JP2003227453A - Vertical shaft windmill - Google Patents

Vertical shaft windmill

Info

Publication number
JP2003227453A
JP2003227453A JP2002066092A JP2002066092A JP2003227453A JP 2003227453 A JP2003227453 A JP 2003227453A JP 2002066092 A JP2002066092 A JP 2002066092A JP 2002066092 A JP2002066092 A JP 2002066092A JP 2003227453 A JP2003227453 A JP 2003227453A
Authority
JP
Japan
Prior art keywords
blade
wind turbine
vertical axis
turbulent flow
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002066092A
Other languages
Japanese (ja)
Other versions
JP4151940B2 (en
Inventor
Akinori Mizuno
明哲 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama TLO Co Ltd
Original Assignee
Tama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama TLO Co Ltd filed Critical Tama TLO Co Ltd
Priority to JP2002066092A priority Critical patent/JP4151940B2/en
Publication of JP2003227453A publication Critical patent/JP2003227453A/en
Application granted granted Critical
Publication of JP4151940B2 publication Critical patent/JP4151940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft windmill stably generating power with high efficiency. <P>SOLUTION: In the vertical shaft windmill having a plurality of symmetrical aerofoil blades disposed around a rotating shaft and rotating about the shaft, the blades have turbulent flow forming accelerating parts at the front edges. The turbulent flow forming accelerating parts form unevenness with a length of 0.1% to 10% of a chord length. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、風力発電、揚水
用動力などの使途に好適な垂直軸風車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical axis wind turbine suitable for uses such as wind power generation and pumping power.

【0002】[0002]

【従来の技術】地球環境問題は今日の人類社会が解決す
べき大きなテーマとなっており、例えば1997年12
月に開催された地球温暖化防止京都国際会議の議定書に
提案されたような、具体的な改善目標が地球的規模で設
定されるに至っている。このような状況のもとで風力を
はじめとする自然エネルギーを利用することは、地球環
境を改善する上で極めて有効な手段であるといえる。風
力エネルギーはいうまでもなく自然界に存在する風の力
学的エネルギーであり、具体的には、発電機を介して電
気エネルギーに変換して利用されたり、あるいはそのま
ま直接機械エネルギーとして揚水用動力などとして利用
される。
2. Description of the Related Art Global environmental problems have become a major theme to be solved by today's human society, for example, December 1997.
Specific improvement targets have been set on a global scale, as proposed in the Protocol of the Kyoto International Conference on Prevention of Global Warming held in March. Under such circumstances, utilizing natural energy such as wind power is an extremely effective means for improving the global environment. Needless to say, wind energy is the mechanical energy of the wind that exists in the natural world. Specifically, it is used by converting it to electrical energy through a generator, or directly as mechanical energy such as pumping power. Used.

【0003】ところで、風力エネルギーを利用するため
の風車は水平軸風車と垂直軸風車の2方式に大別され
る。水平軸風車はよく知られているように風車の回転軸
が地面にほぼ水平に保たれる方式であり、垂直軸風車は
図1に示すように風車の回転軸が地面にほぼ垂直に保た
れる方式である。このうち水平軸風車は古くから蓄積さ
れた航空機のプロペラ理論を基礎にして進歩したため、
例えば「風力発電技術」(1992年2月改訂 パワー
社)に開示されるようにすでに実用域に達した技術であ
るといえる。
By the way, wind turbines for utilizing wind energy are roughly classified into a horizontal axis wind turbine and a vertical axis wind turbine. As is well known, the horizontal axis wind turbine is a system in which the rotation axis of the wind turbine is kept substantially horizontal to the ground, and the vertical axis wind turbine is such that the rotation axis of the wind turbine is kept substantially vertical to the ground as shown in FIG. This is the method used. Among them, the horizontal axis wind turbine has advanced based on the propeller theory of aircraft accumulated since ancient times,
For example, it can be said that the technology has already reached the practical range as disclosed in "Wind Power Generation Technology" (Revised in February 1992, Power Co.).

