JP2003222767A - Storing package for optical semiconductor element - Google Patents

Storing package for optical semiconductor element

Info

Publication number
JP2003222767A
JP2003222767A JP2002022390A JP2002022390A JP2003222767A JP 2003222767 A JP2003222767 A JP 2003222767A JP 2002022390 A JP2002022390 A JP 2002022390A JP 2002022390 A JP2002022390 A JP 2002022390A JP 2003222767 A JP2003222767 A JP 2003222767A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
frame
optical fiber
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002022390A
Other languages
Japanese (ja)
Other versions
JP3898521B2 (en
Inventor
Mitsuko Matsuzaki
晃子 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002022390A priority Critical patent/JP3898521B2/en
Publication of JP2003222767A publication Critical patent/JP2003222767A/en
Application granted granted Critical
Publication of JP3898521B2 publication Critical patent/JP3898521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make transmission characteristics of the inside of an optical fiber of a laser beam oscillated from an optical semiconductor element and airtightness of the inside of an optical semiconductor element storing package excellent by surely forming an effective diameter for transmitting a sufficient amount of light with a reflection preventive film on the surface of a spherical transmission member. <P>SOLUTION: A holding member 3c of a substantially disk-like transmission member 3a joining an outer peripheral part to an end face 3b of the outside of a frame body 2 of a cylindrical optical fiber fixed member 3 has a chamfered part of 45 degrees or greater of an angle at which a ridge part between an inner peripheral face of the cylindrical part and a main face of the outside of the frame body 2 is directed to the inner peripheral face of the cylindrical part. An interval between the outer peripheral face of the cylindrical part and the inner peripheral face of the optical fiber fixed member 3 is 0.5 or greater. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体レーザ(L
D),フォトダイオード(PD)等の光半導体素子を収
納する光半導体素子収納用パッケージに関する。 【0002】 【従来の技術】従来の光半導体素子収納用パッケージ
(以下、光半導体パッケージともいう)を図2に示す。
同図のように、光半導体パッケージは、上面にLD,P
D等の光半導体素子105が載置される載置部101aを有す
る鉄(Fe)−ニッケル(Ni)−コバルト(Co)合
金や銅(Cu)−タングステン(W)合金から成り、略
四角形の板状体である基体101と、載置部101aを囲繞す
るようにして基体101上に銀ロウ等のロウ材を介して取
着され、光信号の授受を行うための貫通孔102aを有す
る枠体102と、枠体102の上面に接合されて光半導体素子
105を気密封止する蓋体104とから主に構成されている。 【0003】また、枠体102の側部には、枠体102の貫通
孔102aに嵌入接合された筒状の光ファイバ固定部材
(以下、固定部材ともいう)103が設けられている。ま
た、固定部材103には、その枠体102外側の端面に外周部
が接合されるとともに中央部に円筒部103cを有する透
光性部材103aの保持部材103cが設けられている。保持
部材103cの円筒部の内側に集光レンズ等用の球状の透
光性部材103aが取着されている。さらに、枠体102の他
の側部には貫通孔または切欠きから成る入出力端子の取
付部が形成されており、光半導体素子105に駆動用の高
周波信号を入出力させるための入出力端子(セラミック
端子)(図示せず)が取り付けられている。その入出力
端子は、枠体102の内外を導出するメタライズ層から成
る線路導体を有し、その線路導体の枠体102外側の部位
に外部リード端子が接続されている。 【0004】そして、基体102の載置部101aに回路基板
等を搭載した基台108を介して光半導体素子105を接着固
定するとともに、光半導体素子105の各電極をボンディ
ングワイヤを介して入出力端子の線路導体に接続するこ
とにより外部リード端子に電気的に接続し、次に枠体10
2の上面に蓋体104を取着し、基体101と枠体102と蓋体10
4とから成る容器内部に光半導体素子105を収容し、最後
に固定部材103に、光ファイバ106の端部に取着されたス
テンレススチールから成るフランジ107をYAGレーザ
光の照射によるレーザ溶接によって接合し、光ファイバ
106を固定部材103に固定することによって、製品として
の光半導体装置になる。 【0005】この光半導体装置は、外部電気回路から供
給される駆動信号によって光半導体素子105に光を励起
