CN1590571A - Tungsten copper functional composite material and its preparation technology - Google Patents

Tungsten copper functional composite material and its preparation technology Download PDF

Info

Publication number
CN1590571A
CN1590571A CN 03150816 CN03150816A CN1590571A CN 1590571 A CN1590571 A CN 1590571A CN 03150816 CN03150816 CN 03150816 CN 03150816 A CN03150816 A CN 03150816A CN 1590571 A CN1590571 A CN 1590571A
Authority
CN
China
Prior art keywords
tungsten
copper
powder
composite material
functional composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 03150816
Other languages
Chinese (zh)
Other versions
CN100355924C (en
Inventor
蔡宏伟
仲守亮
宁超
张德明
沈忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Materials
Original Assignee
Shanghai Institute of Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Materials filed Critical Shanghai Institute of Materials
Priority to CNB031508162A priority Critical patent/CN100355924C/en
Publication of CN1590571A publication Critical patent/CN1590571A/en
Application granted granted Critical
Publication of CN100355924C publication Critical patent/CN100355924C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种钨铜功能复合材料及其制备工艺,该复合材料包括以下组份及含量(重量):钨70~95%,铜5~30%;该制备工艺包括粉末处理、添加诱导剂及混料、压制成型、预烧结、熔渗等步骤。采用该工艺制备的合金既有钨的低热膨胀系数,又具有铜的高导热性的相结合,可实现与半导体硅、砷、砷化镓、氧化铝、氧化铍的良好匹配封结,可作为CPU、IC、固态微波管等高气密性封装的热沉基片。The invention relates to a tungsten-copper functional composite material and a preparation process thereof. The composite material comprises the following components and contents (weight): 70% to 95% of tungsten and 5% to 30% of copper; the preparation process includes powder treatment and adding an inducer And mixing, compression molding, pre-sintering, infiltration and other steps. The alloy prepared by this process has the combination of low thermal expansion coefficient of tungsten and high thermal conductivity of copper, which can achieve good matching and sealing with semiconductor silicon, arsenic, gallium arsenide, aluminum oxide and beryllium oxide, and can be used as Heat sink substrates for CPU, IC, solid-state microwave tubes and other highly airtight packages.

Description

一种钨铜功能复合材料及其制备工艺A kind of tungsten-copper functional composite material and its preparation process

技术领域technical field

本发明涉及一种合金及其制备工艺,尤其涉及一种钨铜两相金属复合材料及其制备工艺。The invention relates to an alloy and a preparation process thereof, in particular to a tungsten-copper two-phase metal composite material and a preparation process thereof.

背景技术Background technique

近年来,在大规模集成电路和大功率微波器件中的基片、嵌块、连接件和散热元件的需求迅速扩大。由钨、铜二种不同性质的材料复合而成钨铜复合材料,继承了二种材料各自的优点,达到单一材料无法具有的性能,并可通过改变组成相之间的相对含量,以达到上述使用要求。钨铜复合材料的高导热及耐热性可提高微电子器件的使用功率,钨铜复合材料的热膨胀系数可使其与微电子器件中的许多半导体材料相匹配。但是,由于目前钨铜合金的制备工艺没有过关,导致合金材料无法满足使用要求。In recent years, the demand for substrates, inlays, connectors and heat dissipation components in large-scale integrated circuits and high-power microwave devices has expanded rapidly. The tungsten-copper composite material is composed of two materials with different properties, tungsten and copper. It inherits the respective advantages of the two materials and achieves properties that cannot be possessed by a single material. It can achieve the above-mentioned by changing the relative content of the constituent phases Requirements. The high thermal conductivity and heat resistance of tungsten-copper composite materials can increase the power of microelectronic devices, and the thermal expansion coefficient of tungsten-copper composite materials can match many semiconductor materials in microelectronic devices. However, because the current preparation process of tungsten-copper alloy has not passed the standard, the alloy material cannot meet the requirements for use.

发明内容Contents of the invention

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种材料性能优异、制造工艺合理的钨铜功能复合材料及其制备工艺。The purpose of the present invention is to provide a tungsten-copper functional composite material with excellent material performance and reasonable manufacturing process and its preparation process in order to overcome the above-mentioned defects in the prior art.

本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:

一种钨铜功能复合材料,其特征在于,该复合材料包括以下组份及含量(重量):钨70~95%,铜5~30%。A tungsten-copper functional composite material is characterized in that the composite material comprises the following components and contents (weight): 70-95% of tungsten and 5-30% of copper.

所述的组份及含量(重量)为:钨80~90%,铜10~20%。The components and content (weight) are: 80-90% of tungsten and 10-20% of copper.