【0004】一方、垂直軸風車はその回転軸が地面にほ
ぼ垂直に設置された方式の風車であって、未だその技術
は十分に確立されてはいないのが実情である。しかし、
この垂直軸風車は水平軸風車に比較して以下のような特
徴を有していることから、発電用などとして今後の発展
が大いに期待される方式である。 (1) 風向の変化に対する方向制御(首振りのメカニ
ズム)が不要であるので構造を簡単にできる。また、翼
のねじれがないので構造が簡単であり、制作費も安くで
きる。 (2) 風向が変化してもジャイロ効果による振動が発
生しない。また、ジャイロモーメントによる強度上の負
担もない。 (3) 風向の変化に対する遅れが生じない。 (4) 周速比すなわち旋回速度と流入風速の比に対す
る性能の安定性がよいので、高さ方向の風速分布や時間
的変動があっても高性能を維持できる。 (5) 発電機が地面に固定できるので、大きさや重量
の制約が少なく、低回転数での直接発電も可能である。 ここに、垂直軸風車が回転する機構は、詳細については
後述するが、いったん風車がいずれかの方向に回転し始
めると、ブレードに働く揚力によって回転のためのトル
クが発生し、このトルクによって風車の回転が持続する
ものである。
On the other hand, the vertical axis wind turbine is a wind turbine of which the rotation axis is installed almost vertically to the ground, and the technology is not yet well established. But,
Since this vertical axis wind turbine has the following features compared to the horizontal axis wind turbine, it is a method that is expected to be further developed in the future for power generation and the like. (1) The structure can be simplified because direction control (pivoting mechanism) for changes in the wind direction is unnecessary. Also, since there is no twist of the wing, the structure is simple and the production cost can be reduced. (2) Vibration due to the gyro effect does not occur even if the wind direction changes. Further, there is no strength burden due to the gyro moment. (3) There is no delay with respect to changes in wind direction. (4) Since the performance is stable with respect to the peripheral speed ratio, that is, the ratio between the turning speed and the inflowing wind speed, high performance can be maintained even if there is a wind speed distribution in the height direction or temporal variation. (5) Since the generator can be fixed to the ground, there are few restrictions on size and weight, and direct power generation at low rotation speed is also possible. The mechanism for rotating the vertical axis wind turbine will be described later in detail, but once the wind turbine starts rotating in either direction, the lift force acting on the blades generates a torque for rotation, and this torque causes the wind turbine to rotate. The rotation of is continuous.

【0005】[0005]

【発明が解決しようとする課題】発明者は、このような
利点を有する垂直軸風車を実用化すべく、実験研究を推
し進めることとした。しかしながら、その過程で、発明
者は従来型の垂直軸風車では必ずしも安定した出力が得
られないこと、また効率がいまだ十分とはいえないこと
などの問題に直面した。そこで、本発明は、上述した従
来の垂直軸風車が抱えていた問題に鑑み、より安定した
運転と高効率の発電を行いうる垂直軸風車を提案するこ
とを目的とする。
The inventor has decided to promote experimental research in order to put a vertical axis wind turbine having such advantages into practical use. However, in the process, the inventor faced the problems that the conventional vertical axis wind turbine does not always provide a stable output and the efficiency is still insufficient. Therefore, an object of the present invention is to propose a vertical axis wind turbine that can perform more stable operation and highly efficient power generation in view of the problems that the above-described conventional vertical axis wind turbine has.

【0006】[0006]

【課題を解決するための手段】発明者は、対称翼型のブ
レードを用いた風洞実験などから、ブレード近傍の気流
を詳細に観察・検討を行った結果、回転を効率よく行な
うためにはブレードの迎え角を大きくすることが効果的
であるが、迎え角を大きくするとブレード表面における
境界層剥離の発生が大きく、逆に悪影響を及ぼすこと、
またこの境界層剥離を抑制するにはブレードの前縁近傍
の表面に凹凸を付与することにより、ブレード背面の気
流境界層が早く乱流に移行するため剥離が遅れ、ブレー
ド性能を著しく改善するということを知見した。
Means for Solving the Problems The inventor has made a detailed observation and examination of the air flow in the vicinity of the blade from a wind tunnel experiment using a symmetric blade type blade. As a result, the blade can be efficiently rotated. It is effective to increase the angle of attack of, but when the angle of attack is increased, the occurrence of boundary layer separation on the blade surface is large, which adversely affects it.
In addition, in order to suppress this boundary layer separation, by providing irregularities on the surface near the leading edge of the blade, separation is delayed because the airflow boundary layer on the back surface of the blade rapidly transitions to turbulence, and blade performance is significantly improved. I found out that.

【0007】本発明は、上記知見に基づいてなされたも
のであり、複数枚の対称翼型ブレードが、回転軸周りに
配設され、該回転軸を中心に回転する垂直軸風車におい
て、該ブレードはその前縁に乱流形成促進部を有してい
ることを特徴とする垂直軸風車である。また、上記発明
においては、乱流形成促進部がブレードの翼弦長の0.
1%以上でかつ10%以下の長さの凹凸状をなしている
ことが好ましい。
The present invention has been made on the basis of the above findings, and in a vertical axis wind turbine in which a plurality of symmetrical blade blades are arranged around a rotation axis and rotate about the rotation axis, the blades are provided. Is a vertical axis wind turbine characterized by having a turbulent flow formation promoting portion at its front edge. Further, in the above invention, the turbulent flow formation promoting portion has a blade chord length of 0.
It is preferable that the unevenness has a length of 1% or more and 10% or less.

【0008】[0008]

【発明の実施の形態】垂直軸型風車は図1に例示するよ
うに、回転軸2が鉛直に設置され、回転軸2には支柱3
を介して対称ないし対称に近い翼型ブレード1(図1で
はブレード数が3枚)が固定されている。また、回転軸
2には発電機4が直接的に固定されるか伝達機構を介し
て回転可能としてある。ここで、各ブレードは図2に示
すように、対称翼型ブレードである。すなわち、これら
のブレードは柱状をなしており、柱体の軸に垂直な断面
が長軸aに対してほぼ対称であるとともに、ブレードの
断面形状は流線型をなしている。なお、実機ではブレー
キやクラッチなども必要になるが、本発明に直接関係の
ない機器については記述を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a vertical shaft type wind turbine has a rotating shaft 2 installed vertically and a supporting column 3 on the rotating shaft 2.
The wing-shaped blade 1 (the number of blades in FIG. 1 is three) is fixed via the blades. Further, the generator 4 is directly fixed to the rotary shaft 2 or rotatable via a transmission mechanism. Here, each blade is a symmetric airfoil blade, as shown in FIG. That is, these blades have a columnar shape, and the cross section perpendicular to the axis of the columnar body is substantially symmetrical with respect to the major axis a, and the cross-sectional shape of the blade is streamlined. It should be noted that although the actual machine also requires a brake and a clutch, the description of the apparatus not directly related to the present invention will be omitted.

【0009】垂直軸型風車の回転機構について、図3に
より詳細に説明する。図3において、左方から右方に向
かう風向の気流中で、ブレードが時計方向に回転してい
る状態にあるとする。風速Uとブレード周速Vとの合速
度として相対速度Wが形成され、この合速度Wに基づい
てWに垂直に揚力Lが発生する。このため、ブレードに
はこの揚力Lの回転方向(t方向)成分Lが発生する
こととなり、このLが駆動力となって、回転軸を中心
にしてブレードの回転が持続する。ブレードは対称翼型
またはそれに近い形状であるので、ブレードがどの回転
軸位置にあっても、揚力Lの回転方向成分が存在し、風
車の回転が持続可能となる。なお、図1や図3で示した
風車は回転軸周りに3枚の対称翼型ブレードを具えた場
合であったが、上述した回転の機構はブレード数が2枚
以上であれば同様に成り立つ。表面の凹凸が境界層制御
に役立つことは、たとえばゴルフボールのディンプルな
ど広く経験されていることである。本発明は前縁に乱流
促進装置を置くことで、ブレードの必要な面のみに乱流
促進効果が有効に働くことを特徴とする。
The rotating mechanism of the vertical axis wind turbine will be described in detail with reference to FIG. In FIG. 3, it is assumed that the blade is rotating clockwise in the air flow in the wind direction from left to right. A relative speed W is formed as a total speed of the wind speed U and the blade peripheral speed V, and a lift force L is generated perpendicularly to W based on the total speed W. Thus, the blade becomes the rotation direction (t direction) component L t of the lift L is generated, the L t becomes a driving force, the rotation of the blades persists around the rotation axis. Since the blade has a symmetrical blade shape or a shape close thereto, there is a rotational direction component of the lift L regardless of the rotational axis position of the blade, and the rotation of the wind turbine can be continued. The wind turbine shown in FIG. 1 and FIG. 3 was provided with three symmetrical blade blades around the rotation axis, but the above-described rotation mechanism is similarly applicable if the number of blades is two or more. . It is widely known that surface irregularities are useful for boundary layer control, such as golf ball dimples. The present invention is characterized in that the turbulence promoting device is placed on the leading edge, so that the turbulent promoting effect is effectively exerted only on the necessary surface of the blade.

【0010】さて、発明者の研究によれば、こうした従
来の対称翼型ブレードを具えた垂直軸風車の効率が未だ
十分に発揮されないのは、回転中のブレードが例えば図
4(a)の位置にあるときに、ブレードの背面側(図4
では上面側)で境界層(層流境界層)剥離が生じるから
である。発明者はこうした境界層剥離が垂直軸風車の効
率を低下させていることを確認した。そこで、発明者
は、こうした境界層剥離を生じさせないための対称翼型
ブレードの形状について鋭意検討を行った。その結果、
図4(b)の1aに例示するように、対称翼型ブレード
の前縁に凹凸部(正確には凹部および/または凸部)の
乱流形成促進部を形成しておくと、前縁近傍の層流気流
が乱流となり、境界層剥離のタイミングが遅れブレード
の後方にずれることがわかった。
According to the research conducted by the inventor, the efficiency of the vertical axis wind turbine equipped with such conventional symmetrical blade type blades is not yet sufficiently exerted because the rotating blade is located at the position shown in FIG. 4 (a), for example. Back side of the blade (Fig.
This is because boundary layer (laminar flow boundary layer) separation occurs on the upper surface side. The inventor has confirmed that such boundary layer separation reduces the efficiency of a vertical axis wind turbine. Therefore, the inventor diligently studied the shape of the symmetrical blade blade for preventing such boundary layer separation. as a result,
As illustrated in 1a of FIG. 4 (b), when a turbulent flow formation promoting portion of an uneven portion (correctly, a concave portion and / or a convex portion) is formed on the leading edge of the symmetrical blade blade, the vicinity of the leading edge is formed. It was found that the laminar flow of the above became turbulent, and the timing of boundary layer separation was delayed and shifted behind the blade.

【0011】なお、対称翼型ブレードが回転軸を中心に
回転して、対称翼型ブレードの迎え角が図4の場合
(α)と逆になる位置(−α)にきた場合には、境界層
剥離はブレードの下面で生じる。この位置に対称翼型ブ
レードがあるときにも、前縁に形成した凹凸部による乱
流形成促進の機能は同様に発揮されて、所期の効果が得
られる。このようにして、本発明では、対称翼型ブレー
ドの前縁に乱流形成促進部を設けるので、風に対する迎
え角がいかなる場合であっても、背面側に形成されやす
い境界層剥離を常に遅延させるという効果が得られる。
さらに、風向が正面(迎え角が0)からきている場合に
は、乱流形成促進部がよどみ点付近の流れの少ない部分
に存在するため、乱流形成促進部がもたらす障害はほと
んどなく、無視できる程度である。
When the symmetrical blade blade rotates about the rotation axis and the angle of attack of the symmetrical blade blade reaches a position (-α) opposite to that in FIG. 4 (α), the boundary is reached. Delamination occurs on the underside of the blade. Even when the symmetrical blade is present at this position, the function of promoting turbulent flow formation by the uneven portion formed at the leading edge is similarly exerted, and the desired effect is obtained. In this way, in the present invention, since the turbulent flow formation promoting portion is provided at the leading edge of the symmetrical blade blade, the boundary layer separation that is likely to be formed on the back surface side is always delayed regardless of the angle of attack with respect to the wind. The effect of allowing it to be obtained.
Furthermore, when the wind direction is from the front (at an angle of attack of 0), the turbulent flow formation promoting part exists in the part with less flow near the stagnation point, so there is almost no obstacle caused by the turbulent flow formation promoting part, and it can be ignored. It is possible.

【0012】発明者は、その後、さらに詳細な調査・検
討を行ったところ、前縁に形成する乱流形成促進部の形
態は、図5(a)に例示するように凸状の突起が柱体の
軸方向に連続したもの、図5(b)に示すように凸状の
突起が点状に分布したもの、図5(c)に示すように凹
状のへこみからなるものなどのほか、凹部と凸部が混在
したもの、またこれら配列の如何を問わず、乱流形成を
促進する形状のもであれば同様な効果が得られることが
わかった。また、乱流形成促進部のサイズは高さ(凸部
の場合は山高さ、凹部の場合には谷深さ、凹凸混在の場
合には山高さと谷深さの合計)が翼弦長の0.1%以上
でかつ10%以下の長さであることが好ましいこともわ
かった。翼弦長の0.1%以下では剥離の遅れは観察さ
れず効果が見られない。また10%を越えると流れに対
する抵抗が大きくなり効率が低下する。ここで、翼弦長
とはブレードの進行方向(図2中aの方向)の長さであ
り、前縁とはブレードの最先端部を意味するものとす
る。垂直軸風車の対称翼型ブレードが上述したような乱
流形成促進のための凹凸部を具備すれば、その乱流発生
機能によってブレードの背面側に形成されやすい境界層
剥離が抑制され、結果的に風車の効率が改善されるので
ある。さらに、本発明の凹凸をつけることで、ブレード
周りの流れに回り込みが発生するので容易に回転が起動
され、従来困難とされた自己起動特性にも有利となる。
これは、真横から流れがぶつかった場合にも凹凸のため
にブレードの背面で剥離の少ない流れとなるために推進
力が発生することによるものである。
The inventor then conducted further detailed investigations and examinations, and found that the turbulent flow formation promoting portion formed at the leading edge had a column of convex projections as shown in FIG. 5 (a). In addition to those that are continuous in the axial direction of the body, those in which convex protrusions are distributed in dots as shown in FIG. 5 (b), and those that consist of concave depressions as shown in FIG. It was found that the same effect can be obtained if the ridges and the protrusions are mixed and the shape is such that the turbulent flow is promoted regardless of the arrangement. Further, the size of the turbulent flow formation promoting portion has a height (the height of the peak in the case of a convex portion, the depth of the valley in the case of a concave portion, the sum of the height of the valley and the depth of the valley in the case of mixed irregularities) of which the chord length is 0 It was also found that the length is preferably 0.1% or more and 10% or less. At less than 0.1% of the chord length, no separation delay was observed and no effect was seen. On the other hand, if it exceeds 10%, the resistance against flow increases and the efficiency decreases. Here, the chord length is the length in the advancing direction of the blade (the direction of a in FIG. 2), and the leading edge means the leading edge of the blade. If the symmetrical blade type blade of the vertical axis wind turbine is provided with the uneven portion for promoting the turbulent flow formation as described above, the boundary layer separation that is likely to be formed on the back side of the blade is suppressed by the turbulent flow generation function, resulting in In addition, the efficiency of the wind turbine is improved. Furthermore, by providing the unevenness of the present invention, since the flow around the blade causes wraparound, the rotation is easily started, which is also advantageous for the self-starting characteristic which was conventionally difficult.
This is because even if the flow hits directly from the side, the propulsive force is generated because the flow has less separation on the back surface of the blade due to the unevenness.

【0013】[0013]

【実施例】厚み45mm、翼弦長250mm、長さ24
00mmの寸法からなる対称翼型ブレードを硬質塩化ビ
ニルの材料を用いて作製した。半径1800mm、3枚
翼の構成とした。ブレードの前縁には高さが2.5mm
の点状の凹凸を付与したブレード(発明例)と、このよ
うな凹凸を形成しないもの(比較例)をそれぞれ3枚使
用して図1に示す風車を製作した。このようにして製作
した風車を、風速5m/sおよび8m/sの気流中にお
き、出力性能を測定した。得られた結果を表1に示す。
周速比や負荷条件などにより異なるものではあるが、典
型的な測定例を示す。またそのときの出力係数の比較結
果を表2に示す。本発明による凹凸を負荷することで1
5%程度の性能向上が計られていることがわかった。
[Example] Thickness 45 mm, chord length 250 mm, length 24
Symmetrical airfoil blades with a dimension of 00 mm were made using a material of hard vinyl chloride. The radius was 1800 mm, and the configuration was three blades. 2.5 mm high on the front edge of the blade
The wind turbine shown in FIG. 1 was manufactured by using three blades each having the point-like unevenness (Example of Invention) and three blades not having such unevenness (Comparative Example). The wind turbine manufactured in this manner was placed in an air stream with wind speeds of 5 m / s and 8 m / s, and the output performance was measured. The results obtained are shown in Table 1.
A typical measurement example is shown, though it varies depending on the peripheral speed ratio and load conditions. Table 2 shows the comparison result of the output coefficients at that time. By applying the unevenness according to the present invention, 1
It was found that the performance was improved by about 5%.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
対称翼型ブレードの前縁に乱流形成促進部を有している
ので、以下の効果が期待できるのである。 1)安定した運転と高効率の発電を行いうる垂直軸風車
を提供することが可能となる。 2)周速比を低く設定できるので、低速回転で高性能を
発揮でき、騒音問題回避が図られる上、遠心力が軽減さ
れるので強度設計上の自由度が増加する。 3)厚いブレードでも高性能を発揮できるため、強度設
計が容易となる。 4)ブレード周りの流れに回り込みが発生し、従来困難
とされた自己起動特性に有利となる。 5)風力エネルギーの利用による地球環境改善に大いに
寄与する。
As described above, according to the present invention,
Since the turbulent flow formation promoting portion is provided on the leading edge of the symmetrical blade, the following effects can be expected. 1) It becomes possible to provide a vertical axis wind turbine capable of stable operation and highly efficient power generation. 2) Since the peripheral speed ratio can be set low, high performance can be achieved at low speed rotation, noise problems can be avoided, and centrifugal force is reduced, which increases the degree of freedom in strength design. 3) Since strength can be exhibited even with a thick blade, strength design becomes easy. 4) A wraparound occurs in the flow around the blade, which is advantageous for the self-starting characteristic, which was conventionally difficult. 5) It will greatly contribute to the improvement of the global environment by using wind energy.

【図面の簡単な説明】[Brief description of drawings]

【図1】垂直軸風車の1例を示す斜視図である。FIG. 1 is a perspective view showing an example of a vertical axis wind turbine.

【図2】垂直軸風車に用いる対称翼型ブレードを示す斜
視図および平面図である。
FIG. 2 is a perspective view and a plan view showing a symmetrical blade type blade used in a vertical axis wind turbine.

【図3】垂直軸風車の回転機構を説明するための模式図
である。
FIG. 3 is a schematic diagram for explaining a rotating mechanism of a vertical axis wind turbine.

【図4】対称軸翼型ブレードの近傍における気流の状態
を示す模式図である。
FIG. 4 is a schematic diagram showing a state of an air flow in the vicinity of a symmetric shaft blade type blade.

【図5】対称翼型ブレードの前縁に形成される乱流形成
促進部の例を示す模式図である。
FIG. 5 is a schematic diagram showing an example of a turbulent flow formation promoting portion formed at the leading edge of a symmetrical blade blade.

【符号の説明】[Explanation of symbols]

1:対称翼型ブレード 2:回転軸 3:支柱 4:発電機 1a:乱流形成促進部 1: Symmetrical airfoil blade 2: Rotation axis 3: Support 4: Generator 1a: Turbulent flow formation promoting section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の対称翼型ブレードが、回転軸周
りに配設され、該回転軸を中心に回転する垂直軸風車に
おいて、該ブレードはその前縁に乱流形成促進部を有し
ていることを特徴とする垂直軸風車。
1. In a vertical axis wind turbine in which a plurality of symmetrical blades are arranged around a rotation axis and rotate about the rotation axis, the blade has a turbulent flow formation promoting portion at its leading edge. The vertical axis wind turbine is characterized by having.
【請求項2】 乱流形成促進部が翼弦長の0.1%以上
でかつ10%以下の長さの凹凸状をなしていることを特
徴とする請求項1に記載の垂直軸風車。
2. The vertical axis wind turbine according to claim 1, wherein the turbulent flow formation promoting portion has an uneven shape having a length of 0.1% or more and 10% or less of the chord length.
JP2002066092A 2002-02-05 2002-02-05 Vertical axis windmill Expired - Fee Related JP4151940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066092A JP4151940B2 (en) 2002-02-05 2002-02-05 Vertical axis windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066092A JP4151940B2 (en) 2002-02-05 2002-02-05 Vertical axis windmill

Publications (2)

Publication Number Publication Date
JP2003227453A true JP2003227453A (en) 2003-08-15
JP4151940B2 JP4151940B2 (en) 2008-09-17

Family

ID=27751307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066092A Expired - Fee Related JP4151940B2 (en) 2002-02-05 2002-02-05 Vertical axis windmill

Country Status (1)

Country Link
JP (1) JP4151940B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532391A (en) * 2012-10-16 2015-11-09 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind power generator
WO2017141501A1 (en) * 2016-02-19 2017-08-24 株式会社Lixil Vertical axis wind turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532391A (en) * 2012-10-16 2015-11-09 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind power generator
WO2017141501A1 (en) * 2016-02-19 2017-08-24 株式会社Lixil Vertical axis wind turbine

Also Published As

Publication number Publication date
JP4151940B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
TWI231840B (en) Windmill for wind power generation
JP4280798B2 (en) Rotating blade type vertical axis wind turbine
AU2005243553A1 (en) Wind turbine rotor projection
JP2014513233A (en) Wind turbine enhanced by diffuser
US9273666B2 (en) Magnus type wind power generator
US20150360760A1 (en) Propulsion device for ship
JP2004084590A (en) Wind mill with winglet
JP3935804B2 (en) Wing and wind power generator provided with the same
JP4382120B2 (en) Turbine fin with duct
JP2003227453A (en) Vertical shaft windmill
JP2003120500A (en) Wind mill with vertical axis having guide plate for small power
JP2017166324A (en) T-type leading end blade for turbine
JP5372526B2 (en) Wind power generator
JP2002235656A (en) Linear vane installation method for vertical shaft wind power generating device
JP2009299650A (en) Straightening fluid wheel
EP3805552B1 (en) Horizontal axis rotor
GB2386160A (en) Variable geometry magnus effect turbine
JP4173773B2 (en) Rotating wheel and rotating wheel
US20210262433A1 (en) Rotary Device with Stacked Sail Configuration
JP2003343415A (en) Vertical shaft type windmill and wind power generator
JP2018150898A (en) Vertical shaft windmill, its blade, and wind power generation device
JPH06316295A (en) Vertical-horizontal double rotational propeller
JPS59136581A (en) Propeller type windmill
JP2513192B2 (en) Stern section rectifier
JP2017120072A (en) Corrugated plate-type lifting force enhancement blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

R150 Certificate of patent or registration of utility model

Ref document number: 4151940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees