 31) is widened and the insulation distance is secured.

【0011】請求項2に記載の発明は、請求項1に記載
の発明において、上記両電極(26,27)の端子(30,31)は、
上記絶縁壁(25)の対向面に設けられていることを特徴と
する。
According to a second aspect of the invention, in the first aspect of the invention, the terminals (30, 31) of the both electrodes (26, 27) are
It is characterized in that it is provided on the opposing surface of the insulating wall (25).

【0012】上記の構成により、請求項2に記載の発明
では、両端子(30,31)が絶縁壁(25)の対向面に設けられ
ることにより、両端子(30,31)間の距離が最大となり、
絶縁距離が十分に確保される。
With the above structure, in the invention according to claim 2, since both terminals (30, 31) are provided on the opposing surfaces of the insulating wall (25), the distance between both terminals (30, 31) is increased. Maximum,
A sufficient insulation distance is secured.

【0013】請求項3に記載の発明は、上記前提におい
て、上記絶縁壁(25)内面の両電極(26,27)間には、凹部
(38)が設けられていることを特徴とする。
According to a third aspect of the invention, on the above-mentioned premise, a recess is formed between the electrodes (26, 27) on the inner surface of the insulating wall (25).
(38) is provided.

【0014】上記の構成により、請求項3に記載の発明
では、両電極(26,27)間の沿面距離が凹部(38)の凹形状
分だけ長くなり、絶縁距離が確保される。
With the above structure, in the third aspect of the invention, the creepage distance between the electrodes (26, 27) is increased by the concave shape of the concave portion (38), and the insulation distance is secured.

【0015】請求項4に記載の発明は、上記前提におい
て、上記絶縁壁(25)外面の高圧端子(30)を有する放電電
極(26)寄りには、凹部(39)が設けられていることを特徴
とする。
According to a fourth aspect of the present invention, on the above-mentioned premise, a recess (39) is provided on the outer surface of the insulating wall (25) near the discharge electrode (26) having the high voltage terminal (30). Is characterized by.

【0016】上記の構成により、請求項4に記載の発明
では、プラズマ反応器の外周りにある部材や空間に対す
る沿面距離が凹部(39)の凹形状分だけ長くなり、機器取
扱者に対する安全性が保証される。
With the above construction, in the invention according to claim 4, the creepage distance to the members and spaces around the outer periphery of the plasma reactor is increased by the concave shape of the concave portion (39), which is safe for the equipment operator. Is guaranteed.

【0017】請求項5に記載の発明は、上記前提におい
て、上記両電極(26,27)は、位置決め部材(33,34)で位置
決め固定され、放電電極(26)の位置決め部材(33)と対向
電極(27)の位置決め部材(33,34)とは、同一面視で異な
る位置に配置されていることを特徴とする。
According to a fifth aspect of the present invention, on the above-mentioned premise, the electrodes (26, 27) are positioned and fixed by the positioning members (33, 34) to serve as the positioning member (33) for the discharge electrode (26). The positioning members (33, 34) of the counter electrode (27) are characterized by being arranged at different positions in the same plan view.

【0018】上記の構成により、請求項5に記載の発明
では、放電電極(26)の位置決め部材(33)と対向電極(27)
の位置決め部材(33,34)とが位置ずれしていることによ
り、両電極(26,27)間の沿面距離が長くなり、絶縁距離
が確保される。
With the above structure, in the invention according to claim 5, the positioning member (33) for the discharge electrode (26) and the counter electrode (27).
Since the positioning members (33, 34) are displaced from each other, the creeping distance between the electrodes (26, 27) becomes long, and the insulation distance is secured.

【0019】請求項6に記載の発明は、上記前提におい
て、隣り合う上記絶縁壁(25)の繋ぎ目は、絶縁板(24)で
覆われていることを特徴とする。
The invention according to claim 6 is, on the above-mentioned premise, characterized in that the joint between the adjacent insulating walls (25) is covered with an insulating plate (24).

【0020】上記の構成により、請求項6に記載の発明
では、絶縁壁(25)の繋ぎ目からのリークが絶縁板(24)で
防止される。
With the above structure, in the invention according to claim 6, the insulating plate (24) prevents leakage from the joint of the insulating wall (25).

【0021】請求項7に記載の発明は、上記前提におい
て、上記両電極(26,27)は、複数組直列に配置され、接
地端子(31)を有する対向電極(27)が被処理ガスの出入口
側である両端に配置されていることを特徴とする。
According to a seventh aspect of the present invention, on the above-mentioned premise, a plurality of sets of the both electrodes (26, 27) are arranged in series, and the counter electrode (27) having the ground terminal (31) is of the gas to be treated. It is characterized in that it is arranged at both ends which are the entrance and exit sides.

【0022】上記の構成により、請求項7に記載の発明
では、被処理ガスの出入口側である両端に配置された対
向電極(27)が接地されることで、別途に絶縁板を被処理
ガスの出入口側である両端に設けずに済み、その分だけ
プラズマ反応器が小型化される。
With the above construction, in the invention according to claim 7, the counter electrodes (27) arranged at both ends of the inlet / outlet side of the gas to be treated are grounded, so that an insulating plate is separately provided to the gas to be treated. It is not necessary to provide both ends of the plasma reactor, and the plasma reactor can be downsized accordingly.

【0023】[0023]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0024】図5及び図6はガス処理装置を示す。同図
中、(1)は箱形の移動式密閉ケーシングであり、該ケー
シング(1)下端の四隅にはキャスタ(2)が取り付けられて
いる。上記ケーシング(1)内には、吸着ロータ(3)が下側
蓋部材(4a)と上側蓋部材(4b)とで上下方向から挟まれて
鉛直軸心回りに回転可能に配置されている。上記吸着ロ
ータ(3)は、被処理ガスの流通方向である上下方向に沿
って貫通する多数の小孔(図示せず)を有するハニカム
形状の円板状基材で構成され、基材の表面に吸着剤を担
持して被処理ガスが小孔を通過する際に被処理成分(臭
気成分及び有害成分)を吸着剤に吸着することで、被処
理成分を被処理ガスから除去するようになっている。吸
着剤には、例えば活性炭やゼオライトなどが用いられる
が、多孔質セラミックス、活性炭繊維、モルデナイト、
フェリエライト、シリカライトなどを用いてもよい。
5 and 6 show a gas treatment device. In the figure, (1) is a box-shaped movable hermetic casing, and casters (2) are attached to the four corners of the lower end of the casing (1). In the casing (1), an adsorption rotor (3) is sandwiched by a lower lid member (4a) and an upper lid member (4b) from above and below so as to be rotatable about a vertical axis. The adsorption rotor (3) is composed of a honeycomb-shaped disc-shaped substrate having a large number of small holes (not shown) penetrating along the up-down direction, which is the flow direction of the gas to be treated, and the surface of the substrate By adsorbing an adsorbent on the adsorbent and adsorbing the components to be treated (odorous components and harmful components) when the gas to be treated passes through the small holes, the components to be treated are removed from the gas to be treated. ing. As the adsorbent, for example, activated carbon or zeolite is used, but porous ceramics, activated carbon fiber, mordenite,
Ferrierite, silicalite or the like may be used.

【0025】上記下側蓋部材(4a)及び上側蓋部材(4b)の
内部は、V字形の仕切壁(図示せず)で仕切られて扇形
の小領域に対応する吸着ロータ部分を脱離部にし、他の
大領域に対応する吸着ロータ部分を吸着部にしている。
The insides of the lower lid member (4a) and the upper lid member (4b) are partitioned by a V-shaped partition wall (not shown) to remove the adsorption rotor portion corresponding to the fan-shaped small area. The suction rotor portion corresponding to another large area is used as the suction portion.

【0026】上記吸着ロータ(3)の側方にはロータ回転
モータ(5)が据え付けられ、該ロータ回転モータ(5)の下
方に延びる出力軸(5a)には、プーリ(6)が固着され、こ
のプーリ(6)と上記吸着ロータ(3)にはエンドレスベルト
(7)が巻き掛けられ、上記ロータ回転モータ(5)の回転ト
ルクをプーリ(6)及びエンドレスベルト(7)を介して吸着
ロータ(3)に伝え、該吸着ロータ(3)を回転させるように
なっている。そして、この吸着ロータ(3)を回転させた
状態で、上記吸着部で被処理成分の吸着を行うととも
に、上記脱離部で被処理成分の脱離を行う。すなわち、
吸着ロータ(3)を再生することにより、被処理ガスを連
続的に処理するようになっている。
A rotor rotation motor (5) is installed on the side of the adsorption rotor (3), and a pulley (6) is fixed to an output shaft (5a) extending below the rotor rotation motor (5). , This pulley (6) and the adsorption rotor (3) have endless belts.
(7) is wound around, the rotational torque of the rotor rotation motor (5) is transmitted to the suction rotor (3) via the pulley (6) and the endless belt (7), and the suction rotor (3) is rotated. It has become. Then, while the adsorption rotor (3) is rotated, the component to be treated is adsorbed by the adsorption unit and the component is desorbed by the desorption unit. That is,
By regenerating the adsorption rotor (3), the gas to be treated can be continuously treated.

【0027】上記下側蓋部材(4a)上面の一端(図5,6
で左端)側には主流ファン(8)が設置され、該主流ファ
ン(8)はケーシング(1)外に開口する吸込ダクト(9)に接
続され、被処理ガスを吸込ダクト(9)から下側蓋部材(4
a)内の吸着ロータ(3)の吸着部下方に導入するようにな
っている。一方、上記下側蓋部材(4a)上面の他端(図
5,6で右端)側には再生ファン(10)が設置され、該再
生ファン(10)はケーシング(1)内のガスを下側蓋部材(4
a)内の吸着ロータ(3)の脱離部下方に導入するようにな
っている。また、上記吸着ロータ(3)の下方には、該吸
着ロータ(3)から被処理成分を脱離させる脱離ヒータ(1
1)が設けられている。
One end of the upper surface of the lower lid member (4a) (see FIGS. 5 and 6).
The mainstream fan (8) is installed on the (left end) side, and the mainstream fan (8) is connected to the suction duct (9) that opens to the outside of the casing (1), and the gas to be treated is discharged from the suction duct (9) to the bottom. Side cover member (4
It is designed to be introduced below the adsorption part of the adsorption rotor (3) in a). On the other hand, a regeneration fan (10) is installed on the other end (right end in FIGS. 5 and 6) of the upper surface of the lower lid member (4a), and the regeneration fan (10) lowers the gas in the casing (1). Side cover member (4
It is designed to be introduced below the desorption part of the adsorption rotor (3) in a). Further, below the adsorption rotor (3), there is a desorption heater (1) for desorbing a component to be treated from the adsorption rotor (3).
1) is provided.

【0028】上記吸着ロータ(3)の上方には、1つの密
閉容器(12)が設置され、該密閉容器(12)内には熱交換器
(13)が配置されている。該熱交換器(13)の上端はダクト
(14)で上側蓋部材(4b)の脱離部側に接続されているとと
もに、下端はダクト(15)で下側蓋部材(4a)の脱離部側に
接続されている。そして、図5に破線矢印で示すよう
に、ケーシング(1)内の空気を再生ファン(10)により下
側蓋部材(4a)内の脱離部側に導入し、該脱離部の残留熱
を取り除いて吸着ロータ(3)を冷却し、これにより暖め
られた空気をダクト(14)を経て熱交換器(13)に導入し、
ここで、後述するプラズマ反応器(16)からのガスと熱交
換して温度上昇した空気をダクト(15)を経て下側蓋部材
(4a)の脱離部側に導入するようになっている。
A closed container (12) is installed above the adsorption rotor (3), and a heat exchanger is installed in the closed container (12).
(13) is located. The upper end of the heat exchanger (13) is a duct
(14) is connected to the detaching portion side of the upper lid member (4b), and the lower end is connected to the detaching portion side of the lower lid member (4a) by a duct (15). Then, as shown by the broken line arrow in FIG. 5, the air in the casing (1) is introduced by the regeneration fan (10) to the desorption part side in the lower lid member (4a), and the residual heat of the desorption part is removed. To cool the adsorption rotor (3), and the air warmed by this is introduced into the heat exchanger (13) through the duct (14),
Here, the air whose temperature has risen due to heat exchange with the gas from the plasma reactor (16) described below passes through the duct (15) and the lower lid member.
It is designed to be introduced to the detachment side of (4a).