所述的复合材料的物理参数为:密度15.4~17.3克/厘米3,热导率150~210瓦/米·开尔文(w/m·K),热膨胀系数为6.5~8.3ppm/℃。The physical parameters of the composite material are: density 15.4-17.3 g/cm 3 , thermal conductivity 150-210 W/m·Kelvin (w/m·K), thermal expansion coefficient 6.5-8.3 ppm/°C.

一种钨铜功能复合材料的制备工艺,其特征在于,该工艺包括以下步骤:A preparation process of tungsten-copper functional composite material is characterized in that the process comprises the following steps:

(1)粉末处理(1) Powder processing

取费氏平均粒度5~15微米的钨粉,经过850~1050℃干燥氨分解气体保护,保温≤60分钟,另取-200目的电解铜粉,经过300~450℃干燥氨分解气体保护,保温≤60分钟,待用;Take tungsten powder with a Fibonacci average particle size of 5-15 microns, pass through 850-1050°C dry ammonia decomposition gas protection, keep warm for ≤60 minutes, and take -200 mesh electrolytic copper powder, pass through 300-450°C dry ammonia decomposition gas protection, heat preservation ≤60 minutes, standby;

(2)添加诱导剂及混料(2) Add inducer and mixture

采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀;Use fine copper powder with a particle size of -500 mesh as an inducer and mix the above-mentioned tungsten powder evenly on a powder mixer;

(3)压制成型(3) Compression molding

将上述混料置于模具内,并在压机上压制成型,压机的压力为6~8吨/厘米2;Put the above-mentioned mixture in the mold, and press it on a press, the pressure of the press is 6-8 tons/cm2;

(4)预烧结(4) Pre-sintering

将上述压制成型的生坯经1000~1200℃预烧结,并保温30~120分钟;Pre-sintering the above-mentioned compacted green body at 1000-1200°C and keeping it warm for 30-120 minutes;

(5)熔渗(5) Infiltration

将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,在温度1250~1400℃下保温60~180分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料;The electrolytic copper powder prepared in step (1) is placed on the surface of the pre-sintered compact, and kept at a temperature of 1250-1400°C for 60-180 minutes to carry out infiltration treatment. Under protection, the tungsten-copper functional composite material is obtained;

所述的步骤(2)中细铜粉的加入量以及步骤(5)中电解铜粉的溶渗量之和控制在占复合材料的5~30%(重量),所述的步骤(2)中钨粉的加入量控制在占复合材料的70~95%(重量)。The sum of the amount of fine copper powder added in the step (2) and the infiltration amount of the electrolytic copper powder in the step (5) is controlled at 5 to 30% (weight) of the composite material, and the step (2) The added amount of the tungsten powder is controlled to account for 70-95% (weight) of the composite material.

所述的步骤(2)中细铜粉的加入量占复合材料≤5%(重量)。The added amount of the fine copper powder in the step (2) accounts for ≤5% (weight) of the composite material.

所述的粉末混料机的转速在0.6~0.75转/分钟临界转速范围内,混料时间为8~12小时;所述的临界转速:

Figure A0315081600051
式中D为粉末混料机混料筒的直径,米。The speed of the powder mixer is within the critical speed range of 0.6 to 0.75 rpm, and the mixing time is 8 to 12 hours; the critical speed:
Figure A0315081600051
In the formula, D is the diameter of the mixing cylinder of the powder mixer, in meters.

所述的步骤(3)中压制成型的生坯密度达到复合材料产品密度的70~75%。The density of the green compact formed by pressing in the step (3) reaches 70-75% of the density of the composite material product.

