JP2003226529A - Method and apparatus for manufacturing glass substrate - Google Patents

Method and apparatus for manufacturing glass substrate

Info

Publication number
JP2003226529A
JP2003226529A JP2002026001A JP2002026001A JP2003226529A JP 2003226529 A JP2003226529 A JP 2003226529A JP 2002026001 A JP2002026001 A JP 2002026001A JP 2002026001 A JP2002026001 A JP 2002026001A JP 2003226529 A JP2003226529 A JP 2003226529A
Authority
JP
Japan
Prior art keywords
mold
glass substrate
lower molds
manufacturing
induction coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002026001A
Other languages
Japanese (ja)
Inventor
Kengo Kainuma
研吾 貝沼
Arimichi Morita
有道 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002026001A priority Critical patent/JP2003226529A/en
Publication of JP2003226529A publication Critical patent/JP2003226529A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/088Flat discs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/44Flat, parallel-faced disc or plate products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which temperature control of high precision can be attained without being influenced by a position of a metallic mold, distortion and warp due to residual stress in a formed substrate can be suppressed to the minimum and glass substrate excellent in flatness can be obtained and to provide an apparatus for manufacturing a glass substrate. <P>SOLUTION: The apparatus is provided with upper and lower metallic molds (1) respectively having a mold surface, upper and lower induction coils (8U, 8L) disposed integrally with the respective upper and lower metallic molds, a press forming means for pressurizing a glass raw material between the mold surfaces by moving at least one among the upper and lower metallic molds and respective high frequency power sources 11 connected with respective upper and lower induction coils. Further a heating process is performed by performing induction-heating of the metallic mold by making alternating current flow through the upper and lower induction coils disposed integrally with the respective upper and lower metallic molds. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス基板の製造
方法および装置に関し、より詳しくは、磁気ディスクな
どの記憶媒体を作製するのに最適な磁気ディスク用のガ
ラス基板の製造方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a glass substrate, and more particularly to a method and an apparatus for manufacturing a glass substrate for a magnetic disk which is most suitable for manufacturing a storage medium such as a magnetic disk.

【0002】[0002]

【従来の技術】従来、磁気ディスク用のガラス基板は、
所定のサイズに切り抜かれた後、平滑な表面を得るため
に基板を研磨する研磨法により製造されてきた。しかし
ながら、近年、基板には超平滑性が要求され、研磨工程
には技術的にも非常に難しい高い精度が求められるよう
になり、こうした基板を1枚1枚研磨する製造方法は多
くの工程を要するため、製品が高価になるという欠点が
あった。
2. Description of the Related Art Conventionally, glass substrates for magnetic disks are
After being cut into a predetermined size, it has been manufactured by a polishing method in which a substrate is polished to obtain a smooth surface. However, in recent years, the substrate is required to have ultra-smoothness, and the polishing process is required to have high precision, which is technically very difficult. Therefore, a manufacturing method for polishing each substrate requires many steps. Therefore, there is a drawback that the product becomes expensive.

【0003】一方、ガラス素材を加熱、成形、冷却し、
金型成形面をガラス素材に高精度で転写するプレス成形
方法は、後加工を必要としないため、安価で生産性が高
くかつ高品質のものを得られることから、光学素子の製
造分野では、既に多くの検討がなされ実用化が図られて
いる。
On the other hand, a glass material is heated, shaped and cooled,
Since the press molding method for transferring the mold surface to the glass material with high accuracy does not require post-processing, it can be obtained at low cost, high productivity and high quality. Many studies have already been made and commercialized.

【0004】ところで、磁気ディスクや光学素子等の高
精度ガラス製品のプレス成形においては、金型の温度制
御が重要な管理項目の一つであり、加熱手段として、主
に、ニクロムヒータ、誘導加熱、ふく射ヒータ等が使わ
れている。従来からプレス成形方式が用いられている光
学素子の成形分野においては、クリーン性、加熱効率、
制御性が高い等の点で誘導加熱が多く使われている(特
開平5−24869号公報等参照)。
By the way, in press molding of high-precision glass products such as magnetic disks and optical elements, temperature control of the mold is one of the important control items, and nichrome heaters and induction heating are mainly used as heating means. , Radiant heaters, etc. are used. In the field of optical element molding where press molding has been used in the past, cleanness, heating efficiency,
Induction heating is often used because of its high controllability (see JP-A-5-24869).

【0005】誘導加熱は被加熱物を非接触で加熱するた
め、省熱容量化やクリーン化をし易く、さらにプレス成
形機においてはヒータを加圧される系に置く必要がない
ので、設計やメンテナンスに有利である。また被加熱物
が電気導体の場合、直接加熱できるので効率や加熱速度
の面で優れている。
Since induction heating heats an object to be heated in a non-contact manner, it is easy to save heat capacity and to make it clean. Further, in a press molding machine, it is not necessary to place a heater in a system under pressure, so design and maintenance are required. Is advantageous to. Further, when the object to be heated is an electric conductor, it can be directly heated, so that it is excellent in efficiency and heating rate.

