JP2003221604A - Method for manufacturing composite material with low thermal expansion and high thermal conductivity - Google Patents

Method for manufacturing composite material with low thermal expansion and high thermal conductivity

Info

Publication number
JP2003221604A
JP2003221604A JP2002021070A JP2002021070A JP2003221604A JP 2003221604 A JP2003221604 A JP 2003221604A JP 2002021070 A JP2002021070 A JP 2002021070A JP 2002021070 A JP2002021070 A JP 2002021070A JP 2003221604 A JP2003221604 A JP 2003221604A
Authority
JP
Japan
Prior art keywords
thermal expansion
thermal conductivity
composite material
low thermal
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002021070A
Other languages
Japanese (ja)
Inventor
慶平 ▲冬▼
Kiyouhei Fuyu
Koichi Furutoku
浩一 古徳
Yasuyuki Igo
康之 井郷
Kazuhiko Nakagawa
和彦 中川
Takashi Suzumura
隆志 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002021070A priority Critical patent/JP2003221604A/en
Publication of JP2003221604A publication Critical patent/JP2003221604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite material with low thermal expansion and high thermal conductivity, which can manufacture the composite material with a low cost due to the high efficiency, and can give a high molding density to the obtained composite. <P>SOLUTION: This manufacturing method comprises compacting a mixture of a cuprous oxide powder with the low thermal expansion and a copper powder with the high thermal conductivity into a billet, and hot-extruding the obtained billet to produce a compact in which cuprous oxide powders are orientated to the extruded direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低熱膨張高熱伝導
性複合材の製造方法に関し、特に、低熱膨張高熱伝導性
複合材を高効率かつ高成型密度のもとに製造することの
できる製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low thermal expansion high thermal conductivity composite material, and more particularly to a production method capable of producing a low thermal expansion high thermal conductivity composite material with high efficiency and high molding density. Regarding

【0002】[0002]

【従来の技術】中央演算装置等の半導体装置において
は、半導体チップの高容量化および高速化に伴い発熱量
が増大する傾向にある。このため、発熱に起因する半導
体チップの特性劣化を防止して長寿化を図る意味から、
半導体装置に放熱材を取り付け、半導体装置からの熱を
放熱材より放出させることによって、半導体装置および
その周辺領域での温度上昇を抑制することが行われてい
る。
2. Description of the Related Art In a semiconductor device such as a central processing unit, the amount of heat generated tends to increase as the capacity and speed of a semiconductor chip increase. For this reason, in order to prevent deterioration of the characteristics of the semiconductor chip due to heat generation and to prolong the life,
A heat dissipation material is attached to a semiconductor device, and heat from the semiconductor device is radiated from the heat dissipation material to suppress a temperature rise in the semiconductor device and its peripheral region.

【0003】通常、これには、銅の放熱材が使用されて
いる。銅の放熱材は、393W/(m・K)という高い
熱伝導率を有しているため、熱を効率よく吸収して放熱
できる特質を有するとともに、低価格に調達できる利点
を有していることから、プラスティックスパッケージ等
のLSI用放熱材として広く活用されている。
Usually, a copper heat dissipation material is used for this. The heat dissipation material of copper has a high thermal conductivity of 393 W / (m · K), so that it has the characteristic of being able to efficiently absorb and dissipate heat, and also has the advantage of being available at a low price. Therefore, it is widely used as a heat dissipation material for LSI such as plastic packages.

【0004】しかし、銅を構成材とした放熱材による
と、16.7×10-6/Kという高い熱膨張係数を有す
るため、これを発熱量の大きな、たとえば、オン・オフ
機能を有する電力エネルギー変換や制御系の半導体装置
に適用することは難しく、従って、このような用途に
は、熱膨張係数の小さなAl−SiC、Cu−W、Cu
−Mo等の複合材、あるいはMoやW等の単一材が構成
材として使用されているが、これらは、いずれも、高価
格という欠点を有している。
However, according to the heat dissipation material having copper as a constituent material, since it has a high coefficient of thermal expansion of 16.7 × 10 -6 / K, it has a large calorific value, for example, an electric power having an on / off function. It is difficult to apply to a semiconductor device of energy conversion or control system, and therefore, for such applications, Al-SiC, Cu-W, Cu having a small thermal expansion coefficient is used.
-A composite material such as Mo or a single material such as Mo or W is used as a constituent material, but each of them has a drawback of high price.

【0005】低価格であり、従って、経済的に有利な銅
の特質を活かし、かつ、高熱膨張性の問題を解決し得た
放熱材として、無機化合物粉と銅等の金属粉の混合体を
シート状に成型し、これを焼結した複合材が提案されて
いる。無機化合物の低い熱膨張性と金属の優れた熱伝導
性とを組み合わせたもので、特性およびコストの両面に
おいて優れた放熱材として注目されている。
A mixture of an inorganic compound powder and a metal powder such as copper is used as a heat-dissipating material, which has a low price and therefore is economically advantageous, and which can solve the problem of high thermal expansion. There has been proposed a composite material which is formed into a sheet shape and is sintered. It is a combination of the low thermal expansion of an inorganic compound and the excellent thermal conductivity of a metal, and is attracting attention as a heat-dissipating material excellent in both characteristics and cost.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来のこのタ
イプの複合材によると、混合粉からのシートへの成型が
プレス加工によって行われるため、成型作業が間歇的と
なって効率が悪く、従って、折角の銅等を構成材とする
低コスト性が、成型効率の低さによって減殺されてしま
い、充分な経済的利益を得られない実情にある。また、
焼結によって得られる複合材の構成密度にも限界があ
り、このことによる特性への影響にも無視できないもの
がある。
However, according to the conventional composite material of this type, since the molding of the mixed powder into the sheet is performed by the press working, the molding work is intermittent and the efficiency is low. However, the low cost of using bent copper or the like as a constituent material is diminished by the low molding efficiency, and sufficient economic benefits cannot be obtained. Also,
There is a limit to the constituent density of the composite material obtained by sintering, and the effect on the properties due to this is not negligible.

【0007】従って、本発明の目的は、低熱膨張高熱伝
導性複合材を高い効率に基づく低コストのもとに製造す
ることができ、さらに、得られる複合材に対して高い成
型密度を与えることのできる低熱膨張高熱伝導性複合材
の製造方法を提供することにある。
It is therefore an object of the present invention to be able to produce low thermal expansion high thermal conductivity composites at low cost based on high efficiency, and further to give the resulting composites a high molding density. It is an object of the present invention to provide a method for producing a low thermal expansion and high thermal conductivity composite material that can be manufactured.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、低熱膨張性の無機化合物粉と高熱伝導性
の金属粉の混合体に成型加工を施すことによって所定の
形状に成型する低熱膨張高熱伝導性複合材の製造方法に
おいて、前記混合体よりビレットを成型し、得られたビ
レットに熱間押出加工を施すことによって、前記混合体
を前記無機化合物粉が押出方向に配向した成型体に加工
することを特徴とする低熱膨張高熱伝導性複合材の製造
方法を提供するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention molds a mixture of a low thermal expansion inorganic compound powder and a high thermal conductivity metal powder into a predetermined shape. In the method for producing a low thermal expansion high thermal conductivity composite material, which comprises molding a billet from the mixture, and subjecting the resulting billet to hot extrusion, the inorganic compound powder in the mixture is oriented in the extrusion direction. The present invention provides a method for producing a low thermal expansion and high thermal conductivity composite material, which is characterized in that it is processed into a molded body.

【0009】本発明における低熱膨張性の無機化合物粉
としては、酸化銅、酸化亜鉛、酸化ニッケルあるいは酸
化アルミニウム等の金属酸化物の粉末が好適例としてあ
げられ、一方、高熱伝導性の金属粉としては、銅、アル
ミニウムあるいはこれらの合金等の粉末を挙げることが
できる。
As the low-thermal-expansion inorganic compound powder in the present invention, powders of metal oxides such as copper oxide, zinc oxide, nickel oxide or aluminum oxide can be mentioned as suitable examples, while as high-thermal-conductivity metal powders. Examples of the powder include powders of copper, aluminum or alloys thereof.

【0010】なかでも、銅と、第1酸化銅(Cu2O)
あるいは第2酸化銅(CuO)との組み合わせが好まし
く、この組み合わせを採用するときには、得られる複合
材に対して特に優れた低熱膨張性と高熱伝導性とを付与
することができる。
Among them, copper and the first copper oxide (Cu2O)
Alternatively, a combination with second copper oxide (CuO) is preferable, and when this combination is adopted, it is possible to impart particularly excellent low thermal expansion and high thermal conductivity to the obtained composite material.

【0011】なお、上記した2種類の酸化銅のうち、第
2酸化銅は、熱間押出加工時、あるいはその前に必要に
よって施される焼結の際に、CuO+Cu→Cu2Oの
反応によって第1酸化銅に変化して安定化するので、い
ずれの酸化銅を原料として使用する場合にも、得られる
複合材の構成成分は同じとなる。
Of the above-mentioned two types of copper oxide, the second copper oxide is the first copper oxide produced by the reaction of CuO + Cu → Cu2O during the hot extrusion process or during the sintering process performed before that, if necessary. Since it changes to copper oxide and is stabilized, the constituent components of the obtained composite material are the same regardless of which copper oxide is used as a raw material.

【0012】また、金属粉として酸化銅を選択するとき
の、銅粉との混合体に占める割合としては、下限におい
ては、熱間押出をした複合材に放熱材として相応しい1
5×10-6/Kよりも小さな低熱膨張率を与えるため、
そして、上限においては、熱間押出時における成型性を
確保し、これによって押出品に表面割れあるいはコーナ
ー部割れ等を発生させないために、体積比で15〜60
%の範囲内に設定することが好ましい。なお、同じ理由
に基づいた、より好ましい酸化銅の混合比としては、2
5〜50体積%に設定することができる。
In addition, when copper oxide is selected as the metal powder, the lower limit of the proportion of the mixture with the copper powder in the mixture with the copper powder is suitable for the heat extruded composite material as a heat dissipation material.
In order to give a low coefficient of thermal expansion smaller than 5 × 10 −6 / K,
And, in the upper limit, in order to secure moldability during hot extrusion and thereby prevent surface cracks or corner cracks in the extruded product, the volume ratio is 15 to 60.
It is preferable to set it within the range of%. A more preferable mixing ratio of copper oxide based on the same reason is 2
It can be set to 5 to 50% by volume.

【0013】本発明において、酸化銅粉と銅粉より構成
される混合体を押出加工するに際しては、アスペクト比
が2以上の第1酸化銅粒子が、断面積比で全酸化銅粒子
の50%以上を占めるように行うことが好ましい。加工
がこのように行われると、第1酸化銅粉の押出方向への
配向密度が特に高まり、結果として、成型密度の高い高
品質の低熱膨張高熱伝導性複合材が製造されるようにな
る。
In the present invention, when a mixture composed of copper oxide powder and copper powder is extruded, the first copper oxide particles having an aspect ratio of 2 or more have a cross-sectional area ratio of 50% of all copper oxide particles. It is preferable to carry out so as to occupy the above. When the processing is performed in this manner, the orientation density of the first copper oxide powder in the extrusion direction is particularly increased, and as a result, a high quality low thermal expansion high thermal conductivity composite material having high molding density is manufactured.

【0014】なお、アスペクト比が2以上の第1酸化銅
粒子の占有比を、全酸化銅粒子の50%以上とするため
には、熱間押出の際のビレットの断面減面率を50%以
上に設定することが好ましく、減面率がこれを下廻る
と、アスペクト比が2以上の第1酸化銅の粒子減による
押出方向への配向性が減少し、成型密度の低下を招くよ
うになるので好ましくない。
In order to make the occupancy ratio of the first copper oxide particles having an aspect ratio of 2 or more 50% or more of all the copper oxide particles, the cross-sectional area reduction rate of the billet during hot extrusion is 50%. It is preferable to set it as above, and if the area reduction rate is lower than this, the orientation of the cuprous oxide having an aspect ratio of 2 or more in the extrusion direction due to the reduction of the particles is reduced, and the molding density is lowered. Therefore, it is not preferable.

【0015】混合体より成型されたビレットは、そのま
ま単に熱間押出装置に供給される場合と、強度付与のた
めに熱間押出の前に焼結される場合とがあり、いずれを
採るかは、状況に応じて決めればよい。また、ビレット
の成型方法としては、冷間プレス成型法、あるいはCI
P(Cold Isostatic Pressin
g)成型法等が挙げられる。
The billet molded from the mixture may be simply supplied to the hot extrusion apparatus as it is, or may be sintered before hot extrusion to give strength. Which is taken? , It may be decided according to the situation. The billet may be molded by cold press molding or CI.
P (Cold Isostatic Pressin
g) Examples include molding methods.

【0016】酸化銅粉と銅粉の混合体を熱間押出するた
めの加工温度としては、400〜1000℃が好まし
く、これを下廻ると、酸化銅粉の変形抵抗が大きくな
り、押出後において、アスペクト比2以上の第1酸化銅
粒子の占有率が全酸化銅粒子の50%未満に減少するよ
うになり、さらに、押出品表面に割れが発生しやすくな
るので好ましくない。
The processing temperature for hot extruding a mixture of copper oxide powder and copper powder is preferably 400 to 1000 ° C. Below this, the deformation resistance of the copper oxide powder increases, and after extrusion, However, the occupancy rate of the first copper oxide particles having an aspect ratio of 2 or more is reduced to less than 50% of all the copper oxide particles, and further cracks are likely to occur on the surface of the extruded product, which is not preferable.

【0017】また、逆に、加工温度を上記範囲を超えて
設定するときには、加熱炉等の押出熱源、および押出ダ
イスに加わる熱負荷が大きくなり、このため、熱源およ
び押出ダイスの寿命が短くなるので好ましくない。な
お、同じ理由による、より好ましい押出加工温度は、6
00〜900℃である。
On the contrary, when the processing temperature is set to exceed the above range, the heat load applied to the extrusion heat source such as the heating furnace and the extrusion die becomes large, which shortens the life of the heat source and the extrusion die. It is not preferable. For the same reason, a more preferable extrusion processing temperature is 6
It is 00-900 degreeC.

【0018】[0018]

【発明の実施の形態】次に、本発明による低熱膨張高熱
伝導性複合材の製造方法の実施の形態を表1に基づいて
説明する。なお、表1において、相対密度は、アルキメ
デス法により測定し、熱膨張率は、室温〜300℃の温
度範囲でTMA(Thermal Mechanica
l Analysis)装置により測定し、さらに、熱
伝導率は、レーザーフラッシュ法により測定した。酸化
第1銅の粒子観察は、光学顕微鏡による。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the method for producing a low thermal expansion and high thermal conductivity composite material according to the present invention will be described based on Table 1. In Table 1, the relative density is measured by the Archimedes method, and the coefficient of thermal expansion is TMA (Thermal Mechanicala) in the temperature range of room temperature to 300 ° C.
l Analysis) device, and the thermal conductivity was measured by the laser flash method. The particles of cuprous oxide are observed with an optical microscope.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【実施例1〜4】平均粒径が48μmの電解銅粉と粒径
が20μm以下の第1酸化銅粉を表1に示される実施例
1〜4の比率のもとに混合し、それぞれ5000gずつ
の混合物とした後、これらを、スチールボールを入れた
乾式ボールミル内で10時間攪拌することによって各例
ごとの混合体を調合した。
Examples 1 to 4 Electrolytic copper powder having an average particle size of 48 μm and first copper oxide powder having a particle size of 20 μm or less were mixed in the ratios of Examples 1 to 4 shown in Table 1 to obtain 5000 g of each. After preparing each mixture, these were stirred in a dry ball mill containing steel balls for 10 hours to prepare a mixture for each example.

【0021】次に、これらの混合体を内径が150mm
の金型に充填して冷間プレスを行い、得られた予備成型
体をアルゴンガス中で焼結することにより押出用ビレッ
トとした後、これらのビレットを表1に示された条件下
で熱間押出加工することにより、それぞれ所定の低熱膨
張高熱伝導性複合材を製造した。なお、冷間プレスは、
第1酸化銅の含有量に応じて400〜2500kgf/
cm2の圧力で行い、焼結は、950℃×3時間の条件
で行った。
Next, the inside diameter of these mixtures is 150 mm.
The resulting preform was sintered in argon gas to form an extrusion billet, and the billet was heated under the conditions shown in Table 1. By inter-extrusion processing, predetermined low thermal expansion and high thermal conductivity composite materials were produced. The cold press is
400-2500 kgf /, depending on the content of cuprous oxide
Sintering was performed at a pressure of cm 2 and sintering was performed at 950 ° C. for 3 hours.

【0022】[0022]

【実施例5〜8】実施例1〜4において、電解銅粉とし
て平均粒径が25μmのものを、第1酸化銅粉として粒
径が15μm以下のものをそれぞれ使用し、これらを表
1の実施例5〜8の比率下に混合するとともに、冷間プ
レスされたビレットを焼結工程を経ずにそのまま表1に
示された条件下で熱間押出加工し、さらに、他を同一条
件に設定することによって、それぞれ所定の低熱膨張高
熱伝導性複合材を製造した。
Examples 5 to 8 In Examples 1 to 4, electrolytic copper powders having an average particle size of 25 μm and primary copper oxide powders having a particle size of 15 μm or less were used. While mixing in the ratios of Examples 5 to 8, the cold-pressed billet was hot-extruded as it is under the conditions shown in Table 1 without undergoing a sintering step, and the other conditions were the same. By setting, the predetermined low thermal expansion high thermal conductivity composite material was manufactured, respectively.

【0023】[0023]

【実施例9〜12】平均粒径が40μmの電解銅粉と粒
径が350μm以下の第1酸化銅粉を実施例1〜4と同
様にして表1の実施例9〜12の比率のもとに混合し、
得られた混合体を内径が150mmのゴム袋に入れてC
IP成型法(成型圧力1000大気圧)により押出用ビ
レットに加圧成型した後、これらのビレットを表1に示
される条件下で熱間押出加工することによって、それぞ
れ所定の低熱膨張高熱伝導性複合材を製造した。
[Examples 9 to 12] The electrolytic copper powder having an average particle size of 40 µm and the first copper oxide powder having a particle size of 350 µm or less were used in the same manner as in Examples 1 to 4 to obtain the ratios of Examples 9 to 12 in Table 1. Mixed with and
The obtained mixture was put in a rubber bag having an inner diameter of 150 mm, and C
After pressure molding into an extrusion billet by the IP molding method (molding pressure 1000 atmospheric pressure), these billets are subjected to hot extrusion under the conditions shown in Table 1 to obtain a predetermined low thermal expansion and high thermal conductivity composite. The wood was manufactured.

【0024】表1によれば、得られた各複合材とも、ア
スペクト比が2以上の第1酸化銅粒子が全酸化銅粒子の
50%以上を占め、従って、高い相対密度を有するとと
もに、この種複合材本来の特質である低水準の熱膨張率
と高水準の熱伝導率を有していることが認められる。
According to Table 1, in each of the obtained composite materials, the first copper oxide particles having an aspect ratio of 2 or more occupy 50% or more of the total copper oxide particles, and thus have a high relative density and It is recognized that it has a low level of thermal expansion coefficient and a high level of thermal conductivity, which are the original characteristics of the seed composite material.

【0025】しかも、これらの複合材においては、連続
作業の可能な熱間押出に基づいて製造が行われるため、
作業が高効率下に遂行されることとなり、従って、従来
のこの種複合材におけるコスト上の問題を効果的に解決
することが可能となる。
Moreover, since these composite materials are manufactured based on hot extrusion capable of continuous operation,
The work is performed with high efficiency, and therefore, it is possible to effectively solve the cost problem in the conventional composite material of this kind.

【0026】[0026]

【発明の効果】以上説明したように、本発明による低熱
膨張高熱伝導性複合材の製造方法によれば、低熱膨張性
の無機化合物粉と高熱伝導性の金属粉の混合体よりビレ
ットを成型し、得られたビレットに熱間押出加工を施す
ことによって無機化合物粉が押出方向に配向した成型体
に加工するものであるため、作業が連続的となり、従っ
て、高い効率に基づく低コストのもとに製造作業を遂行
することができるとともに、押出加工による粒子の配向
性に基づいた成型密度の高い高品質の低熱膨張高熱伝導
性複合材を提供することができる。
As described above, according to the method for producing a low thermal expansion and high thermal conductivity composite material according to the present invention, a billet is molded from a mixture of a low thermal expansion inorganic compound powder and a high thermal conductivity metal powder. By subjecting the obtained billet to a hot extrusion process, the inorganic compound powder is processed into a molded product oriented in the extrusion direction, so that the work is continuous and, therefore, at a low cost based on high efficiency. In addition to being able to perform manufacturing operations, it is possible to provide a high-quality, low-thermal-expansion, high-thermal-conductivity composite material having a high molding density and a high molding density based on the orientation of particles by extrusion processing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井郷 康之 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 (72)発明者 中川 和彦 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 (72)発明者 鈴村 隆志 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 Fターム(参考) 4K018 AA04 AB01 AC01 AD09 BA02 CA11 CA23 DA11 DA31 EA31 KA32    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuyuki Igo             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. (72) Inventor Kazuhiko Nakagawa             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. (72) Inventor Takashi Suzumura             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. F term (reference) 4K018 AA04 AB01 AC01 AD09 BA02                       CA11 CA23 DA11 DA31 EA31                       KA32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】低熱膨張性の無機化合物粉と高熱伝導性の
金属粉の混合体に成型加工を施すことによって所定の形
状に成型する低熱膨張高熱伝導性複合材の製造方法にお
いて、 前記混合体よりビレットを成型し、得られたビレットに
熱間押出加工を施すことによって、前記混合体を前記無
機化合物粉が押出方向に配向した成型体に加工すること
を特徴とする低熱膨張高熱伝導性複合材の製造方法。
1. A method for producing a low thermal expansion high thermal conductivity composite material, which comprises molding a mixture of a low thermal expansion inorganic compound powder and a high thermal conductivity metal powder into a predetermined shape, the mixture comprising: Molding the billet more, by subjecting the resulting billet to hot extrusion processing, the mixture is processed into a molded body in which the inorganic compound powder is oriented in the extrusion direction. Low thermal expansion high thermal conductivity composite. Method of manufacturing wood.
【請求項2】前記混合体よりビレットを成型するステッ
プは、前記低熱膨張性の無機化合物粉として酸化銅粉を
含み、前記高熱伝導性の金属粉として銅粉を含む前記混
合体を使用して行われることを特徴とする請求項1項記
載の低熱膨張高熱伝導性複合材の製造方法。
2. The step of molding a billet from the mixture comprises using the mixture containing copper oxide powder as the low thermal expansion inorganic compound powder and copper powder as the high thermal conductivity metal powder. The method for producing a low thermal expansion and high thermal conductivity composite material according to claim 1, which is performed.
【請求項3】前記混合体よりビレットを成型するステッ
プは、15〜60体積%の前記酸化銅を含む前記混合体
を使用して行われることを特徴とする請求項2項記載の
低熱膨張高熱伝導性複合材の製造方法。
3. The low thermal expansion high heat according to claim 2, wherein the step of molding a billet from the mixture is performed by using the mixture containing 15 to 60% by volume of the copper oxide. Manufacturing method of conductive composite material.
【請求項4】前記熱間押出加工のステップは、押出後の
断面積比において、アスペクト比が2以上の第1酸化銅
粒子が全酸化銅粒子の50%以上を占めるように行われ
ることを特徴とする請求項2項記載の低熱膨張高熱伝導
性複合材の製造方法。
4. The step of hot extrusion processing is performed such that the first copper oxide particles having an aspect ratio of 2 or more occupy 50% or more of all the copper oxide particles in a cross-sectional area ratio after extrusion. The method for producing a low thermal expansion high thermal conductivity composite material according to claim 2.
【請求項5】前記熱間押出加工のステップは、押し出さ
れる前記ビレットの断面減面率が50%以上となるよう
に行われることを特徴とする請求項4項記載の低熱膨張
高熱伝導性複合材の製造方法。
5. The low thermal expansion high thermal conductivity composite according to claim 4, wherein the step of hot extruding is performed so that a cross-sectional area reduction rate of the extruded billet is 50% or more. Method of manufacturing wood.
【請求項6】前記熱間押出加工のステップは、400〜
1000℃の温度範囲において行われることを特徴とす
る請求項2項記載の低熱膨張高熱伝導性複合材の製造方
法。
6. The step of hot extruding is 400-
The method for producing a low thermal expansion and high thermal conductivity composite material according to claim 2, wherein the method is performed in a temperature range of 1000 ° C.
JP2002021070A 2002-01-30 2002-01-30 Method for manufacturing composite material with low thermal expansion and high thermal conductivity Pending JP2003221604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021070A JP2003221604A (en) 2002-01-30 2002-01-30 Method for manufacturing composite material with low thermal expansion and high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021070A JP2003221604A (en) 2002-01-30 2002-01-30 Method for manufacturing composite material with low thermal expansion and high thermal conductivity

Publications (1)

Publication Number Publication Date
JP2003221604A true JP2003221604A (en) 2003-08-08

Family

ID=27744404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021070A Pending JP2003221604A (en) 2002-01-30 2002-01-30 Method for manufacturing composite material with low thermal expansion and high thermal conductivity

Country Status (1)

Country Link
JP (1) JP2003221604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949644A (en) * 2014-04-03 2014-07-30 西安理工大学 Preparation method of high-strength, high-conductivity and high-plasticity pure copper bar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949644A (en) * 2014-04-03 2014-07-30 西安理工大学 Preparation method of high-strength, high-conductivity and high-plasticity pure copper bar

Similar Documents

Publication Publication Date Title
CN104988438B (en) High-strength and high-conductivity carbon nano tube strengthening copper-based composite material and preparing method thereof
JP5042829B2 (en) Manufacturing method of ceramic sheet
CN1199020A (en) Co-Sb thermoelectric materials and mfg. method thereof
KR20210095937A (en) Airgel-reinforced metal-based composite material and its manufacturing method and application
US11628496B2 (en) Method of manufacturing aluminum-based clad heat sink, and aluminum-based clad heat sink manufactured thereby
CN1590571A (en) Tungsten copper functional composite material and its preparation technology
CN100435321C (en) Process for preparing silumin electronic package materials
JPWO2005040067A1 (en) Carbon nanotube-dispersed composite material, production method thereof, and application thereof
CN106521205A (en) Method for preparing aluminum oxide dispersion strengthening copper-based composite material
CN110904368B (en) Aluminum-silicon electronic packaging material and preparation method thereof
CN100411158C (en) Process for preparing silumin electronic package materials
JP2003221604A (en) Method for manufacturing composite material with low thermal expansion and high thermal conductivity
WO2004038049A1 (en) Composite material, method for producing same and member using same
JP4906206B2 (en) Al-Si powder alloy material and method for producing the same
CN102433456A (en) Powder metallurgy preparation method for electronic encapsulation material with high thermal conductivity
JP2000141022A (en) Silicon carbide composite body and its manufacture
CN101220421A (en) Technique for shaping Si-Al heat sink material with silicon content greater-than 70
JP2003078087A (en) Exoergic composite substrate with fin for semiconductor element
JP3552587B2 (en) Composite materials and semiconductor devices
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JPS59143347A (en) Manufacture of material for semiconductor substrate
JP3199809B2 (en) Manufacturing method of composite extruded member
Nogueira et al. Selection of a powder for ceramic injection moulding
WO2015156459A1 (en) Led lamp heat radiation structure using mechanical alloying method and manufacturing method thereof
KR101432640B1 (en) Radiator structure using Cu/Ag alloying powder and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040423

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411