本发明钨铜复合材料是以钨、铜二种金属组成的一种二相假合金。钨和铜无论在液态和固态都是不互溶的,均匀混合后各自保持原有的物理和机械性能。诱导剂的加入改善了钨粉生坯的压制性;提高了铜的熔渗效率,促使钨铜材料致密化;保证了铜相细小而均匀。为了避免在混料中发生杂质的混入,本发明采用干式混合。在混合过程中只有钨粉和铜粉二种粉末,不再添加任何其他球料和溶剂。诱导剂铜粉的加入,使得钨铜粉的成型压力增加,生坯密度提高,毛细管孔径减小,有利于钨铜骨架的形成和液相铜的熔渗。由于在本发明中,钨铜毛坯经熔渗铜后可获得稳定的尺寸控制,所以,有效地控制压制毛坯尺寸和重量,就能控制最终产品的密度,产品致密化才有保证。采用熔渗法,可以通过改变低熔点骨架金属的初始密度和颗粒大小,达到在较宽范围内随意控制复合材料成分和性能的目的。这种合金既有钨的低热膨胀系数,又具有铜的高导热性的相结合,可实现与半导体硅、砷、砷化镓、氧化铝、氧化铍的良好匹配封结,可作为CPU、IC、固态微波管等高气密性封装的热沉基片。本发明产品作为微电子技术应用的钨铜复合材料,具有高密度、高导热性、低膨胀系数,满足了使用要求。The tungsten-copper composite material of the present invention is a two-phase pseudo-alloy composed of two metals, tungsten and copper. Tungsten and copper are immiscible in both liquid and solid states, and each maintains its original physical and mechanical properties after being evenly mixed. The addition of the inducer improves the compactness of the tungsten powder green body; improves the infiltration efficiency of copper and promotes the densification of the tungsten-copper material; ensures that the copper phase is fine and uniform. In order to avoid the mixing of impurities in the mixture, the present invention adopts dry mixing. In the mixing process, there are only two kinds of powders, tungsten powder and copper powder, and no other balls and solvents are added. The addition of the inducer copper powder increases the forming pressure of the tungsten copper powder, increases the density of the green body, and reduces the capillary pore size, which is beneficial to the formation of the tungsten copper skeleton and the infiltration of liquid phase copper. Because in the present invention, the tungsten-copper blank can obtain stable size control after being infiltrated with copper, so the density of the final product can be controlled by effectively controlling the size and weight of the pressed blank, and the densification of the product can be guaranteed. Using the infiltration method, the purpose of freely controlling the composition and properties of the composite material in a wide range can be achieved by changing the initial density and particle size of the low melting point skeleton metal. This alloy not only has the low thermal expansion coefficient of tungsten, but also has the high thermal conductivity of copper. It can achieve good matching and sealing with semiconductor silicon, arsenic, gallium arsenide, aluminum oxide, and beryllium oxide. It can be used as CPU, IC , solid-state microwave tubes and other highly airtight packaged heat sink substrates. As a tungsten-copper composite material used in microelectronic technology, the product of the invention has high density, high thermal conductivity and low expansion coefficient, and meets the requirements for use.

具体实施方式Detailed ways

实施例1Example 1

一种钨铜功能复合材料,该复合材料包括以下组份及含量(重量):钨85%,铜15%。A tungsten-copper functional composite material comprises the following components and contents (weight): 85% tungsten and 15% copper.

上述钨铜功能复合材料的制备工艺,该工艺包括以下步骤:The preparation process of the above-mentioned tungsten-copper functional composite material comprises the following steps:

(1)粉末处理(1) Powder processing

钨粉采用符合GB3458-1982钨粉技术条件,牌号GW-1,费氏平均粒度5-15微米的粉末;电解铜粉采用符合GB5246-1985电解铜粉,牌号FTD1,-200目(负号表示200目筛的筛下物)的粉末。The tungsten powder is in accordance with the technical conditions of GB3458-1982 tungsten powder, the grade GW-1, and the Fischer average particle size is 5-15 microns; the electrolytic copper powder is in accordance with the GB5246-1985 electrolytic copper powder, the grade FTD1, -200 mesh 200 mesh sieve) powder.

本发明所用粉末需经以下活化预处理,这是本发明的特点之一。The powder used in the present invention needs to undergo the following activation pretreatment, which is one of the characteristics of the present invention.

钨粉经过1000℃干燥氨分解气体保护,保温30分钟;电解铜粉经过400℃干燥氨分解气体保护,保温30分钟。The tungsten powder is protected by 1000°C dry ammonia decomposition gas and kept warm for 30 minutes; the electrolytic copper powder is protected by 400°C dry ammonia decomposition gas and kept warm for 30 minutes.

(2)添加诱导剂及混料(2) Add inducer and mixture

采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀,其中,钨粉用量占产品总量的85%(重量),细铜粉的加入量为产品总量的4%(重量),粉末混料机的转速在0.70转/分钟临界转速范围内,混料时间为10小时。Adopt particle size to be the fine copper powder of -500 mesh as inducer and above-mentioned tungsten powder and mix evenly on powder mixer, wherein, tungsten powder consumption accounts for 85% (weight) of product total amount, and the add-on of fine copper powder is product total amount 4% (weight), the rotating speed of the powder mixer is within the critical speed range of 0.70 rpm, and the mixing time is 10 hours.

(3)压制成型(3) Compression molding

将上述混料置于模具内,并在压机上压制成型,压机的压力为7.5吨/厘米2,该压制成型的生坯密度达到复合材料产品密度的73%左右。The above-mentioned mixture is placed in a mold, and pressed on a press, the pressure of the press is 7.5 tons/cm 2 , and the density of the press-formed green body reaches about 73% of the density of the composite material product.

(4)预烧结(4) Pre-sintering

将上述压制成型的生坯经1100℃预烧结,并保温60分钟。The above-mentioned pressed green body was pre-sintered at 1100° C. and kept warm for 60 minutes.

(5)熔渗(5) Infiltration

将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,该电解铜粉的用量占产品总量的11%(重量),在温度1350℃下保温120分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料。Place the electrolytic copper powder prepared in step (1) on the surface of the pre-sintered compact, the amount of the electrolytic copper powder accounts for 11% (weight) of the total product, and infiltrate at a temperature of 1350 ° C for 120 minutes treatment, the infiltration treatment process is carried out under the protection of dry ammonia decomposition gas, and the tungsten-copper functional composite material is obtained.

本实施例制得的复合材料的物理参数为:密度16.25克/厘米3,热导率176w/m·K,热膨胀系数为7.2ppm/℃。The physical parameters of the composite material prepared in this example are: density 16.25 g/cm 3 , thermal conductivity 176 w/m·K, thermal expansion coefficient 7.2 ppm/°C.

实施例2Example 2

一种钨铜功能复合材料,该复合材料包括以下组份及含量(重量):钨80%,铜20%。A tungsten-copper functional composite material comprises the following components and contents (weight): 80% tungsten and 20% copper.

上述钨铜功能复合材料的制备工艺,该工艺包括以下步骤:The preparation process of the above-mentioned tungsten-copper functional composite material comprises the following steps:

(1)粉末处理(1) Powder processing

钨粉采用符合GB3458-1982钨粉技术条件,牌号GW-1,费氏平均粒度5-15微米的粉末;电解铜粉采用符合GB5246-1985电解铜粉,牌号FTD1,-200目(负号表示200目筛的筛下物)的粉末。The tungsten powder is in accordance with the technical conditions of GB3458-1982 tungsten powder, the grade GW-1, and the Fischer average particle size is 5-15 microns; the electrolytic copper powder is in accordance with the GB5246-1985 electrolytic copper powder, the grade FTD1, -200 mesh 200 mesh sieve) powder.

本发明所用粉末需经以下活化预处理,这是本发明的特点之一。The powder used in the present invention needs to undergo the following activation pretreatment, which is one of the characteristics of the present invention.

钨粉经过1050℃干燥氨分解气体保护,保温15分钟;电解铜粉经过450℃干燥氨分解气体保护,保温10分钟。The tungsten powder is protected by 1050°C dry ammonia decomposition gas and kept warm for 15 minutes; the electrolytic copper powder is protected by 450°C dry ammonia decomposition gas and kept warm for 10 minutes.

(2)添加诱导剂及混料(2) Add inducer and mixture

采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀,其中,钨粉用量占产品总量的80%(重量),细铜粉的加入量为产品总量的2.5%(重量),粉末混料机的转速在0.75转/分钟临界转速范围内,混料时间为12小时。Adopt granularity to be -500 purpose fine copper powder as inducer and above-mentioned tungsten powder and mix on powder mixer, wherein, tungsten powder consumption accounts for 80% (weight) of product total amount, and the add-on of fine copper powder is product total amount 2.5% (weight), the rotating speed of the powder mixer is within the critical speed range of 0.75 rev/min, and the mixing time is 12 hours.

(3)压制成型(3) Compression molding

将上述混料置于模具内,并在压机上压制成型,压机的压力为7.0吨/厘米2,该压制成型的生坯密度达到复合材料产品密度的75%左右。The above-mentioned mixture is placed in a mold and pressed into a press with a pressure of 7.0 tons/cm 2 , and the density of the pressed form reaches about 75% of the density of the composite product.

(4)预烧结(4) Pre-sintering

将上述压制成型的生坯经1200℃预烧结,并保温120分钟。The above-mentioned pressed green body was pre-sintered at 1200° C. and kept warm for 120 minutes.

(5)熔渗(5) Infiltration

将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,该电解铜粉的用量占产品总量的25%(重量),在温度1400℃下保温180分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料。Place the electrolytic copper powder prepared in step (1) on the surface of the pre-sintered compact, the amount of the electrolytic copper powder accounts for 25% (weight) of the total product, and infiltrate at a temperature of 1400 ° C for 180 minutes treatment, the infiltration treatment process is carried out under the protection of dry ammonia decomposition gas, and the tungsten-copper functional composite material is obtained.

本实施例制得的复合材料的物理参数为:密度15.52克/厘米3,热导率200w/m·K,热膨胀系数为8.02ppm/℃。The physical parameters of the composite material prepared in this example are: density 15.52 g/cm 3 , thermal conductivity 200 w/m·K, thermal expansion coefficient 8.02 ppm/°C.

实施例3Example 3

一种钨铜功能复合材料,该复合材料包括以下组份及含量(重量):钨90%,铜10%。A tungsten-copper functional composite material comprises the following components and contents (weight): 90% tungsten and 10% copper.

上述钨铜功能复合材料的制备工艺,该工艺包括以下步骤:The preparation process of the above-mentioned tungsten-copper functional composite material comprises the following steps:

(1)粉末处理(1) Powder processing

钨粉采用符合GB3458-1982钨粉技术条件,牌号GW-1,费氏平均粒度5-15微米的粉末;电解铜粉采用符合GB5246-1985电解铜粉,牌号FTD1,-200目(负号表示200目筛的筛下物)的粉末。The tungsten powder is in accordance with the technical conditions of GB3458-1982 tungsten powder, the grade GW-1, and the Fischer average particle size is 5-15 microns; the electrolytic copper powder is in accordance with the GB5246-1985 electrolytic copper powder, the grade FTD1, -200 mesh 200 mesh sieve) powder.

本发明所用粉末需经以下活化预处理,这是本发明的特点之一。The powder used in the present invention needs to undergo the following activation pretreatment, which is one of the characteristics of the present invention.

钨粉经过950℃干燥氨分解气体保护,保温60分钟;电解铜粉经过350℃干燥氨分解气体保护,保温60分钟。The tungsten powder is protected by 950°C dry ammonia decomposition gas and kept warm for 60 minutes; the electrolytic copper powder is protected by 350°C dry ammonia decomposition gas and kept warm for 60 minutes.

(2)添加诱导剂及混料(2) Add inducer and mixture

采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀,其中,钨粉用量占产品总量的95%(重量),细铜粉的加入量为产品总量的1%(重量),粉末混料机的转速在0.60临界转速范围内,混料时间为8小时。Adopt particle size to be the fine copper powder of -500 mesh as inducer and above-mentioned tungsten powder and mix on powder mixer, wherein, the consumption of tungsten powder accounts for 95% (weight) of product total amount, and the add-on of fine copper powder is product total amount 1% (weight), the rotating speed of the powder mixer is within the range of 0.60 critical speed, and the mixing time is 8 hours.

(3)压制成型(3) Compression molding

将上述混料置于模具内,并在压机上压制成型,压机的压力为8吨/厘米2,该压制成型的生坯密度达到复合材料产品密度的70%左右。The above mixture is placed in a mold, and pressed on a press with a pressure of 8 tons/cm 2 , and the density of the press-formed green body reaches about 70% of the density of the composite material product.

(4)预烧结(4) Pre-sintering

将上述压制成型的生坯经1000℃预烧结,并保温30分钟。Pre-sinter the pressed green compact at 1000° C. and keep it warm for 30 minutes.

(5)熔渗(5) Infiltration

将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,该电解铜粉的用量占产品总量的4%(重量),在温度1250℃下保温60分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料。Place the electrolytic copper powder prepared in step (1) on the surface of the pre-sintered compact, the amount of the electrolytic copper powder accounts for 4% (weight) of the total product, and infiltrate at a temperature of 1250 ° C for 60 minutes treatment, the infiltration treatment process is carried out under the protection of dry ammonia decomposition gas, and the tungsten-copper functional composite material is obtained.

本实施例制得的复合材料的物理参数为:密度16.9克/厘米3,热导率152.3w/m·K,热膨胀系数为6.35ppm/℃。The physical parameters of the composite material prepared in this example are: density 16.9 g/cm 3 , thermal conductivity 152.3 w/m·K, thermal expansion coefficient 6.35 ppm/°C.

Claims (7)

1. a tungsten copper functional composite material is characterized in that, this matrix material comprises following component and content (weight): tungsten 70~95%, copper 5~30%.
2. a kind of tungsten copper functional composite material according to claim 1 is characterized in that, described component and content (weight) are: tungsten 80~90%, copper 10~20%.
3. a kind of tungsten copper functional composite material according to claim 1 is characterized in that the physical parameter of described matrix material is: density 15.4~17.3 gram per centimeters 3, 150~210 watts of/meter Kelvins of thermal conductivity, thermal expansivity is 6.5~8.3ppm/ ℃.
4. the preparation technology of a tungsten copper functional composite material is characterized in that, this technology may further comprise the steps:
(1) powder treatment
Get the tungsten powder of 5~15 microns of Fei Shi mean particle sizes, through 850~1050 ℃ of dry decomposed ammonia body protections, be incubated≤60 minutes, other gets-200 purpose electrolytic copper powders, through 300~450 ℃ of dry decomposed ammonia body protections, is incubated≤60 minutes, and is stand-by;
(2) add inductor and batch mixing
Adopt granularity to mix on the powder mixer as inductor and above-mentioned tungsten powder for the thin copper powder of-500 purposes;
(3) compression moulding
Above-mentioned batch mixing is placed in the mould, and compression moulding on press, the pressure of press is 6~8 tons/centimetre 2
(4) presintering
The green compact of above-mentioned compression moulding through 1000~1200 ℃ of presintering, and are incubated 30~120 minutes;
(5) infiltration
The electrolytic copper powder of getting ready in the step (1) is placed one-tenth parison surface through presintering, be incubated 60~180 minutes down for 1250~1400 ℃ in temperature and carry out the infiltration processing, this infiltration treating processes is carried out under the protection of exsiccant decomposed ammonia body, obtains the tungsten copper functional composite material;
The molten milliosmolarity sum of the middle electrolytic copper powder of the add-on of thin copper powder and step (5) is controlled at 5~30% (weight) that account for matrix material in the described step (2), and the add-on of tungsten powder is controlled at 70~95% (weight) that account for matrix material in the described step (2).
5. the preparation technology of a kind of tungsten copper functional composite material according to claim 4 is characterized in that, the add-on of thin copper powder accounts for matrix material≤5% (weight) in the described step (2).
6. the preparation technology of a kind of tungsten copper functional composite material according to claim 4 is characterized in that, the rotating speed of described powder mixer is in 0.6~0.75 rev/min of critical speed range, and mixing time is 8~12 hours.
7. the preparation technology of a kind of tungsten copper functional composite material according to claim 4 is characterized in that, the green density of compression moulding reaches 70~75% of composite products density in the described step (3).
CNB031508162A 2003-09-05 2003-09-05 Tungsten copper functional composite material and its preparation technology Expired - Fee Related CN100355924C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031508162A CN100355924C (en) 2003-09-05 2003-09-05 Tungsten copper functional composite material and its preparation technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031508162A CN100355924C (en) 2003-09-05 2003-09-05 Tungsten copper functional composite material and its preparation technology

Publications (2)

Publication Number Publication Date
CN1590571A true CN1590571A (en) 2005-03-09
CN100355924C CN100355924C (en) 2007-12-19

Family

ID=34597696

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031508162A Expired - Fee Related CN100355924C (en) 2003-09-05 2003-09-05 Tungsten copper functional composite material and its preparation technology

Country Status (1)

Country Link
CN (1) CN100355924C (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436616C (en) * 2006-11-03 2008-11-26 北京科技大学 Preparation method of near fully densificated high W or Mo content W-Cu or Mo-Cu composite material
CN101928867A (en) * 2010-04-09 2010-12-29 西安理工大学 Method for preparing tungsten-copper alloy based on loose packing infiltration method
CN101624662B (en) * 2009-07-08 2011-04-27 中南大学 A method for preparing W-Cu alloy by microwave infiltration
CN102061431A (en) * 2010-12-17 2011-05-18 上海工程技术大学 Tungsten-copper composite material and preparation method thereof
CN102925727A (en) * 2012-11-14 2013-02-13 武汉理工大学 Preparation method for high-performance Zn@W-Cu heat composite
CN103057202A (en) * 2013-01-05 2013-04-24 江苏鼎启科技有限公司 Lamination-structured heat sink material and preparation method
CN103194629A (en) * 2013-03-26 2013-07-10 金堆城钼业股份有限公司 Method for preparing tungsten molybdenum copper composite material
CN103409676A (en) * 2013-07-26 2013-11-27 河南理工大学 Method for improving heat conductivity of tungsten copper alloy
CN104233034A (en) * 2014-09-11 2014-12-24 泉州亿兴电力有限公司 Ablation-resistant tungsten copper alloy and application thereof
CN104404282A (en) * 2014-12-02 2015-03-11 天龙钨钼(天津)有限公司 Tungsten copper alloy with low tungsten content and preparation method of tungsten copper alloy
CN105798544A (en) * 2014-12-31 2016-07-27 北京有色金属研究总院 Tungsten-copper composite material and preparation method thereof
CN106435319A (en) * 2016-12-15 2017-02-22 四川恒珲新材料科技有限公司 Tungsten-copper alloy and production method thereof
CN106636826A (en) * 2016-12-07 2017-05-10 杭州正驰达精密机械有限公司 Tungsten-gold alloy material and preparation method thereof
CN106893919A (en) * 2017-02-23 2017-06-27 宁波高新区远创科技有限公司 A kind of preparation method of the lightning protection alloy of resistance to ablation
CN107052350A (en) * 2017-06-16 2017-08-18 大连理工大学 A kind of method for connecting tungsten material and copper material
CN109371356A (en) * 2018-12-14 2019-02-22 北京九土科技有限公司 A kind of infiltration copper product seeping process for copper and its preparation and application
CN110480008A (en) * 2019-09-03 2019-11-22 北京工业大学 It is a kind of to prepare three-dimensional communication tungsten-based composite material and method using laser 3D printing
CN111996430A (en) * 2020-07-28 2020-11-27 深圳市飞亚达精密科技有限公司 Tungsten-copper alloy free from influence of magnetic field and manufacturing method and application thereof
CN112975307A (en) * 2021-05-11 2021-06-18 陕西斯瑞新材料股份有限公司 Method for improving brazing strength of tungsten-copper part