【0006】このような誘導加熱を用いた例として、特
開平6−64932号公報に開示された「光学ガラスレ
ンズ成形装置」や特開平11−171564号公報に開
示された「ガラス成形体の製造方法」がある。前者は、
上型の外周に巻回された第1の高周波発振コイルと、下
型の外周に巻回された第2の高周波発振コイルと、これ
ら第1、第2の高周波発振コイルによって型を誘導加熱
する高周波発振機と、この高周波発振機の発振周波数
を、プレス成形時の型の位置に応じて変化させることに
より、型の上型および下型の温度が所定の値を保つよう
に制御する制御回路とを具備している。また、後者は、
上型および下型の少なくとも一方が移動可能であり、上
型および下型が相互に離間した状態で誘導加熱により予
熱され、離間した状態で予熱された下型に予熱されたガ
ラス素材を供給した後に、上型または下型の一方が移動
して加圧工程を実施するようにしている。この前者およ
び後者のいずれも、光学ガラスレンズ等の小さい部品を
成形対象としており、型とコイルとの相対的位置が変化
するようにしている。
[0006] As an example using such induction heating, "optical glass lens molding apparatus" disclosed in Japanese Patent Laid-Open No. 6-64932 and "manufacture of a glass molded body" disclosed in Japanese Patent Laid-Open No. 11-171564. There is a way. The former is
A first high-frequency oscillation coil wound around the outer periphery of the upper mold, a second high-frequency oscillation coil wound around the outer periphery of the lower mold, and induction heating of the mold by these first and second high-frequency oscillation coils. A high-frequency oscillator and a control circuit for changing the oscillation frequency of the high-frequency oscillator according to the position of the mold during press molding to control the temperature of the upper and lower molds of the mold so as to maintain a predetermined value. It has and. Also, the latter is
At least one of the upper mold and the lower mold is movable, preheated by induction heating in a state where the upper mold and the lower mold are separated from each other, and the preheated glass material is supplied to the lower mold which is preheated in the separated condition. After that, one of the upper die and the lower die moves to perform the pressurizing step. Both of the former and the latter are intended for molding small parts such as an optical glass lens so that the relative positions of the mold and the coil are changed.

【0007】[0007]

【発明が解決しようとする課題】ところで、磁気ディス
ク用のガラス基板のように外形が大きく、基板厚が薄
く、外形と板厚との比が大きなものを成形することは、
光学素子の場合とは違った課題を有している。すなわ
ち、磁気ディスク用のガラス基板に要求される形状は、
面のうねりができるだけ小さいこと(平坦度)、特に高
速回転時における磁気ヘッドの追従性を高めるために、
同一半径上でのうねりを抑えることや内外径の高い寸法
精度が求められている。
By the way, molding a glass substrate for a magnetic disk, which has a large outer shape, a thin substrate thickness, and a large ratio of the outer shape to the plate thickness, is required.
It has a problem different from that of the optical element. That is, the shape required for the glass substrate for the magnetic disk is
The surface waviness should be as small as possible (flatness), especially in order to improve the followability of the magnetic head during high-speed rotation.
It is required to suppress waviness on the same radius and to have high dimensional accuracy of inner and outer diameters.

【0008】しかしながら、上述の如き、型とコイルと
の相対的位置が変化するような場合には、金型移動時の
上下金型温度の制御性(設定とのズレ)が問題となる。
特に球やマーブル形状等のような肉厚ガラス素材を使う
場合には、成形中の金型移動量が多くなるため、金型と
誘導コイルの相対的位置の変化によって上下金型への入
力電力配分が変化してしまい、これは上下金型の温度差
を生じさせるため、高精度な成形の妨げとなるという問
題がある。
However, when the relative positions of the mold and the coil change as described above, the controllability (deviation from setting) of the upper and lower mold temperatures during movement of the mold becomes a problem.
Especially when using thick glass materials such as spheres and marble shapes, the amount of mold movement during molding increases, so the input power to the upper and lower molds changes due to the change in the relative position of the mold and the induction coil. The distribution changes, which causes a temperature difference between the upper and lower molds, which hinders highly accurate molding.

【0009】このような上下金型の温度調整を行うため
に、誘導コイルを上下方向に移動させたり、特開平6−
64932号公報に開示されるように、上下コイルの電
流バランス調整や周波数の変化を利用する方法等があ
る。ところが、これらの方法は単一の電源とコイルを用
いるため、制御の追従性が低く、制御回路が複雑になる
等の問題があるのである。
In order to adjust the temperature of the upper and lower molds as described above, the induction coil is moved in the vertical direction, and the method described in JP-A-6-
As disclosed in Japanese Patent No. 64932, there is a method of utilizing current balance adjustment of upper and lower coils and change of frequency. However, these methods use a single power source and a coil, and thus have problems such as poor control followability and a complicated control circuit.