【0029】上記熱交換器(13)の背面側にはプラズマ反
応器(16)が並設されている。該プラズマ反応器(16)の一
側面(図5右側面)はダクト(17)で上側蓋部材(4b)の脱
離部側に接続され、上記吸着ロータ(3)から脱離した被
処理成分を低温プラズマにより分解するようになってい
る。また、上記プラズマ反応器(16)の一側面(図5左側
面)はダクト(18)で上記密閉容器(12)の一側面(図5左
側面)に接続され、熱交換器(13)の他側面(図5右側
面)はダクト(19)で吐出ダクト(20)に接続され、図5に
白抜き矢印で示すように、上記熱交換器(13)でガスを熱
交換されて冷却されたプラズマ反応器(16)を経たガスを
ダクト(19)を経て吐出ダクト(20)からケーシング(1)外
に吐出するようになっている。
A plasma reactor (16) is arranged in parallel on the back side of the heat exchanger (13). One side surface (the right side surface in FIG. 5) of the plasma reactor (16) is connected to the desorption side of the upper lid member (4b) by a duct (17), and the component to be treated desorbed from the adsorption rotor (3). Is decomposed by low temperature plasma. Further, one side surface (left side surface in FIG. 5) of the plasma reactor (16) is connected to one side surface (left side surface in FIG. 5) of the closed vessel (12) by a duct (18), and The other side (the right side in FIG. 5) is connected to the discharge duct (20) by the duct (19), and the heat is exchanged with the gas in the heat exchanger (13) to cool it as shown by the white arrow in FIG. The gas that has passed through the plasma reactor (16) is discharged from the discharge duct (20) to the outside of the casing (1) via the duct (19).

【0030】上記プラズマ反応器(16)の下流側である密
閉容器(12)内には、触媒分解器(21)が設置され、上記プ
ラズマ反応器(16)を通過した被処理成分を触媒分解器(2
1)の触媒作用でさらに分解するようになっている。ま
た、上記触媒分解器(21)の上流側には触媒活性ヒータ(2
2)が設置され、この触媒活性ヒータ(22)により上記触媒
分解器(21)の触媒を加熱して活性化させるようになって
いる。
A catalytic decomposer (21) is installed in the closed container (12) on the downstream side of the plasma reactor (16) to catalytically decompose the components to be treated which have passed through the plasma reactor (16). Bowl (2
It is further decomposed by the catalytic action of 1). Further, a catalyst activation heater (2
2) is installed, and the catalyst activating heater (22) heats and activates the catalyst of the catalyst decomposer (21).

【0031】上記プラズマ反応器(16)は図1及び図2の
ような構成になっている。つまり、このプラズマ反応器
(16)では、碍子等の絶縁材からなる4枚の絶縁壁(25)で
囲まれた空間内に6つの放電電極(26)が2つずつ組をな
して互いに対向するように接近して配置されている。上
記絶縁壁(25)で囲まれた空間は、図3に示すように、4
枚の絶縁壁(25)の端部同士を互いに突き合わせ、各々の
端部に形成されたネジ孔(25a)にネジ(23)を螺合させる
ことで断面矩形の筒形状に構成されている。これら放電
電極(26)は、メッシュ材やパンチングメタル等からなる
基板(26a)に多数の針電極(26b)がベース部材(26c)によ
って固定され、一方の放電電極(26)の針電極(26b)を他
方の放電電極(26)の基板(26a)から突出させている。ま
た、上記プラズマ反応器(16)内には、上記放電電極組を
挟むように4つの対向電極(27)が配置され、中程の2つ
の対向電極(27)の両面には後で詳述する処理部材(28)が
それぞれボルト(29)で固定されており、両端の2つの対
向電極(27)の内側の片面にも処理部材(28)がボルト(29)
で固定されている。この対向電極(27)も上記放電電極(2
6)と同様にメッシュ材やパンチングメタル等からなる基
板で構成されている。これにより、上記両電極(26,27)
は、絶縁壁(25)で囲まれた空間に複数組直列に配置され
ている。
The plasma reactor 16 has a structure as shown in FIGS. That is, this plasma reactor
In (16), the six discharge electrodes (26) are arranged in pairs in a space surrounded by four insulating walls (25) made of an insulating material such as an insulator and are approached so as to face each other. It is arranged. As shown in FIG. 3, the space surrounded by the insulating wall (25) is 4
The ends of the insulating walls (25) are abutted against each other, and a screw (23) is screwed into a screw hole (25a) formed at each end to form a tubular shape having a rectangular cross section. In these discharge electrodes (26), a large number of needle electrodes (26b) are fixed by a base member (26c) to a substrate (26a) made of a mesh material, punching metal or the like, and the needle electrodes (26b) of one of the discharge electrodes (26). ) Is projected from the substrate (26a) of the other discharge electrode (26). Further, in the plasma reactor (16), four counter electrodes (27) are arranged so as to sandwich the discharge electrode set, and two counter electrodes (27) in the middle are described in detail on both sides later. The processing members (28) are fixed with bolts (29), and the processing members (28) are also attached to the inner surfaces of the two opposing electrodes (27) at both ends by the bolts (29).
It is fixed at. This counter electrode (27) is also the discharge electrode (2
Like 6), it is composed of a substrate made of mesh material or punching metal. As a result, both electrodes (26,27)
Are arranged in series in a space surrounded by the insulating wall (25).

【0032】上記絶縁壁(25)の内面には、テフロン
(R)等の絶縁材からなる複数の位置決め部材(33,34)
が上記両電極(26,27)の位置に対応してネジ(27)で取り
付けられている。上記組をなす2つの放電電極(26)は、
上記位置決め部材(33)で絶縁壁(25)に位置決め固定さ
れ、上記対向電極(27)も同様に上記位置決め部材(34)で
絶縁壁(25)に位置決め固定されている。そして、放電電
極(26)の位置決め部材(33)と対向電極(27)の位置決め部
材(33,34)とは、同一面視で三角形の頂点にあたる異な
る位置に配置されている。
A plurality of positioning members (33, 34) made of an insulating material such as Teflon (R) are provided on the inner surface of the insulating wall (25).
Are attached by screws (27) corresponding to the positions of the electrodes (26, 27). The two discharge electrodes (26) in the above set are
The positioning member (33) positions and fixes the insulating wall (25), and the counter electrode (27) also positions and fixes the insulating wall (25) by the positioning member (34). The positioning member (33) of the discharge electrode (26) and the positioning member (33, 34) of the counter electrode (27) are arranged at different positions corresponding to the vertices of a triangle in the same plan view.

【0033】このように、放電電極(26)の位置決め部材
(33)と対向電極(27)の位置決め部材(33,34)とを位置ず
れさせているので、両電極(26,27)間の沿面距離を長く
することができて絶縁距離を確保することができる。
As described above, the positioning member for the discharge electrode (26)
Since the (33) and the positioning member (33, 34) of the counter electrode (27) are displaced from each other, the creepage distance between both electrodes (26, 27) can be increased to secure the insulation distance. You can

【0034】上記放電電極(26)上端には高圧端子(30)が
2つ設けられ、これら2つの高圧端子(30)は上記絶縁壁
(25)上面を貫いて外部に突出している。一方、上記対向
電極(27)下端には接地端子(31)が1つ設けられ、この接
地端子(31)も上記絶縁壁(25)下面を貫いて外部に突出し
ている。つまり、上記両電極(26,27)の端子(30,31)は、
上記絶縁壁(25)の上下に対向する異なる対向面に設けら
れている。
Two high voltage terminals (30) are provided on the upper end of the discharge electrode (26), and these two high voltage terminals (30) are connected to the insulating wall.
(25) It protrudes to the outside through the upper surface. On the other hand, one ground terminal (31) is provided at the lower end of the counter electrode (27), and this ground terminal (31) also penetrates the lower surface of the insulating wall (25) and projects to the outside. That is, the terminals (30, 31) of both electrodes (26, 27) are
The insulating walls (25) are provided on different facing surfaces that face each other vertically.

【0035】このように、両電極(26,27)の端子(30,31)
を絶縁壁(25)の上下対向面に設けているので、両端子(3
0,31)間の距離を最大にとることができて絶縁距離を十
分に確保することができる。
In this way, the terminals (30, 31) of both electrodes (26, 27) are
Are installed on the upper and lower facing surfaces of the insulating wall (25), so both terminals (3
The distance between 0 and 31) can be maximized and the insulation distance can be sufficiently secured.

【0036】また、上述の如く絶縁壁(25)で囲まれる空
間に複数組直列に配置された両電極(26,27)のうち、接
地端子(31)を有する対向電極(27)を被処理ガスの出入口
側である図で左右両端に配置して接地端子(31)でアース
しているので、別途に絶縁板を被処理ガスの出入口側で
ある左右両端に設ける必要をなくしてその分だけプラズ
マ反応器(16)を小型化することができる。
Of the two electrodes (26, 27) arranged in series in the space surrounded by the insulating wall (25) as described above, the counter electrode (27) having the ground terminal (31) is treated. Since it is located at the left and right ends of the gas in the figure and is grounded by the grounding terminals (31), it is not necessary to separately install insulating plates at both the left and right ends of the gas to be processed, and only that much is needed. The size of the plasma reactor (16) can be reduced.

【0037】上記絶縁壁(25)内面の両電極(26,27)間に
は、凹部(38)が設けられているとともに、被処理ガスの
出入口側である左右両端に対応する絶縁壁(25)外面、つ
まり左右両端に位置する2つの高圧端子(30)を有する放
電電極(26)寄りにも、凹部(39)が設けられている。
A recess (38) is provided between the electrodes (26, 27) on the inner surface of the insulating wall (25), and the insulating walls (25) corresponding to the left and right ends on the inlet / outlet side of the gas to be treated are provided. ) A recess (39) is also provided on the outer surface, that is, near the discharge electrode (26) having the two high-voltage terminals (30) located at the left and right ends.

【0038】したがって、上記凹部(38)の凹形状によ
り、両電極(26,27)間の沿面距離を長くすることができ
て絶縁距離を確保することができる。また、上記凹部(3
9)の凹形状により、プラズマ反応器(16)の外周りにある
部材や空間に対する沿面距離を長くすることができて機
器取扱者に対する安全性を確保することができる。
Therefore, due to the concave shape of the concave portion (38), the creeping distance between the electrodes (26, 27) can be increased and the insulation distance can be secured. In addition, the recess (3
Due to the concave shape of 9), the creeping distance to the members and spaces around the outer periphery of the plasma reactor (16) can be increased, and the safety for the equipment operator can be secured.

【0039】図4に示すように、隣り合う上記絶縁壁(2
5)のコーナー部は、テフロン(R)等の絶縁材からなる
直角に曲げられた薄板の絶縁板(24)がネジ(32)を絶縁壁
(25)のネジ孔(25b)に螺合させることで取り付けられ、
隣り合う上記絶縁壁(25)の繋ぎ目が上記絶縁板(24)で覆
われている。
As shown in FIG. 4, adjacent insulating walls (2
In the corner of 5), a thin insulating plate (24) made of an insulating material such as Teflon (R) and bent at a right angle insulates the screw (32) from the insulating wall.
It is attached by screwing it into the screw hole (25b) of (25),
The joint between the adjacent insulating walls (25) is covered with the insulating plate (24).

【0040】このように、隣り合う絶縁壁(25)の繋ぎ目
を絶縁板(24)で覆っているので、絶縁壁(25)の繋ぎ目か
らのリークを防止することができる。
Since the joint between the adjacent insulating walls (25) is covered with the insulating plate (24) in this manner, leakage from the joint between the insulating walls (25) can be prevented.

【0041】なお、図示しないが、絶縁壁(25)の繋ぎ目
を絶縁板(24)で覆う代わりに、絶縁壁(25)を2重構造に
することで繋ぎ目からのリークを防止するようにしても
よい。
Although not shown, instead of covering the joint of the insulating wall (25) with the insulating plate (24), the insulating wall (25) has a double structure to prevent leakage from the joint. You may

【0042】上記対向電極(27)に固定された処理部材(2
8)は、空気の流れ方向に沿って貫通する多数の小孔(図
示せず)を有するハニカム形状の基材で構成され、その
表面に触媒物質を担持している。具体的には、この処理
部材(28)は、触媒物質として、Pt,Pd,Ni,I
r,Rh,Co,Os,Ru,Fe,Re,Tc,M
n,Au,Ag,Cu,W,Mo,Crのうちの少なく
とも1種を含んでいる。これら触媒物質は、被処理ガス
を処理する際の化学反応を促進するものである。また、
上記処理部材(28)は、基材の表面に触媒物質とともに吸
着剤も担持している。この吸着剤は被処理ガス中に含ま
れる被処理成分(臭気物質や有害物質)を吸着するため
のものであり、例えば活性炭やゼオライトなどが用いら
れるが、多孔質セラミックス、活性炭繊維、モルデナイ
ト、フェリエライト、シリカライトなどを用いてもよ
く、これらのうちの少なくとも1種を用いるとよい。ま
た、上記触媒分解器(21)も上記処理部材(28)と同様に構
成されているものである。
A processing member (2) fixed to the counter electrode (27)
8) is composed of a honeycomb-shaped base material having a large number of small holes (not shown) penetrating along the air flow direction, and the surface of which supports a catalyst substance. Specifically, this processing member (28) uses Pt, Pd, Ni, I as a catalytic substance.
r, Rh, Co, Os, Ru, Fe, Re, Tc, M
It contains at least one of n, Au, Ag, Cu, W, Mo and Cr. These catalytic substances promote a chemical reaction when treating the gas to be treated. Also,
The treatment member (28) carries an adsorbent as well as a catalyst substance on the surface of the base material. This adsorbent is for adsorbing components to be treated (odorous substances and harmful substances) contained in the gas to be treated. For example, activated carbon or zeolite is used, but porous ceramics, activated carbon fibers, mordenite, ferriere are used. Light, silicalite, or the like may be used, and at least one of them may be used. The catalyst decomposer (21) is also constructed in the same manner as the processing member (28).

【0043】上述の如き構成において、両電極(26,27)
に放電電圧を印加すると、放電電極(26)と対向電極(27)
との間でストリーマ放電が発生する。このストリーマ放
電により高活性のイオンやラジカルなどの活性種が発生
して低温プラズマが生成される。具体的には、放電によ
って高速電子、イオン、オゾン、ヒドロキシラジカルな
どのラジカルや、その他励起分子(励起酸素分子、励起
窒素分子、励起水分子など)などの活性種が生成され、
これらの活性種によって被処理成分が分解される。
In the above structure, both electrodes (26, 27)
When a discharge voltage is applied to the discharge electrode (26) and the counter electrode (27)
Streamer discharge is generated between and. By this streamer discharge, active species such as highly active ions and radicals are generated and low temperature plasma is generated. Specifically, the discharge generates radicals such as fast electrons, ions, ozone, and hydroxyl radicals, and other activated species such as excited molecules (excited oxygen molecules, excited nitrogen molecules, excited water molecules, etc.),
The components to be treated are decomposed by these active species.

【0044】ストリーマ放電は、針電極(26b)の先端か
ら対向電極(27)まで微小アークが連続することにより、
発光を伴ったプラズマ柱として形成され、微小アーク
は、針電極(26b)と対向電極(27)との間において等電位
面の間隔が狭いところで連なって進展する。本実施形態
では、詳細は示していないが、針電極(26b)の先端を3
0°以上90°以下、好ましくは60°の削り角で削っ
たものとし、最先端は半径が約0.5mmの球面形状とし
て僅かな丸みを有するものとしている。そして、針電極
(26b)の先端角度を上記の角度に特定しているため、微
小アークが広範囲に広がりながら進展しやすくなり、ス
トリーマ放電が広範囲で生じるようにしている。つま
り、この場合のストリーマ放電は、針電極(26b)から対
向電極(27)に向かってフレア状に広がった領域で発生す
る。そして、直流高電圧を用いたストリーマ放電におい
て、各針電極(26b)についての放電領域が広くなるよう
にして、針電極(26b)の本数を比較的少なくしてもプラ
ズマ発生領域を広げられるようにしている。
In the streamer discharge, a minute arc continues from the tip of the needle electrode (26b) to the counter electrode (27),
It is formed as a plasma column accompanied by light emission, and the minute arcs continuously propagate between the needle electrode (26b) and the counter electrode (27) where the equipotential surface space is narrow. In this embodiment, although not shown in detail, the tip of the needle electrode (26b) is set to 3
The cutting angle is 0 ° or more and 90 ° or less, preferably 60 °, and the tip is a spherical shape having a radius of about 0.5 mm and slightly rounded. And needle electrode
Since the tip angle of (26b) is specified as the above-mentioned angle, the micro arc easily spreads while spreading over a wide range, and streamer discharge is generated over a wide range. That is, the streamer discharge in this case occurs in a region flared from the needle electrode (26b) toward the counter electrode (27). Then, in the streamer discharge using a high DC voltage, the discharge area for each needle electrode (26b) is widened so that the plasma generation area can be expanded even if the number of needle electrodes (26b) is relatively small. I have to.

【0045】次に、このガス処理装置の運転動作につい
て説明する。
Next, the operation of the gas treatment device will be described.

【0046】装置の運転時には、ロータ回転モータ
(5)、主流ファン(8)及び再生ファン(10)が駆動してい
て、吸着ロータ(3)が回転している。まず、図5に黒塗
り矢印で示すように、被処理ガスは吸込ダクト(9)から
下側蓋部材(4a)の吸着部側に導入され、吸着ロータ(3)
を通過する過程で被処理成分が吸着剤に吸着されて、清
浄なガスになって吐出ダクト(20)からケーシング(1)外
へ吐出される。
During operation of the device, the rotor rotation motor
(5), the mainstream fan (8) and the regeneration fan (10) are driven, and the adsorption rotor (3) is rotating. First, as shown by the black arrow in FIG. 5, the gas to be treated is introduced from the suction duct (9) to the adsorption portion side of the lower lid member (4a), and the adsorption rotor (3)
In the process of passing through, the component to be treated is adsorbed by the adsorbent, becomes a clean gas, and is discharged from the discharge duct (20) to the outside of the casing (1).

【0047】吸着ロータ(3)は鉛直軸心回りに回転して
いるため、被処理ガス中の被処理成分を吸着した部分
は、やがて脱離部側へ移動する。一方、再生ファン(10)
の駆動によりケーシング(1)内の空気が下側蓋部材(4a)
の脱離部側に導入され、吸着ロータ(3)の脱離部を通過
する過程で脱離時の残留熱を奪い、吸着ロータ(3)は熱
を奪われることで冷却されて再生される。吸着ロータ
(3)の脱離部を通過した空気は、図5に破線矢印で示す
ように、吸着ロータ(3)の熱で加熱されることで発生し
た上昇気流によりダクト(14)を経て熱交換器(13)に導入
され、ここで、プラズマ反応器(16)で発生した熱と合流
し、熱交換されてさらに温度上昇する。この空気はダク
ト(15)を経て再び下側蓋部材(4a)の脱離部側に導入され
て脱離ヒータ(11)で加熱され、吸着ロータ(3)から被処
理ガス中の被処理成分脱離して濃縮し、この濃縮された
ガスは、図5に白抜き矢印で示すように、ダクト(17)を
経てプラズマ反応器(16)に導入される。ここで、ガス中
の被処理成分がストリーマ放電により生成した低温プラ
ズマの作用により分解される。さらに、上記ガスはダク
ト(18)を経て密閉容器(12)内に導入される。密閉容器(1
2)内に導入されたガスは触媒分解器(21)を通過して熱交
換器(13)に入る。触媒分解器(21)の触媒は触媒活性ヒー
タ(22)で加熱されて活性化されているので、スムーズに
かつ完全に分解される。上記熱交換器(13)に入ったガス
は熱を奪われて冷却され、ダクト(19)から吐出ダクト(2
0)を経てケーシング(1)外へ吐出される。
Since the adsorption rotor (3) rotates around the vertical axis, the portion of the gas to be treated which has adsorbed the component to be treated will eventually move to the desorption side. Meanwhile, playing fans (10)
The air inside the casing (1) is driven by the lower lid member (4a).
Is introduced to the desorption part side of the adsorption rotor (3) and removes residual heat at the time of desorption in the process of passing through the desorption part of the adsorption rotor (3), and the adsorption rotor (3) is cooled and regenerated by being deprived of heat. . Adsorption rotor
The air passing through the desorption part of (3) passes through the duct (14) by the ascending air current generated by being heated by the heat of the adsorption rotor (3), as shown by the broken line arrow in FIG. It is introduced into (13), where it merges with the heat generated in the plasma reactor (16) and undergoes heat exchange to further raise the temperature. This air is introduced again to the desorption side of the lower lid member (4a) through the duct (15) and heated by the desorption heater (11), and the components to be treated in the gas to be treated from the adsorption rotor (3) are treated. It is desorbed and concentrated, and this concentrated gas is introduced into the plasma reactor (16) through the duct (17) as shown by the white arrow in FIG. Here, the component to be treated in the gas is decomposed by the action of the low temperature plasma generated by the streamer discharge. Further, the gas is introduced into the closed container (12) through the duct (18). Closed container (1
The gas introduced into 2) passes through the catalytic decomposer (21) and enters the heat exchanger (13). Since the catalyst in the catalyst decomposer (21) is heated and activated by the catalyst activation heater (22), it is smoothly and completely decomposed. The gas entering the heat exchanger (13) is deprived of heat and cooled, and is discharged from the duct (19) to the discharge duct (2
It is discharged to the outside of the casing (1) via 0).

【0048】このように、プラズマ反応器(16)の下流側
に触媒分解器(21)を設けているので、プラズマ反応器(1
6)で分解が不十分な被処理成分を触媒分解器(21)の触媒
作用で完全に分解することができる。
As described above, since the catalyst decomposer (21) is provided on the downstream side of the plasma reactor (16), the plasma reactor (1
The component to be treated which is not sufficiently decomposed in 6) can be completely decomposed by the catalytic action of the catalytic decomposer (21).

【0049】また、触媒分解器(21)の上流側に触媒活性
ヒータ(22)を設けているので、触媒分解器(21)の触媒を
活性化させて触媒作用を十分に発揮させることができ
る。
Further, since the catalyst activation heater (22) is provided on the upstream side of the catalyst decomposing unit (21), the catalyst of the catalytic decomposing unit (21) can be activated and the catalytic action can be sufficiently exhibited. .

【0050】さらに、触媒分解器(21)の下流側に熱交換
器(13)を設けているので、触媒分解器(21)で発生した熱
を吸着ロータ(3)の脱離用の熱として無駄なく活用する
ことができる。
Further, since the heat exchanger (13) is provided on the downstream side of the catalyst decomposer (21), the heat generated in the catalyst decomposer (21) is used as the heat for desorption of the adsorption rotor (3). It can be used without waste.

【0051】さらにまた、吸着ロータ(3)を鉛直軸心回
りに回転させながら吸着、脱離及び再生を連続して行
い、しかも、吸着ロータ(3)の下方に設けた脱離ヒータ
(11)により上昇気流を発生されてガスを流通させている
ので、効率良くガス処理を行うことができる。
Furthermore, adsorption, desorption and regeneration are continuously performed while rotating the adsorption rotor (3) around the vertical axis, and the desorption heater provided below the adsorption rotor (3).
Since the rising airflow is generated by (11) and the gas is circulated, the gas treatment can be efficiently performed.

【0052】加えて、プラズマ反応器(16)を吸着ロータ
(3)の上方に設けているので、被処理成分の吸着・脱離
と分解とを連続して行って被処理ガスの処理スピードを
高めることができる。
In addition, the plasma reactor (16) was attached to the adsorption rotor.
Since it is provided above (3), it is possible to increase the processing speed of the gas to be treated by continuously adsorbing / desorbing and decomposing the component to be treated.

【0053】また、触媒分解器(21)、触媒活性ヒータ(2
2)及び熱交換器(13)を1つの密閉容器(12)内に配置して
いることから、これらの熱影響を外部に及ぼさないよう
にすることができる。
Further, the catalyst decomposer (21) and the catalyst activation heater (2
Since 2) and the heat exchanger (13) are arranged in one closed container (12), it is possible to prevent these heat influences from reaching the outside.

【0054】[0054]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、両電極(26,27)の端子(30,31)を絶縁壁(25)
の異なる面に設けたので、絶縁距離を確保することがで
きる。
As described above, according to the invention of claim 1, the terminals (30, 31) of both electrodes (26, 27) are connected to the insulating wall (25).
Since they are provided on different surfaces, the insulation distance can be secured.

【0055】請求項2に係る発明によれば、両電極(26,
27)の端子(30,31)を絶縁壁(25)の対向面に設けたので、
絶縁距離を十分に確保することができる。
According to the invention of claim 2, both electrodes (26,
Since the terminals (30, 31) of (27) are provided on the facing surface of the insulating wall (25),
A sufficient insulation distance can be secured.

【0056】請求項3に係る発明によれば、絶縁壁(25)
内面の両電極(26,27)間に凹部(38)を設けたので、凹部
(38)の凹形状分だけ沿面距離、ひいては絶縁距離を長く
確保することができる。
According to the invention of claim 3, the insulating wall (25)
Since the recess (38) is provided between the inner electrodes (26, 27), the recess
It is possible to secure a long creepage distance and thus an insulation distance by the concave shape of (38).

【0057】請求項4に係る発明によれば、絶縁壁(25)
外面の高圧端子(30)を有する放電電極(26)寄りに凹部(3
9)を設けたので、プラズマ反応器の外周りにある部材や
空間に対する沿面距離が長くなって機器取扱者の安全を
確保することができる。
According to the invention of claim 4, the insulating wall (25)
A recess (3) is formed near the discharge electrode (26) having the high voltage terminal (30) on the outer surface.
Since 9) is provided, the creepage distance to the members and spaces around the outer periphery of the plasma reactor becomes long, and the safety of the equipment operator can be secured.

【0058】請求項5に係る発明によれば、放電電極(2
6)の位置決め部材(33)と対向電極(27)の位置決め部材(3
3,34)とを同一面視で異なる位置に配置したので、両電
極(26,27)間の沿面距離が長くなった分だけ絶縁距離を
確保することができる。
According to the invention of claim 5, the discharge electrode (2
6) Positioning member (33) and counter electrode (27) positioning member (3
3, 34) are arranged at different positions in the same plane view, so that the insulation distance can be secured as much as the creepage distance between both electrodes (26, 27) becomes longer.

【0059】請求項6に係る発明によれば、隣り合う絶
縁壁(25)の繋ぎ目を絶縁板(24)で覆ったので、絶縁壁(2
5)の繋ぎ目からのリークをで防止することができる。
According to the invention of claim 6, since the joint between the adjacent insulating walls (25) is covered with the insulating plate (24), the insulating wall (2
It is possible to prevent leakage from the joint of 5).

【0060】請求項7に係る発明によれば、接地端子(3
1)を有する対向電極(27)を被処理ガスの出入口側である
両端に配置したので、別途に絶縁板を被処理ガスの出入
口側である両端に設ける必要がない分だけプラズマ反応
器を小型化することができる。
According to the invention of claim 7, the ground terminal (3
Since the counter electrodes (27) having 1) are arranged at both ends of the processed gas inlet / outlet side, it is not necessary to separately provide an insulating plate at both ends of the processed gas inlet / outlet side, so that the plasma reactor can be downsized. Can be converted.

【図面の簡単な説明】[Brief description of drawings]

【図1】プラズマ反応器の内部構成を示す斜視図であ
る。
FIG. 1 is a perspective view showing an internal configuration of a plasma reactor.

【図2】プラズマ反応器の内部構成を示す側面図であ
る。
FIG. 2 is a side view showing an internal configuration of a plasma reactor.

【図3】絶縁壁の分解斜視図である。FIG. 3 is an exploded perspective view of an insulating wall.

【図4】絶縁壁の繋ぎ目部分を拡大して示す断面図であ
る。
FIG. 4 is an enlarged sectional view showing a joint portion of an insulating wall.

【図5】ガス処理装置の正面図である。FIG. 5 is a front view of the gas treatment device.

【図6】ガス処理装置の左側面図である。FIG. 6 is a left side view of the gas treatment device.

【符号の説明】[Explanation of symbols]

(25) 絶縁壁 (26) 放電電極 (27) 対向電極 (16) プラズマ反応器 (30) 高圧端子 (31) 接地端子 (38,39) 凹部 (33,34) 位置決め部材 (24) 絶縁板 (25) Insulation wall (26) Discharge electrode (27) Counter electrode (16) Plasma reactor (30) High voltage terminal (31) Ground terminal (38,39) recess (33,34) Positioning member (24) Insulation plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 香川 謙吉 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 Fターム(参考) 4G075 AA03 AA37 BA05 CA15 CA47 DA02 EB01 EC21 FA05 FC15   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenkichi Kagawa             1304 Kanaoka-cho, Sakai City, Osaka Prefecture Daikin Industries             Sakai Plant Kanaoka Factory F-term (reference) 4G075 AA03 AA37 BA05 CA15 CA47                       DA02 EB01 EC21 FA05 FC15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の絶縁壁(25)で囲まれた空間で互い
に対向する放電電極(26)と対向電極(27)との間で放電電
圧を印加して被処理ガス中の被処理成分を低温プラズマ
により分解するプラズマ反応器(16)の絶縁構造であっ
て、 上記両電極(26,27)の端子(30,31)は、上記絶縁壁(25)の
異なる面に設けられていることを特徴とするプラズマ反
応器の絶縁構造。
1. A component to be treated in a gas to be treated by applying a discharge voltage between a discharge electrode (26) and a counter electrode (27) facing each other in a space surrounded by a plurality of insulating walls (25). In the insulating structure of the plasma reactor (16) for decomposing the plasma with low temperature plasma, the terminals (30, 31) of the both electrodes (26, 27) are provided on different surfaces of the insulating wall (25). An insulating structure of a plasma reactor characterized by the above.
【請求項2】 請求項1に記載のプラズマ反応器の絶縁
構造において、 上記両電極(26,27)の端子(30,31)は、上記絶縁壁(25)の
対向面に設けられていることを特徴とするプラズマ反応
器の絶縁構造。
2. The insulating structure for a plasma reactor according to claim 1, wherein the terminals (30, 31) of the both electrodes (26, 27) are provided on opposite surfaces of the insulating wall (25). An insulating structure of a plasma reactor characterized by the above.
【請求項3】 複数の絶縁壁(25)で囲まれた空間で互い
に対向する放電電極(26)と対向電極(27)との間で放電電
圧を印加して被処理ガス中の被処理成分を低温プラズマ
により分解するプラズマ反応器(16)の絶縁構造であっ
て、 上記絶縁壁(25)内面の両電極(26,27)間には、凹部(38)
が設けられていることを特徴とするプラズマ反応器の絶
縁構造。
3. A component to be treated in a gas to be treated by applying a discharge voltage between a discharge electrode (26) and a counter electrode (27) facing each other in a space surrounded by a plurality of insulating walls (25). In the insulating structure of the plasma reactor (16) for decomposing the by low temperature plasma, between the electrodes (26, 27) on the inner surface of the insulating wall (25), a recess (38)
An insulating structure for a plasma reactor, wherein:
【請求項4】 複数の絶縁壁(25)で囲まれた空間で互い
に対向する放電電極(26)と対向電極(27)との間で放電電
圧を印加して被処理ガス中の被処理成分を低温プラズマ
により分解するプラズマ反応器(16)の絶縁構造であっ
て、 上記絶縁壁(25)外面の高圧端子(30)を有する放電電極(2
6)寄りには、凹部(39)が設けられていることを特徴とす
るプラズマ反応器の絶縁構造。
4. A component to be treated in a gas to be treated by applying a discharge voltage between a discharge electrode (26) and a counter electrode (27) facing each other in a space surrounded by a plurality of insulating walls (25). Which is an insulating structure of a plasma reactor (16) for decomposing plasma by low-temperature plasma, the discharge electrode (2) having a high voltage terminal (30) on the outer surface of the insulating wall (25).
6) An insulating structure for a plasma reactor, characterized in that a recess (39) is provided on the side thereof.
【請求項5】 複数の絶縁壁(25)で囲まれた空間で互い
に対向する放電電極(26)と対向電極(27)との間で放電電
圧を印加して被処理ガス中の被処理成分を低温プラズマ
により分解するプラズマ反応器(16)の絶縁構造であっ
て、 上記両電極(26,27)は、位置決め部材(33,34)で位置決め
固定され、放電電極(26)の位置決め部材(33)と対向電極
(27)の位置決め部材(33,34)とは、同一面視で異なる位
置に配置されていることを特徴とするプラズマ反応器の
絶縁構造。
5. A component to be treated in a gas to be treated by applying a discharge voltage between a discharge electrode (26) and a counter electrode (27) facing each other in a space surrounded by a plurality of insulating walls (25). In the insulating structure of the plasma reactor (16) for decomposing by the low temperature plasma, the electrodes (26, 27) are positioned and fixed by the positioning members (33, 34), and the positioning member of the discharge electrode (26) ( 33) and counter electrode
The insulating structure of the plasma reactor, wherein the positioning members (33, 34) of (27) are arranged at different positions in the same plan view.
【請求項6】 複数の絶縁壁(25)で囲まれた空間で互い
に対向する放電電極(26)と対向電極(27)との間で放電電
圧を印加して被処理ガス中の被処理成分を低温プラズマ
により分解するプラズマ反応器(16)の絶縁構造であっ
て、 隣り合う上記絶縁壁(25)の繋ぎ目は、絶縁板(24)で覆わ
れていることを特徴とするプラズマ反応器の絶縁構造。
6. A component to be treated in a gas to be treated by applying a discharge voltage between a discharge electrode (26) and a counter electrode (27) facing each other in a space surrounded by a plurality of insulating walls (25). An insulating structure of a plasma reactor (16) for decomposing a plasma by low-temperature plasma, wherein the joint between adjacent insulating walls (25) is covered with an insulating plate (24). Insulation structure.
【請求項7】 複数の絶縁壁(25)で囲まれた空間で互い
に対向する放電電極(26)と対向電極(27)との間で放電電
圧を印加して被処理ガス中の被処理成分を低温プラズマ
により分解するプラズマ反応器(16)の絶縁構造であっ
て、 上記両電極(26,27)は、複数組直列に配置され、接地端
子(31)を有する対向電極(27)が被処理ガスの出入口側で
ある両端に配置されていることを特徴とするプラズマ反
応器の絶縁構造。
7. A component to be treated in a gas to be treated by applying a discharge voltage between a discharge electrode (26) and a counter electrode (27) facing each other in a space surrounded by a plurality of insulating walls (25). In the insulating structure of the plasma reactor (16) for decomposing the plasma with low temperature plasma, a plurality of pairs of the electrodes (26, 27) are arranged in series, and the counter electrode (27) having the ground terminal (31) is covered. An insulating structure of a plasma reactor, which is arranged at both ends of a processing gas inlet / outlet side.
JP2002030486A 2002-02-07 2002-02-07 Plasma reactor Expired - Fee Related JP4670215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030486A JP4670215B2 (en) 2002-02-07 2002-02-07 Plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030486A JP4670215B2 (en) 2002-02-07 2002-02-07 Plasma reactor

Publications (2)

Publication Number Publication Date
JP2003230830A true JP2003230830A (en) 2003-08-19
JP4670215B2 JP4670215B2 (en) 2011-04-13

Family

ID=27774223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030486A Expired - Fee Related JP4670215B2 (en) 2002-02-07 2002-02-07 Plasma reactor

Country Status (1)

Country Link
JP (1) JP4670215B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135894A (en) * 2003-10-07 2005-05-26 Daikin Ind Ltd Discharge device and air cleaning device
JP2007273328A (en) * 2006-03-31 2007-10-18 Toto Ltd Discharge generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502343A (en) * 1989-09-15 1993-04-22 ドイチエ トムソン―ブラント ゲゼルシヤフト ミツト ベシユレンクテル ハフツング television transmission system
JPH07263119A (en) * 1994-03-18 1995-10-13 Aqueous Res:Kk Manufacture of discharge electrode
JPH08155249A (en) * 1994-12-09 1996-06-18 Hitachi Zosen Corp Exhaust gas purificating apparatus by plasma process
JPH114880A (en) * 1997-06-18 1999-01-12 Takuma Co Ltd Deodorizing discharge device
JP2001193441A (en) * 2000-01-11 2001-07-17 Denso Corp Exhaust emission control device for internal combustion engine
JP2001205039A (en) * 2000-01-27 2001-07-31 Mitsubishi Heavy Ind Ltd Electric discharge type exhaust gas treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502343A (en) * 1989-09-15 1993-04-22 ドイチエ トムソン―ブラント ゲゼルシヤフト ミツト ベシユレンクテル ハフツング television transmission system
JPH07263119A (en) * 1994-03-18 1995-10-13 Aqueous Res:Kk Manufacture of discharge electrode
JPH08155249A (en) * 1994-12-09 1996-06-18 Hitachi Zosen Corp Exhaust gas purificating apparatus by plasma process
JPH114880A (en) * 1997-06-18 1999-01-12 Takuma Co Ltd Deodorizing discharge device
JP2001193441A (en) * 2000-01-11 2001-07-17 Denso Corp Exhaust emission control device for internal combustion engine
JP2001205039A (en) * 2000-01-27 2001-07-31 Mitsubishi Heavy Ind Ltd Electric discharge type exhaust gas treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135894A (en) * 2003-10-07 2005-05-26 Daikin Ind Ltd Discharge device and air cleaning device
JP2007273328A (en) * 2006-03-31 2007-10-18 Toto Ltd Discharge generator

Also Published As

Publication number Publication date
JP4670215B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
KR100625425B1 (en) Discharge device and air purifier
EP1658900B1 (en) Gas treating apparatus
JP4466422B2 (en) Volatile organic compound processing equipment
WO2010131429A1 (en) Electrical discharge unit for liquid treatment, humidity conditioning apparatus, and water heater
KR100624732B1 (en) Surface discharge type air cleaning device
KR100657476B1 (en) Surface discharge type air cleaning device
JP4543603B2 (en) Plasma gas purifier and streamer discharge circuit
WO2007004426A1 (en) Apparatus for volatile organic compound treatment and method of volatile organic compound treatment
JP2008289801A (en) Gas purification device
KR20050019692A (en) Cleanness unit for air sterilization setting in the air conditioning line
JP2003038932A (en) Plasma reactor and air cleaner
CA2343723C (en) Air purification device
JP4200667B2 (en) Plasma reactor and air purification device
JP2008245739A (en) Gas purifying apparatus
JP2007144278A (en) Deodorizer, and air conditioner equipped with the same
JP2004103257A (en) Ion generating element, ion generating device equipped with same, and electrical apparatus
JP4670215B2 (en) Plasma reactor
JP3580294B2 (en) Creeping discharge electrode, gas processing apparatus and gas processing method using the same
JP2002346334A (en) Gas cleaning apparatus by plasma
JP5720658B2 (en) Volatile organic compound processing equipment
JP2004105517A (en) Ion generating element, method for producing the same, ion generator, and electric appliance with the generator
JP6994420B2 (en) Discharge electrode and dust collector
JP2003010625A (en) Gas treating device
JP2004113704A (en) Deodorizing element
WO2004023615A1 (en) Ion generating device, method for manufacturing ion generating device, ion generator having ion generating device, and electric apparatus having ion generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R151 Written notification of patent or utility model registration

Ref document number: 4670215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees