CN1590571A - Tungsten copper functional composite material and its preparation technology - Google Patents
Tungsten copper functional composite material and its preparation technology Download PDFInfo
- Publication number
- CN1590571A CN1590571A CN 03150816 CN03150816A CN1590571A CN 1590571 A CN1590571 A CN 1590571A CN 03150816 CN03150816 CN 03150816 CN 03150816 A CN03150816 A CN 03150816A CN 1590571 A CN1590571 A CN 1590571A
- Authority
- CN
- China
- Prior art keywords
- tungsten
- copper
- powder
- composite material
- functional composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 43
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000005516 engineering process Methods 0.000 title claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 52
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000843 powder Substances 0.000 claims abstract description 22
- 229910052802 copper Inorganic materials 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 18
- 230000008595 infiltration Effects 0.000 claims abstract description 16
- 238000001764 infiltration Methods 0.000 claims abstract description 16
- 239000010937 tungsten Substances 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 238000000748 compression moulding Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 28
- 229910021529 ammonia Inorganic materials 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 9
- 230000004224 protection Effects 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims 5
- 239000000411 inducer Substances 0.000 abstract description 11
- 238000005245 sintering Methods 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 5
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 abstract description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 abstract description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 4
- 238000009700 powder processing Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 238000000280 densification Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种钨铜功能复合材料及其制备工艺,该复合材料包括以下组份及含量(重量):钨70~95%,铜5~30%;该制备工艺包括粉末处理、添加诱导剂及混料、压制成型、预烧结、熔渗等步骤。采用该工艺制备的合金既有钨的低热膨胀系数,又具有铜的高导热性的相结合,可实现与半导体硅、砷、砷化镓、氧化铝、氧化铍的良好匹配封结,可作为CPU、IC、固态微波管等高气密性封装的热沉基片。The invention relates to a tungsten-copper functional composite material and a preparation process thereof. The composite material comprises the following components and contents (weight): 70% to 95% of tungsten and 5% to 30% of copper; the preparation process includes powder treatment and adding an inducer And mixing, compression molding, pre-sintering, infiltration and other steps. The alloy prepared by this process has the combination of low thermal expansion coefficient of tungsten and high thermal conductivity of copper, which can achieve good matching and sealing with semiconductor silicon, arsenic, gallium arsenide, aluminum oxide and beryllium oxide, and can be used as Heat sink substrates for CPU, IC, solid-state microwave tubes and other highly airtight packages.
Description
技术领域technical field
本发明涉及一种合金及其制备工艺,尤其涉及一种钨铜两相金属复合材料及其制备工艺。The invention relates to an alloy and a preparation process thereof, in particular to a tungsten-copper two-phase metal composite material and a preparation process thereof.
背景技术Background technique
近年来,在大规模集成电路和大功率微波器件中的基片、嵌块、连接件和散热元件的需求迅速扩大。由钨、铜二种不同性质的材料复合而成钨铜复合材料,继承了二种材料各自的优点,达到单一材料无法具有的性能,并可通过改变组成相之间的相对含量,以达到上述使用要求。钨铜复合材料的高导热及耐热性可提高微电子器件的使用功率,钨铜复合材料的热膨胀系数可使其与微电子器件中的许多半导体材料相匹配。但是,由于目前钨铜合金的制备工艺没有过关,导致合金材料无法满足使用要求。In recent years, the demand for substrates, inlays, connectors and heat dissipation components in large-scale integrated circuits and high-power microwave devices has expanded rapidly. The tungsten-copper composite material is composed of two materials with different properties, tungsten and copper. It inherits the respective advantages of the two materials and achieves properties that cannot be possessed by a single material. It can achieve the above-mentioned by changing the relative content of the constituent phases Requirements. The high thermal conductivity and heat resistance of tungsten-copper composite materials can increase the power of microelectronic devices, and the thermal expansion coefficient of tungsten-copper composite materials can match many semiconductor materials in microelectronic devices. However, because the current preparation process of tungsten-copper alloy has not passed the standard, the alloy material cannot meet the requirements for use.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种材料性能优异、制造工艺合理的钨铜功能复合材料及其制备工艺。The purpose of the present invention is to provide a tungsten-copper functional composite material with excellent material performance and reasonable manufacturing process and its preparation process in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种钨铜功能复合材料,其特征在于,该复合材料包括以下组份及含量(重量):钨70~95%,铜5~30%。A tungsten-copper functional composite material is characterized in that the composite material comprises the following components and contents (weight): 70-95% of tungsten and 5-30% of copper.
所述的组份及含量(重量)为:钨80~90%,铜10~20%。The components and content (weight) are: 80-90% of tungsten and 10-20% of copper.
所述的复合材料的物理参数为:密度15.4~17.3克/厘米3,热导率150~210瓦/米·开尔文(w/m·K),热膨胀系数为6.5~8.3ppm/℃。The physical parameters of the composite material are: density 15.4-17.3 g/cm 3 , thermal conductivity 150-210 W/m·Kelvin (w/m·K), thermal expansion coefficient 6.5-8.3 ppm/°C.
一种钨铜功能复合材料的制备工艺,其特征在于,该工艺包括以下步骤:A preparation process of tungsten-copper functional composite material is characterized in that the process comprises the following steps:
(1)粉末处理(1) Powder processing
取费氏平均粒度5~15微米的钨粉,经过850~1050℃干燥氨分解气体保护,保温≤60分钟,另取-200目的电解铜粉,经过300~450℃干燥氨分解气体保护,保温≤60分钟,待用;Take tungsten powder with a Fibonacci average particle size of 5-15 microns, pass through 850-1050°C dry ammonia decomposition gas protection, keep warm for ≤60 minutes, and take -200 mesh electrolytic copper powder, pass through 300-450°C dry ammonia decomposition gas protection, heat preservation ≤60 minutes, standby;
(2)添加诱导剂及混料(2) Add inducer and mixture
采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀;Use fine copper powder with a particle size of -500 mesh as an inducer and mix the above-mentioned tungsten powder evenly on a powder mixer;
(3)压制成型(3) Compression molding
将上述混料置于模具内,并在压机上压制成型,压机的压力为6~8吨/厘米2;Put the above-mentioned mixture in the mold, and press it on a press, the pressure of the press is 6-8 tons/cm2;
(4)预烧结(4) Pre-sintering
将上述压制成型的生坯经1000~1200℃预烧结,并保温30~120分钟;Pre-sintering the above-mentioned compacted green body at 1000-1200°C and keeping it warm for 30-120 minutes;
(5)熔渗(5) Infiltration
将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,在温度1250~1400℃下保温60~180分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料;The electrolytic copper powder prepared in step (1) is placed on the surface of the pre-sintered compact, and kept at a temperature of 1250-1400°C for 60-180 minutes to carry out infiltration treatment. Under protection, the tungsten-copper functional composite material is obtained;
所述的步骤(2)中细铜粉的加入量以及步骤(5)中电解铜粉的溶渗量之和控制在占复合材料的5~30%(重量),所述的步骤(2)中钨粉的加入量控制在占复合材料的70~95%(重量)。The sum of the amount of fine copper powder added in the step (2) and the infiltration amount of the electrolytic copper powder in the step (5) is controlled at 5 to 30% (weight) of the composite material, and the step (2) The added amount of the tungsten powder is controlled to account for 70-95% (weight) of the composite material.
所述的步骤(2)中细铜粉的加入量占复合材料≤5%(重量)。The added amount of the fine copper powder in the step (2) accounts for ≤5% (weight) of the composite material.
所述的粉末混料机的转速在0.6~0.75转/分钟临界转速范围内,混料时间为8~12小时;所述的临界转速: 式中D为粉末混料机混料筒的直径,米。The speed of the powder mixer is within the critical speed range of 0.6 to 0.75 rpm, and the mixing time is 8 to 12 hours; the critical speed: In the formula, D is the diameter of the mixing cylinder of the powder mixer, in meters.
所述的步骤(3)中压制成型的生坯密度达到复合材料产品密度的70~75%。The density of the green compact formed by pressing in the step (3) reaches 70-75% of the density of the composite material product.
本发明钨铜复合材料是以钨、铜二种金属组成的一种二相假合金。钨和铜无论在液态和固态都是不互溶的,均匀混合后各自保持原有的物理和机械性能。诱导剂的加入改善了钨粉生坯的压制性;提高了铜的熔渗效率,促使钨铜材料致密化;保证了铜相细小而均匀。为了避免在混料中发生杂质的混入,本发明采用干式混合。在混合过程中只有钨粉和铜粉二种粉末,不再添加任何其他球料和溶剂。诱导剂铜粉的加入,使得钨铜粉的成型压力增加,生坯密度提高,毛细管孔径减小,有利于钨铜骨架的形成和液相铜的熔渗。由于在本发明中,钨铜毛坯经熔渗铜后可获得稳定的尺寸控制,所以,有效地控制压制毛坯尺寸和重量,就能控制最终产品的密度,产品致密化才有保证。采用熔渗法,可以通过改变低熔点骨架金属的初始密度和颗粒大小,达到在较宽范围内随意控制复合材料成分和性能的目的。这种合金既有钨的低热膨胀系数,又具有铜的高导热性的相结合,可实现与半导体硅、砷、砷化镓、氧化铝、氧化铍的良好匹配封结,可作为CPU、IC、固态微波管等高气密性封装的热沉基片。本发明产品作为微电子技术应用的钨铜复合材料,具有高密度、高导热性、低膨胀系数,满足了使用要求。The tungsten-copper composite material of the present invention is a two-phase pseudo-alloy composed of two metals, tungsten and copper. Tungsten and copper are immiscible in both liquid and solid states, and each maintains its original physical and mechanical properties after being evenly mixed. The addition of the inducer improves the compactness of the tungsten powder green body; improves the infiltration efficiency of copper and promotes the densification of the tungsten-copper material; ensures that the copper phase is fine and uniform. In order to avoid the mixing of impurities in the mixture, the present invention adopts dry mixing. In the mixing process, there are only two kinds of powders, tungsten powder and copper powder, and no other balls and solvents are added. The addition of the inducer copper powder increases the forming pressure of the tungsten copper powder, increases the density of the green body, and reduces the capillary pore size, which is beneficial to the formation of the tungsten copper skeleton and the infiltration of liquid phase copper. Because in the present invention, the tungsten-copper blank can obtain stable size control after being infiltrated with copper, so the density of the final product can be controlled by effectively controlling the size and weight of the pressed blank, and the densification of the product can be guaranteed. Using the infiltration method, the purpose of freely controlling the composition and properties of the composite material in a wide range can be achieved by changing the initial density and particle size of the low melting point skeleton metal. This alloy not only has the low thermal expansion coefficient of tungsten, but also has the high thermal conductivity of copper. It can achieve good matching and sealing with semiconductor silicon, arsenic, gallium arsenide, aluminum oxide, and beryllium oxide. It can be used as CPU, IC , solid-state microwave tubes and other highly airtight packaged heat sink substrates. As a tungsten-copper composite material used in microelectronic technology, the product of the invention has high density, high thermal conductivity and low expansion coefficient, and meets the requirements for use.
具体实施方式Detailed ways
实施例1Example 1
一种钨铜功能复合材料,该复合材料包括以下组份及含量(重量):钨85%,铜15%。A tungsten-copper functional composite material comprises the following components and contents (weight): 85% tungsten and 15% copper.
上述钨铜功能复合材料的制备工艺,该工艺包括以下步骤:The preparation process of the above-mentioned tungsten-copper functional composite material comprises the following steps:
(1)粉末处理(1) Powder processing
钨粉采用符合GB3458-1982钨粉技术条件,牌号GW-1,费氏平均粒度5-15微米的粉末;电解铜粉采用符合GB5246-1985电解铜粉,牌号FTD1,-200目(负号表示200目筛的筛下物)的粉末。The tungsten powder is in accordance with the technical conditions of GB3458-1982 tungsten powder, the grade GW-1, and the Fischer average particle size is 5-15 microns; the electrolytic copper powder is in accordance with the GB5246-1985 electrolytic copper powder, the grade FTD1, -200 mesh 200 mesh sieve) powder.
本发明所用粉末需经以下活化预处理,这是本发明的特点之一。The powder used in the present invention needs to undergo the following activation pretreatment, which is one of the characteristics of the present invention.
钨粉经过1000℃干燥氨分解气体保护,保温30分钟;电解铜粉经过400℃干燥氨分解气体保护,保温30分钟。The tungsten powder is protected by 1000°C dry ammonia decomposition gas and kept warm for 30 minutes; the electrolytic copper powder is protected by 400°C dry ammonia decomposition gas and kept warm for 30 minutes.
(2)添加诱导剂及混料(2) Add inducer and mixture
采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀,其中,钨粉用量占产品总量的85%(重量),细铜粉的加入量为产品总量的4%(重量),粉末混料机的转速在0.70转/分钟临界转速范围内,混料时间为10小时。Adopt particle size to be the fine copper powder of -500 mesh as inducer and above-mentioned tungsten powder and mix evenly on powder mixer, wherein, tungsten powder consumption accounts for 85% (weight) of product total amount, and the add-on of fine copper powder is product total amount 4% (weight), the rotating speed of the powder mixer is within the critical speed range of 0.70 rpm, and the mixing time is 10 hours.
(3)压制成型(3) Compression molding
将上述混料置于模具内,并在压机上压制成型,压机的压力为7.5吨/厘米2,该压制成型的生坯密度达到复合材料产品密度的73%左右。The above-mentioned mixture is placed in a mold, and pressed on a press, the pressure of the press is 7.5 tons/cm 2 , and the density of the press-formed green body reaches about 73% of the density of the composite material product.
(4)预烧结(4) Pre-sintering
将上述压制成型的生坯经1100℃预烧结,并保温60分钟。The above-mentioned pressed green body was pre-sintered at 1100° C. and kept warm for 60 minutes.
(5)熔渗(5) Infiltration
将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,该电解铜粉的用量占产品总量的11%(重量),在温度1350℃下保温120分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料。Place the electrolytic copper powder prepared in step (1) on the surface of the pre-sintered compact, the amount of the electrolytic copper powder accounts for 11% (weight) of the total product, and infiltrate at a temperature of 1350 ° C for 120 minutes treatment, the infiltration treatment process is carried out under the protection of dry ammonia decomposition gas, and the tungsten-copper functional composite material is obtained.
本实施例制得的复合材料的物理参数为:密度16.25克/厘米3,热导率176w/m·K,热膨胀系数为7.2ppm/℃。The physical parameters of the composite material prepared in this example are: density 16.25 g/cm 3 , thermal conductivity 176 w/m·K, thermal expansion coefficient 7.2 ppm/°C.
实施例2Example 2
一种钨铜功能复合材料,该复合材料包括以下组份及含量(重量):钨80%,铜20%。A tungsten-copper functional composite material comprises the following components and contents (weight): 80% tungsten and 20% copper.
上述钨铜功能复合材料的制备工艺,该工艺包括以下步骤:The preparation process of the above-mentioned tungsten-copper functional composite material comprises the following steps:
(1)粉末处理(1) Powder processing
钨粉采用符合GB3458-1982钨粉技术条件,牌号GW-1,费氏平均粒度5-15微米的粉末;电解铜粉采用符合GB5246-1985电解铜粉,牌号FTD1,-200目(负号表示200目筛的筛下物)的粉末。The tungsten powder is in accordance with the technical conditions of GB3458-1982 tungsten powder, the grade GW-1, and the Fischer average particle size is 5-15 microns; the electrolytic copper powder is in accordance with the GB5246-1985 electrolytic copper powder, the grade FTD1, -200 mesh 200 mesh sieve) powder.
本发明所用粉末需经以下活化预处理,这是本发明的特点之一。The powder used in the present invention needs to undergo the following activation pretreatment, which is one of the characteristics of the present invention.
钨粉经过1050℃干燥氨分解气体保护,保温15分钟;电解铜粉经过450℃干燥氨分解气体保护,保温10分钟。The tungsten powder is protected by 1050°C dry ammonia decomposition gas and kept warm for 15 minutes; the electrolytic copper powder is protected by 450°C dry ammonia decomposition gas and kept warm for 10 minutes.
(2)添加诱导剂及混料(2) Add inducer and mixture
采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀,其中,钨粉用量占产品总量的80%(重量),细铜粉的加入量为产品总量的2.5%(重量),粉末混料机的转速在0.75转/分钟临界转速范围内,混料时间为12小时。Adopt granularity to be -500 purpose fine copper powder as inducer and above-mentioned tungsten powder and mix on powder mixer, wherein, tungsten powder consumption accounts for 80% (weight) of product total amount, and the add-on of fine copper powder is product total amount 2.5% (weight), the rotating speed of the powder mixer is within the critical speed range of 0.75 rev/min, and the mixing time is 12 hours.
(3)压制成型(3) Compression molding
将上述混料置于模具内,并在压机上压制成型,压机的压力为7.0吨/厘米2,该压制成型的生坯密度达到复合材料产品密度的75%左右。The above-mentioned mixture is placed in a mold and pressed into a press with a pressure of 7.0 tons/cm 2 , and the density of the pressed form reaches about 75% of the density of the composite product.
(4)预烧结(4) Pre-sintering
将上述压制成型的生坯经1200℃预烧结,并保温120分钟。The above-mentioned pressed green body was pre-sintered at 1200° C. and kept warm for 120 minutes.
(5)熔渗(5) Infiltration
将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,该电解铜粉的用量占产品总量的25%(重量),在温度1400℃下保温180分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料。Place the electrolytic copper powder prepared in step (1) on the surface of the pre-sintered compact, the amount of the electrolytic copper powder accounts for 25% (weight) of the total product, and infiltrate at a temperature of 1400 ° C for 180 minutes treatment, the infiltration treatment process is carried out under the protection of dry ammonia decomposition gas, and the tungsten-copper functional composite material is obtained.
本实施例制得的复合材料的物理参数为:密度15.52克/厘米3,热导率200w/m·K,热膨胀系数为8.02ppm/℃。The physical parameters of the composite material prepared in this example are: density 15.52 g/cm 3 , thermal conductivity 200 w/m·K, thermal expansion coefficient 8.02 ppm/°C.
实施例3Example 3
一种钨铜功能复合材料,该复合材料包括以下组份及含量(重量):钨90%,铜10%。A tungsten-copper functional composite material comprises the following components and contents (weight): 90% tungsten and 10% copper.
上述钨铜功能复合材料的制备工艺,该工艺包括以下步骤:The preparation process of the above-mentioned tungsten-copper functional composite material comprises the following steps:
(1)粉末处理(1) Powder processing
钨粉采用符合GB3458-1982钨粉技术条件,牌号GW-1,费氏平均粒度5-15微米的粉末;电解铜粉采用符合GB5246-1985电解铜粉,牌号FTD1,-200目(负号表示200目筛的筛下物)的粉末。The tungsten powder is in accordance with the technical conditions of GB3458-1982 tungsten powder, the grade GW-1, and the Fischer average particle size is 5-15 microns; the electrolytic copper powder is in accordance with the GB5246-1985 electrolytic copper powder, the grade FTD1, -200 mesh 200 mesh sieve) powder.
本发明所用粉末需经以下活化预处理,这是本发明的特点之一。The powder used in the present invention needs to undergo the following activation pretreatment, which is one of the characteristics of the present invention.
钨粉经过950℃干燥氨分解气体保护,保温60分钟;电解铜粉经过350℃干燥氨分解气体保护,保温60分钟。The tungsten powder is protected by 950°C dry ammonia decomposition gas and kept warm for 60 minutes; the electrolytic copper powder is protected by 350°C dry ammonia decomposition gas and kept warm for 60 minutes.
(2)添加诱导剂及混料(2) Add inducer and mixture
采用粒度为-500目的细铜粉作为诱导剂与上述钨粉在粉末混料机上混合均匀,其中,钨粉用量占产品总量的95%(重量),细铜粉的加入量为产品总量的1%(重量),粉末混料机的转速在0.60临界转速范围内,混料时间为8小时。Adopt particle size to be the fine copper powder of -500 mesh as inducer and above-mentioned tungsten powder and mix on powder mixer, wherein, the consumption of tungsten powder accounts for 95% (weight) of product total amount, and the add-on of fine copper powder is product total amount 1% (weight), the rotating speed of the powder mixer is within the range of 0.60 critical speed, and the mixing time is 8 hours.
(3)压制成型(3) Compression molding
将上述混料置于模具内,并在压机上压制成型,压机的压力为8吨/厘米2,该压制成型的生坯密度达到复合材料产品密度的70%左右。The above mixture is placed in a mold, and pressed on a press with a pressure of 8 tons/cm 2 , and the density of the press-formed green body reaches about 70% of the density of the composite material product.
(4)预烧结(4) Pre-sintering
将上述压制成型的生坯经1000℃预烧结,并保温30分钟。Pre-sinter the pressed green compact at 1000° C. and keep it warm for 30 minutes.
(5)熔渗(5) Infiltration
将步骤(1)中备好的电解铜粉置于经预烧结的成型坯表面,该电解铜粉的用量占产品总量的4%(重量),在温度1250℃下保温60分钟进行熔渗处理,该熔渗处理过程在干燥的氨分解气体保护下进行,得到钨铜功能复合材料。Place the electrolytic copper powder prepared in step (1) on the surface of the pre-sintered compact, the amount of the electrolytic copper powder accounts for 4% (weight) of the total product, and infiltrate at a temperature of 1250 ° C for 60 minutes treatment, the infiltration treatment process is carried out under the protection of dry ammonia decomposition gas, and the tungsten-copper functional composite material is obtained.
本实施例制得的复合材料的物理参数为:密度16.9克/厘米3,热导率152.3w/m·K,热膨胀系数为6.35ppm/℃。The physical parameters of the composite material prepared in this example are: density 16.9 g/cm 3 , thermal conductivity 152.3 w/m·K, thermal expansion coefficient 6.35 ppm/°C.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031508162A CN100355924C (en) | 2003-09-05 | 2003-09-05 | Tungsten copper functional composite material and its preparation technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031508162A CN100355924C (en) | 2003-09-05 | 2003-09-05 | Tungsten copper functional composite material and its preparation technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1590571A true CN1590571A (en) | 2005-03-09 |
CN100355924C CN100355924C (en) | 2007-12-19 |
Family
ID=34597696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031508162A Expired - Fee Related CN100355924C (en) | 2003-09-05 | 2003-09-05 | Tungsten copper functional composite material and its preparation technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100355924C (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100436616C (en) * | 2006-11-03 | 2008-11-26 | 北京科技大学 | Preparation method of near fully densificated high W or Mo content W-Cu or Mo-Cu composite material |
CN101928867A (en) * | 2010-04-09 | 2010-12-29 | 西安理工大学 | Method for preparing tungsten-copper alloy based on loose packing infiltration method |
CN101624662B (en) * | 2009-07-08 | 2011-04-27 | 中南大学 | A method for preparing W-Cu alloy by microwave infiltration |
CN102061431A (en) * | 2010-12-17 | 2011-05-18 | 上海工程技术大学 | Tungsten-copper composite material and preparation method thereof |
CN102925727A (en) * | 2012-11-14 | 2013-02-13 | 武汉理工大学 | Preparation method for high-performance Zn@W-Cu heat composite |
CN103057202A (en) * | 2013-01-05 | 2013-04-24 | 江苏鼎启科技有限公司 | Lamination-structured heat sink material and preparation method |
CN103194629A (en) * | 2013-03-26 | 2013-07-10 | 金堆城钼业股份有限公司 | Method for preparing tungsten molybdenum copper composite material |
CN103409676A (en) * | 2013-07-26 | 2013-11-27 | 河南理工大学 | Method for improving heat conductivity of tungsten copper alloy |
CN104233034A (en) * | 2014-09-11 | 2014-12-24 | 泉州亿兴电力有限公司 | Ablation-resistant tungsten copper alloy and application thereof |
CN104404282A (en) * | 2014-12-02 | 2015-03-11 | 天龙钨钼(天津)有限公司 | Tungsten copper alloy with low tungsten content and preparation method of tungsten copper alloy |
CN105798544A (en) * | 2014-12-31 | 2016-07-27 | 北京有色金属研究总院 | Tungsten-copper composite material and preparation method thereof |
CN106435319A (en) * | 2016-12-15 | 2017-02-22 | 四川恒珲新材料科技有限公司 | Tungsten-copper alloy and production method thereof |
CN106636826A (en) * | 2016-12-07 | 2017-05-10 | 杭州正驰达精密机械有限公司 | Tungsten-gold alloy material and preparation method thereof |
CN106893919A (en) * | 2017-02-23 | 2017-06-27 | 宁波高新区远创科技有限公司 | A kind of preparation method of the lightning protection alloy of resistance to ablation |
CN107052350A (en) * | 2017-06-16 | 2017-08-18 | 大连理工大学 | A kind of method for connecting tungsten material and copper material |
CN109371356A (en) * | 2018-12-14 | 2019-02-22 | 北京九土科技有限公司 | A kind of infiltration copper product seeping process for copper and its preparation and application |
CN110480008A (en) * | 2019-09-03 | 2019-11-22 | 北京工业大学 | It is a kind of to prepare three-dimensional communication tungsten-based composite material and method using laser 3D printing |
CN111996430A (en) * | 2020-07-28 | 2020-11-27 | 深圳市飞亚达精密科技有限公司 | Tungsten-copper alloy free from influence of magnetic field and manufacturing method and application thereof |
CN112975307A (en) * | 2021-05-11 | 2021-06-18 | 陕西斯瑞新材料股份有限公司 | Method for improving brazing strength of tungsten-copper part |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1003329B (en) * | 1984-12-13 | 1989-02-15 | 三菱电机有限公司 | Contact for vacuum circuit breaker |
CN1016185B (en) * | 1990-11-03 | 1992-04-08 | 冶金工业部钢铁研究总院 | Copper-chromium iron vacuum contact material |
CN1054402C (en) * | 1994-12-29 | 2000-07-12 | 周洛三 | Tungsten-copper-nickel-carbon high-temp. wear-resistant alloy |
CA2232517C (en) * | 1997-03-21 | 2004-02-17 | Honda Giken Kogyo Kabushiki Kaisha .) | Functionally gradient material and method for producing the same |
US6114048A (en) * | 1998-09-04 | 2000-09-05 | Brush Wellman, Inc. | Functionally graded metal substrates and process for making same |
-
2003
- 2003-09-05 CN CNB031508162A patent/CN100355924C/en not_active Expired - Fee Related
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100436616C (en) * | 2006-11-03 | 2008-11-26 | 北京科技大学 | Preparation method of near fully densificated high W or Mo content W-Cu or Mo-Cu composite material |
CN101624662B (en) * | 2009-07-08 | 2011-04-27 | 中南大学 | A method for preparing W-Cu alloy by microwave infiltration |
CN101928867B (en) * | 2010-04-09 | 2012-04-04 | 西安理工大学 | Method for preparing tungsten-copper alloy based on loose-packed infiltration method |
CN101928867A (en) * | 2010-04-09 | 2010-12-29 | 西安理工大学 | Method for preparing tungsten-copper alloy based on loose packing infiltration method |
CN102061431B (en) * | 2010-12-17 | 2013-04-03 | 上海工程技术大学 | Tungsten-copper composite material and preparation method thereof |
CN102061431A (en) * | 2010-12-17 | 2011-05-18 | 上海工程技术大学 | Tungsten-copper composite material and preparation method thereof |
CN102925727A (en) * | 2012-11-14 | 2013-02-13 | 武汉理工大学 | Preparation method for high-performance Zn@W-Cu heat composite |
CN102925727B (en) * | 2012-11-14 | 2015-03-04 | 武汉理工大学 | Preparation method of high-performance Zn@W-Cu thermal composite material |
CN103057202A (en) * | 2013-01-05 | 2013-04-24 | 江苏鼎启科技有限公司 | Lamination-structured heat sink material and preparation method |
CN103057202B (en) * | 2013-01-05 | 2015-05-20 | 江苏鼎启科技有限公司 | Lamination-structured heat sink material and preparation method |
CN103194629A (en) * | 2013-03-26 | 2013-07-10 | 金堆城钼业股份有限公司 | Method for preparing tungsten molybdenum copper composite material |
CN103409676A (en) * | 2013-07-26 | 2013-11-27 | 河南理工大学 | Method for improving heat conductivity of tungsten copper alloy |
CN104233034A (en) * | 2014-09-11 | 2014-12-24 | 泉州亿兴电力有限公司 | Ablation-resistant tungsten copper alloy and application thereof |
CN104404282B (en) * | 2014-12-02 | 2017-02-22 | 安泰天龙(天津)钨钼科技有限公司 | Tungsten copper alloy with low tungsten content and preparation method of tungsten copper alloy |
CN104404282A (en) * | 2014-12-02 | 2015-03-11 | 天龙钨钼(天津)有限公司 | Tungsten copper alloy with low tungsten content and preparation method of tungsten copper alloy |
CN105798544A (en) * | 2014-12-31 | 2016-07-27 | 北京有色金属研究总院 | Tungsten-copper composite material and preparation method thereof |
CN105798544B (en) * | 2014-12-31 | 2018-10-02 | 北京有色金属研究总院 | A kind of tungsten-carbon/carbon-copper composite material and preparation method thereof |
CN106636826A (en) * | 2016-12-07 | 2017-05-10 | 杭州正驰达精密机械有限公司 | Tungsten-gold alloy material and preparation method thereof |
CN106636826B (en) * | 2016-12-07 | 2018-03-09 | 杭州正驰达精密机械有限公司 | A kind of tungsten alloy material and preparation method thereof |
CN106435319A (en) * | 2016-12-15 | 2017-02-22 | 四川恒珲新材料科技有限公司 | Tungsten-copper alloy and production method thereof |
CN106435319B (en) * | 2016-12-15 | 2017-12-12 | 四川恒珲新材料科技有限公司 | Tungsten-copper alloy and preparation method thereof |
CN106893919A (en) * | 2017-02-23 | 2017-06-27 | 宁波高新区远创科技有限公司 | A kind of preparation method of the lightning protection alloy of resistance to ablation |
CN107052350A (en) * | 2017-06-16 | 2017-08-18 | 大连理工大学 | A kind of method for connecting tungsten material and copper material |
CN107052350B (en) * | 2017-06-16 | 2019-10-11 | 大连理工大学 | A method of connecting tungsten material and copper material |
CN109371356A (en) * | 2018-12-14 | 2019-02-22 | 北京九土科技有限公司 | A kind of infiltration copper product seeping process for copper and its preparation and application |
CN110480008A (en) * | 2019-09-03 | 2019-11-22 | 北京工业大学 | It is a kind of to prepare three-dimensional communication tungsten-based composite material and method using laser 3D printing |
CN110480008B (en) * | 2019-09-03 | 2021-10-15 | 北京工业大学 | A kind of three-dimensional interconnected tungsten matrix composite material and method using laser 3D printing |
CN111996430A (en) * | 2020-07-28 | 2020-11-27 | 深圳市飞亚达精密科技有限公司 | Tungsten-copper alloy free from influence of magnetic field and manufacturing method and application thereof |
CN111996430B (en) * | 2020-07-28 | 2021-09-28 | 深圳市飞亚达精密科技有限公司 | Tungsten-copper alloy free from influence of magnetic field and manufacturing method and application thereof |
CN112975307A (en) * | 2021-05-11 | 2021-06-18 | 陕西斯瑞新材料股份有限公司 | Method for improving brazing strength of tungsten-copper part |
Also Published As
Publication number | Publication date |
---|---|
CN100355924C (en) | 2007-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1590571A (en) | Tungsten copper functional composite material and its preparation technology | |
CN1261264C (en) | Method for preparing tungsten-copper base composite powder and sintered alloy made up by using said composite powder for making radiator | |
CN1247372C (en) | Method for producing composite components by powder injection molding and composite powder appropriate for use in said method | |
CN106521230B (en) | A kind of graphite flakes/carbon/carbon-copper composite material of vertical orientation heat transmission and preparation method thereof | |
CN105400977B (en) | The preparation method of aluminum-base silicon carbide | |
CN110846597B (en) | A kind of silicon carbide nanowire hybrid reinforced zirconium tungstate/aluminum composite material and preparation method thereof | |
CN109112364B (en) | Silicon carbide reinforced aluminum-based composite material for electronic packaging and preparation method thereof | |
CN1588574A (en) | Negative temperature coefficient thermosensitive resistance material and its producing method | |
CN110079708B (en) | A kind of powder metallurgy preparation method of nano graphite sheet/Al alloy matrix composite material | |
CN1900332A (en) | Method for preparing copper base composite material by chemical precipitation method to obtain composite powder | |
CN108863393A (en) | A kind of preparation method of high thermal conductivity and high-intensitive aluminium nitride ceramics | |
CN114044680A (en) | Preparation method of aluminum nitride powder | |
CN109848406B (en) | Powder metallurgy preparation method of titanium-based composite material and product | |
CN108257880B (en) | Process method for preparing diamond/Si (Al) composite material by vacuum infiltration method | |
CN1132954C (en) | Process for preparing W-Cu alloy with superfine crystal grains | |
CN111479773B (en) | Glass-coated aluminum nitride particles, process for producing the same, and heat-radiating resin composition containing the same | |
CN111801183A (en) | Silver paste and method for producing bonded body | |
JP3588320B2 (en) | Method for producing high volume fraction SiC preform | |
CN101092672A (en) | Compositions of electronic package basal plate or outer shell material of aluminum silicon carbide with ultra low heat expansion, and method for preparing products | |
CN101857797A (en) | Carbon-based composite heat dissipation material and preparation method and application thereof | |
CN1877822A (en) | Process for preparing silumin electronic package materials | |
CN115259889B (en) | Porous silicon carbide ceramic, preparation method and application thereof, and aluminum silicon carbide composite material | |
CN110950665A (en) | Preparation method of aluminum nitride-aluminum composite material | |
CN111069589B (en) | Preparation method of granulation powder for aluminum alloy, aluminum alloy and preparation method of aluminum alloy | |
CN114717441A (en) | Method for preparing diamond/copper composite material with low density and high thermal conductivity at low cost |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071219 Termination date: 20180905 |
|
CF01 | Termination of patent right due to non-payment of annual fee |