させ、励起された光を光ファイバ106を介して外部に伝
達することによって高速通信等に使用される。 【0006】なお、このような光半導体パッケージは、
基体101や枠体102の表面に予め金(Au)メッキが施さ
れており、基体101と枠体102の酸化腐食を有効に防止す
るとともに、光半導体素子105を載置部101aに強固に接
合することができる。 【0007】 【発明が解決しようとする課題】しかしながら、上記従
来の光半導体パッケージにおいては、保持部材103cの
円筒部の枠体102外側主面の開口が小さいため、保持部
材103cに透光性部材103aを接合した状態でスパッタリ
ング法等の薄膜形成法により、上記開口側から透光性部
材103aに反射防止膜を形成することが困難であるとい
う問題点があった。即ち、薄膜形成装置内において薄膜
材料を上記開口側から入り込ませて反射防止膜を形成し
ようとしても、開口が小さいため透光性部材103aの表
面に光を十分に透過させ得るような有効径の反射防止膜
が形成されないのである。 【0008】また、透光性部材103aを円筒部の内側に
低融点ガラスで接合し、固定部材103の枠体102外側の端
面103bに保持部材103cの外周部を低融点ロウ材で接合
した際に、透光性部材103aに近い円筒部の外周面にロ
ウ材溜まりが生じ易くなる。その結果、透光性部材103
aにロウ材溜まりを介して大きな応力が加わり、透光性
部材103aが外れたり光半導体パッケージ内の気密が破
れるという問題点があった。また、透光性部材103aに
加わる応力により透光性部材103aに歪みが生じ、透光
性部材103aに複屈折あるいは屈折率の分布が生じて焦
点等が変化し、光学特性が劣化するという問題点もあっ
た。 【0009】従って、本発明は上記問題点に鑑み完成さ
れたもので、その目的は、透光性部材の表面に反射防止
膜を十分な光量が透過できる有効径でもって確実に形成
し、固定部材の端面に保持部材の外周部を低融点ロウ材
で接合する際に応力がかかって透光性部材が外れたり、
光半導体パッケージ内の気密が破れるという問題点を解
消することである。また、透光性部材に加わる応力によ
り透光性部材に歪みが生じ、透光性部材に複屈折あるい
は屈折率の分布が生じて焦点等が変化して光学特性が劣
化するのを防ぐことにより、光半導体素子から発振され
たレーザ光等の光ファイバ内の伝送特性や光半導体パッ
ケージ内部の気密性を良好にすることである。そして、
光半導体素子を長期にわたり正常かつ安定に作動させ得
る光半導体パッケージを提供することである。 【0010】 【課題を解決するための手段】本発明の光半導体素子収
納用パッケージは、上面に光半導体素子が載置される載
置部を有する基体と、側部に貫通孔を有するとともに前
記基体の上面に前記載置部を囲繞するように取着された
枠体と、前記貫通孔に嵌着された円筒状の光ファイバ固
定部材と、該光ファイバ固定部材の前記枠体外側の端面
に外周部が接合されるとともに中央部に前記枠体内側に
突出した円筒部が形成されている略円板状の透光性部材
の保持部材と、該保持部材の前記円筒部の内周面に接合
された球状の透光性部材とを具備した光半導体素子収納
用パッケージにおいて、前記保持部材は、前記円筒部の
内周面と前記枠体外側の主面との間の稜部が前記円筒部
の内周面に対する角度が45°以上の面取り部とされてお
り、かつ前記円筒部の外周面と前記光ファイバ固定部材
の内周面との間の間隔が0.5mm以上であることを特徴
とする。 【0011】本発明の光半導体素子収納用パッケージ
は、上記の構成により、透光性部材の表面に十分な光量
を透過させ得る有効径でもって反射防止膜を確実に形成
できるとともに、透光性部材を保持部材に低融点ガラス
で接合してから固定部材の端面に保持部材の外周部を低
融点ロウ材で接合する際に応力がかかって透光性部材が
外れたり、光半導体パッケージ内の気密が破れるという
問題点を解消できる。 【0012】また、透光性部材に加わる応力により透光
性部材に歪みが生じ、透光性部材に複屈折あるいは屈折
率の分布が生じて焦点等が変化して光学特性が劣化する
のを抑制することにより、光半導体素子から発振された
光の光ファイバ内の伝送特性や光半導体パッケージ内部
の気密性を良好にすることができる。その結果、光半導
体素子を長期にわたり正常かつ安定に作動させ得る光半
導体パッケージを提供することができる。 【0013】 【発明の実施の形態】本発明の光半導体素子収納用パッ
ケージについて以下に詳細に説明する。図1は本発明の
光半導体パッケージの断面図である。同図に示すよう
に、本発明の光半導体パッケージは、上面にLD,PD
等の光半導体素子5が載置される載置部1aを有するF
e−Ni−Co合金やCu−W合金から成り、略四角形
の板状体である基体1と、載置部1aを囲繞するように
基体1の上面に銀ロウ等のロウ材で取着され、光信号の
授受を行うための貫通孔2aを有する枠体2と、枠体2
の上面に接合されて光半導体素子5を気密封止する蓋体
4とから主に構成される。 【0014】枠体2の側部には、枠体2の貫通孔2aに
嵌入接合されるとともに、略円板状の保持部材3cの外
周部が端面3bに接合された筒状の固定部材3が設けら
れており、保持部材3cの円筒部の内側に集光レンズ等
用の球状の透光性部材3aが取着されている。また、枠
体2の他の側部には貫通孔または切欠きから成る入出力
端子の取付部に、光半導体素子5に駆動用の高周波信号
を入出力させるための入出力端子(セラミック端子)
(図示せず)が取り付けられている。その入出力端子
は、枠体2の内外を導通するメタライズ層から成る線路
導体を有し、その線路導体の枠体2の外側の部位に外部
リード端子が接合されている。 【0015】そして、基体1の載置部1aに回路基板等
を搭載した基台8を介して光半導体素子5を接着固定す
るとともに、光半導体素子5の各電極をボンディングワ
イヤを介して入出力端子の線路導体に接続することによ
り外部リード端子に電気的に接続し、次に枠体2の上面
に蓋体4を取着し、基体1と枠体2と蓋体4とから成る
容器内部に光半導体素子5を収容する。 【0016】本発明の基体1は、Fe−Ni−Co合金
やCu−Wの焼結材等から成り、そのインゴット(塊)
に圧延加工や打ち抜き加工等の従来周知の金属加工法を
施したり、射出成形と切削加工を施すことによって所定
の形状に製作される。その上面の略中央部には、LD,
PD等の光半導体素子5を基台8を介して載置するため
の載置部1aが設けられており、載置部1aには、光半
導体素子5を半田等の接合材により上面に接合した基台
8が接着剤、低融点ガラス、半田等を介して載置固定さ
れる。光半導体素子5は、その電極が入出力端子の線路
導体にボンディングワイヤ等を介して電気的に接続され
ている。 【0017】基体1は、その表面に耐蝕性に優れかつロ
ウ材の濡れ性に優れる金属、具体的には0.5〜9μmの
Ni層と厚さ0.5〜5μmのAu層を順次メッキ法によ
り被着させておくのがよく、基体1の酸化腐食を有効に
防止できる。 【0018】また、基体1の上面の外周部には載置部1
aを囲繞するようにして枠体2が立設されており、枠体
2は基体1とともにその内側に光半導体素子5を収容す
る空所を形成する。枠体2は基体1と同様にFe−Ni
−Co合金やCu−Wの焼結材等の金属から成り、基体
1と一体成形されることによって、または基体1に銀ロ
ウ等のロウ材を介してろう付けされたり、シーム溶接法
等の溶接法により接合されることによって、基体1の上
面の外周部に立設される。また枠体2は、その表面に耐
蝕性に優れかつロウ材の濡れ性に優れる金属、具体的に
は0.5〜9μmのNi層と厚さ0.5〜5μmのAu層を順
次メッキ法により被着させておくのがよく、枠体2の酸
化腐食を有効に防止できる。 【0019】この枠体2の側部には入出力端子の取付部
が形成されており、この取付部には、光半導体素子5と
外部電気回路との高周波信号の入出力を行うとともに光
半導体パッケージ内外を気密に塞ぐ機能を有する入出力
端子が、これに形成されているメタライズ層を介して銀
ロウ等のロウ材で接合される。 【0020】また、枠体2は他の側部に貫通孔2aが設
けられており、貫通孔2aに筒状の固定部材3が嵌着接
合されている。この固定部材3は、外周面が銀ロウ等の
ロウ材により気密に接合されており、光ファイバ6が光
半導体素子5と対向するようにフランジ7を介して接合
され、これにより光ファイバ6と光半導体素子5との間
で光信号の授受が行なわれる。この固定部材3は、Fe
−Ni−Co合金やFe−Ni合金等から成り、枠体2
外側の端面3bに透光性部材3aの保持部材3cが接合
され、保持部材3cの枠体2外側の主面にはフランジ7
が固定される。保持部材3cは、Au−Sn(錫)合金
等から成る低融点ロウ材で接合される。 【0021】固定部材3は、その表面に耐蝕性に優れか
つロウ材の濡れ性に優れる金属、具体的には0.5〜9μ
mのNi層と厚さ0.5〜5μmのAu層を順次メッキ法
により被着させておくのがよく、固定部材3の酸化腐食
を有効に防止できる。また、保持部材3cの円筒部の内
側で枠体2内側の端部には、球状の透光性部材3aが低
融点ガラスを介して接合されている。この透光性部材3
aは、非晶質ガラスから成り、円筒部との接合部が低融
点ガラスで接合されている。また、透光性部材3aの表
面で光半導体素子5の光軸を中心とした略円形の光透過
部には、透過する光信号の波長に合わせて厚さや屈折率
が適宜選択された反射防止膜が施されている。 【0022】保持部材3cは、図3に示すように、円筒
部の内周面と枠体2外側の主面との間の稜部が円筒部の
内周面に対する角度θが45°以上の面取り部とされてい
る。45°未満では、透光性部材3aの表面に十分な光量
を透過させ得る有効径でもって反射防止膜を確実に形成
するのが困難になる。また、角度θは85°以下がよく、
85°を超えると、面取り部が保持部材3cの枠体2外側
の主面に略平行になるため、有効径となるような反射防
止膜を形成することが困難になる。 【0023】また、保持部材3cの円筒部の外周面と固
定部材3の内周面との間の間隔Xは0.5mm以上であ
る。0.5mm未満では、透光性部材3aを保持部材3c
に低融点ガラスで接合した後、固定部材3の端面3bに
保持部材3cの外周部を低融点ロウ材で接合する際に、
保持部材3cの円筒部の外周面と固定部材3の内周面と
の間にロウ材溜まりが形成されてこの隙間がロウ材で埋
まってしまい易くなる。すると、固定部材3と保持部材
3cと低融点ロウ材の熱膨張係数の違いにより発生した
応力が透光性部材3aに加わり、透光性部材3aが外れ
たり、透光性部材3aにクラックが発生する。その結
果、光半導体パッケージ自体の気密性が破れることにな
る。また、間隔Xは3mm以下がよく、3mmを超える
と、光半導体パッケージ自体の大型重量化につながり易
くなる。 【0024】 【実施例】本発明の光半導体素子収納用パッケージの実
施例を以下に説明する。先ず、図1の本発明の光半導体
パッケージを以下の工程[1]〜[6]のようにして作
製した。 【0025】[1]縦約13mm×横約30mm×厚さ約1
mmのCu−W合金から成る略四角形の基体1の上面の
外周部に、載置部1aを囲むように、縦約13mm×横約
20mmのFe−Ni−Co合金から成る平面視形状が略
四角形の枠体2を銀ロウで接合した。なお、基体1およ
び枠体2の表面には厚さ約2μmのNiメッキ層および
厚さ約0.5μmのAuメッキ層が順次被着されており、
また枠体2の側部には入出力端子の取付部、その側部に
隣接する他の側部に円形の貫通孔2aが形成されてい
る。 【0026】[2]枠体2の入出力端子の取付部に、ア
ルミナセラミックスから成るとともに、枠体2内外を導
通するようにMo−Mnのメタライズ層上に厚さ約2μ
mのNiメッキ層および厚さ約0.5μmのAuメッキ層
を順次被着して成る線路導体を形成した入出力端子を、
銀ロウで嵌着接合した。 【0027】[3]枠体2の貫通孔2aにFe−Ni−
Co合金からなる円筒状の固定部材3を銀ロウで嵌着接
合し、固定部材3の枠体2外側の端面3bに、円筒部の
内側に非晶質ガラスから成る球状の透光性部材3aを低
融点ガラスで接合した保持部材3cの外周部を、Au−
Sn合金ロウ材で接合した。なお、固定部材3の表面に
は、厚さ約2μmのNiメッキ層および厚さ約0.5μm
のAuメッキ層を順次被着してある。 【0028】[4]LDである光半導体素子5を、載置
部1a上に接着されたアルミナセラミックスから成る基
台8の上面にAu−Siロウ材で載置接合するととも
に、光半導体素子5の電極を入出力端子の線路導体の枠
体2内側にボンディングワイヤで接続した。 【0029】[5]固定部材3の端面3bに接合された
保持部材3における枠体2外側の主面に、光ファイバ6
の一端部が樹脂接着剤で接着されたホルダ7を、YAG
レーザ溶接で接合し、光半導体パッケージと成した。 【0030】[6]枠体2の上面にFe−Ni−Co合
金から成る蓋体4をシーム溶接法で接合し、光半導体装
置と成した。 【0031】上記工程[3]のようにして、直径約2m
mの球状の透光性部材3aを低融点ガラスで接合した個
体の保持部材3cについて、図3に示した面取り部の角
度θが35°(サンプルA),40°(サンプルB),45°
(サンプルC),50(サンプルD)°,55°(サンプル
E)である5種の保持部材3cを各10個ずつ作製した。
これらの保持部材3cについて、反射防止膜を透光性部
材3aの両側(枠体2内側および枠体2外側)に形成し
て、反射防止膜の形成状態を確認した。その結果、サン
プルC〜Eでは、10個中10個について、両側とも有効径
(約1mm)以上となるような大きな面積で反射防止膜
が良好に形成された。サンプルA,Bでは、透光性部材
3aの枠体2外側の表面に反射防止膜を10個中10個とも
形成できなかった。 【0032】次に、上記工程[1]〜[6]によって作
製した光半導体装置について、面取り部の角度θが45°
(サンプルC)である保持部材3cであって、その円筒
部の外周面と固定部材3の内周面との間の間隔Xが0.3
mm(サンプルF),0.4mm(サンプルG),0.5mm
(サンプルH),0.6mm(サンプルI),0.7mm(サ
ンプルJ)である5種(各10個)の保持部材3cを用い
た光半導体装置を用意した。 【0033】これらの光半導体装置について、Heリー
ク試験(MIL−STD−883)による気密性を評価し
た。その結果、サンプルH〜Jは気密不良は皆無であっ
た。サンプルFは10個中2個に気密不良が発生した。サ
