JP2513192B2 - Stern section rectifier - Google Patents

Stern section rectifier

Info

Publication number
JP2513192B2
JP2513192B2 JP61241114A JP24111486A JP2513192B2 JP 2513192 B2 JP2513192 B2 JP 2513192B2 JP 61241114 A JP61241114 A JP 61241114A JP 24111486 A JP24111486 A JP 24111486A JP 2513192 B2 JP2513192 B2 JP 2513192B2
Authority
JP
Japan
Prior art keywords
propeller
stern
rectifying
flow
rectifying member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61241114A
Other languages
Japanese (ja)
Other versions
JPS6397490A (en
Inventor
良亮 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61241114A priority Critical patent/JP2513192B2/en
Publication of JPS6397490A publication Critical patent/JPS6397490A/en
Application granted granted Critical
Publication of JP2513192B2 publication Critical patent/JP2513192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、船舶の省エネルギを促進し得る船尾部の整
流装置に関するものである。
TECHNICAL FIELD The present invention relates to a stern rectifying device that can promote energy saving of a ship.

[従来の技術] 推進用プロペラに流入する流れを均一化してプロペラ
効率を向上させるため、船尾にフィンなどの付加物を取
り付けて船尾周りの流れを整流する対策が種々提案され
ている。すなわち第10図に示すようにプロペラa上方に
プロペラaを覆うようにフィンbを配置したり、第11図
に示すようにプロペラa両側部前方に複数段に翼cを配
置したり、あるいは第12図に示すようにプロペラa上半
分部前方に半円形のダクトeを配置するなどである。
[Prior Art] Various measures have been proposed to rectify the flow around the stern by attaching an additive such as fins to the stern in order to make the flow flowing into the propeller for propelling uniform and improve the propeller efficiency. That is, as shown in FIG. 10, fins b are arranged above the propeller a so as to cover the propeller a, or as shown in FIG. 11, blades c are arranged in multiple stages in front of both sides of the propeller a. As shown in FIG. 12, a semicircular duct e is arranged in front of the upper half of the propeller a.

[発明が解決しようとする問題点] しかし、従来の付加物は、その効果を確実に期待でき
ない問題点があった。すなわち、これらの付加物はいず
れも船型に適合するように形状、寸法を設定する必要が
あるが、船型によっては最適設計を行っても充分な効果
を期待できない場合があり、また、船舶の載荷状態が変
化すると効果が低下するからである。
[Problems to be Solved by the Invention] However, the conventional additive has a problem that its effect cannot be reliably expected. In other words, it is necessary to set the shape and dimensions of each of these appendages so that they will fit the hull form, but depending on the hull form, sufficient effects may not be expected even if optimal design is performed, and the loading of the ship This is because the effect decreases as the state changes.

[問題点が解決するための手段] 本発明は、前述の問題点に鑑み、船型などに支配され
ることなく船尾周りの水流を確実に整流してプロペラに
流入する流れを均一化し省エネルギを図り得る整流装置
を提供するためになしたもので、その構成は、プロペラ
前方の、内側に凹んだ左右の船尾船側に、該船尾船側が
形成した凹所を通過するように両端部を回転自在に支持
した円形断面の整流部材と、該整流部材と船側間の水流
を加速する方向に前記整流部材を回転駆動するようプロ
ペラ軸の回転を整流部材へ伝達する駆動装置とを備えた
ものである。
[Means for Solving Problems] In view of the above-mentioned problems, the present invention reliably rectifies the water flow around the stern and makes the flow flowing into the propeller uniform without being controlled by the hull form and the like, thereby saving energy. The purpose of the present invention is to provide a rectifying device that can be designed, and the structure is such that both ends of the propeller can be freely rotated on the left and right inboard stern sides of the propeller so as to pass through the recesses formed by the stern side. And a drive device for transmitting the rotation of the propeller shaft to the rectifying member so as to rotationally drive the rectifying member in a direction of accelerating the water flow between the rectifying member and the ship side. .

