JP2003229638A - Nitride compound semiconductor light emitting element - Google Patents

Nitride compound semiconductor light emitting element

Info

Publication number
JP2003229638A
JP2003229638A JP2002027981A JP2002027981A JP2003229638A JP 2003229638 A JP2003229638 A JP 2003229638A JP 2002027981 A JP2002027981 A JP 2002027981A JP 2002027981 A JP2002027981 A JP 2002027981A JP 2003229638 A JP2003229638 A JP 2003229638A
Authority
JP
Japan
Prior art keywords
substrate
density defect
nitride
compound semiconductor
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002027981A
Other languages
Japanese (ja)
Other versions
JP2003229638A5 (en
Inventor
Kyoji Yamaguchi
恭司 山口
Kensaku Motoki
健作 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sony Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sumitomo Electric Industries Ltd filed Critical Sony Corp
Priority to JP2002027981A priority Critical patent/JP2003229638A/en
Publication of JP2003229638A publication Critical patent/JP2003229638A/en
Publication of JP2003229638A5 publication Critical patent/JP2003229638A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride compound semiconductor light emitting element of a constitution in which occurrence of a leakage current is suppressed by utilizing the quality of a semiconductor substrate periodically having a high density fault region in a low density fault region. <P>SOLUTION: This nitride compound semiconductor light emitting element 10 comprises a laminated structure in which an n-type AlGaN clad layer 14, an n-type GaN first optical guide layer 16, an InGaN active layer 18, a p-type InGaN second optical guide layer 20, a p-type AlGaN clad layer 22, and a p-type GaN contact layer 24 are sequentially laminated on an n-type GaN substrate 12. An upper layer and a p-type contact layer of the p-type clad layer are formed as a ridge stripe 26 extended in a ridge stripe-like state in one direction, and both sides of the stripe 26 are covered with an insulating film 28. The stripe is formed between high density fault regions 30. A p-type side electrode 32 is extended along the ridge stripe between the high density fault regions. An n-type side electrode 34 is formed as an electrode layer obtained by cutting out a part so that the high density fault region 12a is not brought into contact with the electrode layer provided on substantially overall surface on the rear surface of the GaN substrate. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物系化合物半
導体発光素子に関し、更に詳細には、リーク電流の発生
を抑制した構成の窒化物系化合物半導体発光素子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitride-based compound semiconductor light-emitting device, and more particularly, to a nitride-based compound semiconductor light-emitting device configured to suppress the generation of leak current.

【0002】[0002]

【従来の技術】GaN、AlGaN、GaInN、Al
GaInN、AlBGaInNなどのナイトライド化合
物半導体(以下、窒化物系化合物半導体と言う)は、A
lGaInAs系やAlGaInP系などのIII −V族
化合物半導体に比べて、一般に、バンドギャップエネル
ギーEgが大きく、かつ直接遷移型半導体であるという
特徴を有している。この特徴により、これらの窒化物系
化合物半導体は、紫外線から赤色に至る広い波長範囲に
おいて発光する半導体レーザ素子や、発光ダイオード
(LED;Light Emitting Diode)などの半導体発光素
子を作製する材料として注目されている。そして、これ
らの半導体発光素子は、高密度光ディスクの記録/再生
光ピックアップ用の光源、フルカラー・ディスプレイの
発光素子、その他、環境・医療などの分野の発光デバイ
スとして、広く応用されつつある。
2. Description of the Related Art GaN, AlGaN, GaInN, Al
A nitride compound semiconductor such as GaInN or AlBGaInN (hereinafter referred to as a nitride compound semiconductor) is A
Compared with III-V group compound semiconductors such as 1GaInAs series and AlGaInP series, the bandgap energy Eg is generally large and the semiconductor is a direct transition type semiconductor. Due to this feature, these nitride-based compound semiconductors are attracting attention as materials for producing semiconductor laser devices that emit light in a wide wavelength range from ultraviolet rays to red and semiconductor light emitting devices such as light emitting diodes (LEDs). ing. These semiconductor light emitting elements are being widely applied as light sources for recording / reproducing optical pickups for high-density optical discs, light emitting elements for full-color displays, and other light emitting devices in fields such as environment and medicine.

【0003】また、これらの窒化物系化合物半導体に
は、例えば高電界域でGaNの飽和速度が大きいこと、
或いはMIS(Metal-Insulator-Semiconductor )構造
の作製に際し、半導体層として窒化物系化合物半導体
を、絶縁層として窒化アルミニウム(AlN)を用い、
半導体層及び絶縁層を連続して結晶成長させることが出
来るというような特徴がある。この特徴により、窒化物
系化合物半導体素子は、飽和ドリフト速度や静電破壊電
圧が大きく、高速動作性、高速スイッチング性、大電流
動作性などに優れた電子素子として注目されている。
Further, these nitride-based compound semiconductors have a high GaN saturation rate in a high electric field region, for example.
Alternatively, in manufacturing a MIS (Metal-Insulator-Semiconductor) structure, a nitride compound semiconductor is used as a semiconductor layer and aluminum nitride (AlN) is used as an insulating layer,
There is a feature that the semiconductor layer and the insulating layer can be continuously crystal-grown. Due to this feature, the nitride-based compound semiconductor device is attracting attention as an electronic device that has a large saturation drift velocity and electrostatic breakdown voltage, and is excellent in high-speed operability, high-speed switching property, large-current operability, and the like.

【0004】更に、窒化物系化合物半導体は、(1)熱
伝導性がGaAs系などより高いので、GaAs系に比
べて高温下の高出力素子の材料として有利である、
(2)化学的に安定した材料であり、また硬度も高いの
で、信頼性の高い素子材料であると評価できる。
Furthermore, since the nitride-based compound semiconductor has (1) higher thermal conductivity than that of GaAs-based semiconductors, it is advantageous as a material for high-power devices at high temperatures compared to GaAs-based semiconductors.
(2) Since it is a chemically stable material and has a high hardness, it can be evaluated as a highly reliable element material.

【0005】一般に、半導体膜を基板上に成長させる時
には、成長膜と同類あるいは格子定数の近いバルク基板
を基板として用いる。従って、窒化物系半導体素子の場
合には、例えば同じ窒化物系半導体からなるGaN基板
等が望ましいが、GaN基板の作製は超高圧、超高温の
もとで小さなサイズの基板ができているに過ぎず、実用
的に大きなサイズの基板を作製することは極めて困難で
ある。窒化物系半導体素子の基板としてSiC基板、Z
nO基板、MgAl2 4 基板も使用されてきたが、一
般的には、窒化物系半導体素子はサファイア基板上に作
製されることが最も多い。
Generally, when a semiconductor film is grown on a substrate, a bulk substrate similar to the grown film or having a close lattice constant is used as the substrate. Therefore, in the case of a nitride-based semiconductor device, for example, a GaN substrate or the like made of the same nitride-based semiconductor is desirable, but a GaN substrate can be manufactured in a small size under ultrahigh pressure and ultrahigh temperature. However, it is extremely difficult to practically manufacture a large-sized substrate. SiC substrate, Z as a substrate of a nitride-based semiconductor device
Although nO substrates and MgAl 2 O 4 substrates have also been used, generally, nitride-based semiconductor devices are most often produced on sapphire substrates.