【0010】本発明は、かかる問題に着目し、金型の位
置に左右されずに高精度の温度制御が可能であり、その
結果、成形基板の残留応力による歪みや反りを最小限に
抑え、平坦度に優れるガラス基板を得ることができるガ
ラス基板の製造方法および装置を提供することを目的と
する。
The present invention pays attention to such a problem and enables highly accurate temperature control without depending on the position of the mold, and as a result, distortion and warpage due to residual stress of the molded substrate can be minimized, An object of the present invention is to provide a glass substrate manufacturing method and apparatus capable of obtaining a glass substrate having excellent flatness.

【0011】[0011]

【課題を解決するための手段】上記目的を達成する、本
発明の一形態になるガラス基板の製造方法は、上下金型
の成形面間にガラス素材を配置し、該上下金型を加熱
し、プレス機により前記上下金型の少なくとも一方を移
動させて前記ガラス素材を加圧する、工程を経て、ガラ
ス基板を製造する方法であって、前記加熱工程は、前記
上下金型のそれぞれに一体に配設された上下誘導コイル
に交番電流を通じて金型を誘導加熱することにより行わ
れることを特徴とする。
In order to achieve the above object, a method of manufacturing a glass substrate according to an aspect of the present invention is to place a glass material between molding surfaces of upper and lower molds and heat the upper and lower molds. A method of manufacturing a glass substrate through a step of moving at least one of the upper and lower molds by a press machine to pressurize the glass material, wherein the heating step is integrated with each of the upper and lower molds. It is characterized in that it is carried out by inductively heating the mold by passing an alternating current through the arranged upper and lower induction coils.

【0012】ここで、前記上下誘導コイルは、それぞれ
別々の電源に接続され、前記上下金型の温度をそれぞれ
モニタしながら電源の出力調整が別々に行われることが
好ましい。
Here, it is preferable that the upper and lower induction coils are connected to different power supplies, and the output of the power supply is adjusted separately while monitoring the temperatures of the upper and lower molds.

【0013】また、前記別々の電源は同一周波数であ
り、前記上下誘導コイルはそれぞれ、前記上下金型の成
形面の反対側に配設されていることが好ましい。
Further, it is preferable that the separate power supplies have the same frequency, and the upper and lower induction coils are respectively arranged on the opposite sides of the molding surfaces of the upper and lower molds.

【0014】さらに、上記目的を達成する、本発明の他
の形態になるガラス基板の製造装置は、成形面をそれぞ
れ有する上下金型と、該上下金型のそれぞれに一体に配
設された上下誘導コイルと、前記上下金型の少なくとも
一方を移動させて成形面間のガラス素材を加圧するプレ
ス成形手段と、前記上下誘導コイルのそれぞれに接続さ
れた別々の高周波電源と、を備えることを特徴とする。
Further, an apparatus for manufacturing a glass substrate according to another aspect of the present invention which achieves the above object is provided with upper and lower molds each having a molding surface and upper and lower molds integrally provided in the upper and lower molds, respectively. An induction coil, a press molding unit that moves at least one of the upper and lower molds to press the glass material between the molding surfaces, and a separate high-frequency power source connected to each of the upper and lower induction coils. And

【0015】ここで、前記上下誘導コイルはそれぞれ、
前記上下金型の成形面の反対側に配設されていることが
好ましい。
Here, each of the upper and lower induction coils is
It is preferably arranged on the opposite side of the molding surface of the upper and lower molds.

【0016】また、前記上下誘導コイルのうち、少なく
とも移動する金型に配設された誘導コイルは、電源にフ
レキシブルなリードを介して接続されていることが好ま
しい。
Further, among the upper and lower induction coils, at least the induction coil arranged in the moving mold is preferably connected to a power source through a flexible lead.

【0017】[0017]

【発明の実施の形態】以下、添付図面を参照して本発明
を実施するガラス基板の製造装置の実施の形態を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a glass substrate manufacturing apparatus for carrying out the present invention will be described below with reference to the accompanying drawings.

【0018】この製造装置は、成形面をそれぞれ有する
上金型1Uと下金型1Lとから成り、WC等の電気的導体
材料から形成された金型1を備え、上金型1Uは筒状の
上金型支持体2Uを介して上固定プレート3Uに、下金型
1Lは筒状の下金型支持体2Lを介して下可動プレート3
L にそれぞれ固定的に支持されている。金型1を取り付
けるための金型支持体は、ステンレス等の金属でも良い
が、効率を考慮するとセラミック等の電気的絶縁物が望
ましい。なお、4は上金型1Uと下金型1Lとの成形面間
の距離を定めるための規制リングである。本実施の形態
では、下可動プレート3Lがプレス機5のシリンダ6に
連結され、下金型1Lを移動させて成形面間のガラス素
材を加圧するプレス成形手段を構成している。
This manufacturing apparatus is composed of an upper mold 1U and a lower mold 1L each having a molding surface, and is equipped with a mold 1 made of an electrically conductive material such as WC, and the upper mold 1U is tubular. To the upper fixed plate 3U via the upper mold support 2U, and the lower mold 1L to the lower movable plate 3 via the cylindrical lower mold support 2L.
Each is fixedly supported by L. The mold support for mounting the mold 1 may be a metal such as stainless steel, but an electrical insulator such as a ceramic is preferable in consideration of efficiency. Reference numeral 4 is a restriction ring for determining the distance between the molding surfaces of the upper mold 1U and the lower mold 1L. In the present embodiment, the lower movable plate 3L is connected to the cylinder 6 of the pressing machine 5, and constitutes the press molding means for moving the lower mold 1L to press the glass material between the molding surfaces.

【0019】また、上金型1Uの成形面の反対側、すな
わち、裏面には環状の上絶縁体7Uを介して上誘導コイ
ル8Uが、下金型1Lの成形面の反対側、すなわち、裏面
には下絶縁体7Lを介して下誘導コイル8Lが、それぞれ
に一体に配設されている。上下の誘導コイル8U、8L
は、そのコイル中心軸線が金型1の中心軸線と一致する
向きに配設されており、そして、該上下の誘導コイル8
U、8Lのそれぞれは、高周波電源としての上下のインバ
ータ電源11U、11Lに上下の電流リード12U,12L
を介して接続されている。ここで、可動側の下金型1L
の下誘導コイル8Lに接続された電流リード12Lは、途
中にフレキシブルリード12Fが介在されており、フレ
キシブルリード12Fのたわみにより下誘導コイル8L
が、下金型1Lと一体となって上下可能になっている。
On the opposite side of the molding surface of the upper mold 1U, that is, on the back surface, the upper induction coil 8U is provided on the opposite side of the molding surface of the lower mold 1L, that is, the back surface, through the annular upper insulator 7U. A lower induction coil 8L is integrally provided in each of the lower insulation coils 7L via a lower insulator 7L. Upper and lower induction coils 8U, 8L
Are arranged so that their coil center axes coincide with the center axis of the mold 1, and the upper and lower induction coils 8 are
U and 8L are respectively upper and lower inverter power supplies 11U and 11L as high frequency power supplies, and upper and lower current leads 12U and 12L.
Connected through. Here, lower mold 1L on the movable side
The current lead 12L connected to the lower induction coil 8L has a flexible lead 12F in the middle thereof, and the flexible lead 12F is bent to bend the lower induction coil 8L.
However, it can be moved up and down integrally with the lower mold 1L.

【0020】さらに、上金型1Uおよび下金型1Lの裏面
中央(または金型温度を推定できる周辺部でもよい)に
は、熱電対等の測温素子13U、13Lが取り付けられ、
この測温素子13U、13Lは温度調整器14U、14Lに
接続され、上下の金型1U、1Lの温度をモニタしながら
温度調整器14U、14Lを用いて、それぞれの温度が設
定パターンとなるように、上下のインバータ電源11
U、11Lの電流(出力)を調整することが可能とされて
いる。
Further, temperature measuring elements 13U and 13L such as thermocouples are attached to the center of the back surface of the upper mold 1U and the lower mold 1L (or may be a peripheral part where the mold temperature can be estimated).
The temperature measuring elements 13U and 13L are connected to the temperature controllers 14U and 14L, and while monitoring the temperatures of the upper and lower molds 1U and 1L, the temperature controllers 14U and 14L are used so that the respective temperatures become set patterns. The upper and lower inverter power supplies 11
It is possible to adjust the current (output) of U and 11L.

【0021】なお、15Uおよび15Lはそれぞれ上下の
冷却ユニットであり、本実施の形態では、良伝熱性材料
で形成され、内部に冷却媒体を通過させる通路が設けら
れている。上冷却ユニット15Uは上固定プレート3Uに
対し、また、下冷却ユニット15Lは下可動プレート3L
に対し、それぞれ、相対移動可能に取り付けられてい
る。
Note that 15U and 15L are upper and lower cooling units, respectively, and in the present embodiment, they are formed of a material having good heat conductivity and are provided with passages for passing a cooling medium therein. The upper cooling unit 15U is for the upper fixed plate 3U, and the lower cooling unit 15L is for the lower movable plate 3L.
On the other hand, they are attached so as to be movable relative to each other.

【0022】上記製造装置は、チャンバー内に設置さ
れ、金型1とその他構成部材の高温雰囲気中での酸化に
よる劣化を防ぐために、チャンバーは真空排気または不
活性ガスをパージできる機構を有している。
The above-mentioned manufacturing apparatus is installed in a chamber, and in order to prevent deterioration of the mold 1 and other components due to oxidation in a high temperature atmosphere, the chamber has a mechanism capable of evacuating or purging with an inert gas. There is.

