JPS5992318A - Spectrometry method - Google Patents
Spectrometry methodInfo
- Publication number
- JPS5992318A JPS5992318A JP20314882A JP20314882A JPS5992318A JP S5992318 A JPS5992318 A JP S5992318A JP 20314882 A JP20314882 A JP 20314882A JP 20314882 A JP20314882 A JP 20314882A JP S5992318 A JPS5992318 A JP S5992318A
- Authority
- JP
- Japan
- Prior art keywords
- photometry
- light
- light source
- output
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004611 spectroscopical analysis Methods 0.000 title claims abstract 9
- 238000000034 method Methods 0.000 title claims description 18
- 238000005375 photometry Methods 0.000 claims abstract description 56
- 238000000691 measurement method Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、基準物に対して光源から光を照射し1.そ
の反射光重たは透過波を分光し、その各波長出力をそれ
ぞれ測定しくこれを基準測光と称す。DETAILED DESCRIPTION OF THE INVENTION This invention irradiates light from a light source onto a reference object. The reflected light or transmitted wave is divided into spectra and the output of each wavelength is measured, which is called reference photometry.
)、同一光源からの光を被測定物に対して照射し、その
反射光1だは透過光も分光して、その各波長の出力を測
定しくこれをサンプル測光と称す。)、これら両側光に
おいて互いに対応する波長出力を比較して、例えば被測
定物の色を判別する分光測定方法に関する。), the object to be measured is irradiated with light from the same light source, the reflected light 1 and the transmitted light are also separated, and the output of each wavelength is measured. This is called sample photometry. ), the present invention relates to a spectroscopic measurement method in which, for example, the color of an object to be measured is determined by comparing corresponding wavelength outputs in these two-sided lights.
従来、上記のような分光測定方法には、光゛電子増倍管
を用いた分光光度計を用いるものがあるが、これは基準
およびサンプル両側光を同時に行なえるが、測定に時間
がかかるという問題があった。Conventionally, the above-mentioned spectroscopic measurement method uses a spectrophotometer using a photomultiplier tube, but this can simultaneously measure both the reference and sample sides, but it takes a long time to measure. There was a problem.
また自己走査形固体受光素子を用いるものもあるが、こ
れは測定に要する時間は短かいが、サンプル測光と基準
測光とを同一時間に行なうことができず、光源の光度が
基準測光時とサンプル測光時とでは変化しておシ、正確
な測定ができないおそれがあり、そのため、光源の変動
を補正する必要があった、特に、この光源としてはノ・
ロゲンランプを使用することが多いが、このランプの光
源変動には分光分布の変化を伴う比較的長い周期を持つ
長期変動と、ごく短い周期を持っており波長に依存しな
い短期変動とがあり、この発明はこれら両変動を補正す
るものである。There are also devices that use a self-scanning solid-state photodetector, but although this requires a short measurement time, it is not possible to perform sample photometry and reference photometry at the same time, so the luminous intensity of the light source is different from that during reference photometry. There is a risk that accurate measurements may not be possible due to changes during photometry, so it was necessary to compensate for fluctuations in the light source, especially for this light source.
Rogen lamps are often used, and the light source fluctuations of these lamps include long-term fluctuations with relatively long cycles accompanied by changes in spectral distribution, and short-term fluctuations with extremely short cycles that are independent of wavelength. The invention corrects for both of these variations.
そのため、この発明は、基準測光よりも前に光源からの
直接光を検出しくこの出力をSorとする。Therefore, in the present invention, direct light from the light source is detected before reference photometry, and this output is set as Sor.
)、この直接光を分光して各波長ごとに検出しくこの検
出々力をDλdr とする。)、サンプル81す光の前
に光源からの直接光を検出しくこの出力をSosとする
。)、この直接光を分光して各波長ごとに検出しくこの
検出々力をDλdsとする。)、基準測光の際に光源か
らの直接光を検出しくこの出力をSlrとする。)、サ
ンプル測光の際に光源からの直接光を検出しくこの出力
をS’sとする。)、Sor X5os 、、 Sjr
XS1.s XDλdr 、 Dλdsに基づいてサ
ンプル測光の際の長期変動と短期変動とを補正する。), this direct light is separated and detected for each wavelength, and this detection power is defined as Dλdr. ), the direct light from the light source is detected before the light from the sample 81, and this output is designated as Sos. ), this direct light is spectrally separated and detected for each wavelength, and this detection power is defined as Dλds. ), direct light from the light source is detected during reference photometry, and this output is designated as Slr. ), direct light from the light source is detected during sample photometry, and this output is designated as S's. ), Sor X5os,, Sjr
XS1. Correct long-term fluctuations and short-term fluctuations during sample photometry based on s XDλdr and Dλds.
以下、この発明を図示の1実施例に基づいて詳細に説明
する。Hereinafter, the present invention will be explained in detail based on one embodiment shown in the drawings.
捷ず、この発明による方法に使用する装置について説明
する。第1図において、■は光源で、例工ばハロゲノラ
ンプである。この光源1からの光はレンズ2.3によっ
て照射用光ファイバ4に入り、基準物または測定対象物
に照射される。その反射光(斗たけ透過光)は反射用光
ファイバ5からレンズ6.7を介して、分光器8内のス
リット9、凹面鏡IO1分散素子II、凹面鏡12を通
って分光され、自己走査形固体受光素子13に供給され
る。Without further ado, the apparatus used in the method according to the present invention will be described. In FIG. 1, ``■'' is a light source, for example a halogen lamp. The light from this light source 1 enters the irradiation optical fiber 4 through the lens 2.3 and is irradiated onto a reference object or an object to be measured. The reflected light (transmitted light by Totake) is dispersed from the reflective optical fiber 5 through the lens 6.7, the slit 9 in the spectrometer 8, the concave mirror IO1 dispersion element II, and the concave mirror 12, and is dispersed into a self-scanning solid-state. The light is supplied to the light receiving element 13.
自己走査形固体受光素子13は、各波長に対応するn個
のホトダイオードをアレイ状に集積したもので、第2図
に示すタロツクパルス発生器I4から与えられるタロツ
クパルスによって第1番目のホトダイオードからn番目
のホトダイオードまでを順に走査して光電変換信号を出
方するものである。The self-scanning solid-state photodetector 13 has n photodiodes corresponding to each wavelength integrated in an array. It sequentially scans up to the photodiode and outputs a photoelectric conversion signal.
レンズ2.3間に設けたハーフミ1−14によって分割
された光源Jからの光は、レンズ6.7間に設けたハー
フミラ−15によって分光器8に導ひかれ、同時にハー
フミラ−16、レンズI7によって補助検出器I8に導
ひかれ、補助検出器1日は光電変換出力を出力する。1
9.20はシャッタで、シャッタ19はハーフミラ−1
5,16間に設けられ、シャッタ20はハーフミラ−1
5、レンズ5間に設けられている。基準測光及びサンプ
ル測光の場合にId−シャッタ19を閉じ、シャッタ2
oを開く。捷だ光源1の光を直接に分光器8に供給する
場合(これを直接測光と称す。)には、逆にシャッタ1
9を開き、シャッタ20を閉じる。The light from the light source J, which is split by the half mirror 1-14 provided between the lenses 2 and 3, is guided to the spectrometer 8 by the half mirror 15 provided between the lenses 6 and 7, and is simultaneously split by the half mirror 16 and the lens I7. It is led to the auxiliary detector I8, and the auxiliary detector 1 outputs a photoelectric conversion output. 1
9.20 is the shutter, shutter 19 is half mirror 1
5 and 16, and the shutter 20 is provided between the half mirror 1
5. It is provided between the lenses 5. In the case of reference photometry and sample photometry, Id-shutter 19 is closed and shutter 2 is closed.
Open o. When the light from the shunted light source 1 is directly supplied to the spectrometer 8 (this is called direct photometry), the shutter 1
9 and close the shutter 20.
自己走査型固体受光素子13の各光電変換出力は、増幅
器21で増幅された後にA/D変換器22でディジタル
信号に変換されてメモリ23に記憶される。これら記憶
をさせるアドレスは、自己走査型固体受光素子13を走
査するだめにクロックパルス発生器14が発生するタロ
ツクパルスをカウント出力いるカウンタ24のカウント
出力を下位前ビットとするアドレス信号24aとマイク
ロコンピュータ25から供給される上位前ビットとする
アドレス信号25aとによって決定される。補助検出器
I8の光電変換出力も増幅器26で増幅された後にA/
D変換器27でディジタル信号に変換されてメモリ28
に記憶される。これら記憶をさせるアドレスはマイクロ
コンピュータ25から供給されるアドレス信号25bに
よって指定される。なお、25cはクロックパルス発生
器14に対する測定開始信号、25dはメモリ23に対
する読み出しアドレス信号、25eはメモリ28に対す
る読み出しアドレス信号である。Each photoelectric conversion output of the self-scanning solid-state photodetector 13 is amplified by an amplifier 21 and then converted into a digital signal by an A/D converter 22 and stored in a memory 23. The addresses to be stored are an address signal 24a whose lower previous bit is the count output of a counter 24 which counts tarock pulses generated by the clock pulse generator 14 to scan the self-scanning solid-state light receiving element 13, and a microcomputer 25. The address signal 25a is determined by the upper previous bit supplied from the address signal 25a. The photoelectric conversion output of the auxiliary detector I8 is also amplified by the amplifier 26 and then converted to A/
It is converted into a digital signal by the D converter 27 and stored in the memory 28.
is memorized. These addresses to be stored are specified by an address signal 25b supplied from the microcomputer 25. Note that 25c is a measurement start signal for the clock pulse generator 14, 25d is a read address signal for the memory 23, and 25e is a read address signal for the memory 28.
この実施例では、第3図のフローチャートに示すように
基準測光開始信号またはサンプル測光開始信号が入力さ
れるまで所定時間(光源lの長期変動の変動周期よりも
充分に短かい時間)おきに光源直接測光を行ない、自己
走査型固定受光素子13からn個の光電変換出力を得て
、これらをディジタル変換したn個のDλdを得て、メ
モリ23に記憶させると共に、補助検出器18から光電
変換出力を得て、これをディジタル変換したSoを得て
、メモリ28に記憶させる。これらn個のDλd及びS
oは、新たに光源直接測光を行なうごとに更新される。In this embodiment, as shown in the flowchart of FIG. 3, the light source is activated at predetermined intervals (a time sufficiently shorter than the fluctuation period of the long-term fluctuation of the light source l) until the reference photometry start signal or the sample photometry start signal is input. Direct photometry is performed, n photoelectric conversion outputs are obtained from the self-scanning fixed light receiving element 13, and n Dλd are obtained by digitally converting these outputs. The output is obtained and converted into digital to obtain So, which is stored in the memory 28. These n Dλd and S
o is updated every time new light source direct photometry is performed.
そして基準測光開始信号が入力されると、基準測光を行
ない、光源直接測光と同様にしてn個のDλmr と1
個の5i11−を得て、メモリ23.28に記憶させる
。そして、メモリ28に記憶されているところのこの基
準測光の直前の光源直接測光によって得たSoをSor
とし、第4図のサブルーチンに示すようにSor/S1
.rを計算し、n個のDスmrと5orA4rとを乗算
してn個のDλrを得て、これらDλrと共にDλdを
Dλdrとして記憶させる。When the reference photometry start signal is input, reference photometry is performed and n Dλmr and 1
5i11- is obtained and stored in the memory 23.28. Then, the So obtained by direct light metering from the light source immediately before this reference metering, which is stored in the memory 28, is
As shown in the subroutine of Fig. 4, Sor/S1
.. r is calculated, n Dsmr and 5orA4r are multiplied to obtain n Dλr, and Dλd is stored together with these Dλr as Dλdr.
次ニサンプル測光開始信号が入力されるまで、上述した
ように光源直接測光を繰返すが、サンプル測光開始信号
が入力されると、n個のDλms と1個のS’sを得
て、メ七り23.28に記憶させる。The light source direct photometry is repeated as described above until the next two-sample photometry start signal is input, but when the sample photometry start signal is input, n Dλms and one S's are obtained, and the second sample photometry start signal is input. 23.28.
その後に第5図のサブルーチンに示すようニ、コのサン
プル測光の直前の光源直接測光の際のSoをSosとし
、Sos/S4.sを計算し、n個の91m8 とS
o s/S 4. sとをそれぞれ乗算し、n個のDλ
Sを得る。After that, as shown in the subroutine of FIG. 5, the So during the light source direct photometry immediately before the sample photometry in steps 2 and 4 is set to Sos, and Sos/S4. Calculate s, n 91m8 and S
o s/s 4. s, respectively, and n Dλ
Get S.
そして、このサンプル測光の直前の光源直接測光の際の
n個のDλdをDλds とし、それぞれ対応する(
同一波長の)Dλdr 、VDλde 、、 DλsX
Dλrにおいを計算し、n個のRを得る。これらは基準
物に対する測定対象物の反射率、透過率あるいは吸収率
てあって、これらを利用して例えば測定対象物の色を判
定する。これ以後、別の測定対象物について同様に測定
するが、基準測光は当初に1度行なえばよく、測定対象
物が変わるごとに基準測光をやりなおす必要はない。Then, let n Dλd during light source direct photometry immediately before this sample photometry be Dλds, and each corresponds to (
) Dλdr , VDλde , DλsX of the same wavelength
Calculate Dλr smell and obtain n R. These are the reflectance, transmittance, or absorption of the object to be measured relative to a reference object, and these are used to determine, for example, the color of the object to be measured. Thereafter, another measurement object is measured in the same manner, but the reference photometry only needs to be performed once at the beginning, and there is no need to perform the reference photometry again each time the measurement object changes.
このような分光測定方法では、基準測光およびサンプル
測光によって得た各波長の出力D^mr。In such a spectroscopic measurement method, the output D^mr of each wavelength obtained by reference photometry and sample photometry.
Dλmsを、これら測光の直前にそれぞれ行なった直接
測光の際の光源で基準測光およびサンプル測光を行なっ
た場合の値Dλr、 DλSに補助検出器1日の出力
J、r 、、S4s X5or 、 Sosを用いて換
算し、基準測光およびサンプル測光のそれぞれ直前の直
接゛測光の際に自己走査型固体受光素子13から得たD
λdr。Dλms is the value Dλr when standard photometry and sample photometry are performed using the light source used in direct photometry performed immediately before these photometry, and DλS is the daily output of the auxiliary detector J, r, , S4s X5or, Sos. D obtained from the self-scanning solid-state photodetector 13 during direct photometry immediately before reference photometry and sample photometry, respectively.
λdr.
DλdsとDλr、 DλSとによって上記Rの演算
を行なっているので、Dλdrによって基準測光および
サンプル測光を行なった状態に換算でき、光源1の長期
変動と短期変動との影響を除去できる。従って従来の自
己走査型固体受光素子を用いた分光測定方法では問題で
あった光源の長期変動と短期変動とに起因する誤差を除
去し、自己走査型固体受光素子の測定時間が短かいとい
う長所を生かせる。Since the calculation of R is performed using Dλds, Dλr, and DλS, it is possible to convert to the state in which reference photometry and sample photometry have been performed using Dλdr, and the influence of long-term fluctuations and short-term fluctuations of the light source 1 can be removed. Therefore, errors caused by long-term and short-term fluctuations of the light source, which were problems with conventional spectroscopic measurement methods using self-scanning solid-state photodetectors, can be eliminated, and the advantage of self-scanning solid-state photodetectors is that the measurement time is short. I can make the most of it.
上記の実施例ではファイバ4.5を用いて基準物や測定
対象物に光を照射したり、その反射光(または透過光〕
を分光器8に導入したシしたが、ファイバに限ったもの
で公知の種々の光学系を用いることもてきる。まだ光路
の分割にハーフミラ−を用い、光路の切換にはシャッタ
を用いたか、可動ミラー等を用いる等の周知の構成を使
用することもできる。In the above embodiment, the fiber 4.5 is used to irradiate light onto the reference object or the object to be measured, and the reflected light (or transmitted light)
was introduced into the spectrometer 8, but it is also possible to use various known optical systems that are limited to fibers. It is also possible to use a well-known structure such as using a half mirror for dividing the optical path and using a shutter or a movable mirror for switching the optical path.
第1図はこの発明による分光測定方法に用いる光学系統
を示す図、第2図は同方法に用いる電気回路のブロック
図、第3図は同方法の過程を示すフローチャート、第4
図は第3図のフローチャートの一部の過程の詳細なフロ
ーチャート、第5図は第3図のフローチャートの第4図
に示した過程とは別の過程の詳姐なフローチャートであ
る。
■・・・光源、8・・・分光器、13・自己走査型固体
受光素1.18・・・補助検出器、25・・・マイクロ
コンピュ特許出願人 大和製衡株式会社
代 理 人 清 水 哲 ほか
2名尤I 図
′:X2 図
’X3 図FIG. 1 is a diagram showing an optical system used in the spectroscopic measurement method according to the present invention, FIG. 2 is a block diagram of an electric circuit used in the method, FIG. 3 is a flow chart showing the process of the method, and FIG.
This figure is a detailed flowchart of a part of the process of the flowchart of FIG. 3, and FIG. 5 is a detailed flowchart of a process different from the process shown in FIG. 4 of the flowchart of FIG. ■...Light source, 8...Spectrometer, 13.Self-scanning solid-state photodetector 1.18...Auxiliary detector, 25...Microcomputer patent applicant Yamato Seiko Co., Ltd. Agent Shimizu Tetsu and two others I Figure':X2 Figure'X3 Figure
Claims (1)
たは透過光を分光してその各波長の出力Dλmrをそれ
ぞれ測定する基準測光過程と、上記光源からの光を測定
対象物に照射しその反射光または透過光を分光して各波
長の出力Dλmsをそれぞれ測定するサンプル測光過程
とを有し、上記基準測光の前に上記光源からの直接光を
分光してその波長の出力Dλdrを測定すると共に上記
光源からの直接光を分光せずに測定し出力Sorを得る
過程と、上記サンプル測光の前に上記光源からの直、接
光を分光してその各波長の出力Dλdsを測定すると共
に上記光源からの直接光を分光せずに測定し出力SoS
を得る過程と、上記基準測光の1祭に上記光源からの直
接光を分光せずに測定し出力Jrを得る過程と、上記サ
ンプル測光の際に上記光源からの直接光を分光せずに測
定し出力Slsを得る過程と、互いに対応するDλmr
、Dλme XDλdr XDλdsにおいてDλmr
Sl、r の演算を行なう過程とからなる分光測定方法。[Scope of Claims] [1] A reference photometry process in which a reference object is irradiated with light from a light source, the reflected light or transmitted light is separated, and the output Dλmr of each wavelength is measured, and the light from the light source is A sample photometry process in which the output Dλms of each wavelength is measured by irradiating the object to be measured and dispersing the reflected light or transmitted light, and before the reference photometry, the direct light from the light source is spectrally analyzed. The process of measuring the wavelength output Dλdr and also measuring the direct light from the light source without spectroscopy to obtain the output Sor, and the process of measuring the direct light from the light source without spectroscopy to obtain the output Sor, and before the sample photometry, the process of spectroscopy of the direct light from the light source to obtain its respective wavelengths. In addition to measuring the output Dλds, the output SoS is also measured by measuring the direct light from the light source without spectroscopy.
The process of obtaining the output Jr by measuring the direct light from the light source without spectroscopy during the first stage of the standard photometry, and the process of measuring the direct light from the light source without spectroscopy during the sample photometry. and the process of obtaining the output Sls and the process of obtaining the output Sls and the corresponding Dλmr
, Dλme XDλdr Dλmr in XDλds
A spectroscopic measurement method comprising a process of calculating Sl and r.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20314882A JPS5992318A (en) | 1982-11-18 | 1982-11-18 | Spectrometry method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20314882A JPS5992318A (en) | 1982-11-18 | 1982-11-18 | Spectrometry method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5992318A true JPS5992318A (en) | 1984-05-28 |
Family
ID=16469214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20314882A Pending JPS5992318A (en) | 1982-11-18 | 1982-11-18 | Spectrometry method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5992318A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01308930A (en) * | 1988-06-08 | 1989-12-13 | Dainippon Screen Mfg Co Ltd | Microspectroscopic apparatus |
US4995727A (en) * | 1987-05-22 | 1991-02-26 | Minolta Camera Kabushiki Kaisha | Compact diffusion light mixing box and colorimeter |
EP0699898A3 (en) * | 1994-08-31 | 1996-10-30 | Bayer Ag | A dual beam tunable spectrometer |
DE102010025277A1 (en) * | 2010-06-28 | 2011-12-29 | Sensorik-Bayern Gmbh | Device for controlling order of coating on tubular substrate e.g. blood bag, has evaluation and control unit generating control instructions for controlling order of material of coating unit i.e. screw extruder, based on layer thickness |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5352183A (en) * | 1976-09-13 | 1978-05-12 | Kollmorgen Tech Corp | Parallel detecting spectrophotometer |
JPS5634050A (en) * | 1979-08-29 | 1981-04-06 | Matsushita Seiko Co Ltd | Control device for air conditioner |
-
1982
- 1982-11-18 JP JP20314882A patent/JPS5992318A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5352183A (en) * | 1976-09-13 | 1978-05-12 | Kollmorgen Tech Corp | Parallel detecting spectrophotometer |
JPS5634050A (en) * | 1979-08-29 | 1981-04-06 | Matsushita Seiko Co Ltd | Control device for air conditioner |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4995727A (en) * | 1987-05-22 | 1991-02-26 | Minolta Camera Kabushiki Kaisha | Compact diffusion light mixing box and colorimeter |
JPH01308930A (en) * | 1988-06-08 | 1989-12-13 | Dainippon Screen Mfg Co Ltd | Microspectroscopic apparatus |
EP0699898A3 (en) * | 1994-08-31 | 1996-10-30 | Bayer Ag | A dual beam tunable spectrometer |
AU702176B2 (en) * | 1994-08-31 | 1999-02-18 | Bayer Corporation | A dual beam tunable spectrometer |
DE102010025277A1 (en) * | 2010-06-28 | 2011-12-29 | Sensorik-Bayern Gmbh | Device for controlling order of coating on tubular substrate e.g. blood bag, has evaluation and control unit generating control instructions for controlling order of material of coating unit i.e. screw extruder, based on layer thickness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4076421A (en) | Spectrophotometer with parallel sensing | |
US4795256A (en) | Dual-wavelength spectrophotometry system | |
JPS63501098A (en) | Fiber optic spectrometer/colorimeter device | |
JP3761734B2 (en) | Optical measurement method and apparatus | |
US3936190A (en) | Fluorescence spectrophotometer for absorption spectrum analysis | |
JPH052931B2 (en) | ||
CN102753949B (en) | Spectrophotometer and method for measuring performance thereof | |
JP4324693B2 (en) | Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source | |
JPS5992318A (en) | Spectrometry method | |
EP0440443A2 (en) | Multispectral reflectometer | |
JP3102485B2 (en) | Spectrophotometer | |
JPS61266925A (en) | Double luminous flux measurement system using photoelectric converting element array | |
JP2000304694A (en) | Method and apparatus for grading of tea leaf | |
JPH0712718A (en) | Spectral analysis device | |
JPS62147344A (en) | Multiwavelength spectrophotometer | |
JPS63158431A (en) | Spectrophotometer | |
JPH06167390A (en) | Spectroscopic measuring method | |
JPH08159876A (en) | Spectrometric apparatus | |
US5061066A (en) | Method for realizing a primary photometric standard of optical radiation using a photodetector and photodetecting apparatus therefor | |
JP2761215B2 (en) | Fluorescent color measurement device | |
JPS61189424A (en) | Photometer | |
JPH0611392A (en) | Spectrophotometer | |
JPS601528A (en) | Spectrophotometer | |
JPS6315535B2 (en) | ||
JPS63275923A (en) | Light source for measuring color |