JP2003214685A - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JP2003214685A
JP2003214685A JP2002011073A JP2002011073A JP2003214685A JP 2003214685 A JP2003214685 A JP 2003214685A JP 2002011073 A JP2002011073 A JP 2002011073A JP 2002011073 A JP2002011073 A JP 2002011073A JP 2003214685 A JP2003214685 A JP 2003214685A
Authority
JP
Japan
Prior art keywords
air conditioning
temperature
air
measuring means
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002011073A
Other languages
Japanese (ja)
Other versions
JP4112868B2 (en
Inventor
Yasuo Takagi
康夫 高木
Tetsuya Funatsu
徹也 船津
Kazunori Iwabuchi
一徳 岩渕
Yuji Nakada
裕二 中田
Kiminaga Naito
君永 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Digital Solutions Corp
Original Assignee
Toshiba Corp
Toshiba IT Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba IT Solutions Corp filed Critical Toshiba Corp
Priority to JP2002011073A priority Critical patent/JP4112868B2/en
Publication of JP2003214685A publication Critical patent/JP2003214685A/en
Application granted granted Critical
Publication of JP4112868B2 publication Critical patent/JP4112868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system which carries out air conditioning operation with optimum energy saving. <P>SOLUTION: Heat exchange between air and cold water or hot water produced by a heat source machine (a refrigerator 1) is carried out by an air conditioning coil 3, and the air is supplied to a room. A controller 7 controls an inverter controlled fan 4 so that a room temperature measured by a room temperature measuring means 8 becomes a preset temperature, and it controls an inverter controlled pump 2 so that an air conditioning coil temperature measured by an air conditioning coil temperature measuring means 9 becomes a preset temperature. By this, it is controlled so that total power of the inverter controlled pump 2 and the inverter controlled fan 4 is minimized. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術の分野】本発明は、例えば、ビルや
病院などの建家内の冷暖房を行う空調システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system for heating and cooling a building such as a building or a hospital.

【0002】[0002]

【従来の技術】一般に、ビルの空調システムにおける部
屋温度の制御方式には、部屋の温度を測定してこれが目
標値になるように、熱源機が製造する冷水または温水の
流量を制御する定風量制御方式(CAV方式)と、冷水
または温水の水量は一定で風量を変える可変風量制御方
式(VAV方式)とがある。また、両者を組み合わせた
ハイブリッド方式もある。
2. Description of the Related Art Generally, a room temperature control method in a building air-conditioning system measures a room temperature and controls a flow rate of cold water or hot water produced by a heat source device so that the room temperature reaches a target value. There are a control system (CAV system) and a variable air volume control system (VAV system) in which the volume of cold or hot water is constant and the volume of air is changed. There is also a hybrid system that combines both.

【0003】定風量制御方式では、冷水(温水)の流量を
制御するために水循環系にポンプとバルブとを設け、ポ
ンプは一定回転数で水を送り出す一方、バルブで所望の
流量に調節する。この定風量制御方法ではポンプ動力が
中問負荷のときに無駄になるので、近年ではバルブでは
なくインバータ制御ポンプにより流量制御が行われる場
合が増えてきた。
In the constant air flow rate control system, a pump and a valve are provided in the water circulation system to control the flow rate of cold water (warm water), and the pump sends water at a constant rotation speed while the valve regulates the flow rate to a desired value. In this constant air flow rate control method, the pump power is wasted when the load is medium, so that in recent years, the flow rate control has been performed by the inverter control pump instead of the valve.

【0004】一方、可変流量制御方式では空調ファンが
一定回転数で空気を循環させ、その空気流量をダンパー
で調節するものである。この空気の流量調節により室温
を目標値に制御する。この場合も省エネルギーの観点か
らダンパーではなくインバータ制御ファンにて空気流量
を制御することが近年行われるようになっている。
On the other hand, in the variable flow rate control system, the air conditioning fan circulates air at a constant rotation speed and adjusts the air flow rate with a damper. The room temperature is controlled to a target value by adjusting the flow rate of the air. In this case as well, from the viewpoint of energy saving, controlling the air flow rate by an inverter control fan instead of a damper has recently been performed.

【0005】このように、従来の空調システムの制御で
は、部屋温度のフィードバックによりバルブやダンパー
を制御し、または、インバータ制御ポンプやインバータ
制御ファンを制御することにより、部屋温度を所定の値
に制御している。
As described above, in the conventional control of the air conditioning system, the room temperature is controlled to a predetermined value by controlling the valves and dampers by feedback of the room temperature or by controlling the inverter control pump and the inverter control fan. is doing.

【0006】一方、冷却塔は熱源機の発生する熱を大気
中に放散するための装置であるが、従来は一定温度の冷
却水を製造するように制御されている。空調用では一般
的に約32℃程度である。
On the other hand, the cooling tower is a device for dissipating the heat generated by the heat source unit into the atmosphere, but conventionally it is controlled so as to produce cooling water at a constant temperature. For air conditioning, it is generally about 32 ° C.

【0007】[0007]

【発明が解決しようとする課題】ところが、従来の空調
システムでは、水流量または空気流量のみを操作して室
温を制御しているので、必ずしも最もエネルギー消費が
少ない状態で運用されるとは限らない。
However, in the conventional air conditioning system, since the room temperature is controlled by operating only the water flow rate or the air flow rate, it is not always operated in the state of the least energy consumption. .

【0008】冷水戻り温度と冷凍機成績係数(COP)
との間、ファンやポンプに関し、その流量と所要動力と
の間には密接な相関関係がある。冷水戻り温度は一般的
には高いほうが冷凍機成績係数(COP)は高くなる。
また、ファンやポンプの所要動力は良く知られているよ
うに流量の3乗に比例する。特に、インバータ制御ファ
ンとインバータ制御ポンプとを備えた空調システムで
は、水流量と空気流量とをどのようにも調節可能である
が、室温のみにより制御しているので、必ずしも最もエ
ネルギー消費が少ない点で運用されるとは限らなかっ
た。
Chilled water return temperature and chiller coefficient of performance (COP)
There is a close correlation between the flow rate of the fan and the pump and the required power. In general, the higher the cold water return temperature, the higher the refrigerator coefficient of performance (COP).
Further, the required power of the fan and pump is proportional to the cube of the flow rate, as is well known. In particular, in an air conditioning system equipped with an inverter control fan and an inverter control pump, the water flow rate and the air flow rate can be adjusted in any way, but since it is controlled only by room temperature, the energy consumption is not necessarily the lowest. It was not always operated in.

【0009】いま、図3に示すような空調システムを考
える。熱源機である冷凍機1の温度をTr、その基準温
度をTr、ポンプ2による冷却流量をF、その基準
流量をFW0、ポンプ2の動力をPpump、その基準
動力をPpump0、空調コイル3の温度をTc、その
基準温度をTc、ファン4による空調風量をFa、そ
の基準風量をFa、ファン4の動力をPfan、その
基準動力をPfan0室内5の室内温度をTa、その基
準温度をTaとする。
Now, consider an air conditioning system as shown in FIG. The temperature of the refrigerator 1 as a heat source device is Tr, the reference temperature thereof is Tr 0 , the cooling flow rate by the pump 2 is F W , the reference flow rate thereof is F W0 , the power of the pump 2 is P pump , and the reference power thereof is P pump0 , The temperature of the air conditioning coil 3 is Tc, its reference temperature is Tc 0 , the air conditioning air volume by the fan 4 is Fa, its reference air volume is Fa 0 , the power of the fan 4 is P fan , and its reference power is the room temperature of the P fan0 room 5. Ta and its reference temperature are Ta 0 .

【0010】ポンプ2の動力Ppumpの関係式は
(1)式に示され、ファン4の動力P anの関係式は
(2)式で示される。また、ポンプ2の動力とファン4
の動力との合計f(Tc)を(3)式に示す。
[0010] relation of power P pump pumps 2 is shown in (1), equation of power P f an, the fan 4 is represented by equation (2). Also, the power of the pump 2 and the fan 4
The total f (Tc) with the power of is shown in the equation (3).

【0011】[0011]

【数1】 (1)式に示されるように、ポンプ2の動力Ppump
は流量Fの3乗に比例し、また必要流量は負荷が変わ
らなければ温度差に反比例する。同様に、ファン4の動
力Pfanも、(2)式に示すように流量Faの3乗に
比例し、また必要流量は負荷が変わらなければ温度差に
反比例する。
[Equation 1] As shown in the equation (1), the power P pump of the pump 2
Is proportional to the cube of the flow rate F W , and the required flow rate is inversely proportional to the temperature difference unless the load changes. Similarly, the power P fan of the fan 4 is also proportional to the cube of the flow rate Fa as shown in equation (2), and the required flow rate is inversely proportional to the temperature difference unless the load changes.

【0012】図4は、(3)式のポンプ2の動力とファ
ン4の動力との合計f(Tc)を空調コイル温度Tcに
ついてプロットした特性図である。図4に示すように、
総動力f(Tc)は空調コイル温度Tcにより大きく変
化する。
FIG. 4 is a characteristic diagram in which the total f (Tc) of the power of the pump 2 and the power of the fan 4 of the formula (3) is plotted with respect to the air conditioning coil temperature Tc. As shown in FIG.
The total power f (Tc) changes greatly depending on the air conditioning coil temperature Tc.

【0013】しかるに、従来の空調システムでは部屋温
度のみによりポンプ2またはファン4の制御を行ってい
るので、ポンプ2の動力およびファン4の動力の両者の
最小化は考慮されておらず、例えば、運用点1にて運用
されていた。
However, in the conventional air conditioning system, since the pump 2 or the fan 4 is controlled only by the room temperature, the minimization of both the power of the pump 2 and the power of the fan 4 is not taken into consideration. It was operated at operating point 1.

【0014】一方、冷却塔の製造する冷却水に関して
も、冷却水温度が低いほど冷凍機1の成績係数(CO
P)は改善しその消費動力は低減するが、冷却水温度を
低くするためには冷却塔ファンの消費動力が増大すると
いう特性を有する。
On the other hand, regarding the cooling water produced by the cooling tower, the coefficient of performance of the refrigerator 1 (CO
Although P) is improved and its power consumption is reduced, it has the characteristic that the power consumption of the cooling tower fan is increased in order to lower the cooling water temperature.

【0015】図5は、熱源機(冷凍機)がガス炊きボイ
ラによる蒸気吸収式冷凍機である場合の冷却水温度に対
する冷却塔ファンの消費動力(電力消費量)およびガス
消費量の関係を示す特性図である。図5から明らかなよ
うに、冷却水温度によりガスおよび電気の総合動力コス
トは変化する。特に、時間帯により電気料金は大きく変
化するので、従来の一定冷却水温度制御では動力コスト
が最小化されないという問題があった。
FIG. 5 shows the relationship between the power consumption (electric power consumption) of the cooling tower fan and the gas consumption amount with respect to the cooling water temperature when the heat source device (refrigerator) is a vapor absorption refrigerator with a gas cooking boiler. It is a characteristic diagram. As is clear from FIG. 5, the total power cost of gas and electricity changes depending on the cooling water temperature. In particular, since the electricity rate changes greatly depending on the time of day, there is a problem that the conventional constant cooling water temperature control does not minimize the power cost.

【0016】本発明の目的は、最適な省エネルギー化を
図った空調運転を行うことができる空調システムを提供
することである。
An object of the present invention is to provide an air conditioning system capable of performing an air conditioning operation with an optimum energy saving.

【0017】[0017]

【課題を解決するための手段】請求項1の発明に係る空
調システムは、冷水または温水を生産する熱源機と、熱
源機で生産された冷水または温水の熱を空気に熱交換す
る空調コイルと、熱源機と空調コイルとの間の水循環を
受け持つインバータ制御ポンプと、部屋と空調コイルと
の間の空気循環を担当するインバータ制御ファンと、部
屋の温度を測定する室温測定手段と、空調コイルの温度
を測定する空調コイル温度測定手段と、部屋温度があら
かじめ定めた設定温度になるようにインバータ制御ファ
ンを制御すると共に空調コイル温度があらかじめ定めた
設定温度になるようにインバータ制御ポンプを制御する
コントローラとを備えたことを特徴とする。
An air conditioning system according to a first aspect of the present invention comprises a heat source device for producing cold water or hot water, and an air conditioning coil for exchanging heat of cold water or hot water produced by the heat source device with air. , An inverter control pump responsible for water circulation between the heat source unit and the air conditioning coil, an inverter control fan responsible for air circulation between the room and the air conditioning coil, a room temperature measuring means for measuring the temperature of the room, and an air conditioning coil Air-conditioning coil temperature measuring means for measuring the temperature, and a controller for controlling the inverter control fan so that the room temperature becomes a predetermined set temperature and for controlling the inverter control pump so that the air-conditioning coil temperature becomes the predetermined set temperature. It is characterized by having and.

【0018】請求項1の発明に係る空調システムにおい
ては、熱源機で生産された冷水または温水の熱を空調コ
イルで空気に熱交換し、その空気を部屋に供給する。コ
ントローラは、室温測定手段で測定した部屋温度があら
かじめ定めた設定温度になるようにインバータ制御ファ
ンを制御すると共に、空調コイル温度測定手段で計測し
た空調コイル温度があらかじめ定めた設定温度になるよ
うにインバータ制御ポンプを制御する。これにより、イ
ンバータ制御ポンプとインバータ制御ファンとの総合動
力が最小化になるように制御する。
In the air conditioning system according to the first aspect of the present invention, the heat of the cold water or the hot water produced by the heat source machine is exchanged with the air by the air conditioning coil, and the air is supplied to the room. The controller controls the inverter control fan so that the room temperature measured by the room temperature measuring means reaches a predetermined set temperature, and also controls the air conditioning coil temperature measured by the air conditioning coil temperature measuring means to the predetermined set temperature. Controls the inverter-controlled pump. Thus, the total power of the inverter control pump and the inverter control fan is controlled to be minimized.

【0019】請求項2の発明に係る空調システムは、請
求項1の発明において、空調コイル温度測定手段に代え
て、戻り温度測定手段により冷水または温水の熱源機へ
の戻り温度を測定し、コントローラは、戻り温度測定手
段で測定された熱源機への冷水または温水の戻り温度に
基づいてインバータ制御ポンプを制御することを特徴と
する。
According to a second aspect of the present invention, in the air conditioning system according to the first aspect of the present invention, instead of the air conditioning coil temperature measuring means, the return temperature measuring means measures the return temperature of the cold water or the hot water to the heat source machine, and the controller. Is characterized in that the inverter control pump is controlled based on the return temperature of the cold water or the hot water to the heat source device measured by the return temperature measuring means.

【0020】請求項2の発明に係る空調システムにおい
ては、請求項1の発明の作用に加え、コントローラは、
戻り温度測定手段で測定された熱源機への冷水または温
水の戻り温度に基づいてインバータ制御ポンプを制御す
る。これにより、空調コイル温度測定手段を新たに設け
る必要がなく、インバータ制御ポンプとインバータ制御
ファンとの総合動力が最小化になるように制御できる。
In the air conditioning system according to the invention of claim 2, in addition to the operation of the invention of claim 1, the controller is
The inverter control pump is controlled based on the return temperature of the cold water or the hot water to the heat source device measured by the return temperature measuring means. As a result, it is not necessary to additionally provide an air conditioning coil temperature measuring means, and control can be performed so that the total power of the inverter control pump and the inverter control fan is minimized.

【0021】請求項3の発明に係る空調システムは、請
求項1の発明において、空調コイル温度測定手段に代え
て、空気の部屋への噴出温度を測定する部屋噴出温度測
定手段を設け、コントローラは、部屋噴出温度測定手段
で測定された空気の部屋への噴出温度に基づいてインバ
ータ制御ポンプを制御することを特徴とする。
An air conditioning system according to a third aspect of the present invention is the air conditioning system according to the first aspect of the invention, in which, instead of the air conditioning coil temperature measuring means, room ejection temperature measuring means for measuring the ejection temperature of air into the room is provided, and the controller is It is characterized in that the inverter control pump is controlled based on the temperature at which the air blown into the room is measured by the room blowout temperature measuring means.

【0022】請求項3の発明に係る空調システムにおい
ては、請求項1の発明の作用に加え、コントローラは、
部屋噴出温度測定手段で測定された空気の部屋への噴出
温度に基づいてインバータ制御ポンプを制御する。この
場合、コントローラは空気噴出温度と空調コイル温度と
の差について補正して制御する。これにより、インバー
タ制御ポンプとインバータ制御ファンとの総合動力が最
小化になるように制御できる。
In the air conditioning system according to the invention of claim 3, in addition to the operation of the invention of claim 1, the controller is
The inverter control pump is controlled based on the temperature of the air blown into the room measured by the room blowout temperature measuring means. In this case, the controller corrects and controls the difference between the air ejection temperature and the air conditioning coil temperature. Thereby, the total power of the inverter control pump and the inverter control fan can be controlled to be minimized.

【0023】請求項4の発明に係る空調システムは、請
求項1の発明において、コントローラは、インバータ制
御ファンとインバータ制御ポンプとの合計動力が最小に
なるように空調コイル温度の設定値を最適化計算により
求めることを特徴とする。
The air conditioning system according to a fourth aspect of the present invention is the air conditioning system according to the first aspect, wherein the controller optimizes the set value of the air conditioning coil temperature so that the total power of the inverter control fan and the inverter control pump is minimized. It is characterized by being calculated.

【0024】請求項4の発明に係る空調システムにおい
ては、請求項1の発明の作用に加え、コントローラは、
インバータ制御ファンとインバータ制御ポンプとの合計
動力が最小になるように空調コイル温度の設定値を最適
化計算により求め、その設定値になるように制御する。
従って、インバータ制御ポンプとインバータ制御ファン
との総合動力を最小化でき、省エネルギー化を図れる。
In the air conditioning system according to the invention of claim 4, in addition to the operation of the invention of claim 1, the controller is
The setting value of the air conditioning coil temperature is obtained by optimization calculation so that the total power of the inverter control fan and the inverter control pump is minimized, and control is performed so as to reach the setting value.
Therefore, the total power of the inverter control pump and the inverter control fan can be minimized, and energy can be saved.

【0025】請求項5の発明に係る空調システムは、請
求項1の発明において、熱源機は冷却塔を備えたガス式
吸収式冷凍機であり、コントローラは、電気料金または
あらかじめ設定されたタイムスケジュールに応じて、冷
却塔の冷却水温度の設定値を変更することを特徴とす
る。
According to a fifth aspect of the present invention, in the air-conditioning system according to the first aspect, the heat source unit is a gas absorption refrigerator having a cooling tower, and the controller is an electricity charge or a preset time schedule. The setting value of the cooling water temperature of the cooling tower is changed according to the above.

【0026】請求項5の発明に係る空調システムにおい
ては、請求項1の発明の作用に加え、コントローラは、
電気料金またはあらかじめ設定されたタイムスケジュー
ルに応じて、ガス式吸収式冷凍機の冷却塔の冷却水温度
の設定値を変更する。これにより、効率的にガス式吸収
式冷凍機を運転できる。
In the air conditioning system according to the invention of claim 5, in addition to the operation of the invention of claim 1, the controller is
The set value of the cooling water temperature of the cooling tower of the gas absorption refrigerator is changed according to the electricity rate or a preset time schedule. As a result, the gas absorption refrigerator can be efficiently operated.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の実施の形態に係わる空調システム
の構成図である。熱源機である冷凍機1は冷水を発生
し、ポンプ2により冷水流量が調整されて空調コイル3
に供給される。ポンプ2はインバータ6aで駆動制御さ
れるインバータ制御ポンプである。このインバータ6a
はコントローラ7により制御される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present invention. The refrigerator 1 which is a heat source device generates cold water, and the flow rate of the cold water is adjusted by the pump 2 so that the air conditioning coil 3
Is supplied to. The pump 2 is an inverter control pump whose drive is controlled by the inverter 6a. This inverter 6a
Are controlled by the controller 7.

【0028】空調コイル3は冷凍機1からの冷水を空気
と熱交換する。空調コイル3で熱交換された空気は、フ
ァン4により風量が制御されて室内5に供給される。フ
ァン4はインバータ6bで駆動制御されるインバータ制
御ファンである。このインバータ6bはコントローラ7
により制御される。
The air conditioning coil 3 exchanges heat with the cold water from the refrigerator 1. The air that has undergone heat exchange in the air conditioning coil 3 is supplied to the room 5 with its air volume controlled by the fan 4. The fan 4 is an inverter control fan whose drive is controlled by the inverter 6b. This inverter 6b is a controller 7
Controlled by.

【0029】また、室内5の部屋温度Taを測定する室
温測定手段8が設けられ、この室温測定手段8で測定さ
れた部屋温度Taはコントローラ7に入力される。さら
に、空調コイル3の空調コイル温度Tcを測定する空調
コイル温度測定手段9が設けられ、この空調コイル温度
測定手段9で測定された空調コイル温度Tcもコントロ
ーラ7に入力される。コントローラ7は、部屋温度Ta
があらかじめ定めた設定温度になるようにインバータ6
bを介してインバータ制御ファン4を制御すると共に、
空調コイル温度Tcがあらかじめ定めた設定温度になる
ようにインバータ6aを介してインバータ制御ポンプ2
を制御する。
A room temperature measuring means 8 for measuring the room temperature Ta of the room 5 is provided, and the room temperature Ta measured by the room temperature measuring means 8 is input to the controller 7. Further, an air conditioning coil temperature measuring means 9 for measuring the air conditioning coil temperature Tc of the air conditioning coil 3 is provided, and the air conditioning coil temperature Tc measured by the air conditioning coil temperature measuring means 9 is also input to the controller 7. The controller 7 controls the room temperature Ta.
So that the temperature reaches a preset temperature
While controlling the inverter control fan 4 via b,
The inverter control pump 2 is provided via the inverter 6a so that the air conditioning coil temperature Tc becomes a preset temperature.
To control.

【0030】すなわち、コントローラ7は、部屋温度T
aと空調コイル温度Tcとを入力信号とし、ポンプ2と
ファン4とをインバータ6a、6bにより制御する。コ
ントローラ7のアルゴリズムは、PID制御器が2個備
わったものであり、1つは部屋温度Taの設定値からの
偏差が零になるようにファン動力を制御し、他方は空調
コイル温度Tcが所定値になるようにポンプ動力を制御
する。空調コイル温度Tcの設定値は、総合動力が最小
になるように以下の(4)式により求める。
That is, the controller 7 controls the room temperature T
The pump 2 and the fan 4 are controlled by the inverters 6a and 6b by using a and the air conditioning coil temperature Tc as input signals. The algorithm of the controller 7 is provided with two PID controllers, one controls fan power so that the deviation from the set value of the room temperature Ta becomes zero, and the other controls the air conditioning coil temperature Tc to a predetermined value. Control the pump power to the value. The set value of the air conditioning coil temperature Tc is obtained by the following equation (4) so that the total power is minimized.

【0031】[0031]

【数2】 一般に、空調コイル3は一つのビルに多数あり、その各
々について(4)式にて温度設定値を決定することにな
る。このように、空調コイル3の温度Tcを測定する空
調コイル温度測定手段9を設け、部屋温度Taと共に、
ポンプ2とファン4の流量制御により各々の温度が目標
値になるように調節する。この場合、空調コイル3の温
度設定値は、ポンプ2とファン4の総合動力を最小化
(図4における運転点2)するように決定する。
[Equation 2] Generally, there are many air-conditioning coils 3 in one building, and the temperature setting value is determined for each of them by the equation (4). In this way, the air conditioning coil temperature measuring means 9 for measuring the temperature Tc of the air conditioning coil 3 is provided, and together with the room temperature Ta,
By controlling the flow rates of the pump 2 and the fan 4, the respective temperatures are adjusted to the target values. In this case, the temperature setting value of the air conditioning coil 3 is determined so as to minimize the total power of the pump 2 and the fan 4 (operating point 2 in FIG. 4).

【0032】ここで、空調コイル温度測定手段9に代え
て、冷水または温水の熱源機への戻り温度を測定する戻
り温度測定手段を設け、インバータ制御ポンプ戻り温度
測定手段で測定された冷凍機1への冷水または温水の戻
り温度に基づいてインバータ制御ポンプ2を制御するこ
とも可能である。冷凍機1の戻り水温とした場合には、
元々戻り水温を検出する戻り温度測定手段は冷却水の温
度制御のために設けられているので、新たに空調コイル
温度測定手段9を設ける必要がなく、最適な省エネルギ
ー化を図った空調が可能となる。
Here, instead of the air conditioning coil temperature measuring means 9, a return temperature measuring means for measuring the return temperature of the cold water or the hot water to the heat source machine is provided, and the refrigerator 1 measured by the inverter control pump return temperature measuring means. It is also possible to control the inverter control pump 2 on the basis of the return temperature of cold water or hot water. When the return water temperature of the refrigerator 1 is used,
Since the return temperature measuring means for originally detecting the return water temperature is provided for controlling the temperature of the cooling water, it is not necessary to newly provide the air conditioning coil temperature measuring means 9, and it is possible to perform the air conditioning with the optimum energy saving. Become.

【0033】また、空調コイル温度測定手段9に代え
て、空気の部屋への噴出温度を測定する部屋噴出温度測
定手段を設け、部屋噴出温度測定手段で測定された空気
の部屋への噴出温度に基づいてインバータ制御ポンプ2
を制御することも可能である。この場合には、空気噴出
温度と空調コイル温度Tcとの差についてあらかじめ補
正しておくことになる。
Further, instead of the air-conditioning coil temperature measuring means 9, a room ejection temperature measuring means for measuring the ejection temperature of air into the room is provided, and the ejection temperature of air into the room measured by the room ejection temperature measuring means is set. Based on inverter control pump 2
It is also possible to control In this case, the difference between the air ejection temperature and the air conditioning coil temperature Tc is corrected in advance.

【0034】一方、部屋温度Taと空調コイル温度Tc
とを同時にファン4とポンプ2とを使って制御する多入
出力アルゴリズムをコントローラ7に採用することもで
きる。この場合の多入出力アルゴリズムの代表例として
はモデル予測制御アルゴリズムがある。
On the other hand, the room temperature Ta and the air conditioning coil temperature Tc
It is also possible to adopt a multi-input / output algorithm for controlling the controller 7 using the fan 4 and the pump 2 at the same time as the controller 7. A model predictive control algorithm is a typical example of the multiple input / output algorithm in this case.

【0035】図2は、熱源機として電動機ファンを持つ
冷却塔を備えたガス式吸収式冷凍機を有する空調システ
ムでの冷却水温度のタイムスケジュールの一例の特性図
である。図2では、夏の冷却水温度のタイムスケジュー
ルを設定した場合を示している。夏場は相対的にガスの
値段が安く、昼間の重負荷時の電気代が高いので、図2
に示すように、昼間の重負荷時にガスを多く使用する設
定が最適設定となる。一方、冬場は、相対的にガスの値
段が高いことと容易に冷却水温度が下げられることか
ら、対応した低い冷却水温度にするのが最適なタイムス
ケジュールとなる。
FIG. 2 is a characteristic diagram of an example of a time schedule of cooling water temperature in an air conditioning system having a gas absorption refrigerator having a cooling tower having an electric motor fan as a heat source device. FIG. 2 shows a case where a time schedule of the cooling water temperature in summer is set. Since the price of gas is relatively low in the summer and the electricity bill during heavy load during the day is high,
As shown in, the optimal setting is the setting that uses a large amount of gas during heavy load in the daytime. On the other hand, in winter, since the cost of gas is relatively high and the cooling water temperature can be easily lowered, it is an optimal time schedule to set a correspondingly low cooling water temperature.

【0036】このように、電気料金またはガス料金を考
慮してあらかじめタイムスケジュールを設定する。例え
ば、冷水温度の設定温度が、与えられた電気料金に対し
て冷却塔動力と冷凍機動力または供給蒸気エネルギー、
または供給ガス熱量の和を最小化するように決める。そ
して、コントローラ7は、設定されたタイムスケジュー
ルに応じて、冷却塔の冷却水温度の設定値を変更して制
御する。
As described above, the time schedule is set in advance in consideration of the electricity charge or the gas charge. For example, the set temperature of the chilled water temperature is, for a given electricity rate, cooling tower power and refrigerator power or supply steam energy,
Alternatively, it is decided to minimize the sum of heat quantity of the supply gas. Then, the controller 7 changes and controls the set value of the cooling water temperature of the cooling tower according to the set time schedule.

【0037】このように、電気料金の時間変化に応じ
て、冷却塔の電動ファン動力費用と冷凍機1の所要動力
費用との和が最小になるように冷却水温度を制御する。
As described above, the cooling water temperature is controlled so that the sum of the electric fan power cost of the cooling tower and the required power cost of the refrigerator 1 is minimized according to the time change of the electricity rate.

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば、空
調コイルの温度制御により、最適な省エネルギー化を図
った空調運転が可能となる。また、冷却水温度と所要電
力および所要ガスを考慮に入れた時間帯による冷却水の
最適なタイムスケジューリングにより、コストが最もか
からないように最適運転を行うことができるので、大幅
なコスト低減を図ることができる。
As described above, according to the present invention, the temperature control of the air conditioning coil enables the air conditioning operation with the optimum energy saving. In addition, by optimally scheduling the cooling water according to the time zone that takes into consideration the cooling water temperature, the required electric power, and the required gas, it is possible to perform the optimal operation so that the cost will not be the most, so it is possible to significantly reduce the cost. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係わる空調システムの構
成図。
FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present invention.

【図2】本発明の実施の形態における熱源機として電動
機ファンを持つ冷却塔を備えたガス式吸収式冷凍機を有
する空調システムでの冷却水温度のタイムスケジュール
の一例の特性図。
FIG. 2 is a characteristic diagram of an example of a time schedule of cooling water temperature in an air conditioning system having a gas absorption refrigerator having a cooling tower having an electric motor fan as a heat source device in the embodiment of the present invention.

【図3】従来の空調システムの構成図。FIG. 3 is a configuration diagram of a conventional air conditioning system.

【図4】空調システムにおけるポンプ動力とファン動力
との合計を空調コイル温度についてプロットした特性
図。
FIG. 4 is a characteristic diagram in which a total of pump power and fan power in an air conditioning system is plotted with respect to an air conditioning coil temperature.

【図5】空調システムの冷凍機がガス炊きボイラによる
蒸気吸収式冷凍機である場合の冷却水温度に対する冷却
塔ファンの消費動力(電力消費量)およびガス消費量の
関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between power consumption (electric power consumption) and gas consumption of the cooling tower fan with respect to cooling water temperature when the refrigerator of the air conditioning system is a vapor absorption refrigerator using a gas cooking boiler.

【符号の説明】[Explanation of symbols]

1…冷凍機、2…ポンプ、3…空調コイル、4…ファ
ン、5…室内、6…インバータ、7…コントローラ、8
…室温測定手段、9…空調コイル温度測定手段
1 ... Refrigerator, 2 ... Pump, 3 ... Air conditioning coil, 4 ... Fan, 5 ... Indoor, 6 ... Inverter, 7 ... Controller, 8
... Room temperature measuring means, 9 ... Air conditioning coil temperature measuring means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船津 徹也 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 岩渕 一徳 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 中田 裕二 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 内藤 君永 神奈川県川崎市幸区堀川町66番地2 東芝 アイティー・ソリューション株式会社内 Fターム(参考) 3L060 AA03 CC01 CC02 CC05 DD02 DD05 EE32 EE34 3L061 BE02 BF02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tetsuya Funazu             No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation             Fuchu Office (72) Inventor Kazunori Iwabuchi             No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation             Fuchu Office (72) Inventor Yuji Nakata             1-1 Shibaura, Minato-ku, Tokyo Co., Ltd.             Toshiba headquarters office (72) Inventor Kiminaga             2 Horikawa-cho 66, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Toshiba             IT Solution Co., Ltd. F-term (reference) 3L060 AA03 CC01 CC02 CC05 DD02                       DD05 EE32 EE34                 3L061 BE02 BF02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷水または温水を生産する熱源機と、熱
源機で生産された冷水または温水の熱を空気に熱交換す
る空調コイルと、熱源機と空調コイルとの間の水循環を
受け持つインバータ制御ポンプと、部屋と空調コイルと
の間の空気循環を担当するインバータ制御ファンと、部
屋の温度を測定する室温測定手段と、空調コイルの温度
を測定する空調コイル温度測定手段と、部屋温度があら
かじめ定めた設定温度になるようにインバータ制御ファ
ンを制御すると共に空調コイル温度があらかじめ定めた
設定温度になるようにインバータ制御ポンプを制御する
コントローラとを備えたことを特徴とする空調システ
ム。
1. A heat source device for producing cold water or hot water, an air conditioning coil for exchanging heat of the cold water or hot water produced by the heat source device with air, and an inverter control for water circulation between the heat source device and the air conditioning coil. The pump, the inverter control fan in charge of air circulation between the room and the air conditioning coil, the room temperature measuring means for measuring the temperature of the room, the air conditioning coil temperature measuring means for measuring the temperature of the air conditioning coil, and the room temperature An air conditioning system comprising: a controller that controls an inverter control fan so that a predetermined set temperature is obtained, and a controller that controls an inverter control pump so that an air conditioning coil temperature becomes a predetermined set temperature.
【請求項2】 空調コイル温度測定手段に代えて、戻り
温度測定手段により冷水または温水の熱源機への戻り温
度を測定し、コントローラは、戻り温度測定手段で測定
された熱源機への冷水または温水の戻り温度に基づいて
インバータ制御ポンプを制御することを特徴とする請求
項1記載の空調システム。
2. Instead of the air-conditioning coil temperature measuring means, the return temperature measuring means measures the return temperature of the cold water or the hot water to the heat source machine, and the controller cools the cold water or the hot water to the heat source machine measured by the return temperature measuring means. The air conditioning system according to claim 1, wherein the inverter control pump is controlled based on the return temperature of the hot water.
【請求項3】 空調コイル温度測定手段に代えて、空気
の部屋への噴出温度を測定する部屋噴出温度測定手段を
設け、コントローラは、部屋噴出温度測定手段で測定さ
れた空気の部屋への噴出温度に基づいてインバータ制御
ポンプを制御することを特徴とする請求項1記載の空調
システム。
3. A room ejection temperature measuring means for measuring the ejection temperature of air into the room is provided in place of the air conditioning coil temperature measuring means, and the controller ejects the air measured by the room ejection temperature measuring means into the room. The air conditioning system according to claim 1, wherein the inverter control pump is controlled based on the temperature.
【請求項4】 コントローラは、インバータ制御ファン
とインバータ制御ポンプとの合計動力が最小になるよう
に空調コイル温度の設定値を最適化計算により求めるこ
とを特徴とする請求項1に記載の空調システム。
4. The air conditioning system according to claim 1, wherein the controller obtains the set value of the air conditioning coil temperature by optimization calculation so that the total power of the inverter control fan and the inverter control pump is minimized. .
【請求項5】 熱源機は冷却塔を備えたガス式吸収式冷
凍機であり、コントローラは、電気料金またはあらかじ
め設定されたタイムスケジュールに応じて、冷却塔の冷
却水温度の設定値を変更することを特徴とする請求項1
に記載の空調システム。
5. The heat source machine is a gas absorption refrigerator having a cooling tower, and the controller changes the set value of the cooling water temperature of the cooling tower according to the electricity rate or a preset time schedule. Claim 1 characterized by the above.
Air conditioning system described in.
JP2002011073A 2002-01-21 2002-01-21 Air conditioning system Expired - Lifetime JP4112868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002011073A JP4112868B2 (en) 2002-01-21 2002-01-21 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002011073A JP4112868B2 (en) 2002-01-21 2002-01-21 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2003214685A true JP2003214685A (en) 2003-07-30
JP4112868B2 JP4112868B2 (en) 2008-07-02

Family

ID=27648635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002011073A Expired - Lifetime JP4112868B2 (en) 2002-01-21 2002-01-21 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4112868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275400A (en) * 2005-03-29 2006-10-12 Toyo Netsu Kogyo Kk Air conditioning unit
JP2009264599A (en) * 2008-04-22 2009-11-12 Ntt Facilities Inc Rack air conditioning system, method for operating the same, and rack type air conditioner
CN102418965A (en) * 2011-09-16 2012-04-18 浙江大学 Multifunctional frequency conversion central air-conditioning experimental platform
CN105509411A (en) * 2016-01-29 2016-04-20 合肥美的电冰箱有限公司 Refrigerator control method system and refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010341B1 (en) 2020-07-29 2022-01-26 フジテック株式会社 Elevator, control panel, elevator control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275400A (en) * 2005-03-29 2006-10-12 Toyo Netsu Kogyo Kk Air conditioning unit
JP2009264599A (en) * 2008-04-22 2009-11-12 Ntt Facilities Inc Rack air conditioning system, method for operating the same, and rack type air conditioner
CN102418965A (en) * 2011-09-16 2012-04-18 浙江大学 Multifunctional frequency conversion central air-conditioning experimental platform
CN105509411A (en) * 2016-01-29 2016-04-20 合肥美的电冰箱有限公司 Refrigerator control method system and refrigerator
CN105509411B (en) * 2016-01-29 2018-02-13 合肥美的电冰箱有限公司 A kind of controlling method for refrigerator system and refrigerator

Also Published As

Publication number Publication date
JP4112868B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4936961B2 (en) Air conditioning system controller
JP5375945B2 (en) Air conditioning system that adjusts temperature and humidity
CN1325849C (en) Air conditioner with constant air outlet temperature and control method therefor
JP4166051B2 (en) Air conditioning system
JPS63150551A (en) Air-conditioning system and control method of speed of compressor and speed of motor in said system
CN102213470A (en) Radiation and ventilation combined air-conditioning system
CN103776213A (en) Heat pump and control method thereof
JP5082585B2 (en) Air conditioning system
EP3115699B1 (en) Heat pump hot water apparatus
JP5737173B2 (en) Air conditioning system that adjusts temperature and humidity
JP2003214685A (en) Air conditioning system
CN111023414B (en) Air conditioning system and dehumidification control method
JP2003222378A (en) Air conditioning system for building
JP2004132610A (en) Heating system and dwelling house with heating system
JP5673524B2 (en) Air conditioning system that adjusts temperature and humidity
JP6545378B2 (en) Air conditioning system and relay unit
JPH0128299B2 (en)
JP6890727B1 (en) Air conditioning system and control method
JP5526175B2 (en) Air conditioning system
JP2001272115A (en) Method for controlling flow rate of cooling water used in heat exchanger
JP4594146B2 (en) Optimum control method for variable air volume of air conditioning system
JP2635976B2 (en) Stirling heat engine driven heat pump
KR20130028441A (en) Bldc motor type air conditioner control unit
JP7287809B2 (en) heating system
WO2019193686A1 (en) Air conditioning system control device, outdoor unit, relay device, heat source device, and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Ref document number: 4112868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term