JP2003229587A - Thin film photoelectric conversion element and method of manufacturing the same - Google Patents

Thin film photoelectric conversion element and method of manufacturing the same

Info

Publication number
JP2003229587A
JP2003229587A JP2002253864A JP2002253864A JP2003229587A JP 2003229587 A JP2003229587 A JP 2003229587A JP 2002253864 A JP2002253864 A JP 2002253864A JP 2002253864 A JP2002253864 A JP 2002253864A JP 2003229587 A JP2003229587 A JP 2003229587A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
photoelectric conversion
semiconductor layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002253864A
Other languages
Japanese (ja)
Inventor
Manabu Komota
学 古茂田
Kenji Fukui
健次 福井
Kouichirou Shinraku
浩一郎 新楽
Hideki Shiroma
英樹 白間
Hirofumi Senda
浩文 千田
Hideki Matsumura
英樹 松村
Atsushi Masuda
淳 増田
Makoto Konagai
誠 小長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002253864A priority Critical patent/JP2003229587A/en
Publication of JP2003229587A publication Critical patent/JP2003229587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To improve the performance of a photoelectric conversion element including a photoconductive conversion unit by improving the interface characteristic between an i-type layer (photoelectric conversion layer) formed with a catalyst CVD method and one conductivity type semiconductor layer. <P>SOLUTION: In the thin film photoconductive conversion element including at least a photoconductive conversion unit wherein a one conductivity type semiconductor layer 3, an active layer 5 and an inverse conductivity type semiconductor layer 6 are sequentially laminated, a diffusion barrier layer 4 which prevents diffusion of a conductivity type determination element to the active layer 5 from the one conductivity type semiconductor layer 3 is formed between the one conductivity type semiconductor layer 3 and the active layer 5. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は薄膜光電変換素子お
よびその製造方法に関し、特に薄膜多結晶Si太陽電池
や非晶質Si太陽電池などの薄膜光電変換素子およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film photoelectric conversion element and a manufacturing method thereof, and more particularly to a thin film photoelectric conversion element such as a thin film polycrystalline Si solar cell and an amorphous Si solar cell and a manufacturing method thereof.

【0002】[0002]

【従来技術とその課題】光電変換素子の一つである太陽
電池の分野において、バルク型結晶Si太陽電池が実用
化されているが、原料不足の問題や原料コストの問題な
どが最近になって顕在化してきた。このため、低コスト
で且つ高変換効率な薄膜多結晶Si太陽電池や非晶質太
陽電池の実用化が大いに期待されている。
2. Description of the Related Art Bulk-type crystalline Si solar cells have been put into practical use in the field of solar cells, which are one of photoelectric conversion elements, but the problems of raw material shortages and raw material costs have recently become apparent. It has become apparent. Therefore, it is highly expected that a thin film polycrystalline Si solar cell and an amorphous solar cell that are low in cost and have high conversion efficiency will be put into practical use.

【0003】このなかで中枢課題とされているのが、高
品質なSi膜を高速に製膜する手法を確立することであ
り、この製膜の手法として近年着目されているのが触媒
CVD法である。
Among these, a central issue is to establish a method for forming a high-quality Si film at a high speed, and the catalytic CVD method has recently received attention as a method for forming this film. Is.

【0004】触媒CVD法とは、触媒体(W、Ta等の
高融点金属)を配設したチャンバ内に原料ガスを供給し
て、前記触媒体において、原料ガスを接触分解させるこ
とにより堆積種を発生させる製膜形成手法の一種であ
る。
In the catalytic CVD method, a source gas is supplied into a chamber in which a catalyst body (a high melting point metal such as W or Ta) is provided, and the source gas is catalytically decomposed in the catalyst body to deposit a deposition species. It is a kind of film forming method for generating

【0005】この触媒CVD法は装置構成が単純でガス
利用効率が高いなどの特長を有し、Si膜の形成におい
ても高速成膜と大面積製膜とが可能である。また、触媒
CVDで形成したa−SiはプラズマCVD法などで形
成したa−Siに比して、低含有水素量および低欠陥密
度であることが既に実証されている。
The catalytic CVD method has features such as a simple apparatus configuration and high gas utilization efficiency, and is capable of high-speed film formation and large-area film formation even when forming a Si film. Further, it has already been proved that a-Si formed by catalytic CVD has a low hydrogen content and a low defect density as compared with a-Si formed by a plasma CVD method or the like.

【0006】しかしながら、pin構造の非晶質Siシ
ングルセルにおいて、p型またはn型の非晶質Si層を
形成した後に、i型の非晶質Si層(活性層)を触媒C
VD法で形成し、さらにn型またはp型の非晶質Si層
を形成する方法で光電変換ユニットを作製した場合、こ
のユニット内には充分な拡散電位が生じず、結果として
素子特性が低下するという問題があった。
However, in a pin-structured amorphous Si single cell, after the p-type or n-type amorphous Si layer is formed, the i-type amorphous Si layer (active layer) is applied to the catalyst C.
When a photoelectric conversion unit is manufactured by a method of forming by VD method and further forming an n-type or p-type amorphous Si layer, sufficient diffusion potential is not generated in this unit, resulting in deterioration of device characteristics. There was a problem of doing.

【0007】[0007]

【課題を解決するための手段】本発明者等は、鋭意研究
の結果、触媒CVD法で製膜するときには、気相中に多
量の原子状水素が存在することからエッチング条件とな
り、このため下層の一導電型半導体層がエッチングダメ
ージを受けたり、この一導電型半導体層のエッチングで
気相中に放出された導電型決定元素などの不純物原子が
i型層を形成する時に取り込まれることを見出した。
As a result of earnest research, the inventors of the present invention have found that when a film is formed by the catalytic CVD method, a large amount of atomic hydrogen is present in the vapor phase, which causes etching conditions, and therefore the lower layer. It has been found that the one-conductivity-type semiconductor layer is damaged by etching, and impurity atoms such as the conductivity-type determinants released into the gas phase by the etching of the one-conductivity-type semiconductor layer are taken in when the i-type layer is formed. It was

【0008】そこで、請求項1の薄膜光電変換素子は、
一導電型半導体層と活性層と逆導電型半導体層とを順次
積層した光電変換ユニットを少なくとも1つ含む薄膜光
電変換素子において、前記一導電型半導体層と活性層と
の間に前記一導電型半導体層から前記活性層への導電型
決定元素の拡散を防止する拡散バリア層を設けたことを
特徴とする。
Therefore, the thin film photoelectric conversion device according to claim 1 is
A thin-film photoelectric conversion device including at least one photoelectric conversion unit in which a one-conductivity type semiconductor layer, an active layer, and a reverse-conductivity type semiconductor layer are sequentially stacked, wherein the one-conductivity type semiconductor layer and the one-conductivity type are provided between the one-conductivity type semiconductor layer and the active layer. A diffusion barrier layer for preventing diffusion of the conductivity type determining element from the semiconductor layer to the active layer is provided.

【0009】このとき、前記拡散バリア層がSiCから
成ることが光透過性と短絡電流値の点で望ましく、ま
た、前記SiCが実質的に真性な非単結晶SiCである
ことがさらに望ましい。
At this time, it is preferable that the diffusion barrier layer is made of SiC in terms of light transmission and short-circuit current value, and it is further preferable that the SiC is substantially intrinsic non-single-crystal SiC.

【0010】また、スループットの点では、前記拡散バ
リア層と活性層とがともに非晶質Si層から成ることが
望ましい。そして欠陥密度と光安定性の点で前記拡散バ
リア層の膜中含有水素が6〜15原子%であることが望
ましい。また、前記拡散バリア層の膜厚が20〜100
nmであり、前記活性層の膜厚が100〜700nmで
あることが望ましい。
From the viewpoint of throughput, it is desirable that both the diffusion barrier layer and the active layer are made of an amorphous Si layer. From the viewpoint of defect density and photostability, it is preferable that the content of hydrogen in the film of the diffusion barrier layer is 6 to 15 atom%. The thickness of the diffusion barrier layer is 20 to 100.
It is desirable that the thickness of the active layer be 100 to 700 nm.

【0011】また、充分な内部電界が形成され、主に開
放電圧、曲線因子を向上させるために、前記一導電型半
導体層の導電型決定元素がAl、B、P、GaおよびA
sのうちのいずれかであり、且つその含有濃度が1×1
18cm-3以上であることが望ましい。
Further, in order to form a sufficient internal electric field and mainly improve the open circuit voltage and fill factor, the conductivity type determining elements of the one conductivity type semiconductor layer are Al, B, P, Ga and A.
s, and the content concentration is 1 × 1
It is preferably 0 18 cm −3 or more.

【0012】また、請求項8に係る薄膜光電変換素子の
製造方法は、一導電型半導体層と活性層と逆導電型半導
体層とを順次積層した光電変換ユニットを少なくとも1
つ含む薄膜光電変換素子の製造方法において、前記一導
電型半導体層上に拡散バリア層を形成した後、前記活性
層を触媒CVD法で形成することを特徴とする。
Further, in the method of manufacturing a thin film photoelectric conversion element according to an eighth aspect, at least one photoelectric conversion unit in which one conductive type semiconductor layer, an active layer and an opposite conductive type semiconductor layer are sequentially laminated is provided.
In the method for manufacturing a thin film photoelectric conversion element including the above, the diffusion barrier layer is formed on the one conductivity type semiconductor layer, and then the active layer is formed by a catalytic CVD method.

【0013】[0013]

【発明の実施の形態】以下、薄膜非晶質Si太陽電池を
例にとって本発明の実施形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below by taking a thin film amorphous Si solar cell as an example.

【0014】図1において、1は基板、2は酸化物層、
3は一導電型半導体層、4は拡散バリア層、5は活性
層、6は逆導電型半導体層、7は酸化物層、8は電極
層、9は取出電極である。
In FIG. 1, 1 is a substrate, 2 is an oxide layer,
Reference numeral 3 is a one conductivity type semiconductor layer, 4 is a diffusion barrier layer, 5 is an active layer, 6 is an opposite conductivity type semiconductor layer, 7 is an oxide layer, 8 is an electrode layer, and 9 is an extraction electrode.

【0015】図1に示す薄膜光電変換素子では、ガラス
基板1上に、In、SnまたはZnのうち少なくとも一
種を含む酸化物層2、p型またはn型の非晶質Siまた
はSiC層から成る一導電型半導体層3、実質的に真性
な非晶質SiCから成る拡散バリア層4、実質的に真性
な非晶質Siから成る活性層5、n型またはp型の非単
結晶Si層から成る逆導電型半導体6、In、Snまた
はZnのうち少なくとも一種を含む酸化物層7、および
Ti、Ni、W、Mo、Cu、AgまたはAlのうち少
なくとも1種から成る金属膜、またはその窒化膜、ある
いはそのシリサイド膜から成る電極層8から成る。な
お、取出電極9は酸化物層2の上面に形成されている。
このうち、一導電型半導体層3、拡散バリア層4、活性
層5、および逆導電型半導体6で一つの光電変換ユニッ
トが形成される。
In the thin film photoelectric conversion element shown in FIG. 1, an oxide layer 2 containing at least one of In, Sn and Zn and a p-type or n-type amorphous Si or SiC layer is formed on a glass substrate 1. From one conductivity type semiconductor layer 3, diffusion barrier layer 4 made of substantially intrinsic amorphous SiC, active layer 5 made of substantially intrinsic amorphous Si, n-type or p-type non-single-crystal Si layer The opposite conductivity type semiconductor 6, the oxide layer 7 containing at least one of In, Sn or Zn, and the metal film made of at least one of Ti, Ni, W, Mo, Cu, Ag or Al, or nitriding thereof. The electrode layer 8 is formed of a film or its silicide film. The extraction electrode 9 is formed on the upper surface of the oxide layer 2.
Of these, one photoelectric conversion unit is formed by the one conductivity type semiconductor layer 3, the diffusion barrier layer 4, the active layer 5, and the opposite conductivity type semiconductor 6.

【0016】ここで、「実質的に真性」とは、ノンドー
プまたは極微量のドーピング条件下で製膜され、フェル
ミレベルがほぼバンドギャップの中間近傍に存在する膜
特性を表すものとする。
Here, "substantially intrinsic" means a film characteristic that the film is formed under non-doping or very small amount doping conditions and the Fermi level exists near the middle of the band gap.

【0017】このような薄膜光電変換素子の製造にあた
っては、まず、凹凸構造を有した酸化物層2を形成した
ガラス基板1上にp型またはn型の非晶質SiまたはS
iC層から成る一導電型半導体層3を例えばCVD法な
どの真空製膜法で膜厚5〜50nm程度となるように形
成する。このとき、p型またはn型の非晶質Siまたは
SiC層から成る一導電型半導体層3の導電型決定元素
のドーピング濃度を1×1018cm-3以上として、拡散
電位差を増大させることで素子特性を向上させることが
できる。
In manufacturing such a thin film photoelectric conversion element, first, p-type or n-type amorphous Si or S is formed on a glass substrate 1 on which an oxide layer 2 having an uneven structure is formed.
The one-conductivity-type semiconductor layer 3 made of the iC layer is formed by a vacuum film forming method such as a CVD method so as to have a film thickness of about 5 to 50 nm. At this time, the doping concentration of the conductivity determining element of the one conductivity type semiconductor layer 3 formed of the p-type or n-type amorphous Si or SiC layer is set to 1 × 10 18 cm −3 or more to increase the diffusion potential difference. The device characteristics can be improved.

【0018】前記一導電型半導体層の導電型決定元素
は、Al、B、P、GaおよびAsのうちのいずれかで
あることが望ましい。その理由はIIIまたはV族元素のな
かにおいて、Si中における固溶度が比較的高いためで
ある。
The conductivity determining element of the one conductivity type semiconductor layer is preferably any one of Al, B, P, Ga and As. The reason for this is that among the group III or V elements, the solid solubility in Si is relatively high.

【0019】次に、p型もしくはn型の非晶質Siまた
はSiCから成る一導電半導体層3上に同じくCVD法
などの真空製膜法で実質的に真性な非晶質SiCから成
る拡散バリア層4を膜厚20〜30nm程度となるよう
に形成する。この拡散バリア層4は、SiとCとの結合
エネルギーが大きいことから、原子状水素を主とするエ
ッチング種に対するエッチング耐性が良好であり、p型
またはn型の非晶質SiまたはSiCから成る一導電型
半導体層3と実質的に真性な非晶質Siから成る活性層
5との間に不純物(導電型決定元素)の相互拡散を抑止
する機能を有する。また、p型またはn型の非晶質Si
またはSiCから成る一導電型半導体層3と実質的に真
性な非晶質Siから成る活性層5との間のバンドギャッ
プの不連続を緩和する効果も有する。
Next, a diffusion barrier made of substantially intrinsic amorphous SiC is also formed on the one conductive semiconductor layer 3 made of p-type or n-type amorphous Si or SiC by a vacuum film forming method such as the CVD method. The layer 4 is formed to have a film thickness of about 20 to 30 nm. Since the diffusion barrier layer 4 has a large binding energy between Si and C, it has a good etching resistance against etching species mainly composed of atomic hydrogen, and is made of p-type or n-type amorphous Si or SiC. It has a function of suppressing mutual diffusion of impurities (conductivity determining elements) between the one conductivity type semiconductor layer 3 and the active layer 5 made of substantially intrinsic amorphous Si. In addition, p-type or n-type amorphous Si
Alternatively, it also has an effect of alleviating the discontinuity of the band gap between the one-conductivity-type semiconductor layer 3 made of SiC and the active layer 5 made of substantially intrinsic amorphous Si.

【0020】さらに、非晶質SiCから成る拡散バリア
層4は、SiCがワイドギャップ材料であって光透過性
が高く、いわゆる窓層として短絡電流値を大幅に向上さ
せることができる。
Furthermore, since the diffusion barrier layer 4 made of amorphous SiC has a wide gap material of SiC and has high light transmittance, the so-called window layer can greatly improve the short-circuit current value.

【0021】なお、拡散バリア層4として、SiCの中
でも非晶質SiCが好適であるのは、作製が比較的容易
であり、且つ原子状水素に対するエッチング耐性が高い
ためである。その中でも実質的に真性なものが好適なの
は、SiCに不純物がほとんど含まれないので、同界面
において良好な電界接合の形成が可能となるからであ
る。
Amorphous SiC among SiC is suitable for the diffusion barrier layer 4 because it is relatively easy to manufacture and has high etching resistance against atomic hydrogen. Among them, the substantially intrinsic one is preferable because the SiC contains almost no impurities, and thus a good electric field junction can be formed at the same interface.

【0022】次に、実質的に真性な非晶質Siから成る
活性層5を触媒CVD法で膜厚約0.3〜0.5μmと
なるように形成する。
Next, the active layer 5 made of substantially intrinsic amorphous Si is formed by the catalytic CVD method so as to have a film thickness of about 0.3 to 0.5 μm.

【0023】例えば原料ガスとしてSiH4/H2=30
/15sccm、基板温度を340℃〜350℃、W
(タングステン)触媒体温度を1600〜1800℃、
触媒体−基板間距離を4〜6cm、成膜圧力を0.5〜
5Pa程度とする。
For example, as a source gas, SiH 4 / H 2 = 30
/ 15 sccm, substrate temperature 340 ° C. to 350 ° C., W
(Tungsten) catalyst body temperature is 1600 to 1800 ° C.,
The distance between the catalyst body and the substrate is 4 to 6 cm, and the film forming pressure is 0.5 to
It is about 5 Pa.

【0024】上記の条件において得られる非晶質Siの
層はスピン密度1×1018cm-3程度と低欠陥密度であ
り、膜中水素量も4%前後と比較的小さい。堆積速度も
2nm/sec以上であり、高速製膜が容易である。
The amorphous Si layer obtained under the above conditions has a low spin density of about 1 × 10 18 cm -3 and a low defect density, and the amount of hydrogen in the film is relatively small at around 4%. The deposition rate is 2 nm / sec or more, and high-speed film formation is easy.

【0025】次に、非晶質Siから成る活性層5上にn
型またはp型の非単結晶Siから成る逆導電型半導体層
6をCVD法などの真空製膜法で膜厚5〜100nm程
度となるように形成する。
Next, n is formed on the active layer 5 made of amorphous Si.
A reverse conductivity type semiconductor layer 6 made of non-single-crystal Si of p-type or p-type is formed by a vacuum film forming method such as a CVD method so as to have a film thickness of about 5 to 100 nm.

【0026】さらに、非単結晶Siから成る逆導電型半
導体6上にITOまたはZnOなどの酸化物層7をスパ
ッタリング法またはMOCVD法などで形成し、次いで
AgまたはAlなどの金属から成る電極層8をスパッタ
リング法または蒸着法などで形成する。
Further, an oxide layer 7 such as ITO or ZnO is formed on the reverse conductivity type semiconductor 6 made of non-single crystal Si by a sputtering method or a MOCVD method, and then an electrode layer 8 made of a metal such as Ag or Al. Are formed by a sputtering method or a vapor deposition method.

【0027】最後に酸化物層2上にAgまたはAlなど
の金属から成る取り出し電極9を形成する。
Finally, the extraction electrode 9 made of a metal such as Ag or Al is formed on the oxide layer 2.

【0028】以上の手法で作製された非晶質Si太陽電
池素子の明特性を図2に示し、深さ方向のB(ボロン)
濃度の測定結果を図3に示す。また、比較のために、非
晶質SiC層から成る拡散バリア層4を形成しない素子
の明特性を図4に示し、その深さ方向のB(ボロン)濃
度の測定結果を図5に示す。なお、深さ方向のB(ボロ
ン)濃度の測定はSIMS(二次イオン質量分析:Se
condary Ion Mass Spectros
copy)装置で行なった。
FIG. 2 shows the light characteristics of the amorphous Si solar cell element manufactured by the above method, and B (boron) in the depth direction is shown.
The concentration measurement results are shown in FIG. For comparison, FIG. 4 shows the light characteristics of the element in which the diffusion barrier layer 4 made of the amorphous SiC layer is not formed, and FIG. 5 shows the measurement result of the B (boron) concentration in the depth direction. The B (boron) concentration in the depth direction is measured by SIMS (secondary ion mass spectrometry: Se).
conductivity Ion Mass Spectros
copy) device.

【0029】図2および図4に示すように、従来の薄膜
光電変換素子では、短絡電流(Jph)が7mA/cm2
で、開放電圧(V)が0.5Vであったのに対し、本発
明のようにp型またはn型の非晶質SiまたはSiC層
から成る一導電型半導体層3と実質的に真性な非晶質S
i層から成る活性層5との間に半導体非晶質SiC層4
を介在させると、短絡電流(Jph)が15mA/cm2
で、開放電流(V)が0.68Vとなり、素子特性が飛
躍的に向上することがわかる。
As shown in FIGS. 2 and 4, in the conventional thin film photoelectric conversion element, the short-circuit current (J ph ) is 7 mA / cm 2.
While the open circuit voltage (V) was 0.5 V, it is substantially intrinsic to the one conductivity type semiconductor layer 3 made of a p-type or n-type amorphous Si or SiC layer as in the present invention. Amorphous S
The semiconductor amorphous SiC layer 4 is formed between the i-layer and the active layer 5.
, The short-circuit current (J ph ) is 15 mA / cm 2
Then, it is found that the open current (V) becomes 0.68 V and the device characteristics are dramatically improved.

【0030】また、図3および図5に示すように、従来
の薄膜光電変換素子では、約0.3μm深さに存在する
p−i接合部において、下地層中から活性層へのBの拡
散が見られ、活性層中においてB濃度が1×1018cm
-3と非常に高濃度となっている。このため、p−i接合
部において充分な拡散電位差が得られておらず、素子特
性を悪化せしめている。一方、本発明の薄膜光電変換素
子では、約0.2μm深さに存在するp−i接合部での
B濃度のプロファイルが急峻に変化しており、良好な接
合部が形成されている。以上のことから、非晶質SiC
層が導電型決定元素(ボロン)に対して拡散バリア効果
を有していることが実証された。
Further, as shown in FIGS. 3 and 5, in the conventional thin film photoelectric conversion element, B is diffused from the underlayer to the active layer at the p-i junction existing at a depth of about 0.3 μm. Is observed, and the B concentration is 1 × 10 18 cm in the active layer.
It is a very high concentration of -3 . For this reason, a sufficient diffusion potential difference is not obtained at the p-i junction, which deteriorates the device characteristics. On the other hand, in the thin film photoelectric conversion element of the present invention, the B concentration profile at the pi junction existing at a depth of about 0.2 μm changes sharply, and a good junction is formed. From the above, amorphous SiC
It was demonstrated that the layer has a diffusion barrier effect on the conductivity determining element (boron).

【0031】なお、前記一導電型半導体層3を触媒CV
D法により形成しても良い。その場合、酸化物層2と一
導電型半導体層3との間に耐還元性に優れた薄膜層を設
けることが望ましい。例えば、上記薄膜層としてはZn
O等をスパッタリングにより形成するとよい。
The one conductivity type semiconductor layer 3 is formed on the catalyst CV.
It may be formed by the D method. In that case, it is desirable to provide a thin film layer having excellent reduction resistance between the oxide layer 2 and the one conductivity type semiconductor layer 3. For example, the thin film layer may be Zn
O or the like may be formed by sputtering.

【0032】また、前記拡散バリア層4としては、前述
のSiCの他に、プラズマCVD法により形成される非
晶質Siから成るものであっても良い。この場合、拡散
バリア層4は導電型決定元素の拡散を防止する機能を有
するとともに光活性を有するものである。本発明では、
拡散バリア層4が光活性を有する場合であっても、前記
導電型決定元素の拡散を防止する機能を有するものは活
性層ではなく、拡散バリア層4である。
Further, the diffusion barrier layer 4 may be made of amorphous Si formed by a plasma CVD method in addition to the above-mentioned SiC. In this case, the diffusion barrier layer 4 has a function of preventing diffusion of the conductivity type determining element and also has photoactivity. In the present invention,
Even if the diffusion barrier layer 4 has photoactivity, it is not the active layer but the diffusion barrier layer 4 that has the function of preventing the diffusion of the conductivity type determining element.

【0033】以下に、前記拡散バリア層4がプラズマC
VD法により形成される非晶質Siから成る場合の実施
形態を説明する。
Below, the diffusion barrier layer 4 is plasma C
An embodiment in the case of using amorphous Si formed by the VD method will be described.

【0034】前記一導電型半導体層3上に実質的に真性
な非晶質Si層をプラズマCVD法により、好適には厚
さ20〜100nmの厚さで形成し、拡散バリア層4を
設ける。続いて、別の非晶質Si層を触媒CVD法によ
り、好適には厚さ100〜700nmで形成し、活性層
5を設ける。このように拡散バリア層4と活性層5とを
ともに非晶質Siで構成する場合、製造ガスが同一で製
膜手法を変更するだけでよいので、高スループットを実
現できる。
A substantially intrinsic amorphous Si layer is formed on the one conductivity type semiconductor layer 3 by a plasma CVD method, preferably with a thickness of 20 to 100 nm, and a diffusion barrier layer 4 is provided. Subsequently, another amorphous Si layer is formed by a catalytic CVD method, preferably with a thickness of 100 to 700 nm, and the active layer 5 is provided. When both the diffusion barrier layer 4 and the active layer 5 are made of amorphous Si as described above, high throughput can be realized because the manufacturing gas is the same and only the film forming method is changed.

【0035】本実施形態において、非晶質Siからなる
拡散バリア層4をプラズマCVD法により形成する際、
プラズマCVD法では気相中の原子状水素密度が低く、
エッチング作用も弱い。したがって、拡散バリア層4を
設けるときに、前記一導電型半導体層3の導電型決定元
素を拡散させ難い。加えて、この拡散バリア層4は触媒
CVD法により活性層5を設ける際に、それ自身がエッ
チングされるが、前記一導電型半導体層3の導電型決定
元素の拡散を防止する。
In this embodiment, when the diffusion barrier layer 4 made of amorphous Si is formed by the plasma CVD method,
In the plasma CVD method, the atomic hydrogen density in the gas phase is low,
The etching action is also weak. Therefore, when providing the diffusion barrier layer 4, it is difficult to diffuse the conductivity determining element of the one conductivity type semiconductor layer 3. In addition, the diffusion barrier layer 4 is etched by itself when the active layer 5 is provided by the catalytic CVD method, but prevents diffusion of the conductivity determining element of the one conductivity type semiconductor layer 3.

【0036】このとき、前記拡散バリア層4の膜厚が2
0nm未満の場合には前記拡散防止作用が不十分となる
恐れがあり、また100nmを超える場合には拡散バリ
ア層4内での光劣化が大きくなるために安定化後の素子
効率が低下する恐れがある。他方、活性層5の膜厚が1
00nm未満の場合には活性層での光吸収が不充分とな
り、短絡電流値が低下する恐れがある。一方、700n
m以上の場合には活性層5の抵抗値が増大するために曲
線因子等の特性が低下する恐れがある。
At this time, the thickness of the diffusion barrier layer 4 is 2
If it is less than 0 nm, the diffusion preventing effect may be insufficient, and if it exceeds 100 nm, photodeterioration in the diffusion barrier layer 4 may be large, resulting in a decrease in device efficiency after stabilization. There is. On the other hand, the thickness of the active layer 5 is 1
If it is less than 00 nm, light absorption in the active layer becomes insufficient, and the short-circuit current value may decrease. On the other hand, 700n
If it is more than m, the resistance value of the active layer 5 increases, so that the characteristics such as fill factor may deteriorate.

【0037】前記非晶質Siからなる拡散バリア層4と
活性層5を低欠陥密度且つ高光安定性を有するものとす
るためには、拡散バリア層4の膜中水素量を6〜15原
子%、活性層5の膜中水素量を1〜5原子%とすること
が好ましい。各範囲以下の場合には、欠陥密度が高くな
る恐れがあり、各範囲を超えると光安定性が低下する恐
れがある。
In order to make the diffusion barrier layer 4 and the active layer 5 made of amorphous Si have low defect density and high photostability, the amount of hydrogen in the diffusion barrier layer 4 is 6 to 15 atomic%. It is preferable that the amount of hydrogen in the film of the active layer 5 be 1 to 5 atom%. If it is less than each range, the defect density may increase, and if it exceeds each range, the photostability may decrease.

【0038】次に、前記拡散バリア層4および/または
活性層5の他の材質としては、非晶質SiGeおよびβ
−FeSi2があるが、これらに限定されるものではな
い。拡散バリア層4としては、前記導電型決定元素の拡
散を防止するものであれば任意の材質で構成することが
できる。
Next, other materials for the diffusion barrier layer 4 and / or the active layer 5 include amorphous SiGe and β.
There are -FeSi 2, but not limited thereto. The diffusion barrier layer 4 can be made of any material as long as it prevents diffusion of the conductivity type determining element.

【0039】なお、上記例では基板としてガラスを用い
たスーパーストレート型の素子を説明したが、SUS基
板などを用いるサブストレート型素子としてもよく、ま
た光電変換ユニットを複数積層したタンデム構造の素子
に適用した場合にも同様の効果が得られる。
In the above example, the superstrate type element using glass as the substrate has been described, but it may be a substrate type element using a SUS substrate or the like, or a tandem structure element in which a plurality of photoelectric conversion units are laminated. The same effect can be obtained when applied.

【0040】[0040]

【発明の効果】以上のように、請求項1に係る発明によ
れば、一導電型半導体層と活性層との間に前記一導電型
半導体層から前記活性層への導電型決定元素の拡散を防
止する拡散バリア層を設けたことにより良好な電界接合
の形成が実現でき、素子特性が向上する。
As described above, according to the invention of claim 1, the diffusion of the conductivity determining element from the one conductivity type semiconductor layer to the active layer is performed between the one conductivity type semiconductor layer and the active layer. By providing the diffusion barrier layer for preventing the above, favorable electric field junction formation can be realized, and the device characteristics are improved.

【0041】また、請求項2に係る発明によれば、前記
拡散バリア層をワイドギャップ材料であるSiCで構成
したことから光透過性と短絡電流値をより向上させるこ
とができる。
According to the second aspect of the present invention, since the diffusion barrier layer is made of SiC which is a wide gap material, the light transmittance and the short circuit current value can be further improved.

【0042】また、請求項3に係る発明によれば、前記
SiCが実質的に真性な非単結晶SiCであることによ
り、前記拡散バリア層に不純物がほとんど含まれず、し
たがって、光透過性と短絡電流値をより向上させること
ができる。
According to the third aspect of the present invention, since the SiC is substantially non-single crystalline SiC, the diffusion barrier layer contains almost no impurities. The current value can be further improved.

【0043】また、請求項4に係る発明によれば、前記
拡散バリア層と活性層とをともに非晶質Siで構成する
ので、これらの層を設ける際にガスを同一として製膜手
法を変更するだけよく、したがって高スループットを実
現できる。
Further, according to the invention of claim 4, since both the diffusion barrier layer and the active layer are made of amorphous Si, the gas forming process is changed by using the same gas when these layers are provided. Therefore, high throughput can be achieved.

【0044】また、請求項5に係る発明によれば、請求
項4の薄膜光電変換素子において、前記拡散バリア層の
膜中含有水素を6〜15原子%とすることから、前記拡
散バリア層の欠陥密度を低く抑え且つ光安定性を高く維
持することができる。
Further, according to the invention of claim 5, in the thin film photoelectric conversion element of claim 4, since the hydrogen content in the film of the diffusion barrier layer is 6 to 15 atom%, the diffusion barrier layer has It is possible to suppress the defect density to a low level and maintain a high light stability.

【0045】また、請求項6に係る発明によれば、請求
項4の薄膜光電変換素子において、前記拡散バリア層の
膜厚を20〜100nmとすることから、拡散防止作用
を十分なものとすることができ、且つ光安定性を高く維
持することができ、さらに前記活性層の膜厚を100〜
700nmとすることから、短絡電流値の低下を抑える
ことができ、且つ、活性層の抵抗値を低く抑えて曲線因
子等の特性を低下させないようにすることができる。
Further, according to the invention of claim 6, in the thin film photoelectric conversion element of claim 4, the diffusion barrier layer has a film thickness of 20 to 100 nm, so that the diffusion preventing effect is sufficient. In addition, the light stability can be maintained high, and the thickness of the active layer can be 100 to
Since the thickness is 700 nm, it is possible to suppress a decrease in the short-circuit current value, and it is possible to suppress the resistance value of the active layer to be low and prevent the characteristics such as the fill factor from being deteriorated.

【0046】また、請求項7に係る発明によれば、前記
一導電型半導体層の導電型決定元素がAl、B、P、G
aおよびAsのうちのいずれかであり、且つその含有濃
度を1×1018cm-3以上の高濃度とすることから、充
分な内部電界が形成され、主に開放電圧、曲線因子を向
上させることができる。
According to the invention of claim 7, the conductivity determining element of the one conductivity type semiconductor layer is Al, B, P or G.
Since it is either a or As and its content concentration is set to a high concentration of 1 × 10 18 cm −3 or more, a sufficient internal electric field is formed, and mainly the open-circuit voltage and fill factor are improved. be able to.

【0047】また、請求項8に係る薄膜光電変換素子の
製造方法では、一導電型半導体層と活性層と逆導電型半
導体層とを順次積層した光電変換ユニットを少なくとも
1つ含む薄膜光電変換素子の製造方法において前記一導
電型半導体層上に前記一導電型半導体層から前記活性層
への導電型決定元素の拡散を防止する拡散バリア層を形
成した後、前記活性層を触媒CVD法で形成することか
ら、良好な電界接合の形成が実現され、素子特性が向上
する。
Further, in the method of manufacturing a thin film photoelectric conversion element according to the present invention, the thin film photoelectric conversion element includes at least one photoelectric conversion unit in which one conductive type semiconductor layer, an active layer and an opposite conductive type semiconductor layer are sequentially stacked. Forming a diffusion barrier layer on the one conductivity type semiconductor layer to prevent diffusion of a conductivity type determining element from the one conductivity type semiconductor layer to the active layer, and then forming the active layer by a catalytic CVD method. As a result, excellent electric field junction formation is realized, and the device characteristics are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る薄膜光電変換素子の一実施形態を
示す概略図である。
FIG. 1 is a schematic view showing an embodiment of a thin film photoelectric conversion element according to the present invention.

【図2】本発明に係る薄膜光電変換素子の明特性を示す
図である。
FIG. 2 is a diagram showing light characteristics of a thin film photoelectric conversion element according to the present invention.

【図3】本発明に係る薄膜光電変換素子のボロン濃度の
SIMS(SecondaryIon Mass Sp
ectroscopy)分析結果を示す図である。
FIG. 3 is a SIMS (Secondary Ion Mass Sp) of boron concentration of the thin film photoelectric conversion device according to the present invention.
It is a figure which shows the analysis result.

【図4】従来の薄膜光電変換素子の明特性を示す図であ
る。
FIG. 4 is a diagram showing a light characteristic of a conventional thin film photoelectric conversion element.

【図5】従来の薄膜光電変換素子のボロン濃度のSIM
S分析結果を示す図である。
FIG. 5: SIM of boron concentration in a conventional thin film photoelectric conversion element
It is a figure which shows S analysis result.

【符号の説明】[Explanation of symbols]

1 基板 2 酸化物層 3 一導電型半導体層 4 拡散バリア層 5 活性層 6 逆導電型半導体層 7 酸化物層 8 電極層 9 取出電極 1 substrate 2 Oxide layer 3 One conductivity type semiconductor layer 4 Diffusion barrier layer 5 Active layer 6 Reverse conductivity type semiconductor layer 7 Oxide layer 8 electrode layers 9 Extraction electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白間 英樹 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 (72)発明者 千田 浩文 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 (72)発明者 松村 英樹 石川県金沢市南四十万3丁目93番地 (72)発明者 増田 淳 石川県金沢市馬替2丁目56番地の1 (72)発明者 小長井 誠 東京都大田区東矢口3丁目3番地の3− 801 Fターム(参考) 5F051 AA05 CA05 CA14 CA34 CB15 DA04 FA02 FA19 GA03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideki Shirama             6 at 1166 Haseno, Jamizo-cho, Yokaichi-shi, Shiga               Kyocera Corporation Shiga Yokaichi Factory (72) Inventor Hirofumi Senda             6 at 1166 Haseno, Jamizo-cho, Yokaichi-shi, Shiga               Kyocera Corporation Shiga Yokaichi Factory (72) Inventor Hideki Matsumura             93, 43, Minami, 43, Kanazawa, Ishikawa Prefecture (72) Inventor Jun Masuda             1 of 2-56 Mamagai, Kanazawa, Ishikawa Prefecture (72) Inventor Makoto Konagai             3- 3-3, Higashiyaguchi, Ota-ku, Tokyo             801 F term (reference) 5F051 AA05 CA05 CA14 CA34 CB15                       DA04 FA02 FA19 GA03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体層と活性層と逆導電型半
導体層とを順次積層した光電変換ユニットを少なくとも
1つ含む薄膜光電変換素子において、前記一導電型半導
体層と活性層との間に前記一導電型半導体層から前記活
性層への導電型決定元素の拡散を防止する拡散バリア層
を設けたことを特徴とする薄膜光電変換素子。
1. A thin-film photoelectric conversion device including at least one photoelectric conversion unit in which a semiconductor layer of one conductivity type, an active layer, and a semiconductor layer of opposite conductivity type are sequentially stacked, and between the semiconductor layer of one conductivity type and the active layer. A thin film photoelectric conversion element, further comprising a diffusion barrier layer for preventing diffusion of a conductivity type determining element from the one conductivity type semiconductor layer to the active layer.
【請求項2】 前記拡散バリア層がSiCから成ること
を特徴とする請求項1記載の薄膜光電変換素子。
2. The thin film photoelectric conversion element according to claim 1, wherein the diffusion barrier layer is made of SiC.
【請求項3】 前記SiCが実質的に真性な非単結晶S
iCであることを特徴とする請求項2記載の薄膜光電変
換素子。
3. The non-single crystal S in which the SiC is substantially intrinsic
The thin film photoelectric conversion element according to claim 2, wherein the thin film photoelectric conversion element is iC.
【請求項4】 前記拡散バリア層と活性層とがともに非
晶質Siから成ることを特徴とする請求項1記載の薄膜
光電変換素子。
4. The thin film photoelectric conversion element according to claim 1, wherein both the diffusion barrier layer and the active layer are made of amorphous Si.
【請求項5】 前記拡散バリア層の膜中含有水素が6〜
15原子%であることを特徴とする請求項4記載の薄膜
光電変換素子。
5. The hydrogen content in the film of the diffusion barrier layer is 6 to 6.
The thin film photoelectric conversion element according to claim 4, wherein the content is 15 atomic%.
【請求項6】 前記拡散バリア層の膜厚が20〜100
nmであり、前記活性層の膜厚が100〜700nmで
あることを特徴とする請求項4記載の薄膜光電変換素
子。
6. The film thickness of the diffusion barrier layer is 20 to 100.
5. The thin film photoelectric conversion element according to claim 4, wherein the thickness of the active layer is 100 to 700 nm.
【請求項7】 前記一導電型半導体層の導電型決定元素
がAl、B、P、GaおよびAsのうちのいずれかであ
り、且つその含有濃度が1×1018cm-3以上であるこ
とを特徴とする請求項1乃至6記載の薄膜光電変換素
子。
7. The conductivity determining element of the one conductivity type semiconductor layer is any one of Al, B, P, Ga and As, and the content concentration thereof is 1 × 10 18 cm −3 or more. 7. The thin film photoelectric conversion element according to claim 1, wherein
【請求項8】 一導電型半導体層と活性層と逆導電型半
導体層とを順次積層した光電変換ユニットを少なくとも
1つ含む薄膜光電変換素子の製造方法において、前記一
導電型半導体層上に前記一導電型半導体層から前記活性
層への導電型決定元素の拡散を防止する拡散バリア層を
形成した後、前記活性層を触媒CVD法で形成すること
を特徴とする薄膜光電変換素子の製造方法。
8. A method of manufacturing a thin film photoelectric conversion element, comprising at least one photoelectric conversion unit in which a semiconductor layer of one conductivity type, an active layer, and a semiconductor layer of opposite conductivity type are sequentially stacked, wherein the semiconductor layer is formed on the one conductivity type semiconductor layer. A method for manufacturing a thin film photoelectric conversion element, comprising forming a diffusion barrier layer for preventing diffusion of a conductivity type determining element from one conductivity type semiconductor layer to the active layer, and then forming the active layer by a catalytic CVD method. .
JP2002253864A 2001-11-28 2002-08-30 Thin film photoelectric conversion element and method of manufacturing the same Pending JP2003229587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253864A JP2003229587A (en) 2001-11-28 2002-08-30 Thin film photoelectric conversion element and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001362161 2001-11-28
JP2001-362161 2001-11-28
JP2002253864A JP2003229587A (en) 2001-11-28 2002-08-30 Thin film photoelectric conversion element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003229587A true JP2003229587A (en) 2003-08-15

Family

ID=27759379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253864A Pending JP2003229587A (en) 2001-11-28 2002-08-30 Thin film photoelectric conversion element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003229587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216593A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Photovoltaic device, method of manufacturing the same, and photovoltaic module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216593A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Photovoltaic device, method of manufacturing the same, and photovoltaic module

Similar Documents

Publication Publication Date Title
JP3926800B2 (en) Manufacturing method of tandem type thin film photoelectric conversion device
JP5424800B2 (en) Heterojunction photovoltaic cell with dual doping and method of manufacturing the same
JPH05243596A (en) Manufacture of laminated type solar cell
JP2001267611A (en) Thin-film solar battery and its manufacturing method
AU2008200051A1 (en) Method and apparatus for a semiconductor structure forming at least one via
KR101634480B1 (en) High efficiency solar cells fabricated by inexpensive pecvd
CN218788382U (en) High-efficiency heterojunction solar cell
US9634164B2 (en) Reduced light degradation due to low power deposition of buffer layer
US9105805B2 (en) Enhancing efficiency in solar cells by adjusting deposition power
JP2009038064A (en) Photoelectric conversion device, and its manufacturing method
WO2005109526A1 (en) Thin film photoelectric converter
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP2675754B2 (en) Solar cell
JP2002016271A (en) Thin-film photoelectric conversion element
JP4441377B2 (en) Photoelectric conversion device and manufacturing method thereof
KR101079027B1 (en) Method for Manufacturing Photovoltaic Device
JP2003229587A (en) Thin film photoelectric conversion element and method of manufacturing the same
JPWO2006006368A1 (en) Method for manufacturing thin film photoelectric conversion device
JP2020505786A (en) Single-type, tandem-type, and heterojunction-type solar cell devices and methods for forming the same
KR101100109B1 (en) Method for Manufacturing Photovoltaic Device
JP4098386B2 (en) Thin film silicon photoelectric conversion device and manufacturing method thereof
JP5123444B2 (en) Manufacturing method of solar cell
JP2001168364A (en) Method of manufacturing amorphous silicon thin film photoelectric transfer device
JP2000068533A (en) Microscopic crystal silicon thin film solar battery, and manufacture thereof
JP2002280584A (en) Hybrid thin film photoelectric converter and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707