JP2003221236A5 - - Google Patents

Download PDF

Info

Publication number
JP2003221236A5
JP2003221236A5 JP2002338430A JP2002338430A JP2003221236A5 JP 2003221236 A5 JP2003221236 A5 JP 2003221236A5 JP 2002338430 A JP2002338430 A JP 2002338430A JP 2002338430 A JP2002338430 A JP 2002338430A JP 2003221236 A5 JP2003221236 A5 JP 2003221236A5
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
containing composite
average particle
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002338430A
Other languages
Japanese (ja)
Other versions
JP2003221236A (en
JP4070585B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2002338430A priority Critical patent/JP4070585B2/en
Priority claimed from JP2002338430A external-priority patent/JP4070585B2/en
Publication of JP2003221236A publication Critical patent/JP2003221236A/en
Priority to US10/717,772 priority patent/US7316862B2/en
Publication of JP2003221236A5 publication Critical patent/JP2003221236A5/ja
Application granted granted Critical
Publication of JP4070585B2 publication Critical patent/JP4070585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】 一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その一次粒子の平均粒子径が0.3〜3μmであり、二次粒子の平均粒子径が5〜20μmであって、BET比表面積が0.3〜2m 2 /gであることを特徴とするリチウム含有複合酸化物。
【請求項2】 前記一般式において、y>0であり、Mが少なくともCoを含む1種以上の元素であることを特徴とする請求項1に記載のリチウム含有複合酸化物。
【請求項3】 前記一般式において、y=1/6であることを特徴とする請求項1または2に記載のリチウム含有複合酸化物。
【請求項4】 前記一般式において、y=1/3であることを特徴とする請求項1または2に記載のリチウム含有複合酸化物。
【請求項5】 NiとMnの量比が1:1であることを特徴とする請求項1〜4のいずれかに記載のリチウム含有複合酸化物。
【請求項6】 リチウム含有複合酸化物を活物質とする正極および負極と非水電解質を備えた非水二次電池であって、上記複合酸化物が、請求項1〜5のいずれかに記載のリチウム含有複合酸化物であることを特徴とする非水二次電池。
【請求項7】 リチウム含有複合酸化物を活物質とする正極および負極と非水電解質を備えた非水二次電池であって、上記複合酸化物として、少なくとも、一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その二次粒子の平均粒子径が5〜20μmであるリチウム含有複合酸化物Aと、前記複合酸化物Aの二次粒子の平均粒子径よりも小さい平均粒子径を有するリチウム含有複合酸化物Bとを混合して用いたことを特徴とする非水二次電池。
【請求項8】 リチウム含有複合酸化物Bの割合が、正極活物質全体の10〜40重量%であることを特徴とする請求項7に記載の非水二次電池。
【請求項9】 リチウム含有複合酸化物Bの平均粒子径が、リチウム含有複合酸化物Aの二次粒子の平均粒子径の3/5以下であることを特徴とする請求項7または8に記載の非水二次電池。
【請求項10】 リチウム含有複合酸化物Bが、一次粒子が凝集して二次粒子を形成した複合酸化物であることを特徴とする請求項7〜9のいずれかに記載の非水二次電池。
【請求項11】 リチウム含有複合酸化物Bが、リチウム含有複合酸化物Aと同一組成であるか、または一般式Li1+a+b1-a2[ただし、0≦a≦0.05、−0.05≦a+b≦0.05であって、RはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択され、少なくともCoを含む1種以上の元素]で表されることを特徴とする請求項7〜10のいずれかに記載の非水二次電池。
【請求項12】 前記リチウム含有複合酸化物Aを表す一般式において、y>0であり、Mが少なくともCoを含む1種以上の元素であることを特徴とする請求項7〜11のいずれかに記載の非水二次電池。
【請求項13】 前記リチウム含有複合酸化物Aを表す一般式において、y=1/6であることを特徴とする請求項7〜12いずれかに記載の非水二次電池。
【請求項14】 前記リチウム含有複合酸化物Aを表す一般式において、y=1/3であることを特徴とする請求項7〜12のいずれかに記載の非水二次電池。
【請求項15】 前記リチウム含有複合酸化物AのBET比表面積が0.3〜2m 2 /gであることを特徴とする請求項7〜14のいずれかに記載の非水二次電池。
【請求項16】 前記リチウム含有複合酸化物AのNiとMnの量比が1:1であることを特徴とする請求項7〜15のいずれかに記載の非水二次電池。
[Claims]
    1. The general formula Li1 + x + αNi(1-x-y + δ) / 2Mn(1-xy-δ) / 2MyO2[However, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, and −0.1 ≦ δ ≦ 0.1.Because, M is represented by one or more elements selected from the group consisting of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn], and primary particles aggregate to form secondary particles Composite oxide, the primary particles have an average particle size of 0.3 to 3 μm, and the secondary particles have an average particle size of 5 to 20 μm.And the BET specific surface area is 0.3-2 m 2 / GA lithium-containing composite oxide, characterized in that
    2. The lithium-containing composite oxide according to claim 1, wherein, in the general formula, y> 0, and M is one or more elements including at least Co.
    [Claim 3] In the above general formula, y = 1/6The lithium-containing composite oxide according to claim 1 or 2, wherein:
    [Claim 4] The lithium-containing composite oxide according to claim 1, wherein y = 1/3 in the general formula.
    [Claim 5] The lithium-containing composite oxide according to claim 1, wherein the amount ratio of Ni and Mn is 1: 1.
    [Claim 6] A non-aqueous secondary battery comprising a positive electrode and a negative electrode using a lithium-containing composite oxide as an active material and a non-aqueous electrolyte, wherein the composite oxide is the lithium-containing composite oxidation according to any one of claims 1 to 5. It is characterized by being a thingNon-aqueous secondary battery.
    7. A non-aqueous secondary battery comprising a positive electrode and a negative electrode using a lithium-containing composite oxide as an active material and a non-aqueous electrolyte, wherein the composite oxide includes at least a general formula Li1 + x + αNi(1-x-y + δ) / 2Mn(1-xy-δ) / 2MyO2[However, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, and −0.1 ≦ δ ≦ 0.1.Because, M is represented by one or more elements selected from the group consisting of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn], and primary particles aggregate to form secondary particles A lithium-containing composite oxide A whose secondary particles have an average particle size of 5 to 20 μm, and an average particle size smaller than the average particle size of the secondary particles of the composite oxide A. A non-aqueous secondary battery comprising a mixture of lithium-containing composite oxide B.
    8. The non-aqueous secondary battery according to claim 7, wherein the proportion of the lithium-containing composite oxide B is 10 to 40% by weight of the whole positive electrode active material.
    9. The average particle size of the lithium-containing composite oxide B is 3/5 or less of the average particle size of the secondary particles of the lithium-containing composite oxide A. Non-aqueous secondary battery.
    10. The non-aqueous secondary oxide according to claim 7, wherein the lithium-containing composite oxide B is a composite oxide in which primary particles are aggregated to form secondary particles. battery.
    11. The lithium-containing composite oxide B has the same composition as that of the lithium-containing composite oxide A or has a general formula of Li1 + a + bR1-aO2[However, 0 ≦ a ≦ 0.05, −0.05 ≦ a + b ≦ 0.05, and R is selected from the group consisting of Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn. Selected, Including at least CoThe nonaqueous secondary battery according to claim 7, wherein the nonaqueous secondary battery is represented by one or more elements.
    [Claim 12] 12. The non-aqueous solution according to claim 7, wherein in the general formula representing the lithium-containing composite oxide A, y> 0 and M is one or more elements including at least Co. Secondary battery.
    13. Claims The non-aqueous secondary battery according to claim 7, wherein y = 1/6 in the general formula representing the lithium-containing composite oxide A.
    14. The method of claim 14 The non-aqueous secondary battery according to claim 7, wherein y = 1/3 in the general formula representing the lithium-containing composite oxide A.
    15. Claims The lithium-containing composite oxide A has a BET specific surface area of 0.3 to 2 m. 2 The nonaqueous secondary battery according to claim 7, wherein the nonaqueous secondary battery is / g.
    16. Claims The non-aqueous secondary battery according to claim 7, wherein the lithium-containing composite oxide A has a Ni / Mn ratio of 1: 1.

【0009】
【課題を解決するための手段】
本発明のリチウム含有複合酸化物は、一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その一次粒子の平均粒子径が0.3〜3μmであり、二次粒子の平均粒子径が5〜20μmであって、BET比表面積が0.3〜2m 2 /gであることを特徴とする。
[0009]
[Means for Solving the Problems]
Lithium-containing composite oxide of the present invention have the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 , and M is Mg, Ti, Cr, Fe, 1 or more elements selected from the group consisting of Co, Cu, Zn, Al, Ge, and Sn], and a composite oxide in which primary particles aggregate to form secondary particles. The average particle diameter is 0.3 to 3 μm, the average particle diameter of secondary particles is 5 to 20 μm , and the BET specific surface area is 0.3 to 2 m 2 / g .

さらに本発明の非水二次電池は、一般式Li 1+x+α Ni (1-x-y+δ)/2 Mn (1-x-y-δ)/2 y 2 [ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その二次粒子の平均粒子径が5〜20μmであるリチウム含有複合酸化物をAとしたときに、正極活物質として、少なくとも、リチウム含有複合酸化物Aと、その平均粒子径が前記複合酸化物Aの二次粒子の平均粒子径よりも小さいリチウム含有複合酸化物Bとを混合して用いることを好ましい態様とするものである。 Further non-aqueous secondary battery of the present invention have the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1, and M is Mg, Ti, Cr, Fe 1 or more elements selected from the group consisting of Co, Cu, Zn, Al, Ge, and Sn], and the secondary particles are aggregated to form secondary particles. When the lithium-containing composite oxide having an average particle diameter of 5 to 20 μm is A, the positive electrode active material is at least lithium-containing composite oxide A and the average particle diameter of the composite oxide A It is preferable to use a mixture of lithium-containing composite oxide B smaller than the average particle size of the secondary particles.

【0012】
【発明の実施の形態】
以下、発明の実施の形態により、本発明をより具体的に説明する。本発明のリチウム含有複合酸化物は、一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表され、一次粒子が凝集して二次粒子を形成した複合酸化物であり、その一次粒子の平均粒子径が0.3〜3μmであり、二次粒子の平均粒子径が5〜20μmであって、BET比表面積が0.3〜2m 2 /gであることを特徴とする。
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments of the invention. Lithium-containing composite oxide of the present invention have the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 , and M is Mg, Ti, Cr, Fe, 1 or more elements selected from the group consisting of Co, Cu, Zn, Al, Ge, and Sn], and a composite oxide in which primary particles aggregate to form secondary particles. The average particle diameter is 0.3 to 3 μm, the average particle diameter of secondary particles is 5 to 20 μm , and the BET specific surface area is 0.3 to 2 m 2 / g .

本発明において、上記のような限られた組成範囲のみが選択されるのは以下の理由による。すなわち、NiおよびMnを有する層状のリチウム含有複合酸化物においては、NiとMnの量比が1:1となる一般式LiNi1/2Mn1/22で表される組成を基本として、NiおよびMnがそれぞれx/2ずつLiで置換され、NiとMnの量比が1/2からそれぞれδ/2および−δ/2だけずれ、Liの量比がαだけ幅を有し、かつ、NiおよびMnが、それぞれy/2ずつ元素M(ただしMはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snより選択される1種以上の元素)で置換された組成、すなわち、一般Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]で表される組成範囲において、その結晶構造が安定化され、4V付近の電位領域での充放電の可逆性や充放電サイクルに対する耐久性に優れた複合酸化物が得られることによる。 In the present invention, only the limited composition range as described above is selected for the following reason. That is, in the layered lithium-containing composite oxide having Ni and Mn, based on the composition represented by the general formula LiNi 1/2 Mn 1/2 O 2 in which the quantity ratio of Ni and Mn is 1: 1, Ni and Mn are each replaced by x / 2 with Li, the quantity ratio of Ni and Mn is shifted from ½ by δ / 2 and −δ / 2 respectively, the quantity ratio of Li has a width by α, and , Ni, and Mn are each replaced by y / 2 elements M (where M is one or more elements selected from Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, Sn) composition, i.e., the general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, - 0.05 ≦ x + a α ≦ 0.05,0 ≦ y ≦ 0.4, a -0.1 ≦ δ ≦ 0.1, M is Mg, Ti, Cr, Fe, Co In the composition range represented by one or more elements selected from the group consisting of Cu, Zn, Al, Ge, and Sn], the crystal structure is stabilized, and the reversibility of charge and discharge in a potential region near 4 V This is because a composite oxide having excellent durability against charge and discharge cycles is obtained.

上記一般式Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2y2[ただし、0≦x≦0.05、−0.05≦x+α≦0.05、0≦y≦0.4であり、−0.1≦δ≦0.1であって、MはMg、Ti、Cr、Fe、Co、Cu、Zn、Al、Ge、Snからなる群から選択された1種以上の元素]において、NiとMnの量比は基本的には1:1であることを必要とし、中央値からのずれ(δ/2)は、−0.1≦δ≦0.1と小さい値しか許容されない。ただし、0.2<y≦0.4の組成範囲では、結晶構造の安定性がより高くなり、単一相が形成されやすくなるため、上記ずれが大きくなっても目的とする複合酸化物を得ることができる。このため、上記一般式において、δのとり得る範囲は、基本的には−0.1≦δ≦0.1と狭いのであるが、0.2<y≦0.4の組成範囲では、δの値を−0.24≦δ≦0.24の範囲まで拡張してもよい。 The general formula Li 1 + x + α Ni ( 1-xy + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [ however, 0 ≦ x ≦ 0.05, -0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1 , and M is Mg, Ti, Cr, Fe, Co, Cu, Zn, Al, Ge , One or more elements selected from the group consisting of Sn], the amount ratio of Ni and Mn basically needs to be 1: 1, and the deviation from the median (δ / 2) is Only a small value of −0.1 ≦ δ ≦ 0.1 is allowed. However, in the composition range of 0.2 <y ≦ 0.4, the crystal structure becomes more stable and a single phase is easily formed. Can be obtained. Therefore, in the above general formula, the possible range of δ is basically as narrow as −0.1 ≦ δ ≦ 0.1, but in the composition range of 0.2 <y ≦ 0.4, δ May be extended to a range of −0.24 ≦ δ ≦ 0.24.

また、上記組成を有する複合酸化物の形態として、一次粒子が凝集して二次粒子を形成したもので、二次粒子の平均粒子径が5〜20μmである複合酸化物が選択される。これは、一次粒子が凝集して二次粒子を形成したものにおいて、充放電における反応性や複合酸化物の充填性を高めることができるからであり、一次粒子の平均粒子径を0.3〜3μmとすることにより、充放電における反応性を高めて電池の負荷特性を向上させることができ、二次粒子の平均粒子径を5〜20μmとすることにより、複合酸化物の充填性を高めて電極を高容量化することができる。 Moreover, as a form of the composite oxide having the above composition, a composite oxide in which primary particles are aggregated to form secondary particles, and the average particle diameter of the secondary particles is 5 to 20 μm is selected. This is because primary particles agglomerate to form secondary particles, so that the reactivity in charge and discharge and the filling property of the composite oxide can be improved. By setting it to 3 μm, it is possible to improve the load characteristics of the battery by increasing the charge / discharge reactivity, and by increasing the average particle size of the secondary particles to 5 to 20 μm, the filling property of the composite oxide is increased. The capacity of the electrode can be increased.

上述した粒子形態のリチウム含有複合酸化物は、例えば、NiおよびMn、またはNi、Mnおよび元素Mの塩を溶解した水溶液アルカリ水溶液中投入し、NiおよびMnまたはNi、Mnおよび元素Mの共沈水酸化物を合成し、これをリチウム化合物とともに焼成し、さらに必要に応じて合成された複合酸化物を機械的に粉砕およびふるい分けすることにより得ることができる。焼成は、空気中あるいは酸素ガス中など酸素を10体積%以上含む雰囲気中で行うことが望ましく、焼成温度はおよそ700℃〜1100℃で、焼成時間は1〜24時間とするのが一般的である。また、上記焼成処理の前に、焼成温度よりも低い温度(およそ250〜850℃)で0.5〜30時間程度予備加熱を行い、さらに上記焼成処理を行うようにすれば、複合酸化物の均質化が促進されるので好ましい。ここで、複合酸化物の一次粒子径は、予備加熱あるいは焼成の温度およびその処理時間を調整することにより制御することができ、二次粒子径は、機械的な粉砕の程度およびふるい分けにより制御することができる。 In the lithium-containing composite oxide in the form of particles described above, for example, an aqueous solution in which Ni and Mn, or a salt of Ni, Mn, and element M are dissolved is put into an alkaline aqueous solution, and Ni and Mn or Ni, Mn, and element M are mixed. It can be obtained by synthesizing a coprecipitated hydroxide, calcining it with a lithium compound, and mechanically grinding and sieving the synthesized composite oxide as necessary. Firing is preferably performed in an atmosphere containing 10% by volume or more of oxygen, such as in air or oxygen gas. The firing temperature is approximately 700 ° C. to 1100 ° C., and the firing time is generally 1 to 24 hours. is there. Further, prior to the firing treatment, preheating is performed at a temperature lower than the firing temperature (approximately 250 to 850 ° C.) for about 0.5 to 30 hours, and further the firing treatment is performed. This is preferable because homogenization is promoted. Here, the primary particle size of the composite oxide can be controlled by adjusting the preheating or firing temperature and the treatment time, and the secondary particle size is controlled by the degree of mechanical grinding and sieving. be able to.

なお、上記リチウム含有複合酸化物は、単独で正極活物質として用いることができるが、この場合は、その一次粒子の平均粒子径が0.3〜3μmである複合酸化物が選択される。また、二次粒子の平均粒子径が5〜20μmである前記リチウム含有複合酸化物(以下、リチウム含有複合酸化物Aとする)と、これよりも平均粒子径の小さいリチウム含有複合酸化物(以下、リチウム含有複合酸化物Bとする)とを混合して用いることにより、活物質の充填性が一層向上し、電極の容量を高めることができる。これは、平均粒子径の小さいリチウム含有複合酸化物Bが、リチウム含有複合酸化物Aの粒子間の空隙に入りこむことにより、正極合剤の密度が大きくなるからである。 In addition, although the said lithium containing complex oxide can be used independently as a positive electrode active material , the complex oxide whose average particle diameter of the primary particle is 0.3-3 micrometers is selected in this case. Further, the lithium-containing composite oxide average particle diameter of the secondary particles is 5 to 20 [mu] m (hereinafter, the lithium-containing complex oxide A) and which average less lithium-containing composite oxide particle diameter (hereinafter than And the lithium-containing composite oxide B) are used in combination, whereby the fillability of the active material can be further improved and the capacity of the electrode can be increased. This is because the density of the positive electrode mixture is increased when the lithium-containing composite oxide B having a small average particle diameter enters the voids between the particles of the lithium-containing composite oxide A.

(実施例3〜6および比較例1〜3)
焼成温度および焼成時間を変えて複合酸化物の合成を行い、合成した複合酸化物を粉砕しさらにふるい分けすることにより、表1に示すリチウム含有複合酸化物を得た。なお、実施例5では、共沈水酸化物としてNi、MnおよびCoを5:5:2の割合(y=1/6)で含有する水酸化物を用い、実施例6では、Ni、MnおよびCoを1:1:1の割合(y=1/3)で含有する水酸化物を用いた。
(Examples 3-6 and Comparative Examples 1-3)
The composite oxide was synthesized by changing the firing temperature and firing time, and the composite oxide thus synthesized was pulverized and further sieved to obtain lithium-containing composite oxides shown in Table 1. In Example 5, a hydroxide containing Ni, Mn and Co in a ratio of 5: 5: 2 (y = 1/6 ) was used as the coprecipitated hydroxide. In Example 6, Ni, Mn and Co A hydroxide containing Co at a ratio of 1: 1: 1 (y = 1/3) was used.

JP2002338430A 2001-11-22 2002-11-21 Lithium-containing composite oxide and non-aqueous secondary battery using the same Expired - Lifetime JP4070585B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002338430A JP4070585B2 (en) 2001-11-22 2002-11-21 Lithium-containing composite oxide and non-aqueous secondary battery using the same
US10/717,772 US7316862B2 (en) 2002-11-21 2003-11-20 Active material for electrode and non-aqueous secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-357729 2001-11-22
JP2001357729 2001-11-22
JP2002338430A JP4070585B2 (en) 2001-11-22 2002-11-21 Lithium-containing composite oxide and non-aqueous secondary battery using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007312520A Division JP4813450B2 (en) 2001-11-22 2007-12-03 Lithium-containing composite oxide and non-aqueous secondary battery using the same

Publications (3)

Publication Number Publication Date
JP2003221236A JP2003221236A (en) 2003-08-05
JP2003221236A5 true JP2003221236A5 (en) 2006-03-16
JP4070585B2 JP4070585B2 (en) 2008-04-02

Family

ID=27759215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338430A Expired - Lifetime JP4070585B2 (en) 2001-11-22 2002-11-21 Lithium-containing composite oxide and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4070585B2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080337B2 (en) 2001-03-22 2008-04-23 松下電器産業株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP4510331B2 (en) 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP3827545B2 (en) 2001-09-13 2006-09-27 松下電器産業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4655453B2 (en) * 2002-03-28 2011-03-23 三菱化学株式会社 Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4554911B2 (en) 2003-11-07 2010-09-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7468224B2 (en) * 2004-03-16 2008-12-23 Toyota Motor Engineering & Manufacturing North America, Inc. Battery having improved positive electrode and method of manufacturing the same
JP4172423B2 (en) * 2004-05-26 2008-10-29 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
JP5095098B2 (en) * 2004-11-19 2012-12-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4639775B2 (en) * 2004-11-26 2011-02-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4859373B2 (en) * 2004-11-30 2012-01-25 パナソニック株式会社 Non-aqueous electrolyte secondary battery
KR100796953B1 (en) * 2005-01-20 2008-01-22 주식회사 에코프로 A Cathode Material for Secondary Batteries, A Process for preparing the Cathode Material and Lithium Secondary Battery containing the same
KR100660759B1 (en) * 2005-03-11 2006-12-22 제일모직주식회사 A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
KR100734225B1 (en) 2005-12-09 2007-07-02 제일모직주식회사 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
KR20080108222A (en) 2006-04-07 2008-12-12 미쓰비시 가가꾸 가부시키가이샤 Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP4978785B2 (en) * 2007-07-17 2012-07-18 住友金属鉱山株式会社 Method for producing nickel powder
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
KR101363229B1 (en) 2009-03-31 2014-02-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium ion battery
WO2010116839A1 (en) 2009-04-10 2010-10-14 日立マクセル株式会社 Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
WO2011077932A1 (en) 2009-12-22 2011-06-30 Jx日鉱日石金属株式会社 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
EP2533333B1 (en) 2010-02-05 2018-09-12 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102792496B (en) 2010-02-05 2016-03-23 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
CN102782909B (en) 2010-03-04 2015-01-14 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
EP2544272B1 (en) 2010-03-04 2017-07-19 JX Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108389A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
EP2544280B1 (en) 2010-03-05 2018-06-06 JX Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
EP2648251B1 (en) 2010-12-03 2018-04-25 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2012098724A1 (en) 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
KR101373963B1 (en) 2011-03-29 2014-03-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for production of positive electrode active material for a lithium-ion battery and positive electrode active material for a lithium-ion battery
JP5737513B2 (en) * 2011-07-07 2015-06-17 戸田工業株式会社 Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN103460455B (en) 2011-03-31 2016-03-16 户田工业株式会社 Mn-ni compound oxide particle powder and manufacture method, positive electrode active material for nonaqueous electrolyte secondary battery particle powder and manufacture method thereof and rechargeable nonaqueous electrolytic battery
WO2012133434A1 (en) 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
US9508992B2 (en) 2011-09-28 2016-11-29 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
WO2015059779A1 (en) * 2013-10-23 2015-04-30 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP6341313B2 (en) 2016-03-31 2018-06-13 日亜化学工業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US10115967B2 (en) 2016-03-31 2018-10-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
JP6250853B2 (en) 2016-03-31 2017-12-20 本田技研工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery
JP6341312B2 (en) 2016-03-31 2018-06-13 日亜化学工業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US10224547B2 (en) 2016-03-31 2019-03-05 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
EP3442053A4 (en) 2016-04-04 2019-10-16 GS Yuasa International Ltd. Power storage element
EP3780176A4 (en) 2018-03-30 2021-05-26 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2003221236A5 (en)
JP5137414B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP5798681B2 (en) Positive electrode material having a size-dependent composition
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
JP2010532075A (en) High density lithium cobalt oxide for secondary batteries
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2014107269A (en) Cathode active material, method for preparing the same, and lithium secondary battery including the same
JPWO2012073549A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6479632B2 (en) Method for producing nickel lithium metal composite oxide
JP2004220952A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP2008115075A (en) Composite oxide containing lithium and nonaqueous secondary battery using the same
JP2013180917A (en) Nickel-containing hydroxide and method for producing the same
JP4274801B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4270645B2 (en) Nonaqueous electrolyte secondary battery positive electrode material and nonaqueous electrolyte secondary battery using the same
JP2003229128A5 (en)
JP2003229128A (en) Non-aqueous secondary battery and its manufacturing method
JPH10188982A (en) Lithium secondary battery
JP5148781B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JPH1179752A (en) Nickel oxide particles and their production
JP4726423B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2012128289A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery
JP5539946B2 (en) Method for producing spinel-type lithium-manganese composite oxide
JP2011187419A (en) Positive electrode for lithium ion battery, and lithium ion battery