[作用] 整流部材と船側間の水流が、プロペラ軸により駆動さ
れる整流部材の回転によって増速され、この増速された
流れが、流速の遅いプロペラ面上部に流入するので、プ
ロペラ面における流速分布が均一化される。また、整流
部材に作用するマグナス効果によって推進力が発生す
る。
[Operation] The water flow between the rectifying member and the ship side is accelerated by the rotation of the rectifying member driven by the propeller shaft, and this increased flow flows into the upper part of the propeller surface where the flow velocity is slow. The distribution is made uniform. In addition, propulsive force is generated by the Magnus effect acting on the flow regulating member.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。第
1図ないし第6図は本発明の第1の実施例を示すもの
で、本装置は、両端部をプロペラ1前方の船尾船側2,2
に回転自在に支承した2本の柱状の整流部材3,4と、こ
の整流部材3,4を回転駆動する駆動装置などからなる。
[Examples] Examples of the present invention will be described below with reference to the drawings. 1 to 6 show a first embodiment of the present invention, in which the present apparatus has both ends in front of the propeller 1 on the side of the stern 2,2.
It is composed of two columnar rectifying members 3 and 4 rotatably supported by the rectifying member, and a drive device for rotatably driving the rectifying members 3 and 4.

各整流部材3,4は、プロペラ中心線5にほぼ鉛直な平
面内に配置され、プロペラ中心線5に近い船側部分か
ら、船尾船側2,2が形成する凹所6,6を通過して斜め上方
に延び、その上、下部はいずれも水密構造に構成した
上、下部の軸受7,8内に回転自在に支承されている。ま
た、各整流部材3,4の断面は円形で、後述するように流
速を効果的に増速するため凹所6,6の形状に合わせて中
央部の直径dを最も大きく、この中央部から両端に向っ
て直径が緩やかに減少するように形成してある。
The straightening members 3 and 4 are arranged in a plane substantially vertical to the propeller center line 5 and obliquely pass through the recesses 6 and 6 formed by the stern side 2 and 2 from the ship side portion near the propeller center line 5. The upper part extends upward, and the lower part has a watertight structure, and is rotatably supported in the lower bearings 7, 8. The rectifying members 3 and 4 have a circular cross section, and in order to effectively increase the flow velocity, as will be described later, the diameter d of the central portion is the largest in accordance with the shape of the recesses 6 and 6. The diameter is gradually reduced toward both ends.

駆動装置は、一方の整流部材3(第1図では右舷側)
の下部を矢印f方向に回転する傘歯車9,10と、両方の整
流部材3,4が相互に反対方向に回転するように整流部材
3,4の上部を相互に連結する連結装置12などからなり、
前記傘歯車10は機関室13内でプロペラ軸14に固定され、
前記連結装置12は傘歯車機構15,15とこの傘歯車機構15,
15を連結する連結軸16などからなる。
The drive unit is one rectifying member 3 (starboard side in FIG. 1).
Bevel gears 9 and 10 rotating in the lower part of arrow in the direction of arrow f, and rectifying members so that both rectifying members 3 and 4 rotate in mutually opposite directions.
It consists of a connecting device 12 etc. that connects the upper part of 3, 4 to each other,
The bevel gear 10 is fixed to the propeller shaft 14 in the engine room 13,
The connecting device 12 is a bevel gear mechanism 15, 15 and this bevel gear mechanism 15,
It is composed of a connecting shaft 16 for connecting 15 and the like.

次に、本装置の作動について説明する。船舶航走中、
船尾周りの流れは、第3図に示すように船側2に沿って
流れ、この流れの船体表面近傍17では境界層を形成して
いる。また、船尾付近に剥離点18,18が存在し、この剥
離点18,18は船尾が肥えるに従って、すなわち船尾の角
度θが大きくなるのに従って前方に移動し、その結果、
船体抵抗の増加、プロペラ面19における流速低下を招
く。
Next, the operation of this device will be described. While the ship is sailing,
The flow around the stern flows along the ship side 2 as shown in FIG. 3, and a boundary layer is formed in the vicinity 17 of the hull surface of this flow. Further, there are separation points 18, 18 near the stern, and the separation points 18, 18 move forward as the stern becomes fertile, that is, as the stern angle θ increases, and as a result,
This will increase the hull resistance and reduce the flow velocity on the propeller surface 19.

また、プロペラ面19における軸方向流速VXは、伴流係
数W[(VS−VX)/VS:VSは船速]の分布を示す第4図お
よびプロペラ回転方向角度位置βに対するVX/VSの分布
を示す第5図に示すようにプロペラ面19上部に近い領域
20で遅くなっている。すなわち、この領域20では平均流
速からの差が大きくなっており、プロペラキャビテーシ
ョンが発生しやすくなっている。
Further, the axial flow velocity V X on the propeller surface 19 corresponds to FIG. 4 showing the distribution of the wake coefficient W [(V S −V X ) / V S : V S is the ship speed] and the angular position β of the propeller rotation direction. Area near the upper part of the propeller surface 19 as shown in Fig. 5 showing the distribution of V X / V S
It's late at 20. That is, in this region 20, the difference from the average flow velocity is large, and propeller cavitation is likely to occur.

いま、整流部材3,4を相互に反対方向に回転駆動する
と、マグナス効果によって各整流部材3,4に揚力Lおよ
び抗力Dが発生する。マグナス効果とは、一般に第7図
に示すように流速Vの一様な流れの中で直径dの円筒22
を回転速度ωで回転すると、流れに直角方向に揚力Lを
発生する現象をいい、この揚力Lは流れが理想流体の場
合に式(1)(2)で表わされる。
Now, when the rectifying members 3 and 4 are rotationally driven in mutually opposite directions, a lift force L and a drag force D are generated in each rectifying member 3 and 4 by the Magnus effect. In general, the Magnus effect is a cylinder 22 having a diameter d in a uniform flow with a flow velocity V as shown in FIG.
Is generated at a rotational speed ω, a lift force L is generated in a direction perpendicular to the flow. The lift force L is expressed by the equations (1) and (2) when the flow is an ideal fluid.

L=π・ρ・V・d・v 式(1) そして揚力係数CLは式(1)から となる。また、流れが粘性粘体の場合のCLは、例えば第
8図に示す寸法、形状の円筒23に対し同図の曲線g,h,i,
jで求められ、各CLに対応する抗力係数は第9図に示す
曲線g,h,i,jよって求められるので、抗力Dは式(4)
によって求められる。
L = π · ρ · V · d · v Equation (1) And the lift coefficient C L is calculated from equation (1) Becomes Further, when the flow is a viscous viscous body, C L is, for example, for the cylinder 23 having the size and shape shown in FIG. 8 for the curves g, h, i,
Since the drag coefficient corresponding to each C L is obtained from the curve g, h, i, j shown in FIG. 9, the drag D is calculated by the equation (4).
Required by.

なお第8図および第9図に示す曲線g,h,i,jは第8図
の円筒23の直径d、長さl、端板24の直径nがd=60m
m、l=720mm、n=180mm,120mm,90mm,0(端板がない場
合)に対応する実験値、第8図の直線kは理想流体に対
するCLの理論値を示す。
The curves g, h, i, j shown in FIGS. 8 and 9 are the diameter d of the cylinder 23, the length l, and the diameter n of the end plate 24 of d = 60 m in FIG.
Experimental values corresponding to m, l = 720 mm, n = 180 mm, 120 mm, 90 mm, 0 (without end plate), the straight line k in FIG. 8 shows the theoretical value of C L for the ideal fluid.

ここで、船体進行方向、すなわちx方向の推力TRを第
6図によって求めると となる。式(5)のαはVとxが挟む角度を示し、α≒
θと考えられるからθが大きいほど、すなわち船尾が肥
えたほど、また揚抗比(L/D)が大きいほど大きな推力T
Rが得られ、この推力TRは回転数ωによって制御するこ
とができる。
Here, the hull moving direction, that is, determined by the sixth FIG thrust T R in the x-direction Becomes Α in equation (5) indicates the angle between V and x, and α ≈
Since it is considered to be θ, the larger the θ is, the more fertile the stern is, and the larger the lift-drag ratio (L / D) is, the larger the thrust T is.
R is obtained, and this thrust T R can be controlled by the rotational speed ω.

一方、整流部材3,4を回転させるには動力が必要であ
るが、円筒3,4の単位長さ当りの必要動力Pは近似的に
式(6)で求められる。
On the other hand, power is required to rotate the rectifying members 3 and 4, but the required power P per unit length of the cylinders 3 and 4 is approximately obtained by the equation (6).

P=π・ρ・ω・R4・Cf 式(6) ここに、 である。従って、必要動力を小さく、推力を大きくする
ように整流部材3,4の直径dおよび回転速度ωを選択す
れば良い。
P = π ・ ρ ・ ω 3・ R 4・ C f Equation (6) where Is. Therefore, the diameter d and the rotation speed ω of the rectifying members 3 and 4 may be selected so that the required power is small and the thrust is large.

