JP2003214956A - Temperature measuring method and device, semiconductor device manufacturing method, and memory medium - Google Patents

Temperature measuring method and device, semiconductor device manufacturing method, and memory medium

Info

Publication number
JP2003214956A
JP2003214956A JP2002008928A JP2002008928A JP2003214956A JP 2003214956 A JP2003214956 A JP 2003214956A JP 2002008928 A JP2002008928 A JP 2002008928A JP 2002008928 A JP2002008928 A JP 2002008928A JP 2003214956 A JP2003214956 A JP 2003214956A
Authority
JP
Japan
Prior art keywords
light
temperature
measurement
measuring
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002008928A
Other languages
Japanese (ja)
Inventor
Hiromi Suzuki
宏美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002008928A priority Critical patent/JP2003214956A/en
Publication of JP2003214956A publication Critical patent/JP2003214956A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature measuring method and device, a semiconductor device manufacturing method, and a memory medium, capable of accurately measuring the temperature of an object in the presence of light emitted by a surrounding body. <P>SOLUTION: The light emitted by an object 11 to be measured and the light reflected therefrom are measured at a plurality of wavelengths, and the emissivity of the object 11 is calculated by using the measurement of the reflected light. An equation is constructed, based on the values measured at the plurality of wavelengths, on the assumption that the emissivity of a surrounding body 12 is not dependent on wavelengths or that the value of its emissivity is known if dependent on the wavelengths. The temperatures of the object 11 to be measured and of the surrounding object 12 are determined by obtaining a solution satisfying the equation in the highest degree. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物体の放射光を測
定することで前記物体の温度を測定する温度測定方法、
温度測定装置、半導体装置の製造方法、及び記憶媒体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring method for measuring the temperature of an object by measuring the emitted light of the object,
The present invention relates to a temperature measuring device, a semiconductor device manufacturing method, and a storage medium.

【0002】[0002]

【従来の技術】従来の放射温度計には、単一波長の放射
光を測定する単色温度計と、二波長の放射光を測定する
二色温度計がある。単色温度計は、測定装置に放射率を
入力し、その放射率をプランクの放射則に掛けて温度を
算出する。二色温度計は、測定する二波長間で測定物体
の放射率が等しいと仮定し、それら二波長間の測定値の
比から温度を測定する。
2. Description of the Related Art Conventional radiation thermometers include a monochromatic thermometer for measuring radiation of a single wavelength and a bicolor thermometer for measuring radiation of two wavelengths. The monochromatic thermometer inputs the emissivity into a measuring device and multiplies the emissivity by Planck's radiation law to calculate the temperature. The two-color thermometer assumes that the emissivity of the measuring object is equal between the two wavelengths to be measured, and measures the temperature from the ratio of the measured values between those two wavelengths.

【0003】また、測定物体の温度を、周囲物体の放射
光を考慮して測定できる二色放射温度計の測定法も検討
されている。ここでは、測定物体の放射率が波長によら
ず一定であり、周囲物体の温度が既知であり、かつ周囲
物体は放射率が1の黒体である場合についてのみ検討さ
れている。(参考文献1:日本機会学会論文集、64巻、6
24号、論文No.97-1271)
Further, a measuring method of a two-color radiation thermometer, which is capable of measuring the temperature of a measuring object in consideration of radiated light of surrounding objects, is also under study. Here, only the case where the emissivity of the measurement object is constant regardless of the wavelength, the temperature of the surrounding object is known, and the surrounding object is a black body having an emissivity of 1 is considered. (Reference 1: Proceedings of the Japan Opportunity Society, 64, 6
No. 24, Paper No. 97-1271)

【0004】[0004]

【発明が解決しようとする課題】たとえば、半導体プロ
セス装置内などでウエハの温度を測ろうとすると、プロ
セス装置外壁からの放射光がウエハ表面で反射し、ウエ
ハ自身からの放射光とその他の放射光が重なり測定装置
に入射する。このように、測定物体以外の周囲からの放
射光が測定装置に入射した場合、単色温度計、二色温度
計とも、測定物体からの放射光か周囲からの放射光かを
区別できず、すべて測定物体からの放射光とみなすた
め、温度測定に誤差を生じる。
For example, when the temperature of a wafer is measured in a semiconductor processing apparatus or the like, the emitted light from the outer wall of the process apparatus is reflected on the wafer surface, and the emitted light from the wafer itself and other emitted light are reflected. Overlap and impinge on the measuring device. In this way, when the radiated light from the surroundings other than the measuring object is incident on the measuring device, neither the monochromatic thermometer nor the two-color thermometer can distinguish between the radiated light from the measured object and the radiated light from the surroundings. Since it is regarded as the emitted light from the measurement object, an error occurs in the temperature measurement.

【0005】また、上記参考文献1の二色放射温度計の
測定法では、周囲物体が、放射率が1である黒体の場合
のみ成り立つ。しかし、半導体プロセス装置などの外壁
は黒体では無いため、この手法を用いることができな
い。さらに、測定物体も測定波長間で放射率が等しいと
いう二色温度計の仮定を用いているため、放射率が二波
長間で異なる測定物体の場合は適応できない。
Further, the measurement method of the two-color radiation thermometer of the above-mentioned reference 1 is valid only when the surrounding object is a black body having an emissivity of 1. However, this method cannot be used because the outer wall of a semiconductor process device or the like is not a black body. Furthermore, since the measurement object also uses the assumption of the two-color thermometer that the emissivity is the same between the measurement wavelengths, it cannot be applied to a measurement object having different emissivity between the two wavelengths.

【0006】また、単色温度計の場合は、ユーザは測定
物体の放射率を調査あるいは何らかの方法で測定し、既
知の定数として測定装置に入力する必要がある。二色温
度計の場合は、二波長間で放射率が等しい測定物体しか
温度を測定することができない。また、温度測定中に放
射率が変化する場合、単色温度計では、放射率をリアル
タイムで測定し、温度計にフィードバックする必要があ
る。二色温度計では、放射率の変化が二波長間で等しく
ない場合、大きな温度測定誤差を生じる。
In the case of a monochromatic thermometer, the user needs to investigate or measure the emissivity of the measuring object by some method and input it into the measuring device as a known constant. In the case of the two-color thermometer, the temperature can be measured only by the measuring object having the same emissivity between the two wavelengths. When the emissivity changes during temperature measurement, the monochromatic thermometer needs to measure the emissivity in real time and feed it back to the thermometer. In a two-color thermometer, if the change in emissivity is not equal between the two wavelengths, a large temperature measurement error will occur.

【0007】本発明の目的は、周囲物体からの放射光が
あっても、測定物体の温度を正確に測定できる温度測定
方法、温度測定装置、半導体装置の製造方法、及び記憶
媒体を提供することにある。
An object of the present invention is to provide a temperature measuring method, a temperature measuring device, a semiconductor device manufacturing method, and a storage medium, which can accurately measure the temperature of a measuring object even if there is radiation from a surrounding object. It is in.

【0008】[0008]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明の温度測定方法、温度測定装
置、半導体装置の製造方法、及び記憶媒体は以下の如く
構成されている。
In order to solve the above problems and achieve the object, a temperature measuring method, a temperature measuring device, a semiconductor device manufacturing method, and a storage medium of the present invention are configured as follows.

【0009】本発明の温度測定方法は、測定物体の放射
光と反射光を複数種類の波長で測定し、前記反射光の測
定結果から前記測定物体の放射率を算出し、周囲物体の
放射率が波長に依存しないと仮定あるいは依存する場合
は既知の値であると仮定し、各測定波長による測定結果
から方程式を構築し、この方程式を最も満足する解を求
めることで、前記測定物体の温度と前記周囲物体の温度
を測定する。
In the temperature measuring method of the present invention, the emitted light and the reflected light of the measurement object are measured at a plurality of wavelengths, the emissivity of the measurement object is calculated from the measurement result of the reflected light, and the emissivity of the surrounding object is calculated. Is assumed to be wavelength-independent, or if it depends, it is assumed to be a known value, an equation is constructed from the measurement results at each measurement wavelength, and the solution that best satisfies this equation is obtained to determine the temperature of the measurement object. And measuring the temperature of the surrounding object.

【0010】本発明の温度測定装置は、上記温度測定方
法によるアルゴリズムを搭載し、前記測定物体を照明す
る光源と、この光源からの照明光を前記測定物体まで伝
達する第1の光伝達手段と、前記測定物体の放射光及び
反射光における所望の波長を分光し複数の受光素子に導
く分光手段と、前記測定物体の放射光及び反射光を前記
分光手段まで伝達する第2の光伝達手段と、前記受光素
子からの出力を増幅する受光手段と、を具備している。
A temperature measuring apparatus of the present invention is equipped with an algorithm according to the above-mentioned temperature measuring method, and comprises a light source for illuminating the measuring object, and a first light transmitting means for transmitting illumination light from the light source to the measuring object. A spectroscopic unit that disperses a desired wavelength in the emitted light and the reflected light of the measuring object and guides it to a plurality of light receiving elements; and a second light transmitting unit that transmits the emitted light and the reflected light of the measuring object to the spectroscopic unit. , A light receiving means for amplifying an output from the light receiving element.

【0011】本発明の半導体装置の製造方法は、上記温
度測定方法を用いて半導体装置を製造する。
According to the method of manufacturing a semiconductor device of the present invention, a semiconductor device is manufactured by using the above temperature measuring method.

【0012】本発明の記憶媒体は、コンピュータにより
読み取り可能であり、測定物体の放射光と反射光を複数
種類の波長で測定し、前記反射光の測定結果から前記測
定物体の放射率を算出し、周囲物体の放射率が波長に依
存しないと仮定あるいは依存する場合は既知の値である
と仮定し、各測定波長による測定結果から方程式を構築
し、この方程式を最も満足する解を求めることで、前記
測定物体の温度と前記周囲物体の温度を測定するプログ
ラムを記憶している。
The storage medium of the present invention can be read by a computer, and the emitted light and the reflected light of the measurement object are measured at a plurality of wavelengths, and the emissivity of the measurement object is calculated from the measurement result of the reflected light. , It is assumed that the emissivity of the surrounding object does not depend on the wavelength, or if it depends, it is assumed that it is a known value, and an equation is constructed from the measurement results at each measurement wavelength, and the solution that best satisfies this equation is obtained. , A program for measuring the temperature of the measuring object and the temperature of the surrounding object is stored.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の実施の形態に係る温度測
定モデルを示す図である。本実施の形態では、図1に示
す温度測定モデルを基に、測定物体11の放射光と測定
物体11の表面で反射された周囲物体12の放射光と
が、光学伝達装置3を介して測定光学系に入射する場合
を考える。
FIG. 1 is a diagram showing a temperature measurement model according to an embodiment of the present invention. In the present embodiment, based on the temperature measurement model shown in FIG. 1, the emitted light of the measurement object 11 and the emitted light of the surrounding object 12 reflected by the surface of the measurement object 11 are measured via the optical transmission device 3. Consider the case of incidence on an optical system.

【0015】ここで、測定物体の放射率εs(λ,Ts)
は波長毎に異なるが、別途述べる手段で実測できるもの
とする。周囲物体の放射率εoが測定する波長毎に等し
いと仮定すると、未知数は、測定物体の温度Ts、周囲
物体の温度To、周囲物体の放射率εoの3変数になる。
したがって、異なる3波長で温度測定を行い、3つの方
程式を立て、これら方程式の連立方程式から、Ts、T
o,εoを数値解析で解けば、測定物体の温度Tsを測定す
ることができる。
Here, the emissivity εs (λ, Ts) of the measuring object
Varies depending on the wavelength, but it can be measured by means described separately. Assuming that the emissivity εo of the surrounding object is equal for each wavelength to be measured, the unknowns are three variables: the temperature Ts of the measuring object, the temperature To of the surrounding object, and the emissivity εo of the surrounding object.
Therefore, temperature measurement is performed at three different wavelengths, three equations are established, and from the simultaneous equations of these equations, Ts, T
By solving o and εo by numerical analysis, the temperature Ts of the measuring object can be measured.

【0016】測定物体の放射率εs(λ,Ts)は、測定
物体の反射率ρs(λ,Ts)を測定し、求めることがで
きる。放射率に波長依存性、温度依存性がある場合、リ
アルタイムで測定する必要がある。そこで、照明光を測
定物体に当て、その反射光と、測定物体からの放射光を
交互に測定し、測定物体の放射率εs(λ,Ts)を算出
する。
The emissivity εs (λ, Ts) of the measuring object can be obtained by measuring the reflectance ρs (λ, Ts) of the measuring object. If the emissivity depends on wavelength and temperature, it must be measured in real time. Therefore, the illumination light is applied to the measurement object, and the reflected light and the radiation light from the measurement object are alternately measured to calculate the emissivity εs (λ, Ts) of the measurement object.

【0017】まず、放射率の求め方について説明する。
放射率ε、反射率ρ、透過率τの間には、エネルギー保
存則より、下記の関係が成り立つ。
First, a method of obtaining the emissivity will be described.
The following relationship holds between the emissivity ε, the reflectance ρ, and the transmittance τ according to the law of conservation of energy.

【0018】ε+ρ+τ=1 …(1) ここで、測定波長として、測定物体の透過率τが0、つ
まり透過しない波長を選ぶとする。この場合、放射率ε
と反射率ρとの間には下式(2)の関係が成り立ち、測
定物体の反射率を測定することで放射率を求めることが
できる。
Ε + ρ + τ = 1 (1) Here, as the measurement wavelength, it is assumed that the transmittance τ of the measurement object is 0, that is, a wavelength that does not transmit. In this case, the emissivity ε
The following equation (2) is established between and the reflectance ρ, and the emissivity can be obtained by measuring the reflectance of the measurement object.

【0019】ε=1−ρ …(2) 次に、放射の法則について説明する。プランクの放射則
により、物体温度をTとすると、放射率ε(λ,T)の
物体からの分光放射エネルギーL(λ,T)は下式
(3)で表される。ここで、Lb(λ,T)は、放射率
ε(λ,T)が1である黒体の分光放射エネルギーであ
る。
Ε = 1-ρ (2) Next, the law of radiation will be described. According to Planck's radiation law, assuming that the object temperature is T, the spectral radiant energy L (λ, T) from an object having an emissivity ε (λ, T) is expressed by the following equation (3). Here, Lb (λ, T) is the spectral radiant energy of a black body having an emissivity ε (λ, T) of 1.

【0020】 L(λ,T)=ε(λ,T)・Lb(λ,T) …(3) 測定装置のセンサに入射する光エネルギーとセンサの出
力電圧V(λ,T)との変換係数をα(λ)とすれば、
分光放射エネルギーL(λ,T)とセンサの出力電圧V
(λ,T)との関係は、一般的に下式(4)のように表
される。
L (λ, T) = ε (λ, T) · Lb (λ, T) (3) Conversion between light energy incident on the sensor of the measuring device and output voltage V (λ, T) of the sensor If the coefficient is α (λ),
Spectral radiant energy L (λ, T) and sensor output voltage V
The relationship with (λ, T) is generally expressed by the following equation (4).

【0021】 V(λ,T)=α(λ)・L(λ,T) …(4) 測定物体の分光放射エネルギーL(λ,T)と、測定物
体の温度Tとの関係を表す特性関数をf(λ,T)とす
る。このf(λ,T)には、今まで色々な特性式が考え
られている。以下にその例をあげる。各特性式のA、
B、C、nは、黒体炉の放射光を測定し計算で求める定
数である。この値は、測定波長λによって異なる。ま
た、c2はプランクの放射第二定数である。
V (λ, T) = α (λ) · L (λ, T) (4) A characteristic representing the relationship between the spectral radiant energy L (λ, T) of the measurement object and the temperature T of the measurement object. Let the function be f (λ, T). Various characteristic equations have been considered for this f (λ, T). An example is given below. A of each characteristic formula,
B, C, and n are constants obtained by measuring and calculating the radiant light of the blackbody furnace. This value depends on the measurement wavelength λ. Further, c2 is the Planck's second radiation constant.

【0022】 V(λ,T)=f(λ,T) …(5) V(λ,T)=C(λ)・exp{−c2/(A(λ)・T+B(λ))} …(5−1) V(λ,T)=C(λ)/[exp{c2/(A(λ)・T+B(λ))} −1] …(5−2) V(λ,T)=C(λ)・Tn(λ) …(5−3) V(λ,T)=C(λ)・Tn(λ)・exp(−B(λ)/T)…(5− 4) 測定物体の温度をTs、測定物体の放射率をεs(λ,T
s)、測定物体の反射率をρs(λ,Ts)、周囲物体の
温度をTo、周囲物体の放射率をεo(λ,To)、測定
装置のセンサ出力電圧をV(λ,Ts)とする。
V (λ, T) = f (λ, T) (5) V (λ, T) = C (λ) · exp {−c2 / (A (λ) · T + B (λ))} (5-1) V (λ, T) = C (λ) / [exp {c2 / (A (λ) · T + B (λ))} −1] (5-2) V (λ, T) = C (λ) · T n (λ) ... (5-3) V (λ, T) = C (λ) · T n (λ) · exp (−B (λ) / T) ... (5-4) The temperature of the measuring object is Ts, and the emissivity of the measuring object is εs (λ, T
s), the reflectance of the measuring object is ρs (λ, Ts), the temperature of the surrounding object is To, the emissivity of the surrounding object is εo (λ, To), and the sensor output voltage of the measuring device is V (λ, Ts). To do.

【0023】上記参考文献1では、測定物体の放射率ε
s(λ,Ts)を波長λ、温度Tsに依存しない定数を
ε、周囲物体の放射率εo(λ,To)を黒体である1と
し、その温度Toは既知であるとして解析している。こ
の場合、V(λ,Ts)は、(2),(3),(4)式
を用いて次のように表される。
In Reference 1 above, the emissivity ε of the measuring object is
s (λ, Ts) is the wavelength λ, ε is a constant that does not depend on temperature Ts, emissivity εo (λ, To) of the surrounding object is 1, which is a black body, and the temperature To is known to be known. . In this case, V (λ, Ts) is expressed as follows using equations (2), (3) and (4).

【0024】 V(λ,Ts)=α(λ)・{ε・f(λ,Ts)+(1−ε) ・f(λ,To)} …(6) 異なる二波長λ1、λ2で測定物体を測定した出力電圧
をV1,V2とし、(6)式を書き直すと次のようにな
る。ここで、α1、α2は、波長λ1、λ2における変
換係数である。
V (λ, Ts) = α (λ) · {ε · f (λ, Ts) + (1-ε) · f (λ, To)} (6) Measurement at two different wavelengths λ1 and λ2 Letting the output voltages measured for the object be V1 and V2, the equation (6) can be rewritten as follows. Here, α1 and α2 are conversion coefficients at wavelengths λ1 and λ2.

【0025】 V1=α1・{ε・f(λ1,Ts)+(1−ε)・f(λ1,To)} …(7) V2=α2・{ε・f(λ2,Ts)+(1−ε)・f(λ2,To)} …(8) 上記参考文献1では、特性関数f(λ,T)に指数近似
の(5−3)式を用いている。この近似を用い(7)、
(8)式を表すと以下のようになる。
V1 = α1 · {ε · f (λ1, Ts) + (1-ε) · f (λ1, To)} (7) V2 = α2 · {ε · f (λ2, Ts) + (1 -[Epsilon]) f ([lambda] 2, To)} (8) In Reference 1, the characteristic function f ([lambda], T) uses the formula (5-3) of exponential approximation. Using this approximation (7),
The expression (8) is expressed as follows.

【0026】 V1=α1・{ε・C1×Tsn1・(1−ε)・Co1×Tono1}= ε・a1×Tsn1・(1−ε)・ao1×Tono1 …(7)’ V2=α2・{ε・C2×Tsn2・(1−ε)・Co2×Tono2}= ε・a2×Tsn2・(1−ε)・ao2×Tono2 …(8)’ ここで、a1、ao1、a2、ao2、n1、no1、
n2、no2は、測定波長、測定温度範囲できまる測定
装置固有の定数である。この定数は、測定装置を黒体炉
などで校正して求める。
V1 = α1 · {ε · C1 × Ts n1 · (1-ε) · Co1 × To no1 } = ε · a1 × Ts n1 · (1-ε) · ao1 × To no1 (7) ′ V2 = Α2 · {ε · C2 × Ts n2 · (1-ε) · Co2 × To no2 } = ε · a2 × Ts n2 · (1-ε) · ao2 × To no2 (8) ′ where a1, ao1, a2, ao2, n1, no1,
n2 and no2 are constants peculiar to the measuring device, which can determine the measurement wavelength and the measurement temperature range. This constant is obtained by calibrating the measuring device with a black body furnace or the like.

【0027】(7)’式をεについて解き、(8)’式
に代入しεを消去すると、Tsに関する方程式となる。
この方程式の解を数値解析で求めれば、Tsを推定する
ことができる。このように、測定物体の放射率が波長に
よらず一定で、周囲物体の温度が既知であり、かつ周囲
物体を黒体とみなせる場合は、二波長の測定で温度を求
めることができる。
By solving the equation (7) 'with respect to ε and substituting it into the equation (8)' and eliminating ε, an equation relating to Ts is obtained.
If the solution of this equation is obtained by numerical analysis, Ts can be estimated. As described above, when the emissivity of the measurement object is constant regardless of the wavelength, the temperature of the surrounding object is known, and the surrounding object can be regarded as a black body, the temperature can be obtained by measuring the two wavelengths.

【0028】しかし、多くの物体では放射率は波長に依
存しており、また、周囲物体が黒体とみなせる場合は希
であり、この測定方法を用いることはできない。その例
として、半導体の製造プロセスで、ウエハの温度を測定
する場合について考える。成膜プロセスチャンバ内でウ
エハの温度をウエハ裏面から測定する場合、ウエハ裏面
には前工程で膜が付着している。この場合、ウエハの放
射率は波長により異なる。したがって、(7)’式、
(8)’式を用いることはできない。
However, the emissivity of many objects depends on the wavelength, and it is rare when the surrounding object can be regarded as a black body, and this measuring method cannot be used. As an example, consider the case where the temperature of a wafer is measured in a semiconductor manufacturing process. When the temperature of the wafer is measured from the back surface of the wafer in the film forming process chamber, the film is attached to the back surface of the wafer in the previous step. In this case, the emissivity of the wafer depends on the wavelength. Therefore, equation (7) '
Equation (8) 'cannot be used.

【0029】そこで、ウエハの反射率を各波長毎に測定
する場合について、新しい温度測定アルゴリズムを構築
した。各波長における測定物体の反射率をρ1、ρ2、ρ
3、周囲物体の放射率をεo1、εo2、εo3、出力電圧を
V1、V2、V3とする。ただし、測定波長λ1、λ
2、λ3の光は、ウエハを透過しないものとする。
Therefore, a new temperature measurement algorithm was constructed for the case of measuring the reflectance of the wafer for each wavelength. The reflectance of the measured object at each wavelength is ρ1, ρ2, ρ
3. Emissivity of surrounding objects is εo1, εo2, εo3, and output voltages are V1, V2, and V3. However, measurement wavelengths λ1, λ
Lights of 2 and λ3 do not pass through the wafer.

【0030】 V1=α1・{(1−ρ1)・f(λ1,Ts)+ρ1・εo1・f(λ1,To)} …(9) V2=α2・{(1−ρ2)・f(λ2,Ts)+ρ2・εo2・f(λ2,To)} …(10) V3=α3・{(1−ρ3)・f(λ3,Ts)+ρ3・εo3・f(λ3,To)} …(11) ここで周囲物体の放射率εo1、εo2、εo3が未知の場
合、未知数は、Ts、To、εo1、εo2、εo3の5変数と
なる。εo1、εo2、εo3を、測定物体と同様に測定でき
る場合は、二式の方程式を解きTs、Toを求められる
が、実際の半導体製造工程で、周囲物体の放射率を測定
することは困難である。しかし、周囲物体を、金、シリ
コン、石英など、ある波長帯域間では放射率が等しい灰
色体の物質で製作する、あるいは覆うことは可能であ
る。したがって、測定波長λ1、λ2、λ3をこの波長
帯域間にとれば、周囲物体の放射率は定数εoと置くこ
とができる。すると、温度モデル式(9)、(10)、
(11)は、以下の様に表される。
V1 = α1 · {(1-ρ1) · f (λ1, Ts) + ρ1 · εo1 · f (λ1, To)} (9) V2 = α2 · {(1-ρ2) · f (λ2, Ts) + ρ2 ・ εo2 ・ f (λ2, To)} (10) V3 = α3 ・ {(1-ρ3) ・ f (λ3, Ts) + ρ3 ・ εo3 ・ f (λ3, To)} (11) Here When the emissivity εo1, εo2, εo3 of the surrounding object is unknown, there are five unknown variables Ts, To, εo1, εo2, εo3. If εo1, εo2, and εo3 can be measured in the same way as the measurement object, the two equations can be solved to find Ts and To, but it is difficult to measure the emissivity of surrounding objects in the actual semiconductor manufacturing process. is there. However, it is possible to make or cover the surrounding object with a gray body material, such as gold, silicon, or quartz, which has the same emissivity over a certain wavelength band. Therefore, if the measurement wavelengths λ1, λ2, λ3 are in this wavelength band, the emissivity of the surrounding object can be set as a constant εo. Then, the temperature model equations (9), (10),
(11) is expressed as follows.

【0031】 V1=α1・{(1−ρ1)・f(λ1,Ts)+ρ1・εo・f(λ1,To)} …(12) V2=α2・{(1−ρ2)・f(λ2,Ts)+ρ2・εo・f(λ2,To)} …(13) V3=α3・{(1−ρ3)・f(λ3,Ts)+ρ3・εo・f(λ3,To)} …(14) この温度モデル式では、未知数がTs、To、εoの3変
数となり、これらの3式を連立させ、これらを満足する
Ts、To、εoを数値解析で求めれば、測定物体の温度
Tsを正確に求めることができる。この方程式群が本発
明で提案する新しい温度測定のアルゴリズムである。
V1 = α1 · {(1-ρ1) · f (λ1, Ts) + ρ1 · εo · f (λ1, To)} (12) V2 = α2 · {(1-ρ2) · f (λ2, Ts) + ρ2 · εo · f (λ2, To)} (13) V3 = α3 · {(1-ρ3) · f (λ3, Ts) + ρ3 · εo · f (λ3, To)} (14) This In the temperature model formula, the unknowns are three variables of Ts, To, and εo, and if these three formulas are made simultaneous and Ts, To, and εo that satisfy these are obtained by numerical analysis, the temperature Ts of the measured object is accurately obtained. be able to. This group of equations is the new temperature measurement algorithm proposed in the present invention.

【0032】従来のアルゴリズムでは、測定物体の放射
率が測定波長間で等しく、かつ、周囲物体が黒体の場合
のみしか、温度を測定することができなかった。しか
し、本発明のアルゴリズムでは、測定物体の放射率が波
長間で異なる場合でも測定することができ、周囲物体の
放射率を黒体の1ではなく、灰色体の未知数εoとする
ことで、より現実に則した測定が可能である。
In the conventional algorithm, the temperature can be measured only when the emissivity of the measuring object is equal between the measuring wavelengths and the surrounding object is a black body. However, with the algorithm of the present invention, it is possible to measure even when the emissivity of the measurement object differs between wavelengths, and by setting the emissivity of the surrounding object to not the black body 1 but the unknown number εo of the gray body, Real-world measurement is possible.

【0033】次に、本発明における温度推定アルゴリズ
ムの例を述べる。
Next, an example of the temperature estimation algorithm in the present invention will be described.

【0034】特性関数f(λ,T)に指数近似の(5−
3)式を用いて(12)、(13)、(14)式を表す
と下式となる。
An exponential approximation of (5-
The expressions (12), (13), and (14) are expressed using the expression (3), and the following expressions are obtained.

【0035】 V1=(1−ρ1)・a1×Tsn1・ρ1・εo・ao1×Tono1 …( 15) V2=(1−ρ2)・a2×Tsn2・ρ2・εo・ao2×Tono2 …( 16) V3=(1−ρ3)・a3×Tsn3・ρ3・εo・ao3×Tono3 …( 17) 上式からεoとToを消去し、Tsについて方程式g(T
s)を立てると(18)式となる。
V1 = (1-ρ1) · a1 × Ts n1 · ρ1 · εo · ao1 × To no1 ... (15) V2 = (1-ρ2) · a2 × Ts n2 · ρ2 · εo · ao2 × To no2 ... (16) V3 = (1-ρ3) · a3 × Ts n3 · ρ3 · εo · ao3 × To no3 (17) Eliminating εo and To from the above equation, the equation g (T
(18) can be obtained by setting s).

【0036】[0036]

【数1】 このg(Ts)=0を満足するTsが、測定物体の温度と
なる。
[Equation 1] Ts that satisfies this g (Ts) = 0 is the temperature of the measurement object.

【0037】図2は、Tsを変化させた場合のg(Ts)
の挙動を示したグラフである。図中のg123、g23
1、g312は、方程式の組み合わせ方による違いを表
しているが、いずれの方程式も、ある温度Tsでg(T
s)=0となることが分かる。このTsは、ニュートン法
などの方法を用い数値計算で求めることができる。さら
に、(19)、(20)式により、To、εoを求めるこ
とができる。
FIG. 2 shows g (Ts) when Ts is changed.
It is a graph showing the behavior of. G123 and g23 in the figure
1 and g312 show the difference due to the combination of the equations, both equations have g (T
It can be seen that s) = 0. This Ts can be obtained by numerical calculation using a method such as the Newton method. Further, To and εo can be obtained from the equations (19) and (20).

【0038】図3は、従来技術と本発明のアルゴリズム
を用いた場合の測定物体温度Tsの推定精度を比較した
結果を示す図であり、(a)は従来技術による二色温度
測定結果を示す図、(b)は本発明のアルゴリズムによ
る温度測定結果を示す図である。シミュレーションでの
周囲物体の温度Toは775K、周囲物体の放射率εoは
0.9である。この条件で測定物体の温度Tsの温度を
変化させ、従来技術では、(7)'、(8)'式、本発明
のアルゴリズムでは(18)、(19)、(20)式か
ら測定物体の温度Tsを推定した。
FIG. 3 is a diagram showing the result of comparison of the estimation accuracy of the measured object temperature Ts when the conventional technique and the algorithm of the present invention are used, and FIG. 3A shows the two-color temperature measurement result of the conventional technique. FIG. 1B is a diagram showing a temperature measurement result by the algorithm of the present invention. The temperature To of the surrounding object in the simulation is 775 K, and the emissivity εo of the surrounding object is 0.9. Under this condition, the temperature Ts of the measurement object is changed, and according to the prior art, the equations (7) ′ and (8) ′, and the algorithm of the present invention are represented by equations (18), (19), and (20). The temperature Ts was estimated.

【0039】図3の(a)に示すように、従来技術では
周囲物体を黒体とするため、測定物体の温度に高温部で
は2K程度、低温部では15K程度の誤差が生じている
が、図3の(b)に示すように、本発明のアルゴリズム
では、低温部、高温部とも0.2K以下の誤差となり、
本発明のアルゴリズムが、従来技術と比較して格段に優
れていることが分かる。
As shown in FIG. 3A, since the surrounding object is a black body in the prior art, the temperature of the measured object has an error of about 2K in the high temperature part and about 15K in the low temperature part. As shown in FIG. 3B, the algorithm of the present invention has an error of 0.2 K or less in both the low temperature part and the high temperature part,
It can be seen that the algorithm of the present invention is significantly superior to the prior art.

【0040】上記の説明では、特性関数に(5−3)式
の指数近似を用いたが、(12)、(13)、(14)
式に、(5−1)、(5−2)、(5−4)式、その
他、さまざまな特性関数を当てはめ、数値解析で測定物
体の温度Tsを推定することができる。また、特性関数
では、精度の良い近似が行なえる温度範囲が狭いものも
ある。この場合は、近似する温度範囲を有限に区切り、
近似係数をテーブル等で演算係数として保存し、推定す
る温度範囲をシフトしながら、測定物体の温度Tsを推
定する必要がある。
In the above description, the exponential approximation of the equation (5-3) is used for the characteristic function, but (12), (13), (14)
The equations (5-1), (5-2), (5-4), and various other characteristic functions can be applied to the equations to estimate the temperature Ts of the measurement object by numerical analysis. Further, some characteristic functions have a narrow temperature range in which accurate approximation can be performed. In this case, the approximate temperature range is finitely divided,
It is necessary to store the approximate coefficient as a calculation coefficient in a table or the like and estimate the temperature Ts of the measurement object while shifting the estimated temperature range.

【0041】次に、上述した本発明のアルゴリズムを搭
載した温度測定装置について説明する。
Next, a temperature measuring device equipped with the above-described algorithm of the present invention will be described.

【0042】図4は、本発明のアルゴリズムを搭載した
温度測定装置100の構成を示す図である。光源装置1
は、測定物体11を照明するための照明光15を発生す
る。チョッパ装置(またはシャッタ装置)2は、光源装
置1からの照明光を投光させたり遮光したりする。光学
伝達装置3はバンドルファイバ等からなり、照明光を周
囲物体12内の測定物体11まで導き、測定物体11か
らの反射光16及び放射光13を分光装置4まで伝達す
る。
FIG. 4 is a diagram showing the structure of a temperature measuring device 100 equipped with the algorithm of the present invention. Light source device 1
Generates an illumination light 15 for illuminating the measuring object 11. The chopper device (or shutter device) 2 projects or blocks the illumination light from the light source device 1. The optical transmission device 3 includes a bundle fiber or the like, guides the illumination light to the measurement object 11 in the surrounding object 12, and transmits the reflected light 16 and the emitted light 13 from the measurement object 11 to the spectroscopic device 4.

【0043】分光装置4は、受光した光から所望の三つ
の波長を分光しセンサ(受光素子)で受光する。受光装
置5は、前記センサの出力を増幅し、ノイズをフィルタ
等で除去する機能を備えたアンプ等からなる。チョッパ
装置6は、分光装置4に光を入射させたり、遮光したり
する。光学伝達装置7は、照明光の一部を後述する分光
装置8に伝達する光ファイバなどからなる。
The spectroscopic device 4 disperses three desired wavelengths from the received light, and the sensor (light receiving element) receives the light. The light receiving device 5 is composed of an amplifier or the like having a function of amplifying the output of the sensor and removing noise with a filter or the like. The chopper device 6 allows light to enter the light-splitting device 4 and blocks light. The optical transmission device 7 includes an optical fiber that transmits a part of the illumination light to the spectroscopic device 8 described later.

【0044】分光装置8は、分光装置4と同様に、光源
装置1から受光した照明光から所望の三つの波長を分光
しセンサで受光する。受光装置9は、前記センサの出力
から光源装置1の光量変化を測定する。制御装置10は
コンピュータ等からなり、光源装置1、チョッパ装置
2、チョッパ装置6を制御し、受光装置5、9からの信
号を収集して温度を推定する機能を有しており、上記ア
ルゴリズムを内部メモリに記憶している。
Similar to the spectroscopic device 4, the spectroscopic device 8 disperses the desired three wavelengths from the illumination light received from the light source device 1 and receives them by the sensor. The light receiving device 9 measures the light amount change of the light source device 1 from the output of the sensor. The control device 10 is composed of a computer or the like, has a function of controlling the light source device 1, the chopper device 2, and the chopper device 6 and collecting signals from the light receiving devices 5 and 9 to estimate the temperature. Stored in internal memory.

【0045】チョッパ装置2が閉の場合、測定物体11
には、光源装置1の照明光は照射されない。この状態
で、光学伝達装置3には、測定物体11の放射光13と
周囲物体12の放射光14が入射する。これら放射光1
3、14は、光学伝達装置3を通り、チョッパ装置6が
開の場合、分光装置4に入射する。分光装置4に入射し
た放射光13、14は、以下のように3波長に分光され
る。
When the chopper device 2 is closed, the measuring object 11
The illumination light of the light source device 1 is not radiated. In this state, the emitted light 13 of the measurement object 11 and the emitted light 14 of the surrounding object 12 are incident on the optical transmission device 3. These synchrotron radiation 1
3 and 14 pass through the optical transmission device 3 and enter the spectroscopic device 4 when the chopper device 6 is open. The radiated lights 13 and 14 that have entered the spectroscopic device 4 are split into three wavelengths as follows.

【0046】図5は、分光装置4の構成を示す図であ
る。分光装置4に入射した放射光13、14は、コリメ
ートレンズ17でコリメートされた後、それぞれハーフ
ミラー181、182で3分割され、所望される特定の
波長域の光201、202、203だけが干渉フィルタ
191、192、193で透過され、集光レンズ21
1、212、213により受光装置5内のセンサ22
1、222、223に集光される。そして、受光装置5
から出力電圧Ve1、Ve2、Ve3が出力される。
FIG. 5 is a diagram showing the structure of the spectroscopic device 4. The radiated lights 13 and 14 that have entered the spectroscopic device 4 are collimated by the collimator lens 17 and then divided into three by the half mirrors 181 and 182, respectively, and only the lights 201, 202 and 203 in the desired specific wavelength range interfere. The light is transmitted through the filters 191, 192, and 193, and the condenser lens 21
The sensor 22 in the light receiving device 5 by 1, 212, 213
It is focused on 1, 222, and 223. Then, the light receiving device 5
Outputs output voltages Ve1, Ve2, Ve3.

【0047】一方、チョッパ装置2が開の場合、光源装
置1の照明光は、光学伝達装置3を通り測定物体11を
照明する。この場合、測定物体11からは、測定物体1
1の反射光16、測定物体の放射光13、及び周囲物体
の放射光14が出射される。これらの光13、14、1
6は、光学伝達装置3を通り、チョッパ装置6が開の場
合、分光装置4に入射する。さらに、各光13、14、
16は、先に述べたように、分光装置4により3波長に
分光され、受光装置5によって光強度が測定される。そ
して、受光装置5からは出力電圧Vr1、Vr2、Vr
3が出力される。
On the other hand, when the chopper device 2 is open, the illumination light of the light source device 1 passes through the optical transmission device 3 and illuminates the measurement object 11. In this case, from the measurement object 11 to the measurement object 1
The reflected light 16 of 1, the emitted light 13 of the measuring object, and the emitted light 14 of the surrounding object are emitted. These lights 13, 14, 1
6 passes through the optical transmission device 3 and enters the spectroscopic device 4 when the chopper device 6 is open. Furthermore, each light 13, 14,
As described above, 16 is split into three wavelengths by the spectroscopic device 4, and the light intensity is measured by the light receiving device 5. The output voltages Vr1, Vr2, Vr are output from the light receiving device 5.
3 is output.

【0048】また、光源装置1の照明光の一部は、光学
伝達装置7により分光装置8に導かれる。この分光装置
8は、分光装置4と同様の構成をなしており、光源装置
1の照明光から所望の3波長を分光しセンサで受光す
る。受光装置9は、前記センサの出力から光源装置1の
照明光量の変動を測定する。そして、受光装置9から出
力電圧Vo1、Vo2、Vo3が出力される。
A part of the illumination light of the light source device 1 is guided to the spectroscopic device 8 by the optical transmission device 7. The spectroscopic device 8 has the same configuration as the spectroscopic device 4, and disperses the desired three wavelengths from the illumination light of the light source device 1 and receives them by the sensor. The light receiving device 9 measures the variation of the illumination light amount of the light source device 1 from the output of the sensor. Then, the output voltages Vo1, Vo2, Vo3 are output from the light receiving device 9.

【0049】チョッパ装置2及びチョッパ装置6が共に
閉の場合、受光装置5からは、装置内部の迷光や電気系
のノイズを含むダーク信号が出力される。そして、受光
装置5から出力電圧Vd1、Vd2、Vd3が出力され
る。
When both the chopper device 2 and the chopper device 6 are closed, the light receiving device 5 outputs a dark signal including stray light inside the device and noise of the electrical system. Then, the output voltages Vd1, Vd2, and Vd3 are output from the light receiving device 5.

【0050】以上のように、チョッパ装置2及び6の開
閉が制御装置10で制御されることで、ダーク測定、放
射光13と放射光14の測定、放射光13と放射光14
と反射光16の測定を順次行なうことができる。
As described above, by controlling the opening and closing of the chopper devices 2 and 6 by the control device 10, dark measurement, measurement of emitted light 13 and emitted light 14, emitted light 13 and emitted light 14 are performed.
And the reflected light 16 can be sequentially measured.

【0051】測定物体11の反射率は以下の方法で求め
る。熱放射が無い反射率がρref1、ρref2、ρref3
の標準物体の反射光を受光装置5で測定した場合の出力
電圧を、各波長でVref1、Vref2、Vref3とする。
このとき、測定物体11の反射率ρ1、ρ2、ρ3は、
下式となる。
The reflectance of the measuring object 11 is obtained by the following method. The reflectance without heat radiation is ρref1, ρref2, ρref3
The output voltage when the reflected light of the standard object is measured by the light receiving device 5 is Vref1, Vref2, and Vref3 at each wavelength.
At this time, the reflectances ρ1, ρ2, ρ3 of the measurement object 11 are
It becomes the following formula.

【0052】 ρ1=(Vr1−Ve1)/Vref1・ρref1 ρ2=(Vr2−Ve2)/Vref2・ρref2 ρ3=(Vr3−Ve3)/Vref3・ρref3 この反射率ρ1、ρ2、ρ3を、先に説明した(18)
の方程式g(Ts)に代入すれば、測定物体11の温度
Ts、周囲物体12の温度To、周囲物体12の放射率ε
oを求めることができる。
Ρ1 = (Vr1-Ve1) / Vref1 · ρref1 ρ2 = (Vr2-Ve2) / Vref2 · ρref2 ρ3 = (Vr3-Ve3) / Vref3 · ρref3 The reflectances ρ1, ρ2, and ρ3 are described above. (18)
Substituting into the equation g (Ts) of, the temperature Ts of the measuring object 11, the temperature To of the surrounding object 12, the emissivity ε of the surrounding object 12
You can ask o.

【0053】また、光源装置1の照明光量が変動した場
合は、Vref1、Vref2、Vref3を測定したときの受
光装置9の出力電圧をVoref1、Voref2、Voref3と
すると、測定物体11の反射率ρ1、ρ2、ρ3を下式
のように補正する必要がある。
Further, when the amount of illumination light of the light source device 1 fluctuates, if the output voltage of the light receiving device 9 when measuring Vref1, Vref2, Vref3 is Voref1, Voref2, Voref3, the reflectance ρ1, It is necessary to correct ρ2 and ρ3 as in the following equation.

【0054】 ρ1=(Vr1−Ve1)/Vref1・ρref1・Voref
1/Vo1 ρ2=(Vr2−Ve2)/Vref2・ρref2・Voref
2/Vo2 ρ3=(Vr3−Ve3)/Vref3・ρref3・Voref
3/Vo3 また、受光装置5、9のセンサ及びアンプ系には、IC
温度センサがついており、センサやアンプの温度ドリフ
トを補正することもできる。
Ρ1 = (Vr1-Ve1) / Vref1 · ρref1 · Voref
1 / Vo1 ρ2 = (Vr2-Ve2) / Vref2 · ρref2 · Voref
2 / Vo2 ρ3 = (Vr3-Ve3) / Vref3 · ρref3 · Voref
3 / Vo3 Further, the sensor and the amplifier system of the light receiving devices 5 and 9 have an IC
It is equipped with a temperature sensor and can also correct the temperature drift of the sensor and amplifier.

【0055】図6の(a),(b)は、光源装置1の構
成例を示す図である。本実施の形態では、図6の(a)
に示すように、ハロゲンランプなどの連続点灯型で発光
波長がブロードの光源51を用い、ダイクロイックミラ
ー52により照射させ、チョッパによって、放射光、反
射光、ダークの測定を切り替えているが、図6の(b)
に示すように、LEDなどの発光波長が侠帯域でパルス
駆動ができる光源53を用い、集光レンズ54により照
射させることもできる。この場合、LEDの発光パター
ン(パルスタイミング)に同期させ、受光装置5,9に
て放射光、反射光、ダークを受光し測定を行なうことが
可能である。また、LEDは1色に限らず、必要な波長
を持つ数種類のLEDを組み合わせることも可能であ
る。また、LEDの他、レーザなども光源装置に用いる
ことができる。
FIGS. 6A and 6B are views showing an example of the structure of the light source device 1. In the present embodiment, FIG.
As shown in FIG. 6, a continuous lighting type light source 51 such as a halogen lamp having a broad emission wavelength is used, irradiation is performed by a dichroic mirror 52, and measurement of emitted light, reflected light, and dark is switched by a chopper. (B)
As shown in, it is also possible to use a light source 53, such as an LED, which can be pulse-driven in the sub-band of the emission wavelength, and irradiate it with a condenser lens 54. In this case, it is possible to perform measurement by receiving the emitted light, the reflected light and the dark with the light receiving devices 5 and 9 in synchronization with the light emission pattern (pulse timing) of the LED. Further, the LEDs are not limited to one color, and it is possible to combine several kinds of LEDs having a required wavelength. In addition to LEDs, lasers and the like can be used for the light source device.

【0056】図7は、光学伝達装置3の構成例を示す図
であり、(a)は横断面図、(b)は正断面図である。
本実施の形態では、光源伝達装置3は、図7の(a),
(b)に示すようなバンドルファイバ31とロット32
を用いている。バンドルファイバ31は、光源装置1の
光を測定物体11まで導く照明用ファイバ33が中心に
1本、その周囲に放射光及び反射光を受光する受光用フ
ァイバ34が数本バンドルされている。このバンドルフ
ァイバ31の先端は、半導体装置内部に組み込めるよう
に、耐熱性、耐薬品性に優れたサファイアなどのロット
32に接続されている。なお、光学伝達装置3はバンド
ルファイバに限らず、光源装置1の光を測定物体11ま
で導き、かつ、その反射光を再度分光装置4まで導ける
伝達手段であれば良い。
7A and 7B are views showing a structural example of the optical transmission device 3, in which FIG. 7A is a transverse sectional view and FIG. 7B is a front sectional view.
In the present embodiment, the light source transmission device 3 has a configuration shown in FIG.
Bundle fiber 31 and lot 32 as shown in (b)
Is used. In the bundle fiber 31, one illumination fiber 33 that guides the light from the light source device 1 to the measurement object 11 is centered, and several light receiving fibers 34 that receive the emitted light and the reflected light are bundled around the illumination fiber 33. The tip of the bundle fiber 31 is connected to a lot 32 of sapphire or the like having excellent heat resistance and chemical resistance so that it can be incorporated into the semiconductor device. The optical transmission device 3 is not limited to the bundle fiber and may be any transmission device that can guide the light of the light source device 1 to the measurement object 11 and guide the reflected light to the spectroscopic device 4 again.

【0057】図8は、分光装置4、8の変形例を示す図
である。上記実施の形態では、図5に示すように、光学
伝達装置3の光の分光に干渉フィルタ191、192、
193を用いたが、この分光を、図8に示すように回折
格子(分光器)24などの回折光学系を用いて行なうこ
とも可能である。この場合、スリット23を通った放射
光と反射光は、それぞれ回折格子24で3分割され、セ
ンサ221、222、223に集光される。また、セン
サ221、222、223には、シリコンセンサなどの
単一受光素子ばかりでなく、CCDなどラインセンサを
用いることもできる。
FIG. 8 is a diagram showing a modification of the spectroscopic devices 4 and 8. In the above embodiment, as shown in FIG. 5, the interference filters 191 and 192 are added to the optical spectrum of the optical transmission device 3.
Although 193 is used, this spectroscopy can be performed using a diffractive optical system such as a diffraction grating (spectrometer) 24 as shown in FIG. In this case, the emitted light and the reflected light that have passed through the slit 23 are each divided into three by the diffraction grating 24, and are condensed on the sensors 221, 222, 223. Further, as the sensors 221, 222, 223, not only a single light receiving element such as a silicon sensor but also a line sensor such as CCD can be used.

【0058】上記実施の形態では、3波長の光で測定す
る場合について述べたが、g(Ts)を4波長以上に拡
張することも可能である。すなわち、各々の波長の組み
合わせでg123(Ts)、g234(Ts)、g345
(Ts)…を作り、gijk(Ts)を解き、Tsを最適
化することができる。これは、特に成膜中など、放射率
が極端に変化する場合などに有効である。
In the above-mentioned embodiment, the case of measuring with light of three wavelengths is described, but g (Ts) can be extended to four or more wavelengths. That is, g123 (Ts), g234 (Ts), g345 for each wavelength combination.
(Ts) can be created, gijk (Ts) can be solved, and Ts can be optimized. This is particularly effective when the emissivity changes extremely, such as during film formation.

【0059】以上のように本実施の形態では、測定物体
の放射率が測定波長間で異なり、周囲物体は黒体ではな
いが放射率が測定波長間で等しい灰色体である場合に拡
張して、測定物体以外の周囲の放射光を考慮に入れた多
波長の温度測定モデルを立て、周囲物体の放射光があっ
ても、測定物体の温度を正確に測定できる放射温度測定
アルゴリズムを構築した。
As described above, in the present embodiment, the emissivity of the measurement object differs between the measurement wavelengths, and the surrounding object is not a black body but is a gray body whose emissivity is equal between the measurement wavelengths. , A multi-wavelength temperature measurement model that takes into consideration the ambient radiation other than the measurement object was set up, and a radiation temperature measurement algorithm that can accurately measure the temperature of the measurement object even with the radiation of the surrounding object was constructed.

【0060】さらに、上記アルゴリズムを搭載し、測定
物体の放射率をリアルタイムで測定するために、測定物
体を照明する光源装置と、光源装置からの光を測定物体
まで導き測定物体からの反射光及び放射光を受光装置ま
で伝達する光学伝達装置と、受光した光を所望の波長に
分光する分光装置と、分光された光を受光する受光装置
と、反射光、放射光を切り替えて受光部に導くチョッパ
装置と、これらを制御し温度を推定する機能を持ったコ
ンピュータ等の制御装置とを有した温度測定装置によ
り、周囲物体からの放射光があっても、測定物体の温度
を正確に測定できる放射温度測定装置を構築した。
Furthermore, in order to measure the emissivity of the measurement object in real time by mounting the above algorithm, a light source device for illuminating the measurement object, a light from the light source device to the measurement object, reflected light from the measurement object, and An optical transmission device for transmitting radiated light to a light receiving device, a spectroscopic device for splitting the received light into a desired wavelength, a light receiving device for receiving the split light, and switching between the reflected light and the radiated light and guiding them to the light receiving unit. With a temperature measuring device having a chopper device and a control device such as a computer having a function of controlling them and estimating the temperature, the temperature of the measuring object can be accurately measured even if there is radiant light from the surrounding object. A radiation temperature measuring device was constructed.

【0061】なお、本発明は上記実施の形態のみに限定
されず、要旨を変更しない範囲で適宜変形して実施でき
る。例えば、上記実施の形態に示した温度測定方法を、
半導体装置の製造プロセスにおけるウエハ温度測定に適
用することで、測定物体の放射率がサンプル毎に変化す
る場合あるいは温度測定中に変化する場合でも、測定物
体の温度を測定することが可能になる。
The present invention is not limited to the above-mentioned embodiments, but can be carried out by appropriately modifying it without departing from the scope of the invention. For example, the temperature measurement method shown in the above embodiment,
By applying the method to the wafer temperature measurement in the semiconductor device manufacturing process, the temperature of the measurement object can be measured even when the emissivity of the measurement object changes for each sample or during the temperature measurement.

【0062】[0062]

【発明の効果】本発明によれば、周囲物体からの放射光
があっても、測定物体の温度を正確に測定できる温度測
定方法、温度測定装置、半導体装置の製造方法、及び記
憶媒体を提供できる。
According to the present invention, there are provided a temperature measuring method, a temperature measuring device, a semiconductor device manufacturing method, and a storage medium, which can accurately measure the temperature of a measuring object even if there is radiated light from a surrounding object. it can.

【0063】すなわち、測定物体の放射率の波長依存性
と周囲物体の放射の影響を考慮した温度測定アルゴリズ
ムを構築し、測定物体の放射率を異なる3波長以上の波
長で測定する方法を用いることにより、半導体プロセス
におけるウエハ温度測定のように、測定物体の放射率が
サンプル毎に変化する場合あるいは温度測定中に変化す
る場合でも、測定物体の温度を測定することが可能にな
る。
That is, use a method of constructing a temperature measurement algorithm in consideration of the wavelength dependence of the emissivity of the measuring object and the influence of the radiation of the surrounding object, and measuring the emissivity of the measuring object at three or more different wavelengths. This makes it possible to measure the temperature of the measurement object even when the emissivity of the measurement object changes from sample to sample or during temperature measurement, as in the wafer temperature measurement in a semiconductor process.

【0064】また、ウエハ周りのヒーターやチャンバ壁
など周囲物体からの放射光がウエハ表面に入射してしま
い、ウエハの放射光と区別できないような場合でも、測
定物体と周囲物体の温度を正確に測定することができ
る。
Even when the radiation from the surrounding objects such as the heater around the wafer and the chamber wall is incident on the wafer surface and cannot be distinguished from the radiation from the wafer, the temperatures of the measurement object and the surrounding objects can be accurately measured. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る温度測定モデルを示
す図。
FIG. 1 is a diagram showing a temperature measurement model according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るアルゴリズムの連立
方程式の挙動を表したグラフ。
FIG. 2 is a graph showing the behavior of simultaneous equations of the algorithm according to the embodiment of the present invention.

【図3】従来技術と本発明のアルゴリズムによる温度推
定精度の比較結果を示す図。
FIG. 3 is a diagram showing a comparison result of temperature estimation accuracy by an algorithm of the related art and that of the present invention.

【図4】本発明の実施の形態に係る温度測定装置の構成
を示す図。
FIG. 4 is a diagram showing a configuration of a temperature measuring device according to an embodiment of the present invention.

【図5】本発明の実施の形態に係る分光装置の構成を示
す図。
FIG. 5 is a diagram showing a configuration of a spectroscopic device according to an embodiment of the present invention.

【図6】本発明の実施の形態に係る光源装置の構成を示
す図。
FIG. 6 is a diagram showing a configuration of a light source device according to an embodiment of the invention.

【図7】本発明の実施の形態に係る光学伝達装置の構成
を示す図。
FIG. 7 is a diagram showing a configuration of an optical transmission device according to an embodiment of the present invention.

【図8】本発明の実施の形態に係る分光装置の変形例の
構成を示す図。
FIG. 8 is a diagram showing a configuration of a modified example of the spectroscopic device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100…温度測定装置 1…光源装置 2…チョッパ装置 3…光学伝達装置 4…分光装置 5…受光装置 6…チョッパ装置 7…光学伝達装置 8…分光装置 9…受光装置 10…制御装置 11…測定物体 12…周囲物体 13…放射光 14…放射光 15…照明光 16…反射光 17…コリメートレンズ 181、182…ハーフミラー 191、192、193…干渉フィルタ 201、202、203…光 211、212、213…集光レンズ 221、222、223…センサ 23…スリット 24…回折格子 31…バンドルファイバ 32…ロット 33…照明用ファイバ 34…受光用ファイバ 51…光源 52…ダイクロイックミラー 53…光源 54…集光レンズ 100 ... Temperature measuring device 1 ... Light source device 2 ... Chopper device 3 ... Optical transmission device 4. Spectroscopic device 5 ... Light receiving device 6 ... Chopper device 7 ... Optical transmission device 8 ... Spectroscopic device 9 ... Light receiving device 10 ... Control device 11 ... Measuring object 12 ... Surrounding objects 13 ... Synchrotron radiation 14 ... Synchrotron radiation 15 ... Illumination light 16 ... Reflected light 17 ... Collimating lens 181, 182 ... Half mirror 191, 192, 193 ... Interference filter 201, 202, 203 ... Light 211, 212, 213 ... Condensing lens 221, 222, 223 ... Sensor 23 ... Slit 24 ... Diffraction grating 31 ... Bundled fiber 32 ... lot 33 ... Fiber for illumination 34 ... Fiber for receiving light 51 ... Light source 52 ... Dichroic mirror 53 ... Light source 54 ... Focusing lens

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】測定物体の放射光と反射光を複数種類の波
長で測定し、 前記反射光の測定結果から前記測定物体の放射率を算出
し、 周囲物体の放射率が波長に依存しないと仮定あるいは依
存する場合は既知の値であると仮定し、各測定波長によ
る測定結果から方程式を構築し、 この方程式を最も満足する解を求めることで、前記測定
物体の温度と前記周囲物体の温度を測定することを特徴
とする温度測定方法。
1. The radiated light and the reflected light of a measuring object are measured at a plurality of wavelengths, the emissivity of the measuring object is calculated from the measurement result of the reflected light, and the emissivity of a surrounding object does not depend on the wavelength. Assuming that the values are known if assumed or dependent, construct an equation from the measurement results at each measurement wavelength, and find the solution that best satisfies this equation to determine the temperature of the measurement object and the temperature of the surrounding object. A method for measuring temperature, which comprises measuring.
【請求項2】前記測定物体の放射光と反射光を3種類の
波長で測定することを特徴とする請求項1に記載の温度
測定方法。
2. The temperature measuring method according to claim 1, wherein the emitted light and the reflected light of the measuring object are measured at three kinds of wavelengths.
【請求項3】前記測定物体の放射光と反射光を3種類以
上の波長で測定し、 各測定波長による測定結果から方程式を構築し、 この方程式を最も満足する解の郡を求め、これらの解の
郡から信頼度の最も高い解を抽出することで、前記測定
物体の温度と前記周囲物体の温度を測定することを特徴
とする請求項1に記載の温度測定方法。
3. The emitted light and the reflected light of the measurement object are measured at three or more kinds of wavelengths, an equation is constructed from the measurement results at each measurement wavelength, and a group of solutions that most satisfy this equation is obtained. The temperature measuring method according to claim 1, wherein the temperature of the measurement object and the temperature of the surrounding object are measured by extracting a solution having the highest reliability from a group of solutions.
【請求項4】請求項1乃至3のいずれかに記載の温度測
定方法によるアルゴリズムを搭載し、 前記測定物体を照明する光源と、 この光源からの照明光を前記測定物体まで伝達する第1
の光伝達手段と、 前記測定物体の放射光及び反射光における所望の波長を
分光し複数の受光素子に導く分光手段と、 前記測定物体の放射光及び反射光を前記分光手段まで伝
達する第2の光伝達手段と、 前記受光素子からの出力を増幅する受光手段と、 を具備したことを特徴とする温度測定装置。
4. A light source for illuminating the measurement object, and an illumination light from the light source for transmitting the illumination light from the light source to the measurement object, the algorithm comprising the algorithm according to any one of claims 1 to 3.
A light transmitting means, a spectroscopic means for splitting a desired wavelength in the emitted light and the reflected light of the measuring object to guide to a plurality of light receiving elements, and a second means for transmitting the emitted light and the reflected light of the measuring object to the spectroscopic means And a light receiving means for amplifying an output from the light receiving element.
【請求項5】前記光源からの照明光を遮光する第1の遮
光手段と、 前記測定物体の放射光及び反射光を遮光する第2の遮光
手段と、 を備えたことを特徴とする請求項4に記載の温度測定装
置。
5. A first light blocking means for blocking the illumination light from the light source, and a second light blocking means for blocking the emitted light and the reflected light of the measurement object. The temperature measuring device according to 4.
【請求項6】前記第1の遮光手段を閉じ前記第2の遮光
手段を開くことで、前記測定物体の放射光と前記周囲物
体の放射光を前記第2の光伝達手段に導き、前記第1の
遮光手段を開き前記第2の遮光手段を開くことで、前記
測定物体の放射光及び反射光と前記周囲物体の放射光を
前記第2の光伝達手段に導くよう制御する制御手段を備
えたことを特徴とする請求項5に記載の温度測定装置。
6. The emitted light of the measurement object and the emitted light of the surrounding object are guided to the second light transmitting means by closing the first light shielding means and opening the second light shielding means, and the second light transmitting means is provided. By opening the first light blocking means and opening the second light blocking means, there is provided control means for controlling the emitted light and the reflected light of the measurement object and the emitted light of the surrounding object to be guided to the second light transmitting means. The temperature measuring device according to claim 5, wherein
【請求項7】前記光源からの照明光の一部における所望
の波長を分光し複数の受光素子に導く第2の分光手段
と、 前記光源からの照明光の一部を前記第2の分光手段まで
伝達する第3の光伝達手段と、 前記受光素子からの出力を増幅する第2の受光手段と、 を具備したことを特徴とする請求項4に記載の温度測定
装置。
7. A second spectroscopic unit that disperses a desired wavelength in a part of the illumination light from the light source and guides it to a plurality of light receiving elements, and a part of the illumination light from the light source in the second spectroscopic unit. The temperature measuring device according to claim 4, further comprising: a third light transmitting unit that transmits the light to the second light transmitting unit, and a second light receiving unit that amplifies the output from the light receiving element.
【請求項8】前記光源はパルス駆動され、前記各受光手
段は前記光源のパルスタイミングに同期して前記測定物
体の放射光及び反射光を受光することを特徴とする請求
項4に記載の温度測定装置。
8. The temperature according to claim 4, wherein the light source is pulse-driven, and each of the light receiving means receives the emitted light and the reflected light of the measuring object in synchronization with the pulse timing of the light source. measuring device.
【請求項9】前記各分光手段は回折格子からなり、回折
された光を複数の受光素子に導くことを特徴とする請求
項4乃至8のいずれかに記載の温度測定装置。
9. The temperature measuring device according to claim 4, wherein each of the spectroscopic means comprises a diffraction grating and guides the diffracted light to a plurality of light receiving elements.
【請求項10】請求項1に記載の温度測定方法を用いて
半導体装置を製造することを特徴とする半導体装置の製
造方法。
10. A method of manufacturing a semiconductor device, which comprises manufacturing a semiconductor device by using the temperature measuring method according to claim 1.
【請求項11】測定物体の放射光と反射光を複数種類の
波長で測定し、 前記反射光の測定結果から前記測定物体の放射率を算出
し、 周囲物体の放射率が波長に依存しないと仮定あるいは依
存する場合は既知の値であると仮定し、各測定波長によ
る測定結果から方程式を構築し、 この方程式を最も満足する解を求めることで、前記測定
物体の温度と前記周囲物体の温度を測定するプログラム
を記憶したことを特徴とするコンピュータにより読み取
り可能な記憶媒体。
11. The radiated light and the reflected light of a measuring object are measured at a plurality of wavelengths, the emissivity of the measuring object is calculated from the measurement result of the reflected light, and the emissivity of surrounding objects is independent of the wavelength. Assuming that the values are known if assumed or dependent, construct an equation from the measurement results at each measurement wavelength, and find the solution that best satisfies this equation to determine the temperature of the measurement object and the temperature of the surrounding object. A computer-readable storage medium characterized by storing a program for measuring.
JP2002008928A 2002-01-17 2002-01-17 Temperature measuring method and device, semiconductor device manufacturing method, and memory medium Pending JP2003214956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008928A JP2003214956A (en) 2002-01-17 2002-01-17 Temperature measuring method and device, semiconductor device manufacturing method, and memory medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008928A JP2003214956A (en) 2002-01-17 2002-01-17 Temperature measuring method and device, semiconductor device manufacturing method, and memory medium

Publications (1)

Publication Number Publication Date
JP2003214956A true JP2003214956A (en) 2003-07-30

Family

ID=27647060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008928A Pending JP2003214956A (en) 2002-01-17 2002-01-17 Temperature measuring method and device, semiconductor device manufacturing method, and memory medium

Country Status (1)

Country Link
JP (1) JP2003214956A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020384A (en) * 2006-07-14 2008-01-31 Osaka Gas Co Ltd Device for measuring radiation temperature
JP2013525767A (en) * 2010-08-11 2013-06-20 天津易通▲電▼▲気▼技▲術▼▲開▼▲発▼集▲団▼有限公司 Quantum correction method and system for improving temperature measurement accuracy of radiation thermometer
DE102012024418A1 (en) * 2012-12-14 2014-06-18 Sikora Ag A method and apparatus for non-contact temperature determination of a moving article of unknown emissivity
JP2014534424A (en) * 2011-10-17 2014-12-18 セントロターム・サーマル・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Equipment for measuring substrate temperature
WO2015037352A1 (en) * 2013-09-12 2015-03-19 株式会社日立製作所 Multi-wavelength radiation thermometer and multi-wavelength radiation temperature measurement method
KR101573055B1 (en) 2013-07-17 2015-11-30 어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드, 상하이 method for measuring temperature of film in reaction chamber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020384A (en) * 2006-07-14 2008-01-31 Osaka Gas Co Ltd Device for measuring radiation temperature
JP2013525767A (en) * 2010-08-11 2013-06-20 天津易通▲電▼▲気▼技▲術▼▲開▼▲発▼集▲団▼有限公司 Quantum correction method and system for improving temperature measurement accuracy of radiation thermometer
US9091602B2 (en) 2010-08-11 2015-07-28 Tianjin Yitong Electric Technology Development Co., Ltd. Quantum theory correction method and system for improving accuracy of temperature measurement of radiation thermometer
JP2014534424A (en) * 2011-10-17 2014-12-18 セントロターム・サーマル・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Equipment for measuring substrate temperature
DE102012024418A1 (en) * 2012-12-14 2014-06-18 Sikora Ag A method and apparatus for non-contact temperature determination of a moving article of unknown emissivity
US9804030B2 (en) 2012-12-14 2017-10-31 Sikora Ag Method and device for contactlessly determining the temperature of a moving object having an unknown degree of emission
KR101573055B1 (en) 2013-07-17 2015-11-30 어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드, 상하이 method for measuring temperature of film in reaction chamber
WO2015037352A1 (en) * 2013-09-12 2015-03-19 株式会社日立製作所 Multi-wavelength radiation thermometer and multi-wavelength radiation temperature measurement method

Similar Documents

Publication Publication Date Title
US7619742B2 (en) High-speed spectrographic sensor for internal combustion engines
US8629397B2 (en) Spectrophotometer and method for calibrating the same
KR20150037977A (en) Dual spectrometer
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
Haibach et al. Precision in multivariate optical computing
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
JP2003214956A (en) Temperature measuring method and device, semiconductor device manufacturing method, and memory medium
WO2020075548A1 (en) Microspectroscopy device, and microspectroscopy method
JP2008268106A (en) Method of measuring temperature information
JP4324693B2 (en) Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source
JP2021067611A5 (en)
WO2023041566A1 (en) Method for calibrating a spectrometer device
JP3462573B2 (en) Method and apparatus for measuring component concentration etc. of liquid sample
JPH0572039A (en) Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function
US6914246B2 (en) Method and apparatus for spatially resolving flame temperatures using ultraviolet light emission
CN108323181B (en) Method and apparatus for on-chip derivative spectroscopy
JP6091291B2 (en) Spectrometer for pulsed light source
Lázaro et al. Optimizing the Raman signal for characterizing organic samples: the effect of slit aperture and exposure time
JP3242232B2 (en) Flame detection and combustion diagnostic device
RU2219504C2 (en) Actual temperature pyrometer
JP2000105152A (en) Method and apparatus for measurement of temperature
JP2018040623A (en) Spectrometer and temperature measurement device
JP2005069965A (en) Color measuring apparatus
JPS5992318A (en) Spectrometry method
JPH0712718A (en) Spectral analysis device