ンプルGは10個中1個に気密不良が発生した。 【0034】なお、本発明は上記実施の形態および実施
例に限定されず、本発明の要旨を逸脱しない範囲内で種
々の変更を施すことは何ら差し支えない。 【0035】 【発明の効果】本発明の光半導体素子収納用パッケージ
は、筒状の光ファイバ固定部材の枠体外側の端面に外周
部が接合された略円板状の透光性部材の保持部材は、そ
の円筒部の内周面と枠体外側の主面との間の稜部が円筒
部の内周面に対する角度が45°以上の面取り部とされて
おり、かつ円筒部の外周面と光ファイバ固定部材の内周
面との間の間隔が0.5mm以上であることにより、透光
性部材の表面に十分な光量を透過させ得る有効径でもっ
て反射防止膜を確実に形成できるとともに、透光性部材
を保持部材に低融点ガラスで接合してから固定部材の端
面に保持部材の外周部を低融点ロウ材で接合する際に応
力がかかって透光性部材が外れたり、光半導体パッケー
ジ内の気密が破れるという問題点を解消できる。 【0036】また、透光性部材に加わる応力により透光
性部材に歪みが生じ、透光性部材に複屈折あるいは屈折
率の分布が生じて焦点等が変化して光学特性が劣化する
のを抑制することにより、光半導体素子から発振された
光の光ファイバ内の伝送特性や光半導体パッケージ内部
の気密性を良好にすることができる。その結果、光半導
体素子を長期にわたり正常かつ安定に作動させ得る光半
導体素子収納用パッケージを提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser (L)
D) and an optical semiconductor element housing package for housing an optical semiconductor element such as a photodiode (PD). FIG. 2 shows a conventional package for housing an optical semiconductor element (hereinafter, also referred to as an optical semiconductor package).
As shown in the figure, the optical semiconductor package has LD, P
D and the like are formed of an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or a copper (Cu) -tungsten (W) alloy having a mounting portion 101a on which an optical semiconductor element 105 is mounted. A frame having a plate-shaped body 101 and a through-hole 102a attached to the base 101 via a brazing material such as silver brazing so as to surround the mounting portion 101a, and for transmitting and receiving an optical signal. Body 102 and an optical semiconductor element joined to the upper surface of the frame body 102
It mainly comprises a lid 104 for hermetically sealing 105. On the side of the frame 102, there is provided a cylindrical optical fiber fixing member (hereinafter also referred to as a fixing member) 103 which is fitted and joined to the through hole 102a of the frame 102. Further, the fixing member 103 is provided with a holding member 103c of a translucent member 103a having an outer peripheral portion joined to an end surface on the outside of the frame body 102 and having a cylindrical portion 103c at a central portion. A spherical translucent member 103a for a condenser lens or the like is attached inside the cylindrical portion of the holding member 103c. Further, on the other side of the frame 102, an attachment portion for an input / output terminal formed of a through hole or a notch is formed, and an input / output terminal for inputting / outputting a high-frequency signal for driving to / from the optical semiconductor element 105 is provided. (Ceramic terminal) (not shown) is attached. The input / output terminal has a line conductor formed of a metallized layer for leading the inside and outside of the frame 102, and an external lead terminal is connected to a portion of the line conductor outside the frame 102. [0004] An optical semiconductor element 105 is bonded and fixed to a mounting portion 101a of a base 102 via a base 108 on which a circuit board or the like is mounted, and each electrode of the optical semiconductor element 105 is input / output via a bonding wire. By connecting to the line conductor of the terminal, it is electrically connected to the external lead terminal.
A lid 104 is attached to the upper surface of 2, the base 101, the frame 102, and the lid 10
The optical semiconductor element 105 is housed inside the container made of 4 and finally, a flange 107 made of stainless steel attached to the end of the optical fiber 106 is joined to the fixing member 103 by laser welding by irradiation with YAG laser light. And optical fiber
By fixing 106 to fixing member 103, an optical semiconductor device as a product is obtained. In this optical semiconductor device, light is excited in the optical semiconductor element 105 by a drive signal supplied from an external electric circuit, and the excited light is transmitted to the outside via an optical fiber 106, thereby achieving high-speed communication. used. Incidentally, such an optical semiconductor package is
Gold (Au) plating is preliminarily applied to the surfaces of the base 101 and the frame 102 to effectively prevent oxidative corrosion of the base 101 and the frame 102 and to firmly join the optical semiconductor element 105 to the mounting portion 101a. can do. However, in the above-mentioned conventional optical semiconductor package, since the opening of the outer main surface of the cylindrical portion 102 of the cylindrical portion of the holding member 103c is small, a light transmitting member is formed on the holding member 103c. There is a problem that it is difficult to form an anti-reflection film on the translucent member 103a from the opening side by a thin film forming method such as a sputtering method with the 103a bonded. That is, even if an anti-reflection film is formed by injecting a thin film material from the opening side in the thin film forming apparatus, the effective diameter is such that the light is sufficiently transmitted to the surface of the light transmitting member 103a because the opening is small. No anti-reflection film is formed. When the translucent member 103a is joined to the inside of the cylindrical portion with low melting glass, and the outer peripheral portion of the holding member 103c is joined to the end surface 103b of the fixing member 103 outside the frame 102 with low melting point brazing material. In addition, the brazing material easily accumulates on the outer peripheral surface of the cylindrical portion near the translucent member 103a. As a result, the translucent member 103
There is a problem that a large stress is applied to a through the accumulation of the brazing material, and the translucent member 103a comes off or the airtightness in the optical semiconductor package is broken. In addition, the stress applied to the light-transmitting member 103a causes distortion in the light-transmitting member 103a, causing birefringence or refractive index distribution in the light-transmitting member 103a, changing the focus and the like, and deteriorating optical characteristics. There were also points. Accordingly, the present invention has been completed in view of the above problems, and an object of the present invention is to form and fix an antireflection film on the surface of a light transmitting member with an effective diameter capable of transmitting a sufficient amount of light. When the outer peripheral portion of the holding member is joined to the end surface of the member with a low melting point brazing material, stress is applied and the light transmitting member is detached,
An object of the present invention is to solve the problem that airtightness in an optical semiconductor package is broken. Further, by preventing the light transmitting member from being distorted due to the stress applied to the light transmitting member and causing the birefringence or the distribution of the refractive index to occur in the light transmitting member and changing the focal point and the like, and thereby deteriorating the optical characteristics. Another object of the present invention is to improve transmission characteristics of an optical fiber such as a laser beam emitted from an optical semiconductor element in an optical fiber and airtightness in an optical semiconductor package. And
An object of the present invention is to provide an optical semiconductor package capable of operating an optical semiconductor element normally and stably for a long period of time. A package for containing an optical semiconductor element according to the present invention has a base having a mounting part on which an optical semiconductor element is mounted on an upper surface, a through hole on a side part, and A frame attached to the upper surface of the base so as to surround the mounting portion, a cylindrical optical fiber fixing member fitted into the through hole, and an end face of the optical fiber fixing member outside the frame; A holding member of a substantially disc-shaped translucent member having an outer peripheral portion joined to a central portion and a cylindrical portion protruding inward of the frame at a central portion, and an inner peripheral surface of the cylindrical portion of the holding member An optical semiconductor element housing package comprising a spherical translucent member joined to the holding member, wherein the holding member has a ridge between an inner peripheral surface of the cylindrical portion and a main surface outside the frame. The angle to the inner peripheral surface of the cylindrical part is a chamfered part of 45 ° or more, One gap between the inner peripheral surface of the outer peripheral surface of the cylindrical portion and the optical fiber fixing member is equal to or is 0.5mm or more. According to the package for storing an optical semiconductor element of the present invention, an antireflection film having an effective diameter capable of transmitting a sufficient amount of light on the surface of a light-transmitting member can be surely formed and the light-transmitting member can be formed. When the member is joined to the holding member with low-melting glass, stress is applied when the outer peripheral portion of the holding member is joined to the end surface of the fixing member with a low-melting brazing material, the light-transmitting member comes off, or the inside of the optical semiconductor package is removed. The problem that airtightness is broken can be solved. Further, it is possible to prevent the light transmitting member from being distorted due to the stress applied to the light transmitting member, causing birefringence or refractive index distribution to occur in the light transmitting member, and changing the focal point and the like, thereby deteriorating the optical characteristics. By suppressing this, the transmission characteristics of the light oscillated from the optical semiconductor element in the optical fiber and the airtightness inside the optical semiconductor package can be improved. As a result, an optical semiconductor package capable of operating the optical semiconductor element normally and stably for a long period of time can be provided. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The package for housing an optical semiconductor device according to the present invention will be described in detail below. FIG. 1 is a sectional view of an optical semiconductor package of the present invention. As shown in the figure, the optical semiconductor package of the present invention has LD, PD
Having a mounting portion 1a on which an optical semiconductor element 5 such as
A base 1 which is made of an e-Ni-Co alloy or a Cu-W alloy and is a substantially rectangular plate-like body, and is attached to an upper surface of the base 1 with a brazing material such as silver brazing so as to surround the mounting portion 1a. Frame 2 having a through hole 2a for transmitting and receiving an optical signal;
And a lid 4 hermetically sealed to the optical semiconductor element 5. At the side of the frame 2, a cylindrical fixing member 3 is fitted and joined into the through hole 2a of the frame 2, and the outer periphery of a substantially disk-shaped holding member 3c is joined to the end face 3b. Is provided, and a spherical translucent member 3a for a condenser lens or the like is attached inside the cylindrical portion of the holding member 3c. An input / output terminal (ceramic terminal) for inputting / outputting a driving high-frequency signal to / from the optical semiconductor element 5 is provided on the other side of the frame body 2 at an input / output terminal mounting portion formed of a through hole or a notch.
(Not shown) is attached. The input / output terminal has a line conductor made of a metallized layer that conducts inside and outside the frame 2, and an external lead terminal is joined to a portion of the line conductor outside the frame 2. An optical semiconductor element 5 is bonded and fixed to a mounting portion 1a of the base 1 via a base 8 on which a circuit board or the like is mounted, and each electrode of the optical semiconductor element 5 is input / output via a bonding wire. It is electrically connected to the external lead terminal by being connected to the line conductor of the terminal, and then the lid 4 is attached to the upper surface of the frame 2, and the inside of the container comprising the base 1, the frame 2 and the lid 4 The optical semiconductor element 5 is housed in the housing. The substrate 1 of the present invention is made of an Fe—Ni—Co alloy, a sintered material of Cu—W, or the like, and its ingot (lumps).
It is manufactured into a predetermined shape by applying a conventionally known metal working method such as rolling or punching, or by performing injection molding and cutting. In the approximate center of the upper surface, LD,
A mounting portion 1a for mounting an optical semiconductor element 5 such as a PD via a base 8 is provided, and the optical semiconductor element 5 is bonded to the upper surface of the mounting portion 1a by a bonding material such as solder. The base 8 is mounted and fixed via an adhesive, a low-melting glass, a solder or the like. The electrode of the optical semiconductor element 5 is electrically connected to the line conductor of the input / output terminal via a bonding wire or the like. The substrate 1 is formed by depositing a metal having excellent corrosion resistance and excellent wettability of the brazing material, specifically, a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm on a surface thereof by plating. It is preferable to prevent the oxidation and corrosion of the substrate 1 effectively. On the outer peripheral portion of the upper surface of the base 1, a mounting portion 1 is provided.
The frame 2 is erected so as to surround a. The frame 2 together with the base 1 forms a space for accommodating the optical semiconductor element 5 inside. The frame 2 is made of Fe—Ni similarly to the base 1.
-Made of a metal such as a Co alloy or a sintered material of Cu-W and brazed by being integrally formed with the base 1 or brazing the base 1 through a brazing material such as silver brazing; By being joined by a welding method, it is erected on the outer periphery of the upper surface of the base 1. The frame 2 is formed by depositing a metal having excellent corrosion resistance and excellent wettability of the brazing material, specifically, a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm on the surface thereof by plating. It is preferable to prevent oxidation of the frame 2 effectively. A mounting portion for an input / output terminal is formed on a side portion of the frame 2, and the mounting portion is used for inputting and outputting a high-frequency signal between the optical semiconductor element 5 and an external electric circuit, and for connecting the optical semiconductor device. An input / output terminal having a function of sealing the inside and outside of the package airtight is joined with a brazing material such as silver brazing via a metallized layer formed on the terminal. The frame 2 has a through hole 2a on the other side, and a cylindrical fixing member 3 is fitted and joined to the through hole 2a. The fixing member 3 has an outer peripheral surface hermetically bonded with a brazing material such as silver brazing, and an optical fiber 6 is bonded via a flange 7 so as to face the optical semiconductor element 5. An optical signal is exchanged with the optical semiconductor element 5. This fixing member 3 is made of Fe
Frame 2 made of an Ni—Co alloy, an Fe—Ni alloy, or the like.
The holding member 3c of the translucent member 3a is joined to the outer end surface 3b, and the main surface of the holding member 3c outside the frame 2 has a flange 7
Is fixed. The holding member 3c is joined with a low melting point brazing material made of an Au-Sn (tin) alloy or the like. The fixing member 3 is made of a metal having excellent corrosion resistance and excellent wettability of the brazing material, specifically 0.5 to 9 μm.
It is preferable that a m layer of Ni and an Au layer having a thickness of 0.5 to 5 μm are sequentially applied by a plating method, so that oxidation corrosion of the fixing member 3 can be effectively prevented. In addition, a spherical translucent member 3a is joined to the end inside the frame 2 inside the cylindrical portion of the holding member 3c via a low-melting glass. This translucent member 3
“a” is made of amorphous glass, and the joint with the cylindrical portion is joined with low-melting glass. A substantially circular light transmitting portion centered on the optical axis of the optical semiconductor element 5 on the surface of the light transmitting member 3a has an antireflection film whose thickness and refractive index are appropriately selected according to the wavelength of the transmitted optical signal. A membrane has been applied. As shown in FIG. 3, the holding member 3c has a ridge between the inner peripheral surface of the cylindrical portion and the main surface on the outside of the frame 2 having an angle θ of 45 ° or more with respect to the inner peripheral surface of the cylindrical portion. It is a chamfer. If the angle is less than 45 °, it is difficult to reliably form the anti-reflection film with an effective diameter capable of transmitting a sufficient amount of light on the surface of the light transmitting member 3a. Also, the angle θ is preferably 85 ° or less,
If the angle exceeds 85 °, the chamfered portion becomes substantially parallel to the main surface of the holding member 3c outside the frame 2, so that it is difficult to form an antireflection film having an effective diameter. The distance X between the outer peripheral surface of the cylindrical portion of the holding member 3c and the inner peripheral surface of the fixing member 3 is 0.5 mm or more. If it is less than 0.5 mm, the translucent member 3a is attached to the holding member 3c.
When the outer peripheral portion of the holding member 3c is joined to the end surface 3b of the fixing member 3 with the low melting point brazing material,
A brazing material pool is formed between the outer peripheral surface of the cylindrical portion of the holding member 3c and the inner peripheral surface of the fixing member 3, and this gap is easily filled with the brazing material. Then, the stress generated due to the difference in the thermal expansion coefficient between the fixing member 3, the holding member 3c, and the low melting point brazing material is applied to the translucent member 3a, and the translucent member 3a comes off or cracks occur in the translucent member 3a. appear. As a result, the airtightness of the optical semiconductor package itself is broken. Further, the interval X is preferably 3 mm or less, and if it exceeds 3 mm, the optical semiconductor package itself tends to be large in weight. An embodiment of the package for housing an optical semiconductor device according to the present invention will be described below. First, the optical semiconductor package of the present invention shown in FIG. 1 was manufactured in the following steps [1] to [6]. [1] About 13 mm in length × about 30 mm in width × about 1 in thickness
mm-Cu-W alloy, the outer periphery of the upper surface of the substantially square base 1 is about 13 mm long and about 13 mm wide so as to surround the mounting portion 1a.
A frame 2 made of a 20 mm Fe-Ni-Co alloy and having a substantially square shape in plan view was joined with a silver braze. A Ni plating layer having a thickness of about 2 μm and an Au plating layer having a thickness of about 0.5 μm are sequentially deposited on the surfaces of the base 1 and the frame body 2.
A mounting portion for the input / output terminal is formed on a side portion of the frame 2, and a circular through hole 2a is formed on another side portion adjacent to the side portion. [2] Attaching the input / output terminals of the frame 2 is made of alumina ceramics and has a thickness of about 2 μm on the Mo-Mn metallized layer so as to conduct inside and outside the frame 2.
An input / output terminal having a line conductor formed by sequentially depositing a Ni plating layer of m and an Au plating layer of about 0.5 μm in thickness,
Fitted and joined with silver brazing. [3] Fe-Ni-
A cylindrical fixing member 3 made of a Co alloy is fitted and joined with silver brazing, and a spherical translucent member 3a made of amorphous glass is provided inside the cylindrical portion of the fixing member 3 on an end surface 3b outside the frame 2. The outer peripheral portion of the holding member 3c in which
The joint was made with a Sn alloy brazing material. The surface of the fixing member 3 has a Ni plating layer having a thickness of about 2 μm and a thickness of about 0.5 μm
Au plating layers are sequentially applied. [4] The optical semiconductor element 5, which is an LD, is mounted and joined with an Au-Si brazing material to the upper surface of a base 8 made of alumina ceramic adhered on the mounting portion 1a. Were connected to the inside of the line conductor frame 2 of the input / output terminal by a bonding wire. [5] The optical fiber 6 is attached to the main surface of the holding member 3 which is joined to the end surface 3b of the fixing member 3 outside the frame 2.
The holder 7 having one end thereof bonded with a resin adhesive is
It was joined by laser welding to form an optical semiconductor package. [6] The lid 4 made of an Fe-Ni-Co alloy was joined to the upper surface of the frame 2 by seam welding to form an optical semiconductor device. As in the above step [3], a diameter of about 2 m
The angle θ of the chamfer shown in FIG. 3 was 35 ° (sample A), 40 ° (sample B), and 45 ° for the individual holding member 3c in which the m-shaped light-transmitting member 3a was joined with low-melting glass.
(Sample C), 50 (Sample D) °, and 55 ° (Sample E), five types of ten holding members 3c were manufactured.
With respect to these holding members 3c, antireflection films were formed on both sides (the inside of the frame 2 and the outside of the frame 2) of the translucent member 3a, and the state of formation of the antireflection films was confirmed. As a result, in Samples C to E, the anti-reflection film was formed satisfactorily in such a large area that the effective diameter (about 1 mm) was equal to or larger on both sides for 10 out of 10 samples. In Samples A and B, 10 out of 10 anti-reflection films could not be formed on the outer surface of frame 2 of translucent member 3a. Next, in the optical semiconductor device manufactured by the above steps [1] to [6], the angle θ of the chamfered portion is 45 °.
(Sample C) is the holding member 3c, wherein the distance X between the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the fixing member 3 is 0.3
mm (sample F), 0.4 mm (sample G), 0.5 mm
An optical semiconductor device using five (ten each) holding members 3c of (sample H), 0.6 mm (sample I) and 0.7 mm (sample J) was prepared. The airtightness of these optical semiconductor devices was evaluated by a He leak test (MIL-STD-883). As a result, Samples H to J had no poor airtightness. Sample F had poor airtightness in 2 out of 10 samples. In sample G, airtight failure occurred in one out of ten samples. The present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the gist of the present invention. According to the optical semiconductor element housing package of the present invention, a substantially disk-shaped translucent member whose outer peripheral portion is joined to the outer end surface of the cylindrical optical fiber fixing member on the outer side of the frame body is held. The member has a ridge between an inner peripheral surface of the cylindrical portion and a main surface outside the frame body is a chamfer having an angle of 45 ° or more with respect to the inner peripheral surface of the cylindrical portion, and an outer peripheral surface of the cylindrical portion. And the distance between the inner peripheral surface of the optical fiber fixing member is 0.5 mm or more, and the antireflection film can be reliably formed with an effective diameter capable of transmitting a sufficient amount of light to the surface of the light transmitting member. When the translucent member is joined to the holding member with low-melting glass and then the outer peripheral portion of the holding member is joined to the end surface of the fixing member with low-melting brazing material, the translucent member may come off due to stress. The problem that airtightness in the semiconductor package is broken can be solved. Also, the stress applied to the light-transmissive member causes the light-transmissive member to be distorted, causing birefringence or a refractive index distribution to occur in the light-transmissive member, changing the focal point, etc., and deteriorating the optical characteristics. By suppressing this, the transmission characteristics of the light oscillated from the optical semiconductor element in the optical fiber and the airtightness inside the optical semiconductor package can be improved. As a result, it is possible to provide an optical semiconductor element housing package that can operate the optical semiconductor element normally and stably for a long period of time.