【0006】サファイア基板は、高品質かつ安価で2イ
ンチ以上のサイズのものが供給されているが、窒化物系
半導体の典型であるGaNとは、格子不整合と熱膨張係
数差が大きいという問題を有する。また、サファイア基
板は、劈開性がなく、電気伝導性が小さく電気的に絶縁
である。例えば、サファイアとGaNとの格子不整合は
約13%であって大きいので、サファイア基板とGaN
層の間に緩衝層を設けて不整合を緩和し、良好な単結晶
のGaN層をエピタキシャル成長させるようにしている
ものの、その欠陥密度は、例えば108 〜109 cm-2
程度にも達していて、半導体素子の動作信頼性にとって
悪影響を与えている。
As sapphire substrates, high quality and inexpensive ones having a size of 2 inches or more are supplied, but there is a problem that a lattice mismatch and a large thermal expansion coefficient difference with GaN which is a typical nitride semiconductor. Have. In addition, the sapphire substrate has no cleavage, has low electrical conductivity, and is electrically insulating. For example, since the lattice mismatch between sapphire and GaN is about 13%, which is large, the sapphire substrate and GaN are
Although a buffer layer is provided between the layers to mitigate the mismatch and to grow a good single crystal GaN layer epitaxially, the defect density is, for example, 10 8 to 10 9 cm -2.
It has reached a certain level, which adversely affects the operational reliability of semiconductor devices.

【0007】更に、(1)サファイア基板とGaN層と
の熱膨張係数の差が大きいので、結晶成長膜が厚いと、
室温でも基板反りが大きくなって、クラックの発生が心
配される等の素子形成プロセス上で制約が多く、また、
(2)サファイア基板には劈開性が無く、鏡面性の高い
レーザ端面を安定して形成することが難しい、更には、
(3)サファイアが絶縁性のために、GaAs系半導体
レーザ素子のように基板裏面に一方の電極を設けること
が難しく、p側電極及びn側電極の双方を基板上の窒化
物系化合物半導体の積層構造側に設けることが必要とな
り、素子面積が広くなり、工程が複雑になる。
Further, (1) since the difference in the coefficient of thermal expansion between the sapphire substrate and the GaN layer is large, if the crystal growth film is thick,
There are many restrictions on the device formation process, such as warpage of the substrate becoming large even at room temperature and cracks may occur.
(2) The sapphire substrate has no cleavage and it is difficult to stably form a laser end face having high specularity.
(3) Since sapphire has an insulating property, it is difficult to provide one electrode on the back surface of the substrate like a GaAs-based semiconductor laser device, and both the p-side electrode and the n-side electrode are made of a nitride-based compound semiconductor on the substrate. Since it is necessary to provide it on the laminated structure side, the element area becomes large and the process becomes complicated.

【0008】そこで、窒化物系化合物半導体、特にGa
N系化合物半導体と格子整合するGaN単結晶基板を工
業的に容易な方法で作製する研究が盛んに行われてい
る。その一つとして、例えば、特開2001−1023
07号公報は、気相成長の成長表面が平面状態でなく、
三次元的なファセット構造を持つようにし、ファセット
構造を持ったまま、ファセット構造を埋め込まないで成
長させることにより転位を低減するようにした単結晶窒
化ガリウムの結晶成長方法を開示している。本方法によ
れば、窓付きマスクを介してGaAs基板上にGaN単
結晶層を成長させ、成長させたGaN単結晶層をスライ
シングすることにより、GaN単結晶基板を作製するこ
とができる。
Therefore, nitride compound semiconductors, especially Ga
Research has been actively conducted to produce a GaN single crystal substrate that is lattice-matched with an N-based compound semiconductor by an industrially easy method. As one of them, for example, Japanese Patent Laid-Open No. 2001-1023
No. 07 publication discloses that the growth surface of vapor phase growth is not in a flat state,
Disclosed is a crystal growth method of single crystal gallium nitride, which has a three-dimensional facet structure and grows the facet structure without embedding the facet structure to reduce dislocations. According to this method, a GaN single crystal layer can be produced by growing a GaN single crystal layer on a GaAs substrate through a windowed mask and slicing the grown GaN single crystal layer.

【0009】[0009]

【発明が解決しようとする課題】ところで、前掲公報に
記載されているような方法によって作製したGaN基板
上に窒化物系化合物半導体層の積層構造を有する発光素
子を形成した場合、電極の配置場所いかんによっては、
リーク電流が大きいという問題があった。リーク電流
は、発光に寄与しない無効電流となるため、電気的、光
学的特性等の素子特性が悪化し、素子性能のばらつきの
原因となる。また、素子性能のばらつきは、製品歩留ま
りの悪化を招くことになる。
By the way, when a light emitting device having a laminated structure of a nitride-based compound semiconductor layer is formed on a GaN substrate manufactured by the method described in the above-mentioned publication, the place where the electrode is arranged. Depending on the situation,
There was a problem that the leak current was large. Since the leak current is a reactive current that does not contribute to light emission, element characteristics such as electrical and optical characteristics are deteriorated and cause variations in element performance. Further, variations in element performance lead to deterioration in product yield.

【0010】そこで、半導体基板の特質を利用して、リ
ーク電流の発生を抑制する研究が進められていて、本発
明の目的は、そのような構成の窒化物系化合物半導体発
光素子を提供することである。
Therefore, studies are underway to suppress the generation of leakage current by utilizing the characteristics of the semiconductor substrate, and an object of the present invention is to provide a nitride compound semiconductor light emitting device having such a structure. Is.

【0011】[0011]

【課題を解決するための手段】本発明者は、上述の課題
を解決する研究の過程で、低密度欠陥領域中に高密度欠
陥領域が規則的、例えば周期的に配列されている、新規
な構成の半導体基板として開発されたGaN単結晶基板
に注目した。このGaN単結晶基板は、特開2001−
102307号公報に開示された技術を改良し、低密度
欠陥領域中に発生する高密度欠陥領域の位置を制御する
ことにより、開発されたものである。
In the course of research for solving the above-mentioned problems, the present inventor has found that a high density defect region is regularly, for example, periodically arranged in a low density defect region. Attention was paid to a GaN single crystal substrate developed as a semiconductor substrate having a constitution. This GaN single crystal substrate is disclosed in
It was developed by improving the technology disclosed in Japanese Patent No. 102307 and controlling the position of a high density defect region generated in a low density defect region.

【0012】開発された半導体基板の高密度欠陥領域の
配列パターンは、自在であって、例えば、図4に示すよ
うな六方格子状の配列、図6(a)に示すような正方形
格子状の配列、図6(b)に示すように長方形格子状の
配列等がある。図4(a)及び(b)は、それぞれ、高
密度欠陥領域を説明するGaN基板の平面図及び断面図
である。また、高密度欠陥領域の配列パターンは、上述
のような分散型パターンだけではなく、例えば図7
(a)に示すように、点状の高密度欠陥領域が断続して
線状に配置されたもの、更には図7(b)に示すよう
に、高密度欠陥領域が線状に連続しているものも作製可
能である。
The array pattern of the high-density defect regions of the developed semiconductor substrate is flexible, and for example, a hexagonal grid array as shown in FIG. 4 or a square grid pattern as shown in FIG. An array, a rectangular grid array as shown in FIG. 4A and 4B are a plan view and a cross-sectional view of a GaN substrate, respectively, for explaining the high density defect region. Further, the arrangement pattern of the high-density defect areas is not limited to the distributed pattern as described above, and for example, as shown in FIG.
As shown in (a), dot-like high-density defect regions are arranged in a line intermittently, and further, as shown in FIG. 7 (b), high-density defect regions are linearly continuous. It is also possible to produce existing ones.

【0013】ここで、GaN単結晶基板の作製方法を説
明する。GaN単結晶の基本的な結晶成長メカニズム
は、ファセット面からなる斜面を有して成長し、そのフ
ァセット面斜面を維持して、成長することで、転位を伝
播させ、所定の位置に転位を集合させる。このファセッ
ト面により成長した領域は、転位の移動により、低欠陥
領域となる。一方、そのファセット面斜面下部には、明
確な境界を持った高密度の欠陥領域を有して成長が行わ
れ、転位は、高密度の欠陥領域の境界あるいはその内部
に集合し、ここで消滅あるいは蓄積する。
Here, a method of manufacturing a GaN single crystal substrate will be described. The basic crystal growth mechanism of a GaN single crystal is that it grows with an inclined surface composed of facet planes, and while maintaining the inclined surface of the facet plane, the dislocation propagates and the dislocations gather at a predetermined position. Let The region grown by this facet plane becomes a low defect region due to the movement of dislocations. On the other hand, in the lower part of the slope of the facet plane, growth is performed with a high-density defect region having a clear boundary, and dislocations are gathered at the boundary of the high-density defect region or inside thereof and disappear here. Or accumulate.

【0014】この高密度の欠陥領域の形状によって、フ
ァセット面の形状も異なる。欠陥領域が、ドット状の場
合は、そのドットを底として、ファセット面が取り巻
き、ファセット面からなるピットを形成する。また、欠
陥領域が、ストライプ状の場合は、ストライプを谷底と
して、その両側にファセット面傾斜面を有し、横に倒し
た3角形のプリズム状のファセット面となる。
The shape of the facet surface also differs depending on the shape of this high-density defect region. If the defective area is dot-shaped, the facet surface surrounds the dot and forms a pit composed of the facet surface. Further, when the defect region is in the shape of a stripe, the stripe is a valley bottom, and facet inclined surfaces are formed on both sides of the valley to form a triangular prism-shaped facet which is laid sideways.

【0015】この高密度の欠陥領域は、いくつかの状態
があり得る。例えば、多結晶からなる場合がある。ま
た、単結晶であるが、周りの低欠陥領域に対して、微傾
斜している場合もある。また、周りの低欠陥領域に対し
て、C軸が反転している場合もある。こうして、この高
密度の欠陥領域は、明確な、境界を有しており、周りと
区別される。この高欠陥密度領域を有して成長すること
により、その周りの、ファセット面を埋め込むことな
く、ファセット面を維持して成長を進行することができ
る。その後、GaN成長層の表面を研削、研磨を施すこ
とにより、表面を平坦化し、基板として、使用できる形
態とすることができる。
This dense defect region can have several states. For example, it may be made of polycrystal. Although it is a single crystal, it may be slightly inclined with respect to the surrounding low defect region. Further, the C axis may be inverted with respect to the surrounding low defect area. Thus, this dense defect region has a well-defined boundary and is distinguished from the surroundings. By growing with this high defect density region, the facet surface around it can be maintained and the growth can be promoted without burying the facet surface. After that, the surface of the GaN growth layer is ground and polished to flatten the surface, so that it can be used as a substrate.

【0016】この高密度の欠陥領域を形成する方法は、
下地基板上に、GaNを結晶成長する際に、高密度欠陥
領域を形成する場所に、種を予め形成しておくことによ
り、発生させることができる。その種としては、種とな
る微小領域に非晶質、あるいは多結晶の層を形成する。
その上から、GaNを成長することで、丁度その種の領
域に、高密度の欠陥領域を形成することが出来る。
The method of forming this high-density defect region is as follows.
It can be generated by forming seeds in advance at the place where the high-density defect region is formed when GaN crystal is grown on the base substrate. As the seed, an amorphous or polycrystalline layer is formed in a minute region as the seed.
By growing GaN on it, a high-density defect region can be formed just in that kind of region.

【0017】GaN単結晶基板の具体的な製造方法とし
ては、次の通りである。まず、GaN層を成長させる下
地基板を用いる。下地基板は、必ずしも特定せず、一般
的なサファイア基板でも良いが、後工程で下地基板を除
去することを考慮すると、GaAs基板等が好ましい。
下地基板の上に、例えば、SiO2層からなる種を規則
的に、例えば周期的に形成する。種の形状は、高密度欠
陥領域の配列、形状に従って、ドット状、あるいはスト
ライプ状である。その後、Hydride Vapor Phase Epitax
y(HVPE)にて、GaNを厚膜成長する。成長後、表
面には、種のパターン形状に応じた、ファセット面が形
成される。例えば、種がドット状のパターンの場合は、
ファセット面からなるピットが規則正しく形成され、種
がストライプ状の場合は、プリズム状のファセット面が
形成される。
A specific method of manufacturing a GaN single crystal substrate is as follows. First, a base substrate for growing a GaN layer is used. The base substrate is not necessarily specified and may be a general sapphire substrate, but a GaAs substrate or the like is preferable in consideration of removing the base substrate in a later step.
On the base substrate, for example, a seed made of a SiO 2 layer is regularly formed, for example, periodically. The shape of the seed is a dot shape or a stripe shape according to the arrangement and shape of the high-density defect regions. After that, Hydride Vapor Phase Epitax
A thick film of GaN is grown by y (HVPE). After the growth, a facet surface is formed on the surface according to the seed pattern shape. For example, if the seed is a dot pattern,
Pits composed of facet planes are regularly formed, and when the seeds are stripes, prismatic facet planes are formed.

【0018】GaN層を成長させた後、下地基板を除去
し、さらに、GaNの厚膜層を、研削加工、研磨加工し
て表面を平坦化する。それによって、GaN基板を製造
することができる。GaN基板の厚さは、自由に設定出
来る。この様にして作製された、GaN基板は、C面が
主面であり、その中に、所定のサイズのドット状あるい
はストライプ状の高欠陥密度領域が規則正しく、形成さ
れた基板となっている。高欠陥密度領域以外の単結晶領
域は、高欠陥密度領域に比べ、転位密度が著しく低い低
転位密度領域となっている。
After growing the GaN layer, the underlying substrate is removed, and the GaN thick film layer is ground and polished to flatten the surface. Thereby, a GaN substrate can be manufactured. The thickness of the GaN substrate can be set freely. The GaN substrate manufactured in this manner has a C-plane as the main surface, in which dot-shaped or stripe-shaped high defect density regions of a predetermined size are regularly formed. The single crystal region other than the high defect density region is a low dislocation density region in which the dislocation density is significantly lower than the high defect density region.

【0019】本発明者は、研究を進めていく過程で、高
密度欠陥領域に電極を配置すると、リーク電流が結晶欠
陥を介して流れることを見い出した。それは、図5に示
すように、上述のGaN基板76上に形成された積層構
造80では、GaN基板76の高密度欠陥領域78の結
晶欠陥が上方の積層構造80にも伝搬してその部分が高
密度欠陥領域82となる。つまり、高密度欠陥領域78
上に成長した積層構造部分はどうしても高密度欠陥領域
となる。そして、リーク電流は、電極から積層構造の高
密度欠陥領域を通って流れることになる。そして、高密
度欠陥領域を通るリーク電流が生じないように、低密度
欠陥領域に電極を配置することを着想し、種々の実験の
末に、本発明を発明するに到った。以上の説明では、主
として、半導体レーザ素子を例にして説明したが、これ
は、窒化物系化合物半導体発光素子全般に該当すること
である。
In the course of research, the inventor of the present invention found that when an electrode is arranged in a high density defect region, a leak current flows through a crystal defect. As shown in FIG. 5, in the laminated structure 80 formed on the GaN substrate 76 described above, the crystal defects in the high-density defect region 78 of the GaN substrate 76 propagate to the upper laminated structure 80, and the portion is formed. The high density defect region 82 is formed. That is, the high density defect region 78
The layered structure portion grown above becomes a high density defect region. Then, the leak current flows from the electrode through the high-density defect region of the laminated structure. Then, the present invention was invented at the end of various experiments after arranging an electrode in a low-density defect region so as to prevent a leak current from passing through the high-density defect region. In the above description, a semiconductor laser device has been mainly described as an example, but this applies to all nitride compound semiconductor light emitting devices.

【0020】上記目的を達成するために、本発明に係る
窒化物系化合物半導体発光素子(以下、第1の発明と言
う)は、周囲の低密度欠陥領域より結晶欠陥密度が高い
高密度欠陥領域が周期的な基板面上配列で基板を貫通し
ている半導体結晶基板上に、窒化物系化合物半導体の積
層構造を備える窒化物系化合物半導体発光素子であっ
て、積層構造を挟む1対の電極の一方の電極は基板裏面
の低密度欠陥領域上に設けられ、他方の電極は基板の低
密度欠陥領域上方の積層構造上に設けられ、かつ活性領
域が1対の電極で挟まれた積層構造内に形成されている
ことを特徴としている。
To achieve the above object, a nitride-based compound semiconductor light-emitting device according to the present invention (hereinafter referred to as the first invention) has a high density defect region having a higher crystal defect density than the surrounding low density defect region. A nitride-based compound semiconductor light-emitting device having a laminated structure of a nitride-based compound semiconductor on a semiconductor crystal substrate which penetrates through the substrate in a periodic array on the substrate surface, and a pair of electrodes sandwiching the laminated structure. One electrode is provided on the low density defect region on the back surface of the substrate, the other electrode is provided on the laminated structure above the low density defect region of the substrate, and the active region is sandwiched by a pair of electrodes It is characterized by being formed inside.

【0021】本発明に係る別の窒化物系化合物半導体発
光素子(以下、第2の発明と言う)は、周囲の低密度欠
陥領域より結晶欠陥密度が高い高密度欠陥領域が周期的
な基板面上配列で基板を貫通している半導体結晶基板上
に、窒化物系化合物半導体の積層構造を備える窒化物系
化合物半導体発光素子であって、基板の高密度欠陥領域
間の低密度欠陥領域上の積層構造は、上部がリッジスト
ライプとしてに形成され、かつリッジストライプの両脇
が絶縁膜で被覆され、積層構造を挟む1対の電極の一方
の電極が基板の高密度欠陥領域間の低密度欠陥領域上に
設けられ、他方の電極がリッジストライプ上に延在し、
更にリッジストライプ脇の絶縁膜を介して高密度欠陥領
域上方の積層構造上に延在していることを特徴としてい
る。
Another nitride-based compound semiconductor light-emitting device according to the present invention (hereinafter referred to as the second invention) has a substrate surface in which high density defect regions having a higher crystal defect density than the surrounding low density defect regions are periodic. A nitride-based compound semiconductor light-emitting device having a laminated structure of a nitride-based compound semiconductor on a semiconductor crystal substrate penetrating the substrate in an upper array, the device comprising: In the laminated structure, the upper portion is formed as a ridge stripe, and both sides of the ridge stripe are covered with an insulating film, and one electrode of a pair of electrodes sandwiching the laminated structure has a low density defect between high density defect regions of a substrate. Is provided on the region, the other electrode extends on the ridge stripe,
Further, it is characterized in that it extends over the laminated structure above the high density defect region through an insulating film on the side of the ridge stripe.

【0022】高密度欠陥領域は、基板を貫通する柱状又
は柱が横方向に連続して繋がっている板状の領域であ
り、高密度欠陥領域の断面形状は任意である。本発明
で、窒化物系化合物半導体発光素子を構成する窒化物系
化合物半導体層の積層構造の活性領域は、高密度欠陥領
域と高密度欠陥領域との間の低密度欠陥領域上に設けて
ある。
The high-density defect region is a plate-like region in which columns or columns penetrating the substrate are continuously connected in the lateral direction, and the cross-sectional shape of the high-density defect region is arbitrary. In the present invention, the active region of the laminated structure of the nitride-based compound semiconductor layer that constitutes the nitride-based compound semiconductor light-emitting device is provided on the low-density defect region between the high-density defect region and the high-density defect region. .

【0023】本発明の窒化物系化合物半導体発光素子
は、窒化物系半導体レーザ素子、窒化物系半導体発光ダ
イオード等を含む概念である。また、半導体結晶基板と
は、結晶欠陥密度が周囲より高い領域として、周期的な
基板面上配列で基板を貫通している高密度欠陥領域を有
する限り、その組成に制約はない。窒化物系化合物半導
体とは、Ala b Gac Ind N(a+b+c+d=
1、0≦a、b、c、d≦1)を言う。
The nitride-based compound semiconductor light-emitting device of the present invention is a concept including a nitride-based semiconductor laser device, a nitride-based semiconductor light emitting diode, and the like. The composition of the semiconductor crystal substrate is not limited as long as it has high density defect regions penetrating the substrate in a periodic array on the substrate surface as a region having a higher crystal defect density than the surroundings. A nitride-based compound semiconductor means Al a B b Ga c In d N (a + b + c + d =
1, 0 ≦ a, b, c, d ≦ 1).

【0024】電極の平面形状には制約はなく、例えば、
基板裏面上にほぼ全面に設けられた電極層から高密度欠
陥領域と接触しないように一部を切り欠いてなる電極層
として一方の電極を形成しても良い。第1の発明では、
p側電極及びn側電極が、低密度欠陥領域上に形成され
ているので、高密度欠陥領域を介して流れるリーク電流
を大幅に低減させることができる。また、第2の発明で
は、p側電極は高密度欠陥領域上にも延在しているもの
の、絶縁膜によって高密度欠陥領域から絶縁されている
ので、p側電極は低密度欠陥領域上にのみ形成されてい
る第1の発明と同様に作用する。
There are no restrictions on the planar shape of the electrodes.
One electrode may be formed as an electrode layer formed by cutting out a part of the electrode layer provided on the back surface of the substrate almost all over so as not to contact the high density defect region. In the first invention,
Since the p-side electrode and the n-side electrode are formed on the low density defect region, the leak current flowing through the high density defect region can be significantly reduced. Further, in the second invention, although the p-side electrode extends over the high-density defect region, it is insulated from the high-density defect region by the insulating film, so that the p-side electrode overlies the low-density defect region. It operates similarly to the first invention in which it is formed only.

【0025】本発明では、高密度欠陥領域の配列パター
ンは自在であって、具体的には、高密度欠陥領域が、半
導体結晶基板の基板面上で周期的に、例えば正方形格子
状、長方形格子状、及び六方格子状のいずれかの配置で
点在していても良い。また、高密度欠陥領域が、半導体
結晶基板の基板面上で相互に離隔して平行に、かつ周期
的に配置された線状の高密度欠陥領域であって、点状の
高密度欠陥領域が相互に接して、又は断続して線状に配
置されてなる高密度欠陥領域、又は高密度欠陥領域が連
続して線状に延在してなる高密度欠陥領域であっても良
い。
In the present invention, the arrangement pattern of the high-density defect regions is free. Specifically, the high-density defect regions are periodically arranged on the substrate surface of the semiconductor crystal substrate, for example, in a square lattice shape or a rectangular lattice shape. It may be scattered in any one of a rectangular shape and a hexagonal lattice shape. In addition, the high-density defect regions are linear high-density defect regions that are spaced apart from each other in parallel and periodically on the substrate surface of the semiconductor crystal substrate, and the dot-shaped high-density defect regions are It may be a high-density defect region that is arranged linearly in contact with each other or intermittently, or a high-density defect region in which the high-density defect regions continuously extend linearly.

【0026】[0026]

【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。尚、以下の実施形態例で示す積層構造の構
成、化合物半導体層の組成等は、本発明の理解を容易に
するための一つの例示であって、本発明はこの例示に限
定されるものではない。実施形態例1 本実施形態例は、第1の発明に係る窒化物系化合物半導
体発光素子を窒化物系半導体レーザ素子に適用した実施
形態の一例であって、図1は窒化物系半導体レーザ素子
の断面図である。図2(a)及び(b)は、それぞれ、
積層構造上のp側電極の配置、及び基板裏面のn側電極
の配置を示す平面図である。図4(a)及び(b)は、
それぞれ、本実施形態例の窒化物系半導体レーザ素子の
GaN基板の高密度欠陥領域の配置を示す平面図及び断
面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings by way of example embodiments. The structure of the laminated structure, the composition of the compound semiconductor layer, and the like shown in the following embodiments are merely examples for facilitating the understanding of the present invention, and the present invention is not limited to these examples. Absent. Embodiment 1 This embodiment is an example of an embodiment in which the nitride-based compound semiconductor light emitting device according to the first invention is applied to a nitride-based semiconductor laser device, and FIG. 1 is a nitride-based semiconductor laser device. FIG. 2A and 2B respectively show
FIG. 4 is a plan view showing the arrangement of p-side electrodes on the laminated structure and the arrangement of n-side electrodes on the back surface of the substrate. 4 (a) and (b),
3A and 3B are a plan view and a cross-sectional view, respectively, showing an arrangement of high-density defect regions of a GaN substrate of the nitride-based semiconductor laser device of the present embodiment example.

【0027】本実施形態例の窒化物系半導体レーザ素子
10が形成されるGaN基板76は、図4(a)及び
(b)に示すように、結晶欠陥密度が周囲の領域より高
い、いわゆる高密度欠陥領域78がGaN基板76を貫
通して、かつ、平面的には基板面上で周期的な六方格子
状配列で存在しているという特質を有している。本実施
形態例の窒化物系半導体レーザ素子10のGaN基板1
2は、GaN基板76上で、図8(a)に示すような配
置で区画されている。図8(a)中、90は窒化物系半
導体レーザ素子10のレーザストライプを示している。
本実施形態例の窒化物系半導体レーザ素子10は、図1
に示すように、n型GaN基板12上に、n型AlGa
Nクラッド層14、n型GaN第1光ガイド層16、I
nGaN活性層18、p型InGaN第2光ガイド層2
0、p型AlGaNクラッド層22、及びp型GaNコ
ンタクト層24を、順次、積層した積層構造を備えてい
る。
As shown in FIGS. 4A and 4B, the GaN substrate 76 on which the nitride-based semiconductor laser device 10 of this embodiment is formed has a crystal defect density higher than that of the surrounding region, that is, a so-called high level. The density defect regions 78 penetrate the GaN substrate 76, and have the characteristic that they exist in a planar hexagonal lattice array on the substrate surface in plan view. GaN substrate 1 of nitride-based semiconductor laser device 10 of the present embodiment example
2 are partitioned on the GaN substrate 76 in an arrangement as shown in FIG. In FIG. 8A, 90 indicates a laser stripe of the nitride-based semiconductor laser device 10.
The nitride-based semiconductor laser device 10 of the present embodiment example is shown in FIG.
, The n-type GaN substrate 12 is overlaid with n-type AlGa.
N-clad layer 14, n-type GaN first optical guide layer 16, I
nGaN active layer 18, p-type InGaN second optical guide layer 2
0, the p-type AlGaN clad layer 22, and the p-type GaN contact layer 24 are sequentially laminated to have a laminated structure.

【0028】p型クラッド層22の上層部及びp型コン
タクト層24は、一方向にリッジストライプ状に延びる
リッジストライプ部26として形成されている。リッジ
ストライプ部26の両脇、つまりp型クラッド層22の
上層部及びp型コンタクト層24の両側、並びにp型ク
ラッド層22上は、SiO2 又はSiN X からなる絶縁
膜28で被覆されている。
The upper layer portion of the p-type cladding layer 22 and the p-type capacitor
The tact layer 24 extends in one direction in a ridge stripe shape.
It is formed as a ridge stripe portion 26. ridge
Both sides of the stripe portion 26, that is, the p-type cladding layer 22
Both sides of the upper layer portion and the p-type contact layer 24, and the p-type contact layer
SiO on the rud layer 222Or SiN XInsulation consisting of
It is covered with a membrane 28.

【0029】n型GaN基板12は、図4に示すGaN
基板76と同様に、結晶欠陥密度が周囲の領域より高
い、いわゆる高密度欠陥領域12aがn型GaN基板1
2を貫通して、かつ、平面的には基板面上で周期的な配
列で存在しているという特質を有している。本実施形態
例のn型GaN基板12では、高密度欠陥領域12aは
正三角形の千鳥格子状配置で円柱状に生成している(図
2参照)。n型GaN基板12の高密度欠陥領域12a
の結晶欠陥は、図1に示すように、n型AlGaNクラ
ッド層14、n型GaN第1光ガイド層16、InGa
N活性層18、p型InGaN第2光ガイド層20、p
型AlGaNクラッド層22、及びp型GaNコンタク
ト層24に、順次、伝搬し、高密度欠陥領域30を生成
させている。リッジストライプ部26は、高密度欠陥領
域30と高密度欠陥領域30の間に形成されている。
The n-type GaN substrate 12 is the GaN shown in FIG.
Similar to the substrate 76, the so-called high-density defect region 12a, which has a higher crystal defect density than the surrounding region, is the n-type GaN substrate 1.
It has a characteristic that it penetrates 2 and exists in a periodic array on the substrate surface in plan view. In the n-type GaN substrate 12 of the present embodiment example, the high-density defect regions 12a are formed in a columnar shape in an equilateral triangular zigzag lattice arrangement (see FIG. 2). High-density defect region 12a of n-type GaN substrate 12
As shown in FIG. 1, the crystal defects of the n-type AlGaN cladding layer 14, the n-type GaN first optical guide layer 16, the InGa
N active layer 18, p-type InGaN second optical guide layer 20, p
The high-density defect region 30 is generated by sequentially propagating to the p-type AlGaN cladding layer 22 and the p-type GaN contact layer 24. The ridge stripe portion 26 is formed between the high density defect regions 30.

【0030】p型コンタクト層24上には、絶縁膜28
の開口部28aを介してNi/Au電極のような多層金
属膜のp側電極32がオーミック接合電極として設けら
れている。また、GaN基板の導電性を利用して、n型
GaN基板12の裏面には、Ti/Al電極のような多
層金属膜のn側電極34がオーミック接合電極として設
けられている。p側電極32は、図2(a)に示すよう
に、高密度欠陥領域30と高密度欠陥領域30との間を
リッジストライプ部26に沿って延在している。また、
n側電極34は、図2(b)に示すように、n型GaN
基板12の裏面上にほぼ全面に設けられた電極層からn
型GaN基板12の高密度欠陥領域12aと接触しない
ように一部を切り欠いてなる電極層として形成されてい
る。
An insulating film 28 is formed on the p-type contact layer 24.
A p-side electrode 32 of a multi-layer metal film such as a Ni / Au electrode is provided as an ohmic contact electrode through the opening 28a. Further, utilizing the conductivity of the GaN substrate, an n-side electrode 34 of a multi-layer metal film such as a Ti / Al electrode is provided as an ohmic contact electrode on the back surface of the n-type GaN substrate 12. As shown in FIG. 2A, the p-side electrode 32 extends between the high density defect regions 30 and along the ridge stripe portion 26. Also,
As shown in FIG. 2B, the n-side electrode 34 is made of n-type GaN.
From the electrode layer provided on almost the entire back surface of the substrate 12 to n
The GaN substrate 12 is formed as an electrode layer with a part cut away so as not to come into contact with the high density defect region 12a.

【0031】実施形態例2 本実施形態例は、第2の発明に係る窒化物系化合物半導
体発光素子を窒化物系半導体レーザ素子に適用した実施
形態の一例であって、図3は窒化物系半導体レーザ素子
の断面図である。本実施形態例の窒化物系半導体レーザ
素子40は、図3に示すように、p側電極42が、p型
コンタクト層24上に延在し、更に絶縁膜28を介して
高密度欠陥領域30上まで延在していること、及びn側
電極44がn型GaN基板12の高密度欠陥領域12a
間の低密度欠陥領域上に設けられていることを除いて、
実施形態例1の窒化物系半導体レーザ素子10と同じ構
成を備えている。
Embodiment 2 This embodiment is an example of an embodiment in which the nitride-based compound semiconductor light emitting device according to the second invention is applied to a nitride-based semiconductor laser device, and FIG. 3 is a nitride-based semiconductor laser device. It is sectional drawing of a semiconductor laser element. In the nitride-based semiconductor laser device 40 of the present embodiment example, as shown in FIG. 3, the p-side electrode 42 extends on the p-type contact layer 24, and the high-density defect region 30 is further interposed via the insulating film 28. And that the n-side electrode 44 extends to the top and the high-density defect region 12a of the n-type GaN substrate 12
Except that it is provided on the low density defect area between
It has the same configuration as the nitride-based semiconductor laser device 10 of the first embodiment.

【0032】実施形態例1及び2では、p側電極及びn
側電極が、低密度欠陥領域上に形成されているので、高
密度欠陥領域を介して流れるリーク電流を大幅に低減さ
せることができる。
In the first and second embodiments, the p-side electrode and n
Since the side electrode is formed on the low density defect region, the leak current flowing through the high density defect region can be significantly reduced.

【0033】上述の実施形態例では、GaN基板とし
て、高密度欠陥領域が正方形格子状に配列されているG
aN基板76を用いているが、これに限らず、例えば図
8(b)に示すように、高密度欠陥領域が正方形格子状
に配置されているGaN基板92、また、図8(c)に
示すように、高密度欠陥領域が長方形格子状に配置され
ているGaN基板94を用いることができる。更には、
図9(a)及び(b)に示すように、高密度欠陥領域が
線状に配置されているGaN基板96、98を用いるこ
とができる。図8及び図9は高密度欠陥領域とレーザス
トライプとの位置関係を示している。尚、図8及び図9
中、90はレーザストライプである。
In the above-described embodiment, the GaN substrate has high density defect regions arranged in a square lattice G.
Although the aN substrate 76 is used, the present invention is not limited to this. For example, as shown in FIG. 8B, a GaN substrate 92 in which high-density defect regions are arranged in a square lattice pattern, and also in FIG. 8C. As shown, a GaN substrate 94 having high density defect regions arranged in a rectangular lattice can be used. Furthermore,
As shown in FIGS. 9A and 9B, GaN substrates 96 and 98 in which high density defect regions are linearly arranged can be used. 8 and 9 show the positional relationship between the high-density defect region and the laser stripe. 8 and 9
90 is a laser stripe.

【0034】[0034]

【発明の効果】第1の発明では、p側電極及びn側電極
が、低密度欠陥領域上に形成されているので、高密度欠
陥領域を介して流れるリーク電流を大幅に低減させるこ
とができる。また、第2の発明では、p側電極は高密度
欠陥領域上にも延在しているものの、絶縁膜によって高
密度欠陥領域から絶縁されているので、低密度欠陥領域
上にのみ形成されている第1の発明と同様にp側電極か
ら高密度欠陥領域に流れるリーク電流を発生させない。
According to the first aspect of the invention, since the p-side electrode and the n-side electrode are formed on the low-density defect region, the leak current flowing through the high-density defect region can be greatly reduced. . Further, in the second invention, although the p-side electrode extends over the high-density defect region as well, since it is insulated from the high-density defect region by the insulating film, it is formed only on the low-density defect region. As in the first aspect, the leak current flowing from the p-side electrode to the high density defect region is not generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態例1の窒化物系半導体レーザ素子の断
面図である。
FIG. 1 is a sectional view of a nitride-based semiconductor laser device according to a first embodiment.

【図2】図2(a)及び(b)は、それぞれ、積層構造
上のp側電極の配置、及び基板裏面のn側電極の配置を
示す平面図である。
FIG. 2A and FIG. 2B are plan views showing the arrangement of p-side electrodes on the laminated structure and the arrangement of n-side electrodes on the back surface of the substrate, respectively.

【図3】実施形態例2の窒化物系半導体レーザ素子の断
面図である。
FIG. 3 is a sectional view of a nitride-based semiconductor laser device according to a second embodiment.

【図4】図4(a)及び(b)は、GaN基板の高密度
欠陥領域の六方格子状配置を示す平面図、及び断面図で
ある。
4 (a) and 4 (b) are a plan view and a cross-sectional view showing a hexagonal lattice-like arrangement of high-density defect regions of a GaN substrate.

【図5】GaN基板上の積層構造への結晶欠陥の伝搬を
説明する断面図である。
FIG. 5 is a cross-sectional view for explaining the propagation of crystal defects in a laminated structure on a GaN substrate.

【図6】図6(a)及び(b)は、それぞれ、高密度欠
陥領域の正方形格子状の配列、及び長方形格子状の配列
を示す図である。
FIGS. 6A and 6B are diagrams showing a square lattice-shaped array and a rectangular lattice-shaped array of high-density defect regions, respectively.

【図7】図7(a)及び(b)は、それぞれ、点状の高
密度欠陥領域が断続して線状に配置された配列、高密度
欠陥領域が線状に連続して配列を示す図である。
7A and 7B show an array in which dot-like high-density defect regions are intermittently arranged linearly and a high-density defect region is linearly continuous, respectively. It is a figure.

【図8】図8(a)から(c)は、それぞれ、高密度欠
陥領域が、六方格子状配置、正方形格子状配置、及び長
方形格子状配置のGaN基板でのGaN系半導体レーザ
素子の区画を示す図である。
8A to 8C are sectional views of a GaN-based semiconductor laser device in which the high-density defect regions are hexagonal lattice-shaped, square lattice-shaped, and rectangular lattice-shaped GaN substrates, respectively. FIG.

【図9】図9(a)及び(b)は、それぞれ、高密度欠
陥領域が線状に配置されているGaN基板でのGaN系
半導体レーザ素子の区画を示す図である。
9 (a) and 9 (b) are diagrams showing divisions of a GaN-based semiconductor laser device on a GaN substrate in which high-density defect regions are linearly arranged.

【符号の説明】[Explanation of symbols]

10……実施形態例1の窒化物系半導体レーザ素子、1
2……n型GaN基板、12a……高密度欠陥領域、1
4……n型AlGaNクラッド層、16……n型GaN
第1光ガイド層、18……InGaN活性層、20……
p型InGaN第2光ガイド層、22……p型AlGa
Nクラッド層、24……p型GaNコンタクト層、28
……絶縁膜、30……高密度欠陥領域、32……p側電
極、34……n側電極、40……実施形態例2の窒化物
系半導体レーザ素子、42……p側電極、44……n側
電極、76……GaN基板、78……高密度欠陥領域、
80……積層構造、82……高密度欠陥領域、90……
レーザストライプ、92……高密度欠陥領域が長方形格
子状に配置されているGaN基板、94……高密度欠陥
領域が六方格子状に配置されているGaN基板、96、
98……高密度欠陥領域が線状に配置されているGaN
基板。
10 ... Nitride-based semiconductor laser device according to the first embodiment, 1
2 ... n-type GaN substrate, 12a ... high-density defect region, 1
4 ... n-type AlGaN cladding layer, 16 ... n-type GaN
First optical guide layer, 18 ... InGaN active layer, 20 ...
p-type InGaN second optical guide layer, 22 ... p-type AlGa
N-clad layer, 24 ... P-type GaN contact layer, 28
...... Insulating film, 30 ...... High density defect region, 32 ...... P side electrode, 34 ...... N side electrode, 40 ...... Nitride semiconductor laser device of the second embodiment, 42 ...... P side electrode, 44 ... n-side electrode, 76 ... GaN substrate, 78 ... high-density defect region,
80 ... Laminated structure, 82 ... High-density defect region, 90 ...
Laser stripes, 92 ... GaN substrate having high-density defect regions arranged in a rectangular lattice pattern, 94 ... GaN substrate having high-density defect regions arranged in a hexagonal lattice pattern, 96,
98 ... GaN in which high-density defect regions are linearly arranged
substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 元木 健作 大阪府大阪市中央区北浜四丁目5番33号 住友電気工業株式会社内 Fターム(参考) 5F041 AA21 CA04 CA34 CA40 CA65 CA83 CA92 CA93 CA98 5F073 AA13 AA45 AA61 CA07 CB02 CB22 DA05 DA30 DA35 EA29   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kensaku Motoki             4-53 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture             Sumitomo Electric Industries, Ltd. F-term (reference) 5F041 AA21 CA04 CA34 CA40 CA65                       CA83 CA92 CA93 CA98                 5F073 AA13 AA45 AA61 CA07 CB02                       CB22 DA05 DA30 DA35 EA29

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 周囲の低密度欠陥領域より結晶欠陥密度
が高い高密度欠陥領域が周期的な基板面上配列で基板を
貫通している半導体結晶基板上に、窒化物系化合物半導
体の積層構造を備える窒化物系化合物半導体発光素子で
あって、 積層構造を挟む1対の電極の一方の電極は基板裏面の低
密度欠陥領域上に設けられ、他方の電極は基板の低密度
欠陥領域上方の積層構造上に設けられ、かつ活性領域が
1対の電極で挟まれた積層構造内に形成されていること
を特徴とする窒化物系化合物半導体発光素子。
1. A laminated structure of a nitride-based compound semiconductor on a semiconductor crystal substrate in which high density defect regions having a higher crystal defect density than surrounding low density defect regions penetrate the substrate in a periodic array on the substrate surface. A nitride-based compound semiconductor light-emitting device comprising: a pair of electrodes sandwiching a laminated structure, one electrode of which is provided on a low-density defect region on the back surface of the substrate, and the other electrode of which is located above the low-density defect region of the substrate. A nitride-based compound semiconductor light-emitting device, which is provided on a laminated structure and has an active region formed in a laminated structure sandwiched by a pair of electrodes.
【請求項2】 一方の電極は、基板裏面上にほぼ全面に
設けられた電極層から高密度欠陥領域と接触しないよう
に一部を切り欠いてなる電極層として形成されているこ
とを特徴とする請求項1に記載の窒化物系化合物半導体
発光素子。
2. One of the electrodes is formed as an electrode layer formed by cutting out a part of the electrode layer provided on almost the entire back surface of the substrate so as not to come into contact with the high-density defect region. The nitride-based compound semiconductor light emitting device according to claim 1.
【請求項3】 周囲の低密度欠陥領域より結晶欠陥密度
が高い高密度欠陥領域が周期的な基板面上配列で基板を
貫通している半導体結晶基板上に、窒化物系化合物半導
体の積層構造を備える窒化物系化合物半導体発光素子で
あって、 基板の高密度欠陥領域間の低密度欠陥領域上の積層構造
は、上部がリッジストライプとしてに形成され、かつリ
ッジストライプの両脇が絶縁膜で被覆され、 積層構造を挟む1対の電極の一方の電極が基板の高密度
欠陥領域間の低密度欠陥領域上に設けられ、他方の電極
がリッジストライプ上に延在し、更にリッジストライプ
脇の絶縁膜を介して高密度欠陥領域上方の積層構造上に
延在していることを特徴とする窒化物系化合物半導体発
光素子。
3. A laminated structure of a nitride-based compound semiconductor on a semiconductor crystal substrate in which high-density defect regions having a higher crystal defect density than surrounding low-density defect regions penetrate the substrate in a periodic array on the substrate surface. A nitride-based compound semiconductor light-emitting device comprising: a laminated structure on a low-density defect region between high-density defect regions of a substrate, wherein an upper portion is formed as a ridge stripe, and both sides of the ridge stripe are insulating films. One electrode of the pair of electrodes that are covered and sandwich the laminated structure is provided on the low density defect area between the high density defect areas of the substrate, and the other electrode extends on the ridge stripe, and further on the side of the ridge stripe. A nitride-based compound semiconductor light-emitting device, characterized in that the nitride-based compound semiconductor light-emitting device extends over the laminated structure above the high-density defect region via an insulating film.
【請求項4】 高密度欠陥領域が、半導体結晶基板の基
板面上で周期的に点在していることを特徴とする請求項
1から3のいずれか1項に記載の窒化物系化合物半導体
発光素子。
4. The nitride-based compound semiconductor according to claim 1, wherein the high-density defect regions are periodically scattered on the substrate surface of the semiconductor crystal substrate. Light emitting element.
【請求項5】 高密度欠陥領域が、半導体結晶基板の基
板面上で正方形格子状、長方形格子状、及び六方格子状
のいずれかの配置で点在していることを特徴とする請求
項4に記載の窒化物系化合物半導体発光素子。
5. The high-density defect regions are scattered on the substrate surface of the semiconductor crystal substrate in any one of a square lattice shape, a rectangular lattice shape, and a hexagonal lattice shape. The nitride-based compound semiconductor light-emitting device according to item 1.
【請求項6】 高密度欠陥領域が、半導体結晶基板の基
板面上で相互に離隔して平行に、かつ周期的に配置され
た線状の高密度欠陥領域であることを特徴とする請求項
1から3のいずれか1項に記載の窒化物系化合物半導体
発光素子。
6. The high-density defect region is a linear high-density defect region that is arranged in parallel and periodically while being spaced apart from each other on the substrate surface of the semiconductor crystal substrate. 4. The nitride-based compound semiconductor light emitting device according to any one of 1 to 3.
【請求項7】 線状の高密度欠陥領域は、点状の高密度
欠陥領域が相互に接して、又は断続して線状に配置され
てなる高密度欠陥領域、又は高密度欠陥領域が連続して
線状に延在してなる高密度欠陥領域であることを特徴と
する請求項6に記載の窒化物系化合物半導体発光素子。
7. The linear high-density defect region is a high-density defect region in which dot-like high-density defect regions are arranged in contact with each other or intermittently, or a high-density defect region is continuous. The nitride-based compound semiconductor light-emitting device according to claim 6, which is a high-density defect region formed by linearly extending.
JP2002027981A 2002-02-05 2002-02-05 Nitride compound semiconductor light emitting element Pending JP2003229638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027981A JP2003229638A (en) 2002-02-05 2002-02-05 Nitride compound semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027981A JP2003229638A (en) 2002-02-05 2002-02-05 Nitride compound semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JP2003229638A true JP2003229638A (en) 2003-08-15
JP2003229638A5 JP2003229638A5 (en) 2005-08-18

Family

ID=27749339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027981A Pending JP2003229638A (en) 2002-02-05 2002-02-05 Nitride compound semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2003229638A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175247A (en) * 2003-12-12 2005-06-30 Sharp Corp Positioning method of nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor device using its positioning method
JP2006294975A (en) * 2005-04-13 2006-10-26 Mitsubishi Electric Corp Semiconductor laser
JP2006339213A (en) * 2005-05-31 2006-12-14 Sony Corp Semiconductor light emitting device
JP2007180588A (en) * 2007-03-29 2007-07-12 Sanyo Electric Co Ltd Nitride semiconductor laser element
JP2007180589A (en) * 2003-02-07 2007-07-12 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing same
WO2008004437A1 (en) 2006-07-05 2008-01-10 Panasonic Corporation Semiconductor light emitting element and method for fabricating the same
US7327770B2 (en) 2003-04-24 2008-02-05 Sharp Kabushiki Kaisha Nitride semiconductor laser device
US7372077B2 (en) 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
JP2008130832A (en) * 2006-11-21 2008-06-05 Sumitomo Electric Ind Ltd Semiconductor light-emitting element, and manufacturing method of semiconductor light-emitting device
US7387678B2 (en) 2003-06-26 2008-06-17 Sumitomo Electric Industries, Ltd. GaN substrate and method of fabricating the same, nitride semiconductor device and method of fabricating the same
JP2008177438A (en) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd Nitride semiconductor light-emitting element
JP2008198998A (en) * 2007-02-13 2008-08-28 Samsung Electro-Mechanics Co Ltd Semiconductor light-emitting element
JP2008294344A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride-based semiconductor laser element
JP2008294343A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride semiconductor laser element
JP2009177211A (en) * 2003-02-07 2009-08-06 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing the same
JP2011151424A (en) * 2011-05-09 2011-08-04 Sony Corp Multi-beam type semiconductor light-emitting element
JP2011187993A (en) * 2011-06-15 2011-09-22 Sumitomo Electric Ind Ltd Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JP2012074740A (en) * 2011-12-28 2012-04-12 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
KR20180077433A (en) * 2016-12-29 2018-07-09 주식회사 루미스탈 Nitride Semiconductor Device and Method for manufacturing thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177211A (en) * 2003-02-07 2009-08-06 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing the same
US8101465B2 (en) 2003-02-07 2012-01-24 Sanyo Electric Co., Ltd. Method of fabricating a semiconductor device with a back electrode
JP2007180589A (en) * 2003-02-07 2007-07-12 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing same
US7589357B2 (en) 2003-02-07 2009-09-15 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating the same
US7372077B2 (en) 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
US7327770B2 (en) 2003-04-24 2008-02-05 Sharp Kabushiki Kaisha Nitride semiconductor laser device
US7387678B2 (en) 2003-06-26 2008-06-17 Sumitomo Electric Industries, Ltd. GaN substrate and method of fabricating the same, nitride semiconductor device and method of fabricating the same
JP4601944B2 (en) * 2003-12-12 2010-12-22 シャープ株式会社 Method for positioning nitride semiconductor light emitting element and method for manufacturing nitride semiconductor device using this positioning method
JP2005175247A (en) * 2003-12-12 2005-06-30 Sharp Corp Positioning method of nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor device using its positioning method
US7920614B2 (en) 2005-04-13 2011-04-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
WO2006112228A1 (en) * 2005-04-13 2006-10-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
US7643527B2 (en) 2005-04-13 2010-01-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
JP2006294975A (en) * 2005-04-13 2006-10-26 Mitsubishi Electric Corp Semiconductor laser
JP2006339213A (en) * 2005-05-31 2006-12-14 Sony Corp Semiconductor light emitting device
WO2008004437A1 (en) 2006-07-05 2008-01-10 Panasonic Corporation Semiconductor light emitting element and method for fabricating the same
US8178889B2 (en) 2006-07-05 2012-05-15 Panasonic Corporation Semiconductor light emitting element having a single defect concentrated region and a light emitting which is not formed on the single defect concentrated region
JP2008130832A (en) * 2006-11-21 2008-06-05 Sumitomo Electric Ind Ltd Semiconductor light-emitting element, and manufacturing method of semiconductor light-emitting device
JP2008177438A (en) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd Nitride semiconductor light-emitting element
US9018666B2 (en) 2007-02-13 2015-04-28 Samsung Electronics Co., Ltd. Semiconductor light emitting device
JP2010118698A (en) * 2007-02-13 2010-05-27 Samsung Electro-Mechanics Co Ltd Semiconductor light-emitting element
JP2008198998A (en) * 2007-02-13 2008-08-28 Samsung Electro-Mechanics Co Ltd Semiconductor light-emitting element
US8847266B2 (en) 2007-02-13 2014-09-30 Samsung Electronics Co., Ltd. Semiconductor light emitting device
JP2007180588A (en) * 2007-03-29 2007-07-12 Sanyo Electric Co Ltd Nitride semiconductor laser element
JP2008294343A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride semiconductor laser element
JP2008294344A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride-based semiconductor laser element
JP2011151424A (en) * 2011-05-09 2011-08-04 Sony Corp Multi-beam type semiconductor light-emitting element
JP2011187993A (en) * 2011-06-15 2011-09-22 Sumitomo Electric Ind Ltd Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JP2012074740A (en) * 2011-12-28 2012-04-12 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
KR20180077433A (en) * 2016-12-29 2018-07-09 주식회사 루미스탈 Nitride Semiconductor Device and Method for manufacturing thereof

Similar Documents

Publication Publication Date Title
JP2003229638A (en) Nitride compound semiconductor light emitting element
JP3815335B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5028640B2 (en) Nitride semiconductor laser device
US8334577B2 (en) Semiconductor device
JP2006196490A (en) Gan semiconductor light emitting element and its manufacturing method
JP2002246698A (en) Nitride semiconductor light-emitting device and method of manufacturing the same
JP3545197B2 (en) Semiconductor device and method of manufacturing the same
JP2953326B2 (en) Method of manufacturing gallium nitride based compound semiconductor laser device
JP4665394B2 (en) Nitride semiconductor laser device
JP4493041B2 (en) Nitride semiconductor light emitting device
JP2003046201A (en) Semiconductor laser element and method of manufacturing the same
JP4802314B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP4873116B2 (en) Nitride semiconductor laser device and manufacturing method thereof
JP4797257B2 (en) Manufacturing method of semiconductor element
JP4072352B2 (en) Nitride-based compound semiconductor device and manufacturing method thereof
JP4895466B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2003051636A (en) Semiconductor device and manufacturing method therefor
JP5314257B2 (en) Low-defect semiconductor substrate, semiconductor light emitting device, and manufacturing method thereof
JPH11163402A (en) Gan-based semiconductor light-emitting device
JP4786634B2 (en) Nitride-based compound semiconductor device and manufacturing method thereof
JP4043794B2 (en) Method of mounting nitride compound semiconductor device
JP4043795B2 (en) Optical integrated device
JP4481385B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2012004459A (en) Nitride semiconductor element
JP4072351B2 (en) Nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040408

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080404

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080516