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1003329B (en) * 1984-12-13 1989-02-15 三菱电机有限公司 Contact for vacuum circuit breaker
CN1016185B (en) * 1990-11-03 1992-04-08 冶金工业部钢铁研究总院 Copper-chromium iron vacuum contact material
CN1054402C (en) * 1994-12-29 2000-07-12 周洛三 Tungsten-copper-nickel-carbon high-temp. wear-resistant alloy
CA2232517C (en) * 1997-03-21 2004-02-17 Honda Giken Kogyo Kabushiki Kaisha .) Functionally gradient material and method for producing the same
US6114048A (en) * 1998-09-04 2000-09-05 Brush Wellman, Inc. Functionally graded metal substrates and process for making same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436616C (en) * 2006-11-03 2008-11-26 北京科技大学 Preparation method of near fully densificated high W or Mo content W-Cu or Mo-Cu composite material
CN101624662B (en) * 2009-07-08 2011-04-27 中南大学 A method for preparing W-Cu alloy by microwave infiltration
CN101928867B (en) * 2010-04-09 2012-04-04 西安理工大学 Method for preparing tungsten-copper alloy based on loose-packed infiltration method
CN101928867A (en) * 2010-04-09 2010-12-29 西安理工大学 Method for preparing tungsten-copper alloy based on loose packing infiltration method
CN102061431B (en) * 2010-12-17 2013-04-03 上海工程技术大学 Tungsten-copper composite material and preparation method thereof
CN102061431A (en) * 2010-12-17 2011-05-18 上海工程技术大学 Tungsten-copper composite material and preparation method thereof
CN102925727A (en) * 2012-11-14 2013-02-13 武汉理工大学 Preparation method for high-performance Zn@W-Cu heat composite
CN102925727B (en) * 2012-11-14 2015-03-04 武汉理工大学 Preparation method of high-performance Zn@W-Cu thermal composite material
CN103057202A (en) * 2013-01-05 2013-04-24 江苏鼎启科技有限公司 Lamination-structured heat sink material and preparation method
CN103057202B (en) * 2013-01-05 2015-05-20 江苏鼎启科技有限公司 Lamination-structured heat sink material and preparation method
CN103194629A (en) * 2013-03-26 2013-07-10 金堆城钼业股份有限公司 Method for preparing tungsten molybdenum copper composite material
CN103409676A (en) * 2013-07-26 2013-11-27 河南理工大学 Method for improving heat conductivity of tungsten copper alloy
CN104233034A (en) * 2014-09-11 2014-12-24 泉州亿兴电力有限公司 Ablation-resistant tungsten copper alloy and application thereof
CN104404282B (en) * 2014-12-02 2017-02-22 安泰天龙(天津)钨钼科技有限公司 Tungsten copper alloy with low tungsten content and preparation method of tungsten copper alloy
CN104404282A (en) * 2014-12-02 2015-03-11 天龙钨钼(天津)有限公司 Tungsten copper alloy with low tungsten content and preparation method of tungsten copper alloy
CN105798544A (en) * 2014-12-31 2016-07-27 北京有色金属研究总院 Tungsten-copper composite material and preparation method thereof
CN105798544B (en) * 2014-12-31 2018-10-02 北京有色金属研究总院 A kind of tungsten-carbon/carbon-copper composite material and preparation method thereof
CN106636826A (en) * 2016-12-07 2017-05-10 杭州正驰达精密机械有限公司 Tungsten-gold alloy material and preparation method thereof
CN106636826B (en) * 2016-12-07 2018-03-09 杭州正驰达精密机械有限公司 A kind of tungsten alloy material and preparation method thereof
CN106435319A (en) * 2016-12-15 2017-02-22 四川恒珲新材料科技有限公司 Tungsten-copper alloy and production method thereof
CN106435319B (en) * 2016-12-15 2017-12-12 四川恒珲新材料科技有限公司 Tungsten-copper alloy and preparation method thereof
CN106893919A (en) * 2017-02-23 2017-06-27 宁波高新区远创科技有限公司 A kind of preparation method of the lightning protection alloy of resistance to ablation
CN107052350A (en) * 2017-06-16 2017-08-18 大连理工大学 A kind of method for connecting tungsten material and copper material
CN107052350B (en) * 2017-06-16 2019-10-11 大连理工大学 A method of connecting tungsten material and copper material
CN109371356A (en) * 2018-12-14 2019-02-22 北京九土科技有限公司 A kind of infiltration copper product seeping process for copper and its preparation and application
CN110480008A (en) * 2019-09-03 2019-11-22 北京工业大学 It is a kind of to prepare three-dimensional communication tungsten-based composite material and method using laser 3D printing
CN110480008B (en) * 2019-09-03 2021-10-15 北京工业大学 A kind of three-dimensional interconnected tungsten matrix composite material and method using laser 3D printing
CN111996430A (en) * 2020-07-28 2020-11-27 深圳市飞亚达精密科技有限公司 Tungsten-copper alloy free from influence of magnetic field and manufacturing method and application thereof
CN111996430B (en) * 2020-07-28 2021-09-28 深圳市飞亚达精密科技有限公司 Tungsten-copper alloy free from influence of magnetic field and manufacturing method and application thereof
CN112975307A (en) * 2021-05-11 2021-06-18 陕西斯瑞新材料股份有限公司 Method for improving brazing strength of tungsten-copper part

Also Published As

Publication number Publication date
CN100355924C (en) 2007-12-19

Similar Documents

Publication Publication Date Title
CN1590571A (en) Tungsten copper functional composite material and its preparation technology
CN1261264C (en) Method for preparing tungsten-copper base composite powder and sintered alloy made up by using said composite powder for making radiator
CN1247372C (en) Method for producing composite components by powder injection molding and composite powder appropriate for use in said method
CN106521230B (en) A kind of graphite flakes/carbon/carbon-copper composite material of vertical orientation heat transmission and preparation method thereof
CN105400977B (en) The preparation method of aluminum-base silicon carbide
CN110846597B (en) A kind of silicon carbide nanowire hybrid reinforced zirconium tungstate/aluminum composite material and preparation method thereof
CN109112364B (en) Silicon carbide reinforced aluminum-based composite material for electronic packaging and preparation method thereof
CN1588574A (en) Negative temperature coefficient thermosensitive resistance material and its producing method
CN110079708B (en) A kind of powder metallurgy preparation method of nano graphite sheet/Al alloy matrix composite material
CN1900332A (en) Method for preparing copper base composite material by chemical precipitation method to obtain composite powder
CN108863393A (en) A kind of preparation method of high thermal conductivity and high-intensitive aluminium nitride ceramics
CN114044680A (en) Preparation method of aluminum nitride powder
CN109848406B (en) Powder metallurgy preparation method of titanium-based composite material and product
CN108257880B (en) Process method for preparing diamond/Si (Al) composite material by vacuum infiltration method
CN1132954C (en) Process for preparing W-Cu alloy with superfine crystal grains
CN111479773B (en) Glass-coated aluminum nitride particles, process for producing the same, and heat-radiating resin composition containing the same
CN111801183A (en) Silver paste and method for producing bonded body
JP3588320B2 (en) Method for producing high volume fraction SiC preform
CN101092672A (en) Compositions of electronic package basal plate or outer shell material of aluminum silicon carbide with ultra low heat expansion, and method for preparing products
CN101857797A (en) Carbon-based composite heat dissipation material and preparation method and application thereof
CN1877822A (en) Process for preparing silumin electronic package materials
CN115259889B (en) Porous silicon carbide ceramic, preparation method and application thereof, and aluminum silicon carbide composite material
CN110950665A (en) Preparation method of aluminum nitride-aluminum composite material
CN111069589B (en) Preparation method of granulation powder for aluminum alloy, aluminum alloy and preparation method of aluminum alloy
CN114717441A (en) Method for preparing diamond/copper composite material with low density and high thermal conductivity at low cost

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071219

Termination date: 20180905

CF01 Termination of patent right due to non-payment of annual fee