【0023】ガラス材料Mは、不図示の移戴機の搬送ア
ーム10により、図1に示すように、上金型1Uおよび
下金型1Lが離間された状態で、下金型1Lの成形面上に
置かれる。そして、上下の誘導コイル8U、8Lにインバ
ータ電源11U、11Lから交番電流を通じることによっ
て交番磁場を発生させ、電磁誘導による上金型1Uおよ
び下金型1Lの加熱が開始される。同時に、上金型1Uお
よび下金型1Lの温度は測温素子13U、13Lにより計
測されつつ温度調整器14U、14Lにより制御され、ガ
ラス材料Mの軟化点近傍まで加熱される。
The glass material M is formed on the molding surface of the lower mold 1L with the upper mold 1U and the lower mold 1L separated from each other by the transfer arm 10 of the transfer machine (not shown) as shown in FIG. Placed on top. An alternating magnetic field is generated by passing an alternating current from the inverter power supplies 11U and 11L to the upper and lower induction coils 8U and 8L, and heating of the upper mold 1U and the lower mold 1L by electromagnetic induction is started. At the same time, the temperatures of the upper mold 1U and the lower mold 1L are controlled by the temperature controllers 14U and 14L while being measured by the temperature measuring elements 13U and 13L, and heated to near the softening point of the glass material M.

【0024】加熱されたガラス材料Mは軟化点近傍で一
定時間保持された後、図2に示すように、シリンダ6を
介してプレス機5で加圧され、規制リング4により厚み
を規制されたガラス基板に成形される。成形後、上下金
型1は、上金型1Uおよび下金型1Lにそれぞれ接触され
ている冷却ユニット15Uおよび15Lに冷却媒体を通過
させることによりガラス材料Mのガラス転移点温度以下
まで冷却され(図3参照)、その後下金型1Lは下降さ
れ金型が開く。成形ガラス基板は、図には記載していな
い移戴機によりチャンバーの外に取り出される。この
間、チャンバー内は、真空または不活性な雰囲気に保た
れている。
The heated glass material M is held in the vicinity of the softening point for a certain period of time, and thereafter, is pressurized by a press 5 through a cylinder 6 and its thickness is regulated by a regulating ring 4 as shown in FIG. Molded into a glass substrate. After the molding, the upper and lower molds 1 are cooled to the glass transition temperature of the glass material M or less by passing the cooling medium through the cooling units 15U and 15L which are in contact with the upper mold 1U and the lower mold 1L, respectively ( (See FIG. 3), then the lower die 1L is lowered and the die is opened. The molded glass substrate is taken out of the chamber by a transfer machine (not shown). During this time, the inside of the chamber is kept in a vacuum or an inert atmosphere.

【0025】この実施の形態の場合には、ガラス材料M
の搬送動作のときでも金型1を加熱できるので、その温
度管理が容易であり、また、金型の閉成のための下金型
1Lの移動量やガラス材料Mの変形量が大きい場合で
も、プレス動作時に金型1と誘導コイル8との相対的位
置が変化しないので、上下金型への入力バランスが変化
することがなく、誘導コイルの上部と下部の電流配分を
調整する等が不要である。
In the case of this embodiment, the glass material M
Since the mold 1 can be heated even during the conveying operation of the mold 1, its temperature control is easy, and even when the amount of movement of the lower mold 1L for closing the mold and the amount of deformation of the glass material M are large. Since the relative positions of the die 1 and the induction coil 8 do not change during the pressing operation, the input balance to the upper and lower dies does not change, and there is no need to adjust the current distribution between the upper part and the lower part of the induction coil. Is.

【0026】なお、図4に本発明の他の実施形態を示
す。前実施の形態では円筒形状の金型支持体2としたの
に対し、上下にフランジを有する円柱形状の金型支持体
20とされ、さらにその内部に冷却ガス通路が形成され
て冷却ユニットとして兼用されている。そして、上下の
誘導コイル8U、8Lは、表面側に上金型1U、下金型1L
が配置されているフランジの裏面側に配置されている。
なお、他の構成は前実施の形態と同じであるので重複説
明を避ける。
Incidentally, FIG. 4 shows another embodiment of the present invention. In contrast to the cylindrical mold support 2 in the previous embodiment, it is a cylindrical mold support 20 having upper and lower flanges, and a cooling gas passage is formed therein to serve also as a cooling unit. Has been done. The upper and lower induction coils 8U and 8L are the upper mold 1U and the lower mold 1L on the front surface side.
Is arranged on the back surface side of the flange where is arranged.
Note that the other configuration is the same as that of the previous embodiment, and thus a duplicate description will be omitted.

【0027】本発明の特徴的構成による作用効果を列挙
すると以下の通りである。
The actions and effects of the characteristic configuration of the present invention are listed below.

【0028】(1)誘導加熱―2誘導コイル2電源方式 インバータ電源に接続された誘導コイルで交番磁場を発
生させ、電磁誘導で金型を加熱する。上下金型に対して
それぞれ別のコイルと電源を接続して単独で加熱できる
2コイル2電源構成とし、温度調整器を用いて、金型温
度をモニタしながら所定の温度パターンになるよう電源
の出力を調整する。
(1) Induction heating-2 induction coil dual power supply system An induction coil connected to an inverter power supply generates an alternating magnetic field to heat a mold by electromagnetic induction. The upper and lower molds are connected to different coils and power supplies, respectively, so as to have a 2-coil 2-power supply structure that can be heated independently. Using a temperature controller, the mold temperature is monitored so that the power supply has a predetermined temperature pattern. Adjust the output.

【0029】従来金型の周りにあった誘導コイルを、絶
縁物で絶縁して上下金型の裏面に配置し、ここに交番電
流を通じて金型を裏側から加熱する。誘導コイルは金型
形状に沿った円形であるので、金型を均一(軸対称)に
加熱することができる。上下に独立に配置された誘導コ
イルにはそれぞれ別々のインバータ電源に電流リードで
接続された2コイル2電源構成とし、金型または金型温
度を推定できる周辺部に熱電対等の測温素子を取り付
け、この温度をモニタしながら温度調整器を用いて、金
型の温度が設定パターンとなるようインバータ電源の電
流(出力)を調整する。上下金型に別々の温調加熱シス
テムが付くことにより、精度の高い温度調整が可能とな
る。
The induction coil, which has conventionally been around the mold, is arranged on the back surfaces of the upper and lower molds by being insulated with an insulator, and the mold is heated from the back side by passing an alternating current there. Since the induction coil is circular along the shape of the mold, the mold can be heated uniformly (axisymmetrically). The induction coils arranged independently on the top and bottom have a two-coil, two-power supply configuration in which separate inverter power supplies are connected with current leads, and a temperature measuring element such as a thermocouple is attached to the mold or the peripheral part where the mold temperature can be estimated. While monitoring this temperature, a temperature regulator is used to adjust the current (output) of the inverter power supply so that the temperature of the mold becomes a set pattern. By attaching separate temperature control heating systems to the upper and lower molds, highly accurate temperature control becomes possible.

【0030】(2)金型部・誘導コイル一体移動構成 可動側においては、金型の移動ストロークを吸収できる
電流リードを用いて、誘導コイルが金型と一体となって
動作できる。これにより、プレス時に金型と誘導コイル
の相互インダクタンスが変化しないため、金型温度の高
精度制御が容易となる。また、上下金型を別々に温度制
御できるため、金型位置に依らない温度制御が可能とな
り、例えば搬送時など金型の位置が成形時と大きく異な
る時の温度制御も可能となる。
(2) Mold part / induction coil integrated movement structure On the movable side, the induction coil can operate integrally with the mold by using a current lead capable of absorbing the movement stroke of the mold. As a result, since the mutual inductance between the die and the induction coil does not change during pressing, high precision control of die temperature becomes easy. Further, since the upper and lower molds can be temperature-controlled separately, temperature control can be performed without depending on the mold position, and temperature control can also be performed when the position of the mold is greatly different from that during molding, such as during transportation.

【0031】可動側の金型のコイルに接続された電流リ
ードは、フレキシブルリードが介在されて接続されてい
る。フレキシブルリードのたわみにより誘導コイルが、
下金型部と一体となって上下する構造となっている。即
ち図1の金型解放時、図2のプレス動作時のように金型
の位置に関らず、金型と誘導コイルの相対位置が変化し
ない。したがって、温度調節器は金型温度をモニタしな
がらインバータ電源の出力を制御をする単純な制御回路
になり、金型の温度調整が容易になる。
The current lead connected to the coil of the movable die is connected via a flexible lead. Due to the bending of the flexible lead, the induction coil
It has a structure that moves up and down together with the lower mold part. That is, the relative positions of the mold and the induction coil do not change regardless of the position of the mold when the mold of FIG. 1 is released and the pressing operation of FIG. Therefore, the temperature controller becomes a simple control circuit that controls the output of the inverter power supply while monitoring the mold temperature, and the mold temperature adjustment becomes easy.

【0032】(3)金型裏面加熱-電源干渉の排除 2つの同一周波数のインバータ電源を用いる場合、お互
いのコイルから発生した磁場が干渉すると電源の動作が
不安定になり、成形機の運転に影響を与える。本発明で
は、誘導コイルは金型の裏側に設置されているため、コ
イルから発した磁場が金型にシールドされるため、磁場
干渉が無く電源が安定に動作できる。
(3) Mold backside heating-elimination of power supply interference When two inverter power supplies with the same frequency are used, the operation of the power supply becomes unstable if the magnetic fields generated from the coils of both interfere with each other, and the operation of the molding machine becomes unstable. Influence. In the present invention, since the induction coil is installed on the back side of the mold, the magnetic field generated from the coil is shielded by the mold, so that the power supply can operate stably without magnetic field interference.

【0033】さらに本発明では、上下誘導コイルの間に
は金型が存在するため、片側のコイルの作る磁場は金型
によってシールドされ、2台のインバータ電源が干渉す
ることがない。この効果により操業が安定し、生産性が
向上する。
Further, in the present invention, since the mold exists between the upper and lower induction coils, the magnetic field created by the coil on one side is shielded by the mold, and the two inverter power supplies do not interfere with each other. This effect stabilizes operation and improves productivity.

【0034】[0034]

【発明の効果】以上の説明から明らかなように、本発明
によれば、上下金型の高精度な温度調節により偏熱が起
きにくい金型を、所定の温度パターンに対して精度良く
調整できるため、成形基板の残留応力による歪みや反り
を最小限に抑え、平坦度に優れるガラス基板を得ること
ができる。これによって、この基板を情報記録媒体とし
たとき、高密度で高信頼性のものを安定に生産できる。
また、金型の温度調整が上下金型で独立しているため、
制御回路も単純化できる。
As is apparent from the above description, according to the present invention, it is possible to accurately adjust a mold in which uneven heat is less likely to occur due to highly accurate temperature control of upper and lower molds with respect to a predetermined temperature pattern. Therefore, it is possible to minimize distortion and warpage due to residual stress of the molded substrate, and obtain a glass substrate having excellent flatness. As a result, when this substrate is used as an information recording medium, a high density and highly reliable one can be stably produced.
Also, since the temperature control of the mold is independent for the upper and lower molds,
The control circuit can also be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガラス基板の製造装置の一実施の
形態を示す断面図であり、型開成時を示す。
FIG. 1 is a cross-sectional view showing an embodiment of a glass substrate manufacturing apparatus according to the present invention, showing a state when a mold is opened.

【図2】本発明に係るガラス基板の製造装置の一実施の
形態を示す断面図であり、型閉成時を示す。
FIG. 2 is a cross-sectional view showing an embodiment of an apparatus for manufacturing a glass substrate according to the present invention, showing a mold closed state.

【図3】本発明に係るガラス基板の製造方法の成形プロ
セスの一例を示すタイムチャートである。
FIG. 3 is a time chart showing an example of a molding process of the glass substrate manufacturing method according to the present invention.

【図4】本発明に係るガラス基板の製造装置の他の実施
の形態を示す断面図である。
FIG. 4 is a cross-sectional view showing another embodiment of the glass substrate manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 金型 1U 上金型 1L 下金型 2U 上金型支持体 2L 下金型支持体 3U 上固定プレート 3L 下可動プレート 4 規制リング 5 プレス機 6 シリンダ 7U 上絶縁体 7L 下絶縁体 8U 上誘導コイル 8L 下誘導コイル 10 搬送アーム 11U、11L インバータ電源 12U、12L 電流リード 12F フレキシブルリード 13U、13L 測温素子 14U、14L 温度調整器 15U、15L 冷却ユニット 1 mold 1U upper mold 1L lower mold 2U upper mold support 2L lower mold support 3U upper fixed plate 3L lower movable plate 4 regulation ring 5 Press machine 6 cylinders 7U upper insulator 7L lower insulator 8U upper induction coil 8L lower induction coil 10 Transport arm 11U, 11L inverter power supply 12U, 12L current lead 12F flexible lead 13U, 13L temperature measuring element 14U, 14L temperature controller 15U, 15L cooling unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 上下金型の成形面間にガラス素材を配置
し、該上下金型を加熱し、プレス機により前記上下金型
の少なくとも一方を移動させて前記ガラス素材を加圧す
る、工程を経て、ガラス基板を製造する方法であって、 前記加熱工程は、前記上下金型のそれぞれに一体に配設
された上下誘導コイルに交番電流を通じて金型を誘導加
熱することにより行われることを特徴とするガラス基板
の製造方法。
1. A step of arranging a glass material between the molding surfaces of the upper and lower molds, heating the upper and lower molds, and moving at least one of the upper and lower molds by a press to press the glass material. A method of manufacturing a glass substrate, wherein the heating step is performed by inductively heating the mold by applying an alternating current to upper and lower induction coils integrally arranged in each of the upper and lower molds. And a method for manufacturing a glass substrate.
【請求項2】 前記上下誘導コイルは、それぞれ別々の
電源に接続され、前記上下金型の温度をそれぞれモニタ
しながら電源の出力調整が別々に行われることを特徴と
する請求項1に記載のガラス基板の製造方法。
2. The upper and lower induction coils are respectively connected to different power sources, and the output of the power source is separately adjusted while monitoring the temperatures of the upper and lower molds. Method for manufacturing glass substrate.
【請求項3】 前記別々の電源は同一周波数であり、前
記上下誘導コイルはそれぞれ、前記上下金型の成形面の
反対側に配設されていることを特徴とする請求項1また
は2に記載のガラス基板の製造方法。
3. The separate power supplies have the same frequency, and the upper and lower induction coils are respectively arranged on opposite sides of a molding surface of the upper and lower molds. Of manufacturing glass substrate of.
【請求項4】 成形面をそれぞれ有する上下金型と、 該上下金型のそれぞれに一体に配設された上下誘導コイ
ルと、 前記上下金型の少なくとも一方を移動させて成形面間の
ガラス素材を加圧するプレス成形手段と、 前記上下誘導コイルのそれぞれに接続された別々の高周
波電源と、を備えることを特徴とするガラス基板の製造
装置。
4. An upper and lower molds each having a molding surface, an upper and lower induction coil integrally arranged in each of the upper and lower molds, and a glass material between the molding surfaces by moving at least one of the upper and lower molds. An apparatus for manufacturing a glass substrate, comprising: a press molding unit that pressurizes the glass substrate; and a separate high-frequency power source connected to each of the upper and lower induction coils.
【請求項5】 前記上下誘導コイルはそれぞれ、前記上
下金型の成形面の反対側に配設されていることを特徴と
する請求項4に記載のガラス基板の製造装置。
5. The glass substrate manufacturing apparatus according to claim 4, wherein each of the upper and lower induction coils is arranged on a side opposite to a molding surface of the upper and lower molds.
【請求項6】 前記上下誘導コイルのうち、少なくとも
移動する金型に配設された誘導コイルは、電源にフレキ
シブルなリードを介して接続されていることを特徴とす
る請求項4または5に記載のガラス基板の製造装置。
6. The upper and lower induction coils, wherein at least the induction coil disposed in the moving mold is connected to a power source via a flexible lead. Glass substrate manufacturing equipment.
JP2002026001A 2002-02-01 2002-02-01 Method and apparatus for manufacturing glass substrate Pending JP2003226529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002026001A JP2003226529A (en) 2002-02-01 2002-02-01 Method and apparatus for manufacturing glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026001A JP2003226529A (en) 2002-02-01 2002-02-01 Method and apparatus for manufacturing glass substrate

Publications (1)

Publication Number Publication Date
JP2003226529A true JP2003226529A (en) 2003-08-12

Family

ID=27747977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026001A Pending JP2003226529A (en) 2002-02-01 2002-02-01 Method and apparatus for manufacturing glass substrate

Country Status (1)

Country Link
JP (1) JP2003226529A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169009A (en) * 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd Molding method and apparatus
CN100404449C (en) * 2003-09-25 2008-07-23 Hoya株式会社 Cast die pressed shaper and mfg.method of opticle element
CN107117800A (en) * 2017-05-17 2017-09-01 洛阳用功感应加热设备有限公司 A kind of hot-bending machine of combination electromagnetic induction heating and two kinds of technologies of electric heating conduction heating
WO2020080633A1 (en) * 2018-10-19 2020-04-23 엘지전자 주식회사 High frequency induction heating system
CN114702231A (en) * 2022-04-08 2022-07-05 四川瑞天光学有限责任公司 Heating device and method for hot-press forming die of optical glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404449C (en) * 2003-09-25 2008-07-23 Hoya株式会社 Cast die pressed shaper and mfg.method of opticle element
JP2006169009A (en) * 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd Molding method and apparatus
JP4685428B2 (en) * 2004-12-13 2011-05-18 パナソニック株式会社 Molding equipment
CN107117800A (en) * 2017-05-17 2017-09-01 洛阳用功感应加热设备有限公司 A kind of hot-bending machine of combination electromagnetic induction heating and two kinds of technologies of electric heating conduction heating
WO2020080633A1 (en) * 2018-10-19 2020-04-23 엘지전자 주식회사 High frequency induction heating system
CN114702231A (en) * 2022-04-08 2022-07-05 四川瑞天光学有限责任公司 Heating device and method for hot-press forming die of optical glass

Similar Documents

Publication Publication Date Title
US20060090512A1 (en) Press molding apparatus and method of producing a glass optical element using the apparatus
JP2004196651A (en) Method and apparatus for manufacturing glass substrate for storage medium, and glass substrate for storage medium, and storage medium
JP3932985B2 (en) Press molding apparatus and press molding method
JP2003226529A (en) Method and apparatus for manufacturing glass substrate
TWI331987B (en) Press-molding apparatus, press-molding method and method of producing an optical element
JP4784601B2 (en) Fine structure processing method and fine structure processing apparatus
JP2012116705A (en) Molding apparatus and molding method for optical device
JP4825494B2 (en) Glass forming equipment
US20040212110A1 (en) Press-molding apparatus and method of producing an optical element
JP4266115B2 (en) Mold press molding apparatus and glass optical element manufacturing method
JP2004010385A (en) Press-forming apparatus and press-forming method
CN1765786B (en) Press molding apparatus and press molding method
KR20080085510A (en) Rapid thermal pressing (rtp) apparatus for nanoimprint lithography
JP3255864B2 (en) Press forming heating apparatus and press forming heating method
JP4222922B2 (en) Glass lens molding equipment
JP3738713B2 (en) Sheet forming method and apparatus therefor
JPH05270847A (en) High-frequency induction heater
JP4141983B2 (en) Mold press molding method and optical element manufacturing method
JP4358406B2 (en) Optical element molding apparatus and molding method
JP2011184248A (en) Optical element molding device
JPH06305744A (en) Apparatus for production of optical element
JPH05294643A (en) Molding device for glass optical element
JP2004345943A (en) Mold press molding device and method for producing optical element
JP4255294B2 (en) Glass optical element manufacturing method and molding apparatus
JP2003146674A (en) Press molding apparatus and method for manufacturing glass optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113