さらに、整流部材3,4はプロペラ面19への流れを均一
化する作用がある。すなわち各整流部材3,4と船側2,2間
の各領域25,25における流れは、整流部材3,4の回転によ
って増速され、第5図に仮想線で示すように流速分布を
均一化する。従って、キャビテーションの発生が少なく
なり、プロペラ展開面積を小さくでき、その結果、プロ
ペラ効率が向上する。さらにまた、領域25,25における
増速は剥離点18,18を後方に移動させるので、剥離域が
小さくなり、船体抵抗を低減させる。
Further, the flow regulating members 3 and 4 have the function of equalizing the flow to the propeller surface 19. That is, the flow in each region 25, 25 between each rectifying member 3, 4 and the ship side 2, 2 is accelerated by the rotation of the rectifying member 3, 4, and the flow velocity distribution is made uniform as shown by the phantom line in FIG. To do. Therefore, the occurrence of cavitation is reduced, the propeller deployment area can be reduced, and as a result, the propeller efficiency is improved. Furthermore, the acceleration in the areas 25, 25 moves the peeling points 18, 18 rearward, so that the peeling area becomes smaller and the hull resistance is reduced.

また、左右の整流部材3,4の形状、回転数を変えると
増速された流れは非対称になるので、これを制御するこ
とによってプロペラ面19に流入する流れのプロペラ面19
内の流れをプロペラ回転方向と逆方向にすることができ
る。すなわち、ガイドベーンと同じ機能を発揮すること
になりプロペラ効率を向上させる。
Further, if the shapes and rotational speeds of the left and right rectifying members 3 and 4 are changed, the accelerated flow becomes asymmetrical, so by controlling this, the propeller surface 19 of the flow flowing into the propeller surface 19 is controlled.
The flow inside can be opposite to the direction of propeller rotation. That is, it has the same function as the guide vane, and improves the propeller efficiency.

また、一方の整流部材の下端を駆動する代りに、ここ
には図示しないが別の駆動方法としてプロペラ軸14また
は中間軸29と連結軸16とを機械的な回転伝達機構で連結
するようにしてもよい。
Further, instead of driving the lower end of one of the straightening members, as another driving method (not shown here), the propeller shaft 14 or the intermediate shaft 29 and the connecting shaft 16 are connected by a mechanical rotation transmission mechanism. Good.

なお、本発明は前述の実施例にのみ限定されるもので
はなく、本発明の要旨を逸脱しない範囲において種々の
変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上に述べたごとく本発明は次の優れた効果を発揮す
る。
[Effects of the Invention] As described above, the present invention exhibits the following excellent effects.

(i) 船尾の、内側に凹んだ船側の凹所に、プロペラ
軸によって回転駆動される整流部材を配置したので、整
流部材と船体間の水流を増速し、プロペラ面内の流速分
布を均一化することができ、しかも、整流部材の駆動用
として特別なモータ等を設ける必要がなく、設備を簡略
化することができる。
(I) A rectifying member, which is driven to rotate by a propeller shaft, is placed in a dent on the inboard side of the stern, so the water flow between the rectifying member and the hull is accelerated, and the velocity distribution in the propeller plane is uniform. Moreover, it is not necessary to provide a special motor or the like for driving the rectifying member, and the equipment can be simplified.

(ii) 第(i)項と同じ理由により、整流部材が発生
するマグナス効果によって整流部材に推力を発生し、船
舶の推進力の一部に役立てることができる。
(Ii) For the same reason as in (i), the Magnus effect generated by the rectifying member generates thrust in the rectifying member, which can be used as part of the propulsive force of the ship.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第6図は本発明の第1の実施例を示し、第
1図は本装置の後面図(第2図におけるI−I方向から
の矢視図)、第2図は第1図におけるII−II方向からの
一部切断矢視図、第3図は第2図におけるIII−III方向
からの矢視図、第4図はプロペラ面における伴流係数の
分布状態の説明図、第5図は同じくプロペラ面における
軸方向流速の分布状態の説明図、第6図は整流部材が発
生した推力の説明図、第7図、第8図、第9図はいずれ
もマグナス効果の一般的な説明図、第10図ないし第12図
は従来の整流用各種付加物を取り付けた船尾の側面図で
ある。 図中、1はプロペラ、2は船尾船側、3,4は整流部材、
6は凹所、7,8は軸受、9,10は傘歯車、12は連結装置、1
4はプロペラ軸を示す。
1 to 6 show a first embodiment of the present invention, FIG. 1 is a rear view of the apparatus (a view from the direction of the arrow I--I in FIG. 2), and FIG. Fig. 3 is a partially cut arrow view from the II-II direction in Fig. 3, Fig. 3 is an arrow view from the III-III direction in Fig. 2, and Fig. 4 is an explanatory view of the distribution state of the wake coefficient on the propeller surface, FIG. 5 is an explanatory view of the distribution of the axial flow velocity on the propeller surface, FIG. 6 is an explanatory view of the thrust generated by the rectifying member, and FIGS. 7, 8, and 9 are all general Magnus effect. FIGS. 10 to 12 are side views of a stern to which various conventional rectifying additives are attached. In the figure, 1 is a propeller, 2 is a stern side, 3 and 4 are rectifying members,
6 is a recess, 7 and 8 are bearings, 9 and 10 are bevel gears, 12 is a connecting device, 1
4 indicates a propeller shaft.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プロペラ前方の、内側に凹んだ左右の船尾
船側に、該船尾船側が形成した凹所を通過するように両
端部を回転自在に支持した円形断面の整流部材と、該整
流部材と船側間の水流を加速する方向に前記整流部材を
回転駆動するようプロペラ軸の回転を整流部材へ伝達す
る駆動装置とを備えたことを特徴とする船尾部の整流装
置。
1. A straightening member having a circular cross section whose both ends are rotatably supported so as to pass through recesses formed on the stern side of the stern, which are recessed inward in front of a propeller, and the straightening member. And a drive device for transmitting the rotation of the propeller shaft to the rectifying member so as to rotationally drive the rectifying member in a direction of accelerating the water flow between the ship side and the rectifying device of the stern portion.
JP61241114A 1986-10-09 1986-10-09 Stern section rectifier Expired - Lifetime JP2513192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241114A JP2513192B2 (en) 1986-10-09 1986-10-09 Stern section rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241114A JP2513192B2 (en) 1986-10-09 1986-10-09 Stern section rectifier

Publications (2)

Publication Number Publication Date
JPS6397490A JPS6397490A (en) 1988-04-28
JP2513192B2 true JP2513192B2 (en) 1996-07-03

Family

ID=17069491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241114A Expired - Lifetime JP2513192B2 (en) 1986-10-09 1986-10-09 Stern section rectifier

Country Status (1)

Country Link
JP (1) JP2513192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730008C2 (en) * 1987-09-08 1996-12-12 Blohm Voss Ag Watercraft with at least one guide fin far in front of a rear propeller
US5141456A (en) * 1986-11-15 1992-08-25 Blohm+Voss Ag Water craft with guide fins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149295U (en) * 1982-03-31 1983-10-06 日立造船株式会社 Ship propulsion performance improvement device
JPS59176299U (en) * 1983-05-13 1984-11-26 石川島播磨重工業株式会社 ship
JPS6127796A (en) * 1984-07-18 1986-02-07 Mitsubishi Heavy Ind Ltd Ship with aft rotor

Also Published As

Publication number Publication date
JPS6397490A (en) 1988-04-28

Similar Documents

Publication Publication Date Title
JP4299968B2 (en) Propulsion system
US3793980A (en) Marine propulsion system
JP2002511033A (en) Improved fluid displacement blade
JPH11508206A (en) Fluid propulsion system for accelerating and dynamically controlling fluid
EP1280694B2 (en) Hull and propeller arrangement
AU2001256920A1 (en) Hull and propeller arrangement
JP2513192B2 (en) Stern section rectifier
JP6638941B2 (en) Ship rudder with stern fins
EP0219463A1 (en) A combined propulsion and steering system for a motor boat with an inboard engine
KR101225169B1 (en) Propulsion apparatus and ship including the same
US5134954A (en) Asymmetric hydrofoil propulsion method and apparatus
JPH05503051A (en) propulsion system for ships
JPS6225997Y2 (en)
US7040941B2 (en) Vessel propulsion system
JPS6226197A (en) Device for improving marine propulsive performance
CN109895937A (en) A kind of bionical pressure wave device
JPH075037Y2 (en) Reaction fins for ships
JPS6210231Y2 (en)
JPS58491A (en) Device for improving propulsion efficiency of ship
JPH0234160Y2 (en)
US2081649A (en) Paddle wheel propeller for ships
KR870000970Y1 (en) Lost energy reseizing devices for a ship
JPH07196085A (en) Propulsion device of ship
AU708767C (en) Improved fluid displacing blade
JPS58141992A (en) Propulsion booster for vessel