JP2003224325A - Package for housing optical semiconductor element - Google Patents

Package for housing optical semiconductor element

Info

Publication number
JP2003224325A
JP2003224325A JP2002022396A JP2002022396A JP2003224325A JP 2003224325 A JP2003224325 A JP 2003224325A JP 2002022396 A JP2002022396 A JP 2002022396A JP 2002022396 A JP2002022396 A JP 2002022396A JP 2003224325 A JP2003224325 A JP 2003224325A
Authority
JP
Japan
Prior art keywords
weight
oxide
optical semiconductor
semiconductor element
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002022396A
Other languages
Japanese (ja)
Inventor
Atsushi Onishi
篤 大西
Shuichi Shinchi
修一 新地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002022396A priority Critical patent/JP2003224325A/en
Publication of JP2003224325A publication Critical patent/JP2003224325A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when a fixing member is brazed to a main body of a package for housing optical semiconductor element, the adhesive strength of the joint becomes weaker. <P>SOLUTION: The package for housing optical semiconductor element comprises the main body 1 having a recessed section A on its top surface to house an optical semiconductor element 2 and a through hole 1a made through its side section to reach the recessed section A; the fixing member 5 which is inserted into and fixed in the hole 1a, is fixed to the external peripheral surface of the hole 1a, and has a lens member 6 attached to the end section of the member 5 on the recessed section A side through a sealing glass material 7; and a cap body 8 which is attached to the top surface of the main body 1 so as to cover the recessed section A. The sealing glass material 7 is composed of borosilicate glass containing a silicon oxide in an amount of 63-70 wt.%, boron oxide in an amount of 17-28 wt.%, aluminum oxide in an amount of 6-10 wt.%, potassium oxide in an amount of 0.2-5 wt.%, sodium oxide in an amount of 0.2-3 wt.%, and barium oxide in an amount of 0.2-2 wt.%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、LD(半導体レー
ザ)、PD(フォトダイオード)等の光半導体素子を気密
に封止して収納するための光半導体素子収納用パッケー
ジに関し、特にガラスを主成分とする封止材を溶融して
レンズ部材を固定する光半導体素子収納用パッケージに
関する。 【0002】 【従来の技術】従来から、図1(a)に斜視図で、(b)に断
面図で示すような、封止材を溶融してレンズ部材を固定
する光半導体素子収納用パッケージが用いられている。
この光半導体素子収納用パッケージは、鉄−ニッケル−
コバルト合金等の金属材料から成り、その上面略中央部
にLD、PD等の光半導体素子2を収容する空所を形成
するための開口(凹部)を有する箱状の容器本体1と、50
アロイ(鉄50重量%−ニッケル50重量%合金)等の金属材
料から成り、容器本体1の側壁の貫通孔1aに金属ろう材
を介して取着され、側壁の外側端部より光ファイバーが
挿入固定される筒状の固定部材5と、容器本体1の上面
に取着され、光半導体素子2を気密に封止する蓋体8と
から構成されている。 【0003】また、容器本体1の外側面には、光半導体
素子2と外部電気回路との電気的接続を行うための鉄−
ニッケル−コバルト合金等の金属材料から成るリード端
子3がリード端子封止材4を介して溶着され、固定部材
5の内側にはガラス封止材7で固定されたレンズ部材6
が取着されている。なお、レンズ部材6は、通常はその
形状が球状あるいは半球状となっている。 【0004】この容器本体1および固定部材5は、外表
面に酸化腐食を防止するとともに各部接合用のろう材と
の濡れ性を改善するNiめっき層、Auめっき層が順次
被着されており、また、固定部材5は、容器本体1の貫
通孔1aの内側にAu−Sn合金等の低融点の金属ろう
材で取着されている。 【0005】レンズ部材6はホウ珪酸系ガラスから成
り、一般に9ppm℃程度の線熱膨張係数を有してい
る。また、固定部材5の内側にレンズ部材6を固定する
ガラス封止材7は、酸化鉛56〜66重量%、酸化硼素4〜1
4重量%、酸化珪素4〜14重量%および酸化亜鉛0.5〜3重
量%を含むガラス成分にフィラーとしてコージェライト
系化合物を外添加で5〜10重量%およびチタン酸錫系化
合物を外添加で5〜10重量%添加したものが使用されて
いる。なお、封止材7の線熱膨張係数は9ppm/℃程
度である。 【0006】 【発明が解決しようとする課題】しかしながら、従来の
光半導体素子収納用パッケージにおいては、固定部材5
をAu−Snろう材で容器本体1の貫通孔1aに接合す
る際に、ガラス封止材7の再溶融による光軸のズレを防
止するために、ガラス封止材7の軟化点は350℃以上で
あることが必要であり、その結果、ガラス封止材7の溶
融温度は400℃以上と高くなり、あらかじめNiめっき
層、Auめっき層を被着した固定部材5に封止材7を介
してレンズ部材6を被着させた場合、ガラス封止材7を
加熱溶融させる熱により、固定部材5の外装の金めっき
層が下地のNiめっき層の拡散により劣化してしまうと
いう問題点を有していた。そして、外装の金めっき層が
劣化しているため、固定部材5を容器本体1の貫通孔1
aにろう材で接合させようとすると、その接合部の接着
強度の低下を招き、その結果、光半導体素子収納用パッ
ケージ内部の気密封止が破れ、内部に収容する光半導体
素子2を長期間にわたり正常、かつ安定に作動させるこ
とができないという問題点を誘発していた。 【0007】また、レンズ部材6を固定部材5に接合し
た後、固定部材5の表面にめっきを施した場合、レンズ
部材6を封止するガラス封止材7に酸化鉛系ガラスを使
用しているため、めっき液へガラス封止材7の鉛成分が
溶解してしまい、Auめっき層の半田濡れ性等の接合特
性を低下させてしまうという不具合が発生していた。こ
のため、レンズ部材6のガラス封止材7による固定部材
5への接合を外装めっき層の形成前に行うことが困難だ
った。 【0008】このため、固定部材5へのレンズ部材6の
接合は、ガラス封止材7とAuめっき層との濡れ性が悪
いということもあり、まず固定部材5の全面に外装めっ
き層を形成した後に、レンズ部材6の接合部のAuめっ
き層を研磨除去し、しかる後、レンズ部材6をガラス封
止材7で接合する必要があった。従って、製造工程が複
雑になり生産性の低下を招いていた。 【0009】また、近時の地球環境保護の動きのなかで
酸化鉛は環境負荷物質に指定されており、酸化鉛系の低
温封止ガラスを光半導体素子収納用パッケージ等の電子
部品に使用しない動きが始まっている。 【0010】本発明はかかる従来技術の問題点に鑑み案
出されたものであり、その目的は金属容器の内部に光半
導体素子を気密に封止し、光半導体素子を長期間にわた
り正常、かつ安定に作動させることができる光半導体素
子収納用パッケージを提供することにある。 【0011】 【課題を解決するための手段】本発明の光半導体素子収
納用パッケージは、上面に光半導体素子を収容する凹部
が形成され、側部に前記凹部まで貫通する貫通孔が設け
られた容器本体と、前記貫通孔に挿入固定され、または
前記容器本体の前記貫通孔周辺の外表面に固定され、前
記凹部側の端部にガラス封止材を介してレンズ部材が取
着された固定部材と、前記容器本体の上面に前記凹部を
覆うように取着される蓋体とから成る光半導体素子収納
用パッケージであって、前記ガラス封止材は、酸化珪素
を63〜70重量%、酸化硼素を17〜28重量%、酸化アルミ
ニウムを6〜10重量%、酸化カリウムを0.2〜5重量
%、酸化ナトリウムを0.2〜3重量%および酸化バリウ
ムを0.2〜2重量%の範囲で含有するホウ珪酸ガラスか
ら成ることを特徴とするものである。 【0012】本発明の光半導体素子収納用パッケージに
よれば、ガラス封止材が酸化珪素を63〜70重量%、酸化
硼素を17〜28重量%、酸化アルミニウムを6〜10重量
%、酸化カリウムを0.2〜5重量%、酸化ナトリウムを
0.2〜3重量%および酸化バリウムを0.2〜2重量%の範
囲で含有するホウ珪酸ガラスから成ることから、ガラス
封止材の軟化溶融温度が680℃以上と高融点になり、こ
のガラス封止材を用いてレンズ部材を接合した固定部材
をAu−Snろう材で容器本体の貫通孔に接合したとし
ても、ガラス封止材が再溶融することはなく、その結
果、ガラス封止材の再溶融による光軸のズレを防止する
ことができる。また、ガラス封止材が酸化鉛を含有して
いないことから、固定部材にレンズ部材をガラス封止材
を介して接合した後に、固定部材に外装めっきを被着さ
せたとしても、めっき液へガラス封止材の成分が溶解す
ることはなく、その結果、Auめっき層の半田濡れ性等
の接合特性を損なうことがない。さらに、レンズ部材の
固定部材への接合を外装めっき層の形成前に行うことが
できるため、製造工程が簡略化されて効率的に生産可能
な光半導体素子収納用パッケージとすることができる。 【0013】 【発明の実施の形態】次に、本発明の光半導体素子収納
用パッケージについて添付の図面に基づいて説明する。
本発明の光半導体素子収納用パッケージの基本構成は図
1(a)、(b)と同様である。 【0014】図1において1は容器本体、2は半導体素
子、3はリード端子、4はリード端子封止材、5は固定
部材、6はレンズ部材、7はガラス封止材、8は蓋体で
あり、主に容器本体1、固定部材5、レンズ部材6およ
び蓋体7で本発明の光半導体素子収納用パッケージが構
成されている。なお、この実施例では、固定部材5が貫
通孔1aに挿入固定されている例を示している。 【0015】容器本体1は、金属材料やセラミックス等
の無機絶縁材料・樹脂等の有機材料から成り、その上面
略中央部にLD、PD等の光半導体素子2を収容する凹
部Aを有するとともに側部に凹部Aまで貫通する貫通孔
1aが設けられた箱状であり、容器本体1が例えばFe
−Ni−Co合金等の金属材料から成る場合、容器本体
1となるFe−Ni−Co合金の母材を従来周知の切削
加工やプレス加工、あるいは金属射出成形法(MIM)
等により凹凸加工・打ち抜きを施すことにより形成され
る。また、貫通孔1aも容器本体1と同時に加工するこ
とにより形成される。そして、容器本体1の凹部A底面
には、光半導体素子2がガラス等の接着剤を介して接着
固定される。 【0016】なお、容器本体1には、光半導体素子2と
外部電気回路(図示せず)との電気的接続を行うための
Fe−Ni−Co合金等の金属材料から成るリード端子
3が、通常その一端が内部に、他端が外部に導出するよ
うに、ホウ珪酸系ガラス等から成るリード端子封止材4
を介して固定されており、リード端子3の一端と光半導
体素子2の電極とをボンディングワイヤ等の電気的接続
部材9を開して電気的に接続するとともに、他端を外部
電気回路に電気的に接続することにより、光半導体素子
2と外部電気回路とが電気的に接続される。 【0017】容器本体1の貫通孔1aには、筒状の固定
部材5が挿入固定されている。固定部材5は、光ファイ
バ(図示せず)を光半導体素子収納用パッケージに固定
する機能を有し、金属材料やセラミックス等の無機絶縁
材料・樹脂等の有機材料から成る。固定部材5が、例え
ば金属材料から成る場合、50アロイ(Fe50重量%−N
i50重量%合金)等の金属材料が用いられ、固定部材5
となる50アロイの母材を従来周知の切削加工やプレス加
工、あるいは金属射出成形法(MIM)等により凹凸加
工・打ち抜きを施すことにより形成される。 【0018】なお、容器本体1および固定部材5は、30
〜300℃における線熱膨張係数が4〜6ppm/℃の同一
の金属材料が好ましい。線熱膨張係数が4ppm/℃未
満では、レンズ部材6との線熱膨張係数の差が大きくな
りガラス封止材7による気密封止が困難となる傾向があ
り、線熱膨張係数が6ppm/℃を超えると、リード端
子封止材4(4ppm/℃程度)と容器本体1の線熱膨張
係数の差が大きくなりリード端子封止材4による容器本
体1とリード端子3との気密封止が困難となる傾向があ
る。従って、容器本体1および固定部材5は、30〜300
℃における線熱膨張係数が4〜6ppm/℃の同一の金
属材料が好ましい。 【0019】また、容器本体1および固定部材5が金属
材料から成る場合は、その表面に酸化腐食を防止すると
ともに各部材接合用のろう材との濡れ性を改善するNi
めっき層、Auめっき層を被着しておくことが好まし
い。 【0020】さらに、固定部材5の、容器本体1の凹部
A側の端部には、レンズ部材6がガラス封止材7を介し
て取着されている。レンズ部材6は、光ファイバを通過
した外部光を集光して光半導体素子2に導く、あるいは
光半導体素子2の発する光を光ファイバに導く機能を有
する。なお、レンズ部材6はホウ珪酸系ガラスから成
り、一般に9ppm/℃程度の線熱膨張係数を有してい
る。 【0021】このようなレンズ部材6は、あらかじめガ
ラス封止材7を固定部材5のレンズ部材6を接合する個
所に塗布しておき、レンズ部材6の外周が筒状の固定部
材5の内部に当接するように固定部材5に完全にあるい
は一部を挿入し、しかる後、封止材7を加熱炉で加熱溶
融することにより固定部材5の容器本体1側部の内側の
端部に固定される。 【0022】レンズ部材6を固定部材5に固定するガラ
ス封止材7は、鉛を含まない高融点ガラスから成り、酸
化珪素を63〜70重量%、酸化硼素を17〜28重量%、酸化
アルミニウムを6〜10重量%、酸化カリウムを0.2〜5
重量%、酸化ナトリウムを0.2〜3重量%および酸化バ
リウムを0.2〜2重量%の範囲で含有するホウ珪酸ガラ
スから成り、また、このことが重要である。 【0023】ガラス封止材7は、酸化珪素の含有量が63
重量%未満では、ガラスの軟化温度が高くなり過ぎて、
レンズ部材6の光学特性が劣化してしまう傾向があり、
また、70重量%を超えると、ガラスの耐薬品性が劣化
し、気密封止の信頼性が低下してしまう傾向がある。従
って、酸化珪素の含有量は63〜70重量%の範囲が好まし
い。 【0024】また、酸化硼素の含有量が17重量%未満で
は、ガラスの軟化温度が高くなり過ぎて、レンズ部材6
の光学特性が劣化する傾向があり、28重量%を超える
と、ガラスの耐薬品性が劣化し、気密封止の信頼性が低
下する傾向にある。従って、酸化硼素の含有量は、17〜
28重量%の範囲が好ましい。 【0025】酸化アルミニウムの含有量が6重量%未満
では、ガラスの軟化温度が高くなり過ぎて、レンズ部材
6の光学特性が劣化してしまう傾向があり、10重量%を
超えると、ガラスの耐薬品性が劣化し、気密封止の信頼
性が低下してしまう傾向がある。従って、酸化アルミニ
ウムの含有量は、6〜10重量%の範囲が好ましい。 【0026】酸化カリウムの含有量が0.2重量%未満で
は、ガラスの流動性が悪くなり気密封止が困難となる傾
向があり、5重量%を超えると、ガラスの耐薬品性が劣
化し、気密封止の信頼性が低下する傾向がある。従っ
て、酸化カリウムの含有量は、0.2〜5重量%の範囲が
好ましい。 【0027】酸化ナトリウムの含有量が0.2重量%未満
では、ガラスの流動性が悪くなり気密封止が困難となる
傾向にあり、3重量%を超えると、ガラスの耐薬品性が
劣化し、気密封止の信頼性が低下する傾向がある。従っ
て、酸化ナトリウムの含有量は、0.2〜3重量%の範囲
が好ましい。 【0028】また、酸化バリウムの含有量が0.2重量%
未満では、ガラスの耐薬品性が劣化し、気密封止の信頼
性が低下する傾向があり、2重量%を超えると、ガラス
成形の段階で結晶化が進み、再溶融が困難となる傾向が
ある。従って、酸化バリウムの含有量は0.2〜2重量%
の範囲が好ましい。 【0029】このようなガラス封止材7は、酸化珪素、
酸化硼素、酸化アルミニウム、酸化カリウム、酸化ナト
リウム、酸化バリウムを含有するガラス成分を秤量し、
有機バインダーや顔料、水や溶剤などと共にV型ミキサ
ー等で均一に混合した後、その混合粉末(造粒)をプレ
ス成形し、酸化雰囲気中で600〜800℃程度で約2〜8時
間焼結することにより、均質な固溶体とすることができ
る。 【0030】また、ガラス部材6を固定部材5へ接合す
る際のガラス封止材7の加工溶融温度は、700〜900℃程
度が好ましく、さらには800〜850℃がより好ましい。85
0℃を超えるとレンズ部材6の軟化変形や熱応力および
残留応力により光学特性が劣化し易くなる傾向がある。
また、800℃未満では、ガラス封止材7の溶融が不十分と
なり、気密封止の信頼性が低下する傾向がある。 【0031】ガラス封止材7の厚さは、0.15〜0.35mm
が好ましく、0.15mm未満では、ガラス封止材7の量が
不充分となりレンズ部材6の周りに溶融時のガラス封止
材7のメニスカスが充分に形成されず、そのためレンズ
部材6の固定部材5への接合強度が不充分となる傾向が
ある。また、0.35mmを超えると、ガラス封止材7の量
が過多となり、レンズ部材6のレンズ面にガラス封止材
7が広がり過ぎてレンズ部材6の光透過性等の光学特性
が低下してしまう傾向がある。 【0032】本発明の光半導体素子収納用パッケージに
よれば、封止材7の組成を上記構成としたことから、ガ
ラス封止材7の軟化溶融温度が680℃以上と高融点にな
り、レンズ部材6を接合した固定部材5を後述するAu
−Snろう材で容器本体1の貫通孔1aに接合したとし
ても、ガラス封止材7が再溶融することはなく、その結
果、ガラス封止材7の再溶融による光軸のズレを防止す
ることができる。また、ガラス封止材7が酸化鉛を含有
しないことから、固定部材5にレンズ部材6をガラス封
止材7を介して接合した後に、固定部材5に外装めっき
を被着させたとしても、めっき液へガラス封止材7の成
分が溶解することはなく、その結果、Auめっき層の半
田濡れ性等の接合特性を損なうことがない。さらに、レ
ンズ部材6の固定部材5への接合を外装めっき層の形成
前に行うことができるため、製造工程が簡略化されて効
率的に生産可能な光半導体素子収納用パッケージとする
ことができる。 【0033】なお、容器本体1の貫通孔1aへの筒状の
固定部材5の取着は、Au−Sn合金等の金属ろう材で
固定部材5を固定するとともに金属ろう材を約400℃の
温度で加熱溶融することにより行なわれる。 【0034】かくして、光半導体素子2を容器本体1の
光半導体素子2搭載部に接着剤を介して搭載固定すると
ともに、光半導体素子2の各電極をリード端子3にボン
ディングワイヤ等の電気的接続手段8を介して電気的に
接続させ、しかる後、容器本体1の上面に蓋体7を封止
材を介して接合し、容器本体1と蓋体7とから成る容器
内部に光半導体素子2を気密に収容することによって製
品として光半導体装置が完成する。 【0035】なお、蓋体7は、厚みが0.3〜0.4mmの平
板で、金属材料や、セラミックス等の無機絶縁材料・樹
脂等の有機材料から成り、例えばFe−Ni−Co合金
等の金属材料から成る場合は、蓋体7となるFe−Ni
−Co合金の母材を従来周知のプレス加工により打ち抜
き加工を施すことにより形成される。 【0036】(実施例)効果の確認を行うため、次の実
験を行った。ここでは、主成分の酸化珪素、酸化硼素、
酸化アルミニウムについて、決定した実験例を示す。各
構成要素の重量%を変化させガラスを作成し気密性を評
価した。なお、テストおよび評価条件はMIL−STD
−883方式1014.9試験条件A1に準じた。 【0037】実験1 酸化珪素の重量%を59〜74の間で
変化させ、その他の構成要素を加えて合計が100重量%
となるように調合(小数点2桁以下を四捨五入)。結果
を表1に示す。 【0038】 【表1】 【0039】実験結果より、酸化珪素については、63〜
70重量%の範囲で良好な気密性を得られることがわかっ
た。 【0040】次に、酸化硼素および酸化珪素について、
次の実験を行った。実験2 酸化珪素の含有量を65〜70
重量%の範囲とし、酸化硼素および酸化アルミニウムの
含有量を変化させ実験1と同等の評価を行った。実験3
酸化珪素のの含有量を63重量%とし、酸化硼素および
酸化アルミニウムの含有量を変化させ実験1と同等の評
価を行った。結果を表2および表3に示す。 【0041】 【表2】 【0042】 【表3】 【0043】実験2および実験3より、酸化硼素17〜28
重量%、酸化アルミニウム6〜10重量%において良好な
気密性を得ることがわかった。また微量元素においても
同種の実験を行い、ガラス封止材が酸化珪素を63〜70重
量%、酸化硼素を17〜28重量%、酸化アルミニウムを6
〜10重量%、酸化カリウムを0.2〜5重量%、酸化ナト
リウムを0.2〜3重量%および酸化バリウムを0.2〜2重
量%の範囲で含有するホウ珪酸ガラスの場合において、
本発明の効果を確認することができた。 【0044】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更を行っても何ら差し支えない。 【0045】 【発明の効果】本発明の光半導体素子収納用パッケージ
によれば、ガラス封止材が酸化珪素を63〜70重量%、酸
化硼素を17〜28重量%、酸化アルミニウムを6〜10重量
%、酸化カリウムを0.2〜5重量%、酸化ナトリウムを
0.2〜3重量%および酸化バリウムを0.2〜2重量%の範
囲で含有するホウ珪酸ガラスから成ることから、ガラス
封止材の軟化溶融温度が680℃以上と高融点になり、レ
ンズ部材を接合した固定部材をAu−Snろう材で容器
本体の貫通孔に接合したとしても、ガラス封止材が再溶
融することはなく、その結果、ガラス封止材7の再溶融
による光軸のズレを防止することができる。また、ガラ
ス封止材が酸化鉛を含有しないことから、固定部材にレ
ンズ部材をガラス封止材を介して接合した後に、固定部
材に外装めっきを被着させたとしても、めっき液へガラ
ス封止材の成分が溶解することはなく、その結果、Au
めっき層の半田濡れ性等の接合特性を損なうことがな
い。さらに、レンズ部材の固定部材への接合を外装めっ
き層の形成前に行うことができるため、製造工程が簡略
化されて効率的に生産可能な光半導体素子収納用パッケ
ージとすることができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an optical semiconductor for hermetically sealing and housing optical semiconductor elements such as LD (semiconductor laser) and PD (photodiode). More particularly, the present invention relates to an optical semiconductor element housing package for fixing a lens member by melting a sealing material mainly composed of glass. 2. Description of the Related Art Conventionally, as shown in a perspective view of FIG. 1 (a) and a sectional view of FIG. 1 (b), an optical semiconductor element housing package for fixing a lens member by melting a sealing material. Is used.
This package for storing an optical semiconductor element is made of iron-nickel-
A box-shaped container main body 1 made of a metal material such as a cobalt alloy and having an opening (recess) for forming a space for accommodating the optical semiconductor element 2 such as an LD or a PD in a substantially central portion of the upper surface thereof;
It is made of a metal material such as an alloy (iron 50% by weight-nickel 50% by weight alloy) or the like, and is attached to the through hole 1a of the side wall of the container body 1 through a brazing metal. And a lid 8 attached to the upper surface of the container body 1 and hermetically sealing the optical semiconductor element 2. [0003] An outer surface of the container body 1 is provided with an iron-based wire for making an electrical connection between the optical semiconductor element 2 and an external electric circuit.
A lead terminal 3 made of a metal material such as a nickel-cobalt alloy is welded through a lead terminal sealing material 4, and a lens member 6 fixed by a glass sealing material 7 inside a fixing member 5.
Is attached. The lens member 6 is usually spherical or hemispherical in shape. The outer surface of the container body 1 and the fixing member 5 are sequentially coated with a Ni plating layer and an Au plating layer for preventing oxidation corrosion and improving the wettability with a brazing material for joining various parts. The fixing member 5 is attached to the inside of the through hole 1a of the container body 1 with a low melting point brazing metal such as an Au-Sn alloy. The lens member 6 is made of borosilicate glass and generally has a coefficient of linear thermal expansion of about 9 ppm.degree. The glass sealing material 7 for fixing the lens member 6 inside the fixing member 5 is composed of 56 to 66% by weight of lead oxide and 4 to 1% of boron oxide.
5-10% by weight of a glass component containing 4% by weight, 4-14% by weight of silicon oxide and 0.5-3% by weight of zinc oxide as a filler, and 5-10% by weight of a tin titanate compound as an external additive. What is added is 10% by weight. Note that the linear thermal expansion coefficient of the sealing material 7 is about 9 ppm / ° C. However, in the conventional package for housing an optical semiconductor element, the fixing member 5 is required.
Is bonded to the through hole 1a of the container body 1 with an Au-Sn brazing material, the softening point of the glass sealing material 7 is set to 350 ° C. in order to prevent the optical axis from shifting due to re-melting of the glass sealing material 7. As a result, the melting temperature of the glass sealing material 7 becomes as high as 400 ° C. or more, and the fixing member 5 with the Ni plating layer and the Au plating layer applied thereto in advance through the sealing material 7 When the lens member 6 is adhered by the heating, there is a problem that the gold plating layer on the exterior of the fixing member 5 is deteriorated by the diffusion of the underlying Ni plating layer due to the heat for heating and melting the glass sealing material 7. Was. Since the outer gold plating layer is deteriorated, the fixing member 5 is moved to the through hole 1 of the container body 1.
When the brazing material is joined to a, the bonding strength of the joining portion is reduced, and as a result, the hermetic sealing inside the optical semiconductor device housing package is broken, and the optical semiconductor device 2 housed therein is prolonged. For a long period of time, it has been impossible to operate normally and stably. When the surface of the fixing member 5 is plated after joining the lens member 6 to the fixing member 5, a lead oxide glass is used for the glass sealing material 7 for sealing the lens member 6. Therefore, the lead component of the glass sealing material 7 dissolves in the plating solution, and a problem has occurred in that the bonding characteristics such as solder wettability of the Au plating layer are reduced. For this reason, it was difficult to join the lens member 6 to the fixing member 5 by the glass sealing material 7 before forming the exterior plating layer. For this reason, when the lens member 6 is joined to the fixing member 5, the wettability between the glass encapsulant 7 and the Au plating layer may be poor. First, an exterior plating layer is formed on the entire surface of the fixing member 5. After that, the Au plating layer at the joint portion of the lens member 6 was polished and removed, and then the lens member 6 had to be joined with the glass sealing material 7. Therefore, the manufacturing process becomes complicated and productivity is reduced. [0009] In the recent movement of global environmental protection, lead oxide is designated as an environmentally harmful substance, and lead oxide-based low-temperature sealing glass is not used for electronic parts such as packages for housing optical semiconductor elements. The movement has begun. The present invention has been devised in view of the problems of the prior art described above, and has as its object to hermetically seal an optical semiconductor element inside a metal container so that the optical semiconductor element can be normally used for a long period of time. An object of the present invention is to provide an optical semiconductor element storage package that can be operated stably. According to the present invention, there is provided a package for housing an optical semiconductor device, wherein a concave portion for housing the optical semiconductor device is formed on an upper surface, and a through hole penetrating to the concave portion is provided on a side portion. A container body and fixed to be inserted into and fixed to the through hole, or fixed to an outer surface around the through hole of the container body, and a lens member attached to an end of the concave side via a glass sealing material. An optical semiconductor element storage package comprising a member and a lid attached to the upper surface of the container body so as to cover the concave portion, wherein the glass sealing material contains silicon oxide in an amount of 63 to 70% by weight, Boron containing 17 to 28% by weight of boron oxide, 6 to 10% by weight of aluminum oxide, 0.2 to 5% by weight of potassium oxide, 0.2 to 3% by weight of sodium oxide and 0.2 to 2% by weight of barium oxide. Specially made of silicate glass It is an. According to the package for storing an optical semiconductor element of the present invention, the glass sealing material is 63 to 70% by weight of silicon oxide, 17 to 28% by weight of boron oxide, 6 to 10% by weight of aluminum oxide, and potassium oxide. 0.2-5% by weight of sodium oxide
Since the borosilicate glass contains 0.2 to 3% by weight and barium oxide in the range of 0.2 to 2% by weight, the softening and melting temperature of the glass sealing material becomes a high melting point of 680 ° C. or more. Even if the fixing member to which the lens member is joined by using is bonded to the through hole of the container body with the Au-Sn brazing material, the glass sealing material does not re-melt, and as a result, the glass sealing material re-melts. Can prevent the optical axis from being shifted. In addition, since the glass sealing material does not contain lead oxide, even if the fixing member is bonded to the plating solution after the lens member is joined to the fixing member via the glass sealing material, the plating solution is not removed. The components of the glass sealing material do not dissolve, and as a result, the joining properties such as the solder wettability of the Au plating layer are not impaired. Further, since the bonding of the lens member to the fixing member can be performed before the formation of the exterior plating layer, the manufacturing process can be simplified and an optical semiconductor element housing package that can be efficiently produced can be obtained. Next, a package for storing an optical semiconductor device according to the present invention will be described with reference to the accompanying drawings.
The basic configuration of the package for storing an optical semiconductor element of the present invention is
Same as 1 (a) and (b). In FIG. 1, 1 is a container body, 2 is a semiconductor element, 3 is a lead terminal, 4 is a lead terminal sealing material, 5 is a fixing member, 6 is a lens member, 7 is a glass sealing material, and 8 is a lid. The package for storing an optical semiconductor element of the present invention is mainly composed of the container body 1, the fixing member 5, the lens member 6, and the lid 7. In this embodiment, an example is shown in which the fixing member 5 is inserted and fixed in the through hole 1a. The container body 1 is made of an inorganic insulating material such as a metal material or ceramics, or an organic material such as a resin, and has a concave portion A for accommodating an optical semiconductor element 2 such as an LD or PD at a substantially central portion of an upper surface thereof. Portion is provided with a through hole 1a penetrating to the concave portion A, and the container body 1 is made of, for example, Fe
-When made of a metal material such as a Ni-Co alloy, the base material of the Fe-Ni-Co alloy to be the container body 1 is formed by a conventionally known cutting or press working, or a metal injection molding method (MIM).
It is formed by performing unevenness processing and punching with the use of the like. Further, the through hole 1a is also formed by processing at the same time as the container body 1. The optical semiconductor element 2 is bonded and fixed to the bottom surface of the concave portion A of the container body 1 via an adhesive such as glass. A lead terminal 3 made of a metal material such as an Fe-Ni-Co alloy for making an electrical connection between the optical semiconductor element 2 and an external electric circuit (not shown) is provided on the container body 1. Normally, a lead terminal sealing material 4 made of borosilicate glass or the like is provided so that one end thereof extends to the inside and the other end extends to the outside.
And one end of the lead terminal 3 is electrically connected to the electrode of the optical semiconductor element 2 by opening an electrical connection member 9 such as a bonding wire, and the other end is electrically connected to an external electric circuit. By optical connection, the optical semiconductor element 2 and the external electric circuit are electrically connected. A cylindrical fixing member 5 is inserted and fixed in the through hole 1a of the container body 1. The fixing member 5 has a function of fixing an optical fiber (not shown) to the package for housing an optical semiconductor element, and is made of an inorganic insulating material such as a metal material or ceramics, or an organic material such as a resin. When the fixing member 5 is made of, for example, a metal material, a 50 alloy (Fe50 wt% -N
metal material such as i50 wt% alloy), and the fixing member 5
Is formed by subjecting a 50-alloy base material to a concavo-convex process and punching by a conventionally known cutting process, a press process, a metal injection molding method (MIM), or the like. The container body 1 and the fixing member 5 are 30
The same metal material having a linear thermal expansion coefficient of 4 to 6 ppm / ° C. at −300 ° C. is preferable. When the coefficient of linear thermal expansion is less than 4 ppm / ° C., the difference in the coefficient of linear thermal expansion from the lens member 6 tends to be large, so that the hermetic sealing with the glass sealing material 7 tends to be difficult, and the coefficient of linear thermal expansion is 6 ppm / ° C. Is exceeded, the difference between the linear thermal expansion coefficient of the lead terminal sealing material 4 (about 4 ppm / ° C.) and the container body 1 becomes large, and the hermetic sealing between the container body 1 and the lead terminal 3 by the lead terminal sealing material 4 becomes large. Tends to be difficult. Therefore, the container body 1 and the fixing member 5 are 30 to 300
The same metal material having a linear thermal expansion coefficient at 4 ° C. of 4 to 6 ppm / ° C. is preferable. When the container body 1 and the fixing member 5 are made of a metal material, the surfaces thereof are prevented from being oxidized and corroded, and the wettability with the brazing material for joining the members is improved.
It is preferable to apply a plating layer and an Au plating layer in advance. Further, a lens member 6 is attached to an end of the fixing member 5 on the side of the concave portion A of the container body 1 via a glass sealing material 7. The lens member 6 has a function of condensing external light passing through the optical fiber and guiding the light to the optical semiconductor element 2 or guiding light emitted from the optical semiconductor element 2 to the optical fiber. The lens member 6 is made of borosilicate glass and generally has a linear thermal expansion coefficient of about 9 ppm / ° C. In such a lens member 6, a glass sealing material 7 is applied in advance to a place where the lens member 6 of the fixing member 5 is joined, and the outer periphery of the lens member 6 is placed inside the cylindrical fixing member 5. The sealing member 7 is completely or partially inserted into the fixing member 5 so as to be in contact with the fixing member 5, and then the sealing member 7 is fixed to the inner end of the container body 1 side of the fixing member 5 by heating and melting in a heating furnace. You. The glass sealing material 7 for fixing the lens member 6 to the fixing member 5 is made of a high-melting glass not containing lead, and contains 63 to 70% by weight of silicon oxide, 17 to 28% by weight of boron oxide, and aluminum oxide. 6-10% by weight, potassium oxide 0.2-5
It consists of a borosilicate glass containing 0.2% to 3% by weight of sodium oxide and 0.2% to 2% by weight of barium oxide, and this is important. The glass sealing material 7 has a silicon oxide content of 63.
If it is less than 10% by weight, the softening temperature of the glass becomes too high,
The optical characteristics of the lens member 6 tend to deteriorate,
If it exceeds 70% by weight, the chemical resistance of the glass tends to deteriorate, and the reliability of hermetic sealing tends to decrease. Therefore, the content of silicon oxide is preferably in the range of 63 to 70% by weight. If the content of boron oxide is less than 17% by weight, the softening temperature of the glass becomes too high, and
When the content exceeds 28% by weight, the chemical resistance of the glass tends to deteriorate, and the reliability of hermetic sealing tends to decrease. Therefore, the content of boron oxide is 17 to
A range of 28% by weight is preferred. When the content of aluminum oxide is less than 6% by weight, the softening temperature of the glass tends to be too high, and the optical characteristics of the lens member 6 tend to be deteriorated. Chemical properties tend to deteriorate, and the reliability of hermetic sealing tends to decrease. Therefore, the content of aluminum oxide is preferably in the range of 6 to 10% by weight. When the content of potassium oxide is less than 0.2% by weight, the fluidity of the glass tends to deteriorate, and hermetic sealing tends to be difficult. When the content exceeds 5% by weight, the chemical resistance of the glass deteriorates, The reliability of hermetic sealing tends to decrease. Therefore, the content of potassium oxide is preferably in the range of 0.2 to 5% by weight. If the content of sodium oxide is less than 0.2% by weight, the fluidity of the glass tends to deteriorate and hermetic sealing tends to be difficult. If the content exceeds 3% by weight, the chemical resistance of the glass deteriorates, The reliability of hermetic sealing tends to decrease. Therefore, the content of sodium oxide is preferably in the range of 0.2 to 3% by weight. The barium oxide content is 0.2% by weight.
If the amount is less than the above, the chemical resistance of the glass tends to deteriorate, and the reliability of hermetic sealing tends to decrease. If the amount exceeds 2% by weight, crystallization proceeds at the stage of glass forming, and remelting tends to be difficult. is there. Therefore, the content of barium oxide is 0.2 to 2% by weight.
Is preferable. Such a glass sealing material 7 is made of silicon oxide,
Weigh glass components containing boron oxide, aluminum oxide, potassium oxide, sodium oxide, barium oxide,
After uniformly mixing with an organic binder, pigment, water, solvent, etc. with a V-shaped mixer, the mixed powder (granulated) is pressed and sintered at about 600 to 800 ° C for about 2 to 8 hours in an oxidizing atmosphere. By doing so, a homogeneous solid solution can be obtained. Further, the processing melting temperature of the glass sealing material 7 when joining the glass member 6 to the fixing member 5 is preferably about 700 to 900 ° C., and more preferably 800 to 850 ° C. 85
If the temperature exceeds 0 ° C., the optical characteristics tend to be easily deteriorated due to softening deformation, thermal stress and residual stress of the lens member 6.
If the temperature is lower than 800 ° C., the melting of the glass sealing material 7 becomes insufficient, and the reliability of hermetic sealing tends to decrease. The thickness of the glass sealing material 7 is 0.15 to 0.35 mm
When the thickness is less than 0.15 mm, the amount of the glass sealing material 7 is insufficient, so that the meniscus of the glass sealing material 7 at the time of melting around the lens member 6 is not sufficiently formed. There is a tendency that the bonding strength to the metal is insufficient. On the other hand, if the thickness exceeds 0.35 mm, the amount of the glass sealing material 7 becomes excessive, and the glass sealing material 7 spreads too much on the lens surface of the lens member 6, and the optical properties such as light transmittance of the lens member 6 deteriorate. There is a tendency. According to the package for housing an optical semiconductor element of the present invention, since the composition of the sealing material 7 is as described above, the softening and melting temperature of the glass sealing material 7 is as high as 680.degree. The fixing member 5 to which the member 6 is joined is Au
-Even if the glass sealing material 7 is joined to the through-hole 1a of the container body 1 with the Sn brazing material, the glass sealing material 7 does not re-melt, and as a result, the optical axis is prevented from shifting due to the re-melting of the glass sealing material 7. be able to. Further, since the glass sealing material 7 does not contain lead oxide, even if the fixing member 5 is joined to the fixing member 5 via the glass sealing material 7 and then the fixing member 5 is coated with the outer plating, The components of the glass sealing material 7 do not dissolve in the plating solution, and as a result, the joining characteristics such as the solder wettability of the Au plating layer are not impaired. Furthermore, since the bonding of the lens member 6 to the fixing member 5 can be performed before the formation of the exterior plating layer, the manufacturing process can be simplified and an optical semiconductor element housing package that can be efficiently produced can be obtained. . The attachment of the cylindrical fixing member 5 to the through hole 1a of the container body 1 is performed by fixing the fixing member 5 with a metal brazing material such as an Au-Sn alloy, and by heating the metal brazing material to about 400 ° C. This is performed by heating and melting at a temperature. Thus, the optical semiconductor element 2 is mounted and fixed on the optical semiconductor element 2 mounting portion of the container body 1 via an adhesive, and each electrode of the optical semiconductor element 2 is electrically connected to the lead terminal 3 by a bonding wire or the like. Then, the lid 7 is joined to the upper surface of the container body 1 via a sealing material, and the optical semiconductor element 2 is placed inside the container composed of the container body 1 and the lid 7. The optical semiconductor device is completed as a product by hermetically housing the semiconductor device. The lid 7 is a flat plate having a thickness of 0.3 to 0.4 mm and is made of a metal material, an inorganic insulating material such as ceramics, or an organic material such as a resin. For example, a metal material such as an Fe-Ni-Co alloy is used. In the case of consisting of
-It is formed by punching a base material of a Co alloy by a conventionally known press working. Example The following experiment was conducted to confirm the effect. Here, the main components are silicon oxide, boron oxide,
The experimental example determined about aluminum oxide is shown. Glass was prepared by changing the weight% of each component, and the airtightness was evaluated. The test and evaluation conditions are based on MIL-STD.
According to the -883 method 1014.9 test condition A1. Experiment 1 The weight percentage of silicon oxide was varied between 59 and 74, and the total weight was 100% by adding other components.
(2 decimal places are rounded off). Table 1 shows the results. [Table 1] From the experimental results, it was found that silicon oxide was
It was found that good airtightness can be obtained in the range of 70% by weight. Next, regarding boron oxide and silicon oxide,
The following experiment was performed. Experiment 2 The content of silicon oxide was 65-70
The same evaluation as in Experiment 1 was performed by changing the content of boron oxide and aluminum oxide within the range of weight%. Experiment 3
The same evaluation as in Experiment 1 was performed by changing the content of silicon oxide to 63% by weight and changing the content of boron oxide and aluminum oxide. The results are shown in Tables 2 and 3. [Table 2] [Table 3] According to Experiments 2 and 3, boron oxides 17 to 28
It was found that good airtightness was obtained at a weight percentage of 6-10% by weight of aluminum oxide. The same experiment was conducted for trace elements, and the glass sealing material was 63 to 70% by weight of silicon oxide, 17 to 28% by weight of boron oxide, and 6% by weight of aluminum oxide.
Borosilicate glass containing -10% by weight, 0.2-5% by weight of potassium oxide, 0.2-3% by weight of sodium oxide and 0.2-2% by weight of barium oxide,
The effect of the present invention could be confirmed. It should be noted that the present invention is not limited to the above-described embodiment, and various changes may be made without departing from the scope of the present invention. According to the package for housing an optical semiconductor element of the present invention, the glass sealing material contains 63 to 70% by weight of silicon oxide, 17 to 28% by weight of boron oxide, and 6 to 10% of aluminum oxide. Wt%, potassium oxide 0.2-5 wt%, sodium oxide
Since it is made of borosilicate glass containing 0.2 to 3% by weight and barium oxide in the range of 0.2 to 2% by weight, the softening melting temperature of the glass sealing material becomes a high melting point of 680 ° C. or more, and the lens members are joined. Even if the fixing member is joined to the through-hole of the container body with the Au-Sn brazing material, the glass sealing material does not re-melt, and as a result, the deviation of the optical axis due to the re-melting of the glass sealing material 7 is prevented. can do. In addition, since the glass sealing material does not contain lead oxide, even if the fixing member is bonded to the plating solution after the lens member is joined to the fixing member via the glass sealing material, the glass sealing material is not added to the plating solution. The components of the stop material do not dissolve, so that Au
It does not impair the bonding properties such as solder wettability of the plating layer. Further, since the bonding of the lens member to the fixing member can be performed before the formation of the exterior plating layer, the manufacturing process can be simplified and an optical semiconductor element housing package that can be efficiently produced can be obtained.

【図面の簡単な説明】 【図1】(a)、(b)は、それぞれ本発明の光半導体
素子収納用パッケージを示す斜視図および断面図であ
る。 【符号の説明】 1・・・・・・・・容器本体 2・・・・・・・・光半導体素子 3・・・・・・・・リード端子 4・・・・・・・・リード端子封止材 5・・・・・・・・金属製固定部材 6・・・・・・・・レンズ部材 7・・・・・・・・ガラス封止材 8・・・・・・・・蓋体 9・・・・・・・・電気的接続部材
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (a) and 1 (b) are a perspective view and a sectional view, respectively, showing an optical semiconductor element housing package of the present invention. [Description of Signs] 1..., Container body 2... Optical semiconductor element 3... Lead terminal 4. Sealing member 5 Metal fixing member 6 Lens member 7 Glass sealing member 8 Lid Body 9: Electrical connection member

フロントページの続き Fターム(参考) 4G062 AA08 AA09 BB05 DA06 DB03 DC04 DD01 DE01 DF01 EA01 EB02 EB03 EC02 EC03 ED01 EE01 EF01 EG02 EG03 FA01 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM08 NN01 NN32 NN34 5F049 NA09 TA12 5F073 AB27 EA28 EA29 FA08 Continuation of front page    F term (reference) 4G062 AA08 AA09 BB05 DA06 DB03                       DC04 DD01 DE01 DF01 EA01                       EB02 EB03 EC02 EC03 ED01                       EE01 EF01 EG02 EG03 FA01                       FB01 FC01 FD01 FE01 FF01                       FG01 FH01 FJ01 FK01 FL01                       GA01 GA10 GB01 GC01 GD01                       GE01 HH01 HH03 HH05 HH07                       HH09 HH11 HH13 HH15 HH17                       HH20 JJ01 JJ03 JJ05 JJ07                       JJ10 KK01 KK03 KK05 KK07                       KK10 MM08 NN01 NN32 NN34                 5F049 NA09 TA12                 5F073 AB27 EA28 EA29 FA08

Claims (1)

【特許請求の範囲】 【請求項1】 上面に光半導体素子を収容する凹部が形
成され、側部に前記凹部まで貫通する貫通孔が設けられ
た容器本体と、前記貫通孔に挿入固定され、または前記
容器本体の前記貫通孔周辺の外表面に固定され、前記凹
部側の端部にガラス封止材を介してレンズ部材が取着さ
れた固定部材と、前記容器本体の上面に前記凹部を覆う
ように取着される蓋体とから成る光半導体素子収納用パ
ッケージであって、前記ガラス封止材は、酸化珪素を6
3〜70重量%、酸化硼素を17〜28重量%、酸化ア
ルミニウムを6〜10重量%、酸化カリウムを0.2〜
5重量%、酸化ナトリウムを0.2〜3重量%および酸
化バリウムを0.2〜2重量%の範囲で含有するホウ珪
酸ガラスから成ることを特徴とする光半導体素子収納用
パッケージ。
Claims: 1. A container body having an upper surface formed with a recess for accommodating an optical semiconductor element, and a side portion provided with a through hole penetrating to the recess, and being inserted and fixed in the through hole, Or a fixing member fixed to the outer surface around the through hole of the container main body, and a lens member attached to the end on the concave side via a glass sealing material, and the concave portion on the upper surface of the container main body. An optical semiconductor element housing package comprising: a lid attached so as to cover the silicon semiconductor;
3 to 70% by weight, 17 to 28% by weight of boron oxide, 6 to 10% by weight of aluminum oxide, 0.2 to
An optical semiconductor element housing package comprising borosilicate glass containing 5% by weight, sodium oxide in a range of 0.2 to 3% by weight and barium oxide in a range of 0.2 to 2% by weight.
JP2002022396A 2002-01-30 2002-01-30 Package for housing optical semiconductor element Pending JP2003224325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022396A JP2003224325A (en) 2002-01-30 2002-01-30 Package for housing optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022396A JP2003224325A (en) 2002-01-30 2002-01-30 Package for housing optical semiconductor element

Publications (1)

Publication Number Publication Date
JP2003224325A true JP2003224325A (en) 2003-08-08

Family

ID=27745403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022396A Pending JP2003224325A (en) 2002-01-30 2002-01-30 Package for housing optical semiconductor element

Country Status (1)

Country Link
JP (1) JP2003224325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692292B2 (en) 2003-12-05 2010-04-06 Panasonic Corporation Packaged electronic element and method of producing electronic element package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692292B2 (en) 2003-12-05 2010-04-06 Panasonic Corporation Packaged electronic element and method of producing electronic element package

Similar Documents

Publication Publication Date Title
KR101466428B1 (en) Hermetic sealing cap
JP5537119B2 (en) Lid, lid manufacturing method and electronic device manufacturing method
JP2003224325A (en) Package for housing optical semiconductor element
JP2002289727A (en) Package for storing optical semiconductor element
JP2008079167A (en) Package for crystal vibrator
JP5311968B2 (en) Airtight terminal plating method
JP2003100921A (en) Container for optical semiconductor element
JP2001272580A (en) Package for housing optical semiconductor element
JP2001274272A (en) Package for storing optical semiconductor element
JP2005217093A (en) Storage package for photo-semiconductor element
JP2002299489A (en) Package for storing optical semiconductor element
JP2006100658A (en) Chip type capacitor
JP4351107B2 (en) Solder materials and soldered articles
JP2001274498A (en) Package for housing optical semiconductor element
JP2004055580A (en) Lid for sealing electronic component package
CN115633477A (en) Packaging sealing cover with low glass insulator stress and application and preparation thereof
JP2000277644A (en) Manufacture of optical semiconductor element housing package
JP4081407B2 (en) Electronic component storage container and electronic device
JP2003155593A (en) Wiring board
KR200332931Y1 (en) A slug-lead pin
JP2006237268A (en) Wiring board
JP2004063387A (en) Air-tight terminal and circuit component assembling method using the same
JP2004126115A (en) Package for housing optical semiconductor element
JP2004031704A (en) Vessel for piezoelectric oscillator
JP2001068194A (en) Electronic component