【図面の簡単な説明】 【図1】本発明の光半導体素子収納用パッケージについ
て実施の形態の例を示す断面図である。 【図2】従来の光半導体素子収納用パッケージの例の断
面図である。 【図3】図1の光半導体素子収納用パッケージにおける
光ファイバ固定部材および保持部材を示す部分拡大断面
図である。 【符号の説明】 1:基体 1a:載置部 2:枠体 2a:貫通孔 3:光ファイバ固定部材 3a:透光性部材 3b:端面 3c:保持部材 5:光半導体素子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical semiconductor element housing package of the present invention. FIG. 2 is a sectional view of an example of a conventional package for housing an optical semiconductor element. FIG. 3 is a partially enlarged cross-sectional view showing an optical fiber fixing member and a holding member in the optical semiconductor element housing package of FIG. [Description of Signs] 1: Base 1a: mounting portion 2: frame 2a: through hole 3: optical fiber fixing member 3a: translucent member 3b: end surface 3c: holding member 5: optical semiconductor element

Claims (1)

【特許請求の範囲】 【請求項1】 上面に光半導体素子が載置される載置部
を有する基体と、側部に貫通孔を有するとともに前記基
体の上面に前記載置部を囲繞するように取着された枠体
と、前記貫通孔に嵌着された円筒状の光ファイバ固定部
材と、該光ファイバ固定部材の前記枠体外側の端面に外
周部が接合されるとともに中央部に前記枠体内側に突出
した円筒部が形成されている略円板状の透光性部材の保
持部材と、該保持部材の前記円筒部の内周面に接合され
た球状の透光性部材とを具備した光半導体素子収納用パ
ッケージにおいて、前記保持部材は、前記円筒部の内周
面と前記枠体外側の主面との間の稜部が前記円筒部の内
周面に対する角度が45°以上の面取り部とされており、
かつ前記円筒部の外周面と前記光ファイバ固定部材の内
周面との間の間隔が0.5mm以上であることを特徴とす
る光半導体素子収納用パッケージ。
Claims: 1. A base having a mounting portion on which an optical semiconductor element is mounted on an upper surface, and a through hole on a side portion, and the mounting portion is surrounded on the upper surface of the base. And a cylindrical optical fiber fixing member fitted into the through hole, and an outer peripheral portion joined to an end surface of the optical fiber fixing member on the outer side of the frame, and a central portion of the optical fiber fixing member. A holding member of a substantially disk-shaped light-transmitting member having a cylindrical portion protruding inside the frame body, and a spherical light-transmitting member joined to the inner peripheral surface of the cylindrical portion of the holding member. In the optical semiconductor element housing package provided, the holding member has a ridge between an inner peripheral surface of the cylindrical portion and a main surface outside the frame body at an angle of 45 ° or more with respect to an inner peripheral surface of the cylindrical portion. It is a chamfer of
And a distance between the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the optical fiber fixing member is 0.5 mm or more.
JP2002022390A 2002-01-30 2002-01-30 Optical semiconductor element storage package Expired - Fee Related JP3898521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022390A JP3898521B2 (en) 2002-01-30 2002-01-30 Optical semiconductor element storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022390A JP3898521B2 (en) 2002-01-30 2002-01-30 Optical semiconductor element storage package

Publications (2)

Publication Number Publication Date
JP2003222767A true JP2003222767A (en) 2003-08-08
JP3898521B2 JP3898521B2 (en) 2007-03-28

Family

ID=27745399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022390A Expired - Fee Related JP3898521B2 (en) 2002-01-30 2002-01-30 Optical semiconductor element storage package

Country Status (1)

Country Link
JP (1) JP3898521B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059746A (en) * 2007-08-30 2009-03-19 Kyocera Corp Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059746A (en) * 2007-08-30 2009-03-19 Kyocera Corp Light-emitting device

Also Published As

Publication number Publication date
JP3898521B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US4722586A (en) Electro-optical transducer module
US8399897B2 (en) Optical device package
JP3199611B2 (en) Optical semiconductor element storage package
US6426591B1 (en) Package for housing photosemiconductor element
JP3500304B2 (en) Semiconductor element support member and semiconductor element storage package using the same
JP2003222767A (en) Storing package for optical semiconductor element
JPH11145317A (en) Package for optical semiconductor device and optical semiconductor module
JP2008277395A (en) Window member for optical element, package for housing optical element and optical module
JP3336199B2 (en) Package for storing optical semiconductor elements
JP3766589B2 (en) Optical semiconductor element storage package
JP2022126893A (en) Optical module and manufacturing method of the same
JP3526518B2 (en) Optical semiconductor element storage package
JP2004309506A (en) Optical semiconductor element storage package, and optical semiconductor device
JP3825337B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP3285766B2 (en) Package for storing optical semiconductor elements
JP3285765B2 (en) Package for storing optical semiconductor elements
KR0121330B1 (en) Semiconductor laser module optical
JP2003243763A (en) Package for housing optical semiconductor element and optical semiconductor device
JP2001177177A (en) Package for housing optical semiconductor element
JPH1174394A (en) Optical semiconductor module and airtightly sealing container therefor
JP3502756B2 (en) Optical semiconductor element storage package
JP2004198802A (en) Fiber collimator and its manufacturing method
JP2003318303A (en) Input and output terminal, package for containing semiconductor device, and semiconductor device
JP2001156194A (en) Package for housing optical semiconductor element
JP2004259771A (en) Package for housing optical semiconductor element and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees