JP2003209935A - Charge controller for secondary battery for vehicle - Google Patents

Charge controller for secondary battery for vehicle

Info

Publication number
JP2003209935A
JP2003209935A JP2002005731A JP2002005731A JP2003209935A JP 2003209935 A JP2003209935 A JP 2003209935A JP 2002005731 A JP2002005731 A JP 2002005731A JP 2002005731 A JP2002005731 A JP 2002005731A JP 2003209935 A JP2003209935 A JP 2003209935A
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
current
charging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005731A
Other languages
Japanese (ja)
Other versions
JP3891845B2 (en
Inventor
Shoji Sakai
昭治 堺
Masahiro Tanizawa
昌宏 谷澤
Naohiko Suzuki
尚彦 鈴木
Takeshi Sada
岳士 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2002005731A priority Critical patent/JP3891845B2/en
Publication of JP2003209935A publication Critical patent/JP2003209935A/en
Application granted granted Critical
Publication of JP3891845B2 publication Critical patent/JP3891845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge controller for secondary battery for vehicle wherein the charging state of a secondary battery can be properly controlled. <P>SOLUTION: The charge controller comprises an alternating-current generator 10; a rectifier 20 which rectifies the output voltage of the alternating-current generator 10 and generates a rectified voltage; a regulator 30 which is controlled by a microcomputer 70 to control the rectified voltage from the rectifier 20 and outputs the voltage as a regulated voltage to a battery B and an electrical load L; and a current sensor 40 which detects currents flowing to the battery B. The microcomputer 70 causes the regulator 30 to control the regulated voltage so that the integrated value of a charged/discharged capacity obtained from the current detected by the current sensor 40 is zeroed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両に搭載される
二次電池の充電状態を適正に制御するための車両用二次
電池の充電制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle secondary battery charge control device for appropriately controlling the state of charge of a secondary battery mounted on a vehicle.

【0002】[0002]

【従来の技術】車両に搭載された二次電池は、通常交流
発電機の出力電圧により充電され、車両に備えられた各
種負荷に対して放電が行われる。充電の際の充電電圧及
び放電の際の放電電圧はレギュレータにより制御されて
おり、この充放電電圧を以後調整電圧という。
2. Description of the Related Art A secondary battery mounted on a vehicle is usually charged by the output voltage of an AC generator and discharged to various loads equipped on the vehicle. The charging voltage at the time of charging and the discharging voltage at the time of discharging are controlled by the regulator, and this charging / discharging voltage is hereinafter referred to as an adjustment voltage.

【0003】このような二次電池の充電制御において
は、電池の充電を効率的に実行させるために、充電時の
調整電圧を電池の定格電圧12Vよりも高い13.5V
〜14.5V程度に設定することが一般的である。
In such charging control of the secondary battery, in order to efficiently charge the battery, the regulated voltage during charging is 13.5V which is higher than the rated voltage 12V of the battery.
It is generally set to about 14.5V.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の充
電制御においては、高速走行状態で且つ電池負荷が低い
状態のときには過充電気味となって電池の液べりも助長
され、さらに内燃機関の負担が増大されて燃費も悪化す
るという問題があった。
However, in the above-described conventional charge control, when the vehicle is running at a high speed and the battery load is low, the battery tends to be overcharged, which promotes the liquid leakage of the battery, and the burden on the internal combustion engine. There is a problem that fuel consumption is deteriorated due to increase in fuel consumption.

【0005】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、二次電池の充電状態を適正に
制御することができる車両用二次電池の充電制御装置を
提供することにある。
The present invention has been made in view of the above conventional problems, and an object thereof is to provide a charging control device for a secondary battery for a vehicle, which can appropriately control the charging state of the secondary battery. It is in.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、車両用二次電池の充電制御装置であっ
て、交流発電機と、交流発電機の出力電圧により充電さ
れる二次電池と、二次電池の充放電電圧である調整電圧
を制御するレギュレータと、二次電池に流れる電流を検
出する電流検出手段とを備える車両に使用され、レギュ
レータに、電流検出手段による検出電流から求めた充放
電容量の積算値がゼロとなるように調整電圧を制御させ
ることを特徴とする。
In order to achieve the above object, the present invention is a charge control device for a secondary battery for a vehicle, comprising an alternating current generator and a secondary battery charged by an output voltage of the alternating current generator. Used in a vehicle that includes a secondary battery, a regulator that controls the regulated voltage that is the charging / discharging voltage of the secondary battery, and a current detection unit that detects the current that flows in the secondary battery. It is characterized in that the adjustment voltage is controlled so that the integrated value of the charging / discharging capacity obtained from is zero.

【0007】上記構成によれば、電流検出手段による検
出電流から求めた充放電容量の積算値がゼロとなるよう
に調整電圧がレギュレータによって制御されるので、二
次電池の過充電を防止でき、燃費の悪化、電池の液べり
を抑制できる。
According to the above construction, the regulator regulates the regulated voltage so that the integrated value of the charging / discharging capacity obtained from the current detected by the current detecting means becomes zero, so that overcharge of the secondary battery can be prevented. It is possible to suppress fuel consumption deterioration and battery liquid slippage.

【0008】また、上記充電制御装置において、車両始
動直後は、前記充放電容量の積算値が所定量増加するよ
うに前記調整電圧を制御することを特徴とする。
Further, in the above charge control device, the adjustment voltage is controlled so that the integrated value of the charge / discharge capacity increases by a predetermined amount immediately after the vehicle is started.

【0009】上記構成によれば、車両始動前の放置状態
で自己放電した電池容量を回復でき、車両をスムースに
再始動することができる。
With the above arrangement, the self-discharged battery capacity can be recovered in a state of being left unattended before the vehicle is started, and the vehicle can be restarted smoothly.

【0010】また、車両用二次電池の充電制御装置であ
って、交流発電機と、交流発電機の出力電圧により充電
される二次電池と、二次電池の充放電電圧である調整電
圧を制御するレギュレータと、二次電池の端子電圧を検
出する電圧検出手段と、二次電池に流れる電流を検出す
る電流検出手段と、二次電池の温度を検出する温度検出
手段とを備える車両に使用され、検出電流が、電圧と温
度とに応じて予め設定された所定の補充電完了判定電流
よりも小さい場合に充放電容量の積算値をゼロにリセッ
トし、レギュレータに、電流検出手段による検出電流か
ら求めた充放電容量の積算値がゼロとなるように調整電
圧を制御させることを特徴とする。
Further, in a charging control device for a secondary battery for a vehicle, an alternating current generator, a secondary battery charged by an output voltage of the alternating current generator, and an adjusting voltage which is a charging / discharging voltage of the secondary battery are provided. Used in a vehicle equipped with a regulator for controlling, a voltage detecting means for detecting a terminal voltage of a secondary battery, a current detecting means for detecting a current flowing through the secondary battery, and a temperature detecting means for detecting a temperature of the secondary battery. When the detected current is smaller than a predetermined supplementary charge completion determination current preset according to the voltage and temperature, the integrated value of the charge / discharge capacity is reset to zero, and the regulator detects the detected current by the current detecting means. It is characterized in that the adjustment voltage is controlled so that the integrated value of the charging / discharging capacity obtained from is zero.

【0011】上記構成によれば、車両始動前の放置状態
で自己放電があった場合にも、始動時に電池の残存容量
を所定値以上確保できると共に、二次電池の過充電を防
止でき、燃費の悪化、電池の液べりを抑制できる。
According to the above structure, even when self-discharge occurs in a state where the vehicle is left unattended before starting, the remaining capacity of the battery can be secured at a predetermined value or more at the time of starting, overcharge of the secondary battery can be prevented, and fuel consumption can be reduced. It is possible to suppress deterioration of the battery and liquid leakage of the battery.

【0012】また、車両用二次電池の充電制御装置であ
って、交流発電機と、交流発電機の出力電圧により充電
される二次電池と、二次電池の充放電電圧である調整電
圧を制御するレギュレータと、二次電池の端子電圧を検
出する電圧検出手段と、二次電池に流れる電流を検出す
る電流検出手段と、二次電池の温度を検出する温度検出
手段と、二次電池の充放電履歴から二次電池の分極状態
を推定する分極状態推定手段とを備える車両に使用さ
れ、分極状態推定手段によって充電分極の影響が小さい
二次電池の電圧、電流、温度データのみを選別し、この
データを用いて二次電池の残存容量を検出し、この残存
容量が所定値を超える場合は、レギュレータに、電流検
出手段による検出電流から求めた充放電容量の積算値が
ゼロとなるように調整電圧を制御させ、所定値を超えな
い場合は、不足分を充電できるように調整電圧を制御さ
せることを特徴とする。
In addition, in a charging control device for a secondary battery for a vehicle, an alternating current generator, a secondary battery charged by an output voltage of the alternating current generator, and an adjustment voltage which is a charging / discharging voltage of the secondary battery are provided. Regulator for controlling, voltage detecting means for detecting the terminal voltage of the secondary battery, current detecting means for detecting the current flowing through the secondary battery, temperature detecting means for detecting the temperature of the secondary battery, and Used in a vehicle equipped with a polarization state estimation means for estimating the polarization state of the secondary battery from the charge / discharge history, and the polarization state estimation means selects only the voltage, current, and temperature data of the secondary battery that is less affected by the charge polarization. , The remaining capacity of the secondary battery is detected using this data, and if this remaining capacity exceeds a predetermined value, the regulator is set so that the integrated value of the charging / discharging capacity obtained from the current detected by the current detecting means becomes zero. To key To control the voltage, if not exceeding a predetermined value, characterized in that to control the adjustment voltage to allow charge shortage.

【0013】上記構成によれば、電池が充放電の繰り返
しにより分極状態となっても、正確に電池の残存容量を
検出でき、電池状態に応じた適切な調整電圧を設定でき
る。このため、二次電池の過充電を防止でき、燃費の悪
化、電池の液べりを抑制できる。
According to the above structure, even when the battery is in a polarized state due to repeated charging and discharging, the remaining capacity of the battery can be accurately detected and an appropriate adjustment voltage can be set according to the battery state. For this reason, overcharge of the secondary battery can be prevented, fuel consumption can be prevented from deteriorating, and liquid slippage of the battery can be suppressed.

【0014】また、上記充電制御装置において、分極状
態推定手段は、充放電に起因する二次電池の電圧変化の
内、活性化分極に基づく電圧変化に着目して分極状態を
検出することを特徴とする。
Further, in the above charge control device, the polarization state estimating means detects the polarization state by paying attention to the voltage change based on the activation polarization among the voltage changes of the secondary battery caused by charging and discharging. And

【0015】上記構成によれば、充電分極の影響が小さ
い電圧、電流データをより正確に選別できる。これによ
り、二次電池の過充電を防止でき、燃費の悪化、電池の
液べりを抑制できる。
According to the above configuration, it is possible to more accurately select the voltage / current data which is less affected by the charge polarization. As a result, overcharge of the secondary battery can be prevented, fuel consumption can be prevented from deteriorating, and battery slippage can be suppressed.

【0016】[0016]

【発明の実施の形態】以下、本発明の各実施形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】実施形態1.図1には、本発明に係る自動
車用バッテリBを充電制御するための充電制御装置の実
施形態1の構成例が示される。なお、バッテリBは、二
次電池の一種である鉛蓄電池等により構成されている。
Embodiment 1. FIG. 1 shows a configuration example of Embodiment 1 of a charging control device for controlling charging of a vehicle battery B according to the present invention. The battery B is composed of a lead storage battery, which is a type of secondary battery, or the like.

【0018】本実施形態に係る充電制御装置は、図1に
示されるように、交流発電機10(以下、発電機10と
いう)、整流器20及びレギュレータ30を備えてい
る。発電機10は、当該自動車のエンジンにより駆動さ
れて交流電圧を発生する。整流器20は、発電機10の
交流電圧を整流して整流電圧を発生し、バッテリB及び
レギュレータ30に供給する。レギュレータ30は、後
述するマイクロコンピュータ70により制御されて整流
器20の整流電圧を制御し、調整電圧としてバッテリB
及び電気負荷Lに出力する。
As shown in FIG. 1, the charging control device according to this embodiment includes an AC generator 10 (hereinafter referred to as a generator 10), a rectifier 20 and a regulator 30. The generator 10 is driven by the engine of the automobile to generate an AC voltage. The rectifier 20 rectifies the AC voltage of the generator 10 to generate a rectified voltage and supplies the rectified voltage to the battery B and the regulator 30. The regulator 30 is controlled by the microcomputer 70 described later to control the rectified voltage of the rectifier 20, and uses the battery B as an adjusted voltage.
And to the electric load L.

【0019】また、当該充電制御装置は、電流検出手段
としての電流センサ40、及びマイクロコンピュータ7
0を備えている。電流センサ40は、バッテリBの充電
電流或いは放電電流を検出する。
Further, the charging control device is provided with a current sensor 40 as a current detecting means and a microcomputer 7.
It has 0. The current sensor 40 detects a charging current or a discharging current of the battery B.

【0020】マイクロコンピュータ70は、制御プログ
ラムを図2にて示すフローチャートに従い実行する。こ
のマイクロコンピュータ70は、上記制御プログラムの
実行中に電流センサ40の検出値に基づきバッテリBの
充放電収支の算出、レギュレータ30の制御に要する処
理やデータの記憶処理などを行う。なお、マイクロコン
ピュータ70は、バッテリBから常時給電されて作動状
態にあり、当該自動車のイグニッションスイッチIGオ
ンにより、制御プログラムの実行を開始する。また、上
記制御プログラムはマイクロコンピュータ70のROM
に予め記憶されている。
The microcomputer 70 executes the control program according to the flowchart shown in FIG. The microcomputer 70 calculates the charging / discharging balance of the battery B based on the detection value of the current sensor 40 during the execution of the control program, processes required for controlling the regulator 30, and data storage processes. It should be noted that the microcomputer 70 is always powered by the battery B and is in an operating state, and starts execution of the control program when the ignition switch IG of the vehicle is turned on. The control program is stored in the ROM of the microcomputer 70.
Stored in advance.

【0021】次に制御プログラムの作動について図2を
用いて説明する。上述のように、制御プログラムの実行
が開始されると、ステップ100において、バッテリB
に流れる電流から求めた充放電容量の積算値を記憶する
ための変数Isumの値をゼロにリセットする。
Next, the operation of the control program will be described with reference to FIG. As described above, when the execution of the control program is started, in step 100, the battery B
The value of the variable Isum for storing the integrated value of the charging / discharging capacity obtained from the current flowing in is reset to zero.

【0022】ついで、ステップ110から150の処理
を周期△t(sec)毎に実施する。ステップ110に
おいて、電流センサ40の検出電流Iが読み込まれる。
するとステップ120にて、充放電容量の積算値Isu
mが次の式(1)に基づき、前記検出電流I(正を充電
とする)と1周期前の電流積算値Isum’に応じて算
出される。
Next, the processing of steps 110 to 150 is carried out every cycle Δt (sec). In step 110, the detection current I of the current sensor 40 is read.
Then, in step 120, the integrated value Isu of the charge / discharge capacity is
m is calculated based on the following equation (1) according to the detected current I (positive is charged) and the current integrated value Isum ′ one cycle before.

【数1】 Isum=Isum’+I×△t …(1) ここで、Isumは電流×時間の単位すなわち充放電容
量の単位となっている。
## EQU1 ## Isum = Isum '+ I × Δt (1) where Isum is a unit of current × time, that is, a unit of charge / discharge capacity.

【0023】さらにステップ130において、調整電圧
の補正量ΔVmが、ステップ120で求めた充放電容量
の積算値Isumに基づき、例えば図3に示されるマッ
プを使用して算出される。
Further, in step 130, the correction amount ΔVm of the adjustment voltage is calculated based on the integrated value Isum of the charge / discharge capacity obtained in step 120, for example, using the map shown in FIG.

【0024】ステップ140では、調整電圧Vmが次の
式(2)に基づき、1周期前の調整電圧Vm’と前記調
整電圧補正量ΔVmに応じて算出される。
In step 140, the adjustment voltage Vm is calculated according to the following equation (2) according to the adjustment voltage Vm ′ one cycle before and the adjustment voltage correction amount ΔVm.

【数2】 Vm=Vm’+ΔVm …(2)[Equation 2] Vm = Vm '+ [Delta] Vm (2)

【0025】以上のように算出されたVmに基づき、マ
イクロコンピュータ70がレギュレータ30に調整電圧
がVmとなるように制御させる。
Based on Vm calculated as described above, the microcomputer 70 controls the regulator 30 so that the regulated voltage becomes Vm.

【0026】ここで、上述したように、調整電圧の補正
量ΔVmは、図3に示されるマップを使用して算出され
ているが、このマップは充放電容量の積算値Isumの
値が大きいとΔVmが小さく、Isumの値が小さいと
ΔVmが大きくなるように構成されている。したがっ
て、Isumの値が大きくなると調整電圧Vmが低くな
り、バッテリBへの充電量が減少する。逆に、Isum
の値が小さくなるとVmが高くなり、バッテリBへの充
電量が増加する。この結果、バッテリBから負荷Lへの
放電と相俟って、電流センサ40による検出電流から求
めた充放電容量の積算値Isumの値すなわちバッテリ
Bへの充放電量の積算値がゼロとなるように調整電圧V
mが制御されることになる。
Here, as described above, the adjustment voltage correction amount ΔVm is calculated using the map shown in FIG. 3, but this map shows that the integrated value Isum of the charge / discharge capacity is large. When ΔVm is small and Isum is small, ΔVm is large. Therefore, as the value of Isum increases, the adjustment voltage Vm decreases and the amount of charge in the battery B decreases. Conversely, Isum
As the value of becomes smaller, Vm becomes higher and the amount of charge in the battery B increases. As a result, in combination with the discharge from the battery B to the load L, the integrated value Isum of the charge / discharge capacity obtained from the current detected by the current sensor 40, that is, the integrated value of the charge / discharge amount to the battery B becomes zero. Adjust voltage V
m will be controlled.

【0027】以上のような構成により、バッテリBの過
充電を防止することができ、バッテリBの液べりも抑制
できる。また、発電に使用される動力も節約できるの
で、エンジンの燃費の悪化も防止できる。
With the above-mentioned structure, it is possible to prevent the battery B from being overcharged, and to suppress the liquid slippage of the battery B. In addition, since the power used for power generation can be saved, it is possible to prevent deterioration of fuel efficiency of the engine.

【0028】なお、上記のようにして算出したVmが予
め設定された上限値以上の場合は上限値に、予め設定さ
れた下限値以下の場合は下限値に修正される。
When Vm calculated as described above is equal to or higher than a preset upper limit value, it is corrected to an upper limit value, and when Vm is equal to or lower than a preset lower limit value, it is corrected to a lower limit value.

【0029】また、車両始動直後は、バッテリBの自己
放電などによりバッテリ容量が低下している恐れがある
ため、始動直後は、前記Isumの値が所定量増加する
まで調整電圧Vmを上限値に設定し、補充電するように
しても良い。この場合は、補充電完了後に再び前記Is
umをゼロにリセットして、図2、ステップ120より
制御を開始する。
Immediately after the vehicle starts, the battery capacity may decrease due to self-discharge of the battery B. Immediately after the vehicle starts, the adjustment voltage Vm is set to the upper limit value until the value of Isum increases by a predetermined amount. It may be set and supplementary charging may be performed. In this case, after completion of supplementary charging, the Is
um is reset to zero, and control is started from step 120 in FIG.

【0030】実施形態2.図4には、本発明に係る自動
車用バッテリBを充電制御するための充電制御装置の実
施形態2の構成例が示される。本実施形態2では、上記
第1実施形態の構成を示す図1に追加して、電圧検出手
段としての電圧センサ50及び温度検出手段としての温
度センサ60とを備えている。電圧センサ50はバッテ
リBの端子電圧を検出する。温度センサ60はバッテリ
Bの液温、側面或いは底面のケース温度を検出する。
Embodiment 2. FIG. 4 shows a configuration example of the second embodiment of the charging control device for controlling the charging of the automobile battery B according to the present invention. In the second embodiment, in addition to FIG. 1 showing the configuration of the first embodiment, a voltage sensor 50 as a voltage detecting means and a temperature sensor 60 as a temperature detecting means are provided. The voltage sensor 50 detects the terminal voltage of the battery B. The temperature sensor 60 detects the liquid temperature of the battery B and the case temperature of the side surface or the bottom surface.

【0031】本実施形態2において特徴的な点は、車両
始動直後にバッテリBの補充電を行い、マイクロコンピ
ュータ70が、後述する補充電完了判定を実行する点で
ある。この補充電完了判定が実行される際には、図2の
フローチャートのステップ110〜ステップ140の代
わりに、図5のフローチャートのステップ210〜ステ
ップ230が実行される。なお、この間の調整電圧Vm
は、補充電をスムーズに完了させるため、例えば図6に
示されるように、バッテリ温度Tに応じて通常より少し
高めに設定される。また、補充電完了判定後は、充放電
容量の積算値Isumがゼロとなるように制御が実行さ
れる。その他の構成は、上記実施形態1と同様である。
The characteristic feature of the second embodiment is that the battery B is supplementally charged immediately after the vehicle is started, and the microcomputer 70 executes the supplementary charge completion determination described later. When this supplementary charge completion determination is executed, steps 210 to 230 of the flowchart of FIG. 5 are executed instead of steps 110 to 140 of the flowchart of FIG. The adjustment voltage Vm during this period
In order to smoothly complete the supplementary charge, is set to be slightly higher than usual in accordance with the battery temperature T, as shown in FIG. 6, for example. After the completion of the supplementary charge, control is executed so that the integrated value Isum of the charge / discharge capacity becomes zero. Other configurations are similar to those of the first embodiment.

【0032】次に上記実施形態1に追加された制御プロ
グラムについて、図5を用いて説明する。ステップ21
0では、電流センサ40の検出電流Iと電圧センサ50
の検出電圧Vと温度センサ60の検出温度Tが読み込ま
れる。するとステップ220にて、ステップ210で読
み込んだ電圧Vと温度Tのデータを、例えば図7に示さ
れる、予め設定された電圧と温度とに対する補充電完了
判定電流マップに入力し、補充電完了判定電流Ihを求
める。ここで判定電流Ihは、図7に示すマップを一次
補間して求めれば良い。
Next, the control program added to the first embodiment will be described with reference to FIG. Step 21
At 0, the detected current I of the current sensor 40 and the voltage sensor 50
The detection voltage V and the detection temperature T of the temperature sensor 60 are read. Then, in step 220, the data of the voltage V and the temperature T read in step 210 are input to the auxiliary charge completion determination current map shown in FIG. 7 for the preset voltage and temperature, and the auxiliary charge completion determination is performed. The current Ih is calculated. Here, the determination current Ih may be obtained by linearly interpolating the map shown in FIG.

【0033】次に、上記検出電流Iがこの判定電流Ih
よりも小さい場合に、続くステップ230へ進み、充放
電容量の積算値Isumをゼロにリセットして、図2に
示された実施形態1の動作に移行する。
Next, the detected current I is the judgment current Ih.
If it is smaller than the above, the process proceeds to the subsequent step 230, resets the integrated value Isum of the charge / discharge capacity to zero, and shifts to the operation of the first embodiment shown in FIG.

【0034】以上のような構成により、車両始動前の放
置状態で自己放電があった場合にも、始動時に電池の残
存容量を所定値以上確保できる。また、バッテリBの過
充電を防止することができ、バッテリBの液べりも抑制
できる。さらに、発電に使用される動力も節約できるの
で、エンジンの燃費の悪化も防止できる。
With the above-described structure, the remaining capacity of the battery can be secured at a predetermined value or more at the time of starting even if self-discharge occurs in a state of being left unattended before starting the vehicle. In addition, it is possible to prevent the battery B from being overcharged, and it is also possible to prevent the liquid B from slipping. Furthermore, since the power used for power generation can be saved, it is possible to prevent deterioration of fuel efficiency of the engine.

【0035】実施形態3.図8には、本発明に係る自動
車用バッテリBを充電制御するための充電制御装置の実
施形態3の動作フローが示される。本実施形態3では、
図8に示されるフローチャートが、上記図2或いは図5
のフローチャートに代えて採用されている。従って、本
実施形態3では、上記実施形態2にて述べたマイクロコ
ンピュータ70が、図2或いは図5のフローチャートに
代えて、図8のフローチャートに従い、バッテリBの充
電制御を実行する。その他の構成は、上記実施形態2と
同様である。
Embodiment 3. FIG. 8 shows an operation flow of the third embodiment of the charging control device for controlling the charging of the automobile battery B according to the present invention. In the third embodiment,
The flowchart shown in FIG. 8 is the same as that shown in FIG.
It is adopted in place of the flow chart of. Therefore, in the third embodiment, the microcomputer 70 described in the second embodiment executes the charging control of the battery B according to the flowchart of FIG. 8 instead of the flowchart of FIG. 2 or 5. Other configurations are the same as those in the second embodiment.

【0036】このように構成された本実施形態3におい
て、当該自動車のイグニッションスイッチIGのオンに
より、制御プログラムの実行が開始される。
In the third embodiment configured as described above, the execution of the control program is started by turning on the ignition switch IG of the vehicle.

【0037】次に制御プログラムの作動について図8を
用いて説明する。上述のように、制御プログラムの実行
が開始されると、ステップ300において、上述したイ
グニッションスイッチIGのオン前にステップ420に
て記憶済みの、前回イグニッションスイッチIGオフ時
におけるバッテリBの充電状態を表す残存容量SOCが
マイクロコンピュータ70のRAMから前回SOCoと
して読み込まれる。また、バッテリBに流れる電流を積
算記憶するための変数Isumと後述するバッテリの分
極状態を表す分極指数Pの値がゼロにリセットされる。
ここで、残存容量SOCとは、バッテリBの実際の容量
比率を%で表したものである。
Next, the operation of the control program will be described with reference to FIG. As described above, when the execution of the control program is started, in step 300, the charge state of the battery B stored in step 420 before the ignition switch IG is turned on and stored at the time of turning off the previous ignition switch IG is displayed. The remaining capacity SOC is read from the RAM of the microcomputer 70 as SOCO last time. In addition, a variable Isum for cumulatively storing the current flowing in the battery B and a value of a polarization index P representing a polarization state of the battery described later are reset to zero.
Here, the remaining capacity SOC is the actual capacity ratio of the battery B expressed in%.

【0038】ついで、ステップ310から410の処理
を周期△t(sec)毎に実施する。ステップ310に
おいて、電流センサ40の検出電流Iと電圧センサ50
の検出電圧Vと温度センサ60の検出温度Tが読み込ま
れる。ステップ320では、充放電容量の積算値Isu
mが上記式(1)に基づき、上記検出電流I(正を充電
とする)に応じて算出される。つづくステップ330で
は、残存容量SOCが、次の式(3)に基づき、上記充
放電容量の積算値Isum及び上記前回値SOCoに応
じて算出される。
Next, the processing of steps 310 to 410 is carried out every cycle Δt (sec). In step 310, the current I detected by the current sensor 40 and the voltage sensor 50 are detected.
The detection voltage V and the detection temperature T of the temperature sensor 60 are read. In step 320, the integrated value Isu of the charge / discharge capacity is
m is calculated based on the above equation (1) according to the detected current I (positive is charged). In the following step 330, the state of charge SOC is calculated according to the following equation (3) according to the integrated value Isum of the charge / discharge capacity and the previous value SOCo.

【数3】SOC=SOCo+(Isum×100/C)
…(3)但し、この式(3)において、Cはバッテ
リBの定格容量(A・sec)を示す。
[Equation 3] SOC = SOCo + (Isum × 100 / C)
(3) However, in this formula (3), C represents the rated capacity (A · sec) of the battery B.

【0039】さらに、ステップ340において、バッテ
リBの分極状態を表す指数Pが、例えば次の式(4)に
基づき、上記検出電流Iに応じて、すなわちバッテリB
の充放電履歴から算出される。
Further, in step 340, the index P representing the polarization state of the battery B is determined according to the detected current I, that is, the battery B, based on, for example, the following equation (4).
It is calculated from the charge / discharge history of.

【数4】 [Equation 4]

【0040】但し、式(4)において、γはバッテリB
の充電効率の変動に対する補正項(バッテリBの充電時
に0〜1の値となるが、充放電が繰り返される場合は1
となる)である。tは時間(sec)である。また、I
dはバッテリB内の活性化分極に起因する補正項であ
る。そして、Poをt1の直前における指数Pの値と
し、a、bをそれぞれ時定数とすると、Po>0のと
き、Id=a×Poであり、Po=0のとき、Id=0
であり、Po<0のとき、Id=b×Poである。ここ
で時定数a、bを使い分ける理由は、放電後と充電後で
活性化分極の影響時間が異なるためである。なお、式
(4)は、マイクロコンピュータ70のROMに予め記
憶されており、本発明にかかる分極状態推定手段を構成
する。
However, in the equation (4), γ is the battery B
A correction term for the fluctuation of the charging efficiency (it becomes a value of 0 to 1 when the battery B is charged, but is 1 when the charging and discharging are repeated.
It becomes). t is time (sec). Also, I
d is a correction term caused by the activation polarization in the battery B. When Po is the value of the index P immediately before t1 and a and b are time constants, Id = a × Po when Po> 0 and Id = 0 when Po = 0.
And when Po <0, then Id = b × Po. The reason why the time constants a and b are used properly is that the influence time of activation polarization after discharge is different from that after charge. The equation (4) is stored in advance in the ROM of the microcomputer 70 and constitutes the polarization state estimating means according to the present invention.

【0041】図9は、SOC50%で充電と放電を中止
した場合の電圧変化とその変化速度の絶対値│△V│を
示したものである。本発明では、反応速度の速い活性化
分極の影響が強いと推測できる電圧変化速度│△V│が
急変するまでの時間、例えば│△V│=1mV/sec
の時間の逆数を時定数a,bに採用した。即ち、a=1
/100、b=1/40とした。これは充電分極の影響
の解消速度が放電分極に比べ100/40倍ほど時間が
かかることを表している。
FIG. 9 shows the voltage change and the absolute value | ΔV | of the change speed when charging and discharging are stopped at SOC 50%. In the present invention, the time until the voltage change rate │ΔV│, which can be estimated to be strongly influenced by the activation polarization having a high reaction rate, e.g., │ΔV│ = 1 mV / sec.
The reciprocal of time was adopted as the time constants a and b. That is, a = 1
/ 100 and b = 1/40. This means that the elimination speed of the influence of charge polarization is 100/40 times longer than that of discharge polarization.

【0042】ステップ350では、調整電圧Vmの補正
量ΔVmがステップ320で求めた充放電容量の積算値
Isumに応じて、例えば図3に示されるマップに応じ
て算出される。
In step 350, the correction amount ΔVm of the adjustment voltage Vm is calculated according to the integrated value Isum of the charging / discharging capacity obtained in step 320, for example, according to the map shown in FIG.

【0043】ステップ360では、調整電圧Vmが前述
した式(2)に基づき、上記調整電圧補正量ΔVmに応
じて算出される。なお、実施形態1で記述したように、
算出したVmが予め設定した上限値以上の場合には上限
値に、予め設定した下限値以下の場合は下限値に修正さ
れる。
In step 360, the adjustment voltage Vm is calculated according to the adjustment voltage correction amount ΔVm based on the above-mentioned equation (2). As described in the first embodiment,
When the calculated Vm is equal to or higher than the preset upper limit value, it is corrected to the upper limit value, and when it is equal to or lower than the preset lower limit value, it is corrected to the lower limit value.

【0044】ステップ370では、上記指数Pが例えば
300(A・sec)よりも大きいか否かを判定する。
判定が肯定された場合は、現時点よりも前の放充電履歴
が充電傾向であり、検出電圧Vと検出電流Iは、充電分
極の影響が大きいと考えられるためSOCの補正を行う
ことなくステップ410に進む。
In step 370, it is determined whether or not the index P is larger than, for example, 300 (A · sec).
If the determination is affirmative, it is considered that the discharge history before the current time point is the charging tendency, and the detection voltage V and the detection current I are largely influenced by the charge polarization, so that the SOC is not corrected in step 410. Proceed to.

【0045】判定が否定された場合すなわち充電分極の
影響が小さいと考えられる場合は、ステップ380に進
み、上記検出電圧V、電流Iと温度Tのデータを予め温
度毎に記憶した残存容量SOCに対する電圧と電流との
関係に入力してバッテリBの残存容量SOCmを求め
る。このSOCmの値が、先のステップ330で算出し
たSOCの値と異なる場合、検出精度を考慮して例え
ば、差が±2%以上ある場合は、次の式(5)に基づき
SOCを校正する。
When the determination is negative, that is, when the influence of the charge polarization is considered to be small, the routine proceeds to step 380, where the data of the detection voltage V, the current I and the temperature T is stored in advance for each temperature SOC. The remaining capacity SOCm of the battery B is obtained by inputting the relationship between the voltage and the current. When the value of SOCm is different from the value of SOC calculated in the previous step 330, in consideration of detection accuracy, for example, when the difference is ± 2% or more, the SOC is calibrated based on the following equation (5). .

【数5】 SOC=(SOC+SOCm)/2 …(5)[Equation 5] SOC = (SOC + SOCm) / 2 (5)

【0046】さらに、次の処理に備えるため、上記SO
CoをSOCに置き換えると共に、Isumの値をゼロ
にリセットする。
Further, in order to prepare for the next processing, the above SO
Replace Co with SOC and reset the value of Isum to zero.

【0047】ステップ390では、上記SOCが、SO
C維持制御の目標値、例えば95%より大きいか否かを
判定する。SOCが95%より小さい場合は、続くステ
ップ400にて、先にゼロにリセットされた充放電容量
の積算値Isumの値を、次の式(6)に基づき決定す
る。
At step 390, the SOC is changed to SO
It is determined whether or not the target value of the C maintenance control is larger than 95%, for example. When the SOC is smaller than 95%, in the subsequent step 400, the value of the integrated value Isum of the charge / discharge capacity that was previously reset to zero is determined based on the following equation (6).

【数6】 Isum=(SOC‐95)/100×C …(6)[Equation 6] Isum = (SOC-95) / 100 × C (6)

【0048】この処理により、Isumは必ず負の値と
なるため、上記ステップ350或いはステップ360に
て、Isumをゼロに戻すよう調整電圧Vmが設定され
る。即ち、不足分を充電してSOCが維持目標値まで増
加するように調整電圧Vmが決定される。ここで、SO
Cが維持目標値となるまでは、バッテリBは充電傾向と
なるため、通常は上記ステップ370の指数Pは、P>
300となり、ステップ380〜ステップ400の処理
は行われない。
By this processing, since Isum always has a negative value, the adjustment voltage Vm is set to return Isum to zero in step 350 or step 360. That is, the adjustment voltage Vm is determined so that the shortage is charged and the SOC increases to the maintenance target value. Where SO
The battery B tends to be charged until C reaches the maintenance target value. Therefore, normally, the index P of the above step 370 is P>
The processing of step 380 to step 400 is not performed.

【0049】また、ステップ390においてSOCが9
5%以上の場合は、充放電容量の積算値Isumはゼロ
のままであり、現状のSOCを維持するよう上記ステッ
プ350或いはステップ360にて調整電圧Vmが設定
される。この場合には、実施形態1で述べたように、充
放電容量の積算値Isumの値すなわちバッテリBへの
充放電量の積算値がゼロとなるように調整電圧Vmが制
御されることになる。
In step 390, the SOC is 9
If it is 5% or more, the integrated value Isum of the charge / discharge capacity remains zero, and the adjustment voltage Vm is set in step 350 or step 360 so as to maintain the current SOC. In this case, as described in the first embodiment, the adjustment voltage Vm is controlled so that the value of the integrated value Isum of the charge / discharge capacity, that is, the integrated value of the charge / discharge amount of the battery B becomes zero. .

【0050】ステップ410では、イグニッションスイ
ッチIGがオフされたかどうかを判定し、判定が肯定さ
れた場合は、ステップ420で現段階における残存容量
SOCがマイクロコンピュータ70のRAMに記憶保存
される。一方、判定が否定された場合は、ステップ31
0以後の処理が繰り返される。
In step 410, it is determined whether or not the ignition switch IG is turned off. If the determination is affirmative, the remaining capacity SOC at the present stage is stored and saved in the RAM of the microcomputer 70 in step 420. On the other hand, if the determination is negative, step 31
The processing after 0 is repeated.

【0051】以上説明したように、本実施形態3では、
充電分極の影響が小さいと判断した場合にのみ、電流積
算で算出した残存容量SOC(ステップ330)を予め
記憶したマップから求めたSOCm(ステップ380)
で校正している。これにより、充電分極の影響が小さい
時のバッテリBの電圧、電流、温度データのみを選別
し、このデータを用いてバッテリBの残存容量を検出す
ることになる。この結果、より高精度でバッテリBの充
電状態を管理することができる。
As described above, in the third embodiment,
Only when it is determined that the influence of the charge polarization is small, the SOCm (step 380) obtained from the map in which the state of charge SOC (step 330) calculated by current integration is stored in advance.
Is calibrated in. As a result, only the voltage, current, and temperature data of the battery B when the influence of charge polarization is small are selected, and the remaining capacity of the battery B is detected using this data. As a result, the state of charge of the battery B can be managed with higher accuracy.

【0052】なおステップ390に続いて、SOCが目
標値に対して例えば98%より大きいか否かの判定を追
加して、判定が肯定された場合は、上記式(6)に基づ
き充放電容量の積算値Isumを決定して充電制御する
ようにしてもよい。この場合は、さらに燃費を向上する
ことが期待できる。
It should be noted that, after step 390, a judgment is made as to whether or not the SOC is higher than, for example, 98% with respect to the target value, and if the judgment is affirmative, the charge / discharge capacity is calculated based on the above equation (6). It is also possible to control the charging by determining the integrated value Isum of. In this case, further improvement in fuel economy can be expected.

【0053】また、実施形態2において、補充電が完了
した後の維持制御中にステップ370〜400の処理を
実施するようにしても良い。
Further, in the second embodiment, the processes of steps 370 to 400 may be executed during the maintenance control after the completion of the auxiliary charging.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
電流センサによる検出電流から求めた充放電容量の積算
値がゼロとなるように調整電圧がレギュレータによって
制御されるので、バッテリの過充電を防止でき、燃費の
悪化、電池の液べりを抑制できる。
As described above, according to the present invention,
Since the regulator controls the adjustment voltage so that the integrated value of the charging / discharging capacity obtained from the current detected by the current sensor becomes zero, overcharging of the battery can be prevented, fuel consumption can be reduced, and battery slippage can be suppressed.

【0055】また、車両始動前の放置状態で自己放電し
た電池容量を回復でき、車両をスムースに再始動するこ
とができる。
Further, it is possible to recover the self-discharged battery capacity when the vehicle is left unattended before starting, and to restart the vehicle smoothly.

【0056】また、車両始動前の放置状態で自己放電が
あった場合にも、始動時に電池の残存容量を所定値以上
確保できると共に、二次電池の過充電を防止でき、燃費
の悪化、電池の液べりを抑制できる。
Further, even when self-discharge occurs in a state of being left unattended before the vehicle is started, the remaining capacity of the battery can be secured at a predetermined value or more at the time of starting, and the secondary battery can be prevented from being overcharged. It is possible to suppress the liquid slippage.

【0057】また、電池が充放電の繰り返しにより分極
状態となっても、正確に電池の残存容量を検出でき、電
池状態に応じた適切な調整電圧を設定できる。このた
め、二次電池の過充電を防止でき、燃費の悪化、電池の
液べりを抑制できる。
Further, even when the battery is in a polarized state due to repeated charging and discharging, the remaining capacity of the battery can be accurately detected, and an appropriate adjustment voltage can be set according to the battery state. For this reason, overcharge of the secondary battery can be prevented, fuel consumption can be prevented from deteriorating, and liquid slippage of the battery can be suppressed.

【0058】また、充電分極の影響が小さい電圧、電流
データをより正確に選別できる。これにより、二次電池
の過充電を防止でき、燃費の悪化、電池の液べりを抑制
できる。
Further, it is possible to more accurately select voltage and current data which is less affected by charge polarization. As a result, overcharge of the secondary battery can be prevented, fuel consumption can be prevented from deteriorating, and battery slippage can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる車両用二次電池の充電制御装
置の実施形態1の構成例を示す図である。
FIG. 1 is a diagram showing a configuration example of a first embodiment of a vehicle secondary battery charge control device according to the present invention.

【図2】 図1に示された実施形態1の動作フローを示
す図である。
FIG. 2 is a diagram showing an operation flow of the first embodiment shown in FIG.

【図3】 図2に示された動作フローにおける調整電圧
の補正量ΔVmを求めるためのマップの例を示す図であ
る。
FIG. 3 is a diagram showing an example of a map for obtaining a correction amount ΔVm of an adjustment voltage in the operation flow shown in FIG.

【図4】 本発明にかかる車両用二次電池の充電制御装
置の実施形態2の構成例を示す図である。。
FIG. 4 is a diagram showing a configuration example of a second embodiment of a vehicle secondary battery charge control device according to the present invention. .

【図5】 図4に示された実施形態2の動作フローを示
す図である。。
5 is a diagram showing an operation flow of the second embodiment shown in FIG. .

【図6】 図5に示された動作フローにおける調整電圧
Vmを求めるための図である。
FIG. 6 is a diagram for obtaining an adjustment voltage Vm in the operation flow shown in FIG.

【図7】 図5に示された動作フローにおける補充電完
了判定電流を求めるためのマップの例を示す図である。
7 is a diagram showing an example of a map for obtaining a supplemental charge completion determination current in the operation flow shown in FIG.

【図8】 本発明にかかる車両用二次電池の充電制御装
置の実施形態3の動作フローを示す図である。
FIG. 8 is a diagram showing an operation flow of the third embodiment of the vehicle secondary battery charge control device according to the present invention.

【図9】 SOC50%で充電と放電を中止した場合の
電圧変化と電圧変化速度の絶対値を示す図である。
FIG. 9 is a diagram showing absolute values of voltage change and voltage change rate when charging and discharging are stopped at SOC 50%.

【符号の説明】[Explanation of symbols]

10 交流発電機、20 整流器、30 レギュレー
タ、40 電流センサ、50 電圧センサ、60 温度
センサ、70 マイクロコンピュータ、B バッテリ、
L 負荷。
10 AC generator, 20 rectifier, 30 regulator, 40 current sensor, 50 voltage sensor, 60 temperature sensor, 70 microcomputer, B battery,
L load.

フロントページの続き (72)発明者 堺 昭治 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 谷澤 昌宏 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 鈴木 尚彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 佐田 岳士 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2G016 CA03 CB01 CB12 CB21 CB22 CB31 CB32 CC01 CC02 CC03 CC04 CC07 CC12 CC13 CC14 CC17 CC23 CC27 CC28 CD02 CD03 CF06 CF07 5G060 AA05 DB07 5H030 AA03 AS08 FF22 FF42 FF43 FF44 5H590 AA02 AB04 CA07 CA23 CC02 CD01 CE05 EA01 EB02 EB14 FA08 GA06 GB05 HA01 HA02 HA04 HA18 JA02 JB02 Continued front page    (72) Inventor Shoji Sakai             14 Iwatani Shimohakaku-cho, Nishio-shi, Aichi Stock Association             Company Japan Auto Parts Research Institute (72) Inventor Masahiro Tanizawa             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Naohiko Suzuki             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Takeshi Sada             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F term (reference) 2G016 CA03 CB01 CB12 CB21 CB22                       CB31 CB32 CC01 CC02 CC03                       CC04 CC07 CC12 CC13 CC14                       CC17 CC23 CC27 CC28 CD02                       CD03 CF06 CF07                 5G060 AA05 DB07                 5H030 AA03 AS08 FF22 FF42 FF43                       FF44                 5H590 AA02 AB04 CA07 CA23 CC02                       CD01 CE05 EA01 EB02 EB14                       FA08 GA06 GB05 HA01 HA02                       HA04 HA18 JA02 JB02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 交流発電機と、前記交流発電機の出力電
圧により充電される二次電池と、前記二次電池の充放電
電圧である調整電圧を制御するレギュレータと、前記二
次電池に流れる電流を検出する電流検出手段とを備える
車両に使用され、前記レギュレータに、前記電流検出手
段による検出電流から求めた充放電容量の積算値がゼロ
となるように前記調整電圧を制御させることを特徴とす
る車両用二次電池の充電制御装置。
1. An alternating current generator, a secondary battery charged by an output voltage of the alternating current generator, a regulator for controlling a regulated voltage which is a charging / discharging voltage of the secondary battery, and a secondary battery flowing through the secondary battery. It is used in a vehicle provided with a current detection means for detecting a current, and causes the regulator to control the adjustment voltage so that an integrated value of charge / discharge capacity obtained from a current detected by the current detection means becomes zero. A charging control device for a secondary battery for a vehicle.
【請求項2】 請求項1記載の充電制御装置において、
車両始動直後は、前記充放電容量の積算値が所定量増加
するように前記調整電圧を制御することを特徴とする車
両用二次電池の充電制御装置。
2. The charging control device according to claim 1, wherein
Immediately after the vehicle is started, the adjustment voltage is controlled so that the integrated value of the charge / discharge capacity is increased by a predetermined amount.
【請求項3】 交流発電機と、前記交流発電機の出力電
圧により充電される二次電池と、前記二次電池の充放電
電圧である調整電圧を制御するレギュレータと、前記二
次電池の端子電圧を検出する電圧検出手段と、前記二次
電池に流れる電流を検出する電流検出手段と、前記二次
電池の温度を検出する温度検出手段とを備える車両に使
用され、前記検出電流が、電圧と温度とに応じて予め設
定された所定の補充電完了判定電流よりも小さい場合に
前記充放電容量の積算値をゼロにリセットし、前記レギ
ュレータに、前記電流検出手段による検出電流から求め
た充放電容量の積算値がゼロとなるように前記調整電圧
を制御させることを特徴とする車両用二次電池の充電制
御装置。
3. An AC generator, a secondary battery charged by the output voltage of the AC generator, a regulator for controlling a regulated voltage which is a charging / discharging voltage of the secondary battery, and a terminal of the secondary battery. Used in a vehicle that includes a voltage detection unit that detects a voltage, a current detection unit that detects a current flowing through the secondary battery, and a temperature detection unit that detects a temperature of the secondary battery, and the detection current is a voltage. If the current is smaller than a predetermined supplementary charge completion determination current preset according to the temperature and the temperature, the integrated value of the charge / discharge capacity is reset to zero, and the regulator is charged from the current detected by the current detecting means. A charging control device for a secondary battery for a vehicle, wherein the adjustment voltage is controlled so that an integrated value of discharge capacity becomes zero.
【請求項4】 交流発電機と、前記交流発電機の出力電
圧により充電される二次電池と、前記二次電池の充放電
電圧である調整電圧を制御するレギュレータと、前記二
次電池の端子電圧を検出する電圧検出手段と、前記二次
電池に流れる電流を検出する電流検出手段と、前記二次
電池の温度を検出する温度検出手段と、前記二次電池の
充放電履歴から前記二次電池の分極状態を推定する分極
状態推定手段とを備える車両に使用され、前記分極状態
推定手段によって充電分極の影響が小さい前記二次電池
の電圧、電流、温度データのみを選別し、このデータを
用いて前記二次電池の残存容量を検出し、この残存容量
が所定値を超える場合は、前記レギュレータに、前記電
流検出手段による検出電流から求めた充放電容量の積算
値がゼロとなるように前記調整電圧を制御させ、所定値
を超えない場合は、不足分を充電できるように前記調整
電圧を制御させることを特徴とする車両用二次電池の充
電制御装置。
4. An AC generator, a secondary battery charged by the output voltage of the AC generator, a regulator for controlling a regulated voltage which is a charging / discharging voltage of the secondary battery, and a terminal of the secondary battery. Voltage detection means for detecting a voltage, current detection means for detecting a current flowing through the secondary battery, temperature detection means for detecting a temperature of the secondary battery, and the secondary battery from a charge / discharge history of the secondary battery. Used in a vehicle equipped with a polarization state estimation means for estimating the polarization state of a battery, the polarization state estimation means selects only the voltage, current, and temperature data of the secondary battery having a small influence of charge polarization, and this data is The remaining capacity of the secondary battery is detected by using the remaining capacity, and when the remaining capacity exceeds a predetermined value, the regulator is set so that the integrated value of the charging / discharging capacity obtained from the current detected by the current detecting means becomes zero. 2. The charging control device for a secondary battery for a vehicle, which controls the adjustment voltage, and controls the adjustment voltage so that the shortage can be charged when a predetermined value is not exceeded.
【請求項5】 請求項4記載の充電制御装置において、
前記分極状態推定手段は、充放電に起因する前記二次電
池の電圧変化の内、活性化分極に基づく電圧変化に着目
して分極状態を検出することを特徴とする車両用二次電
池の充電制御装置。
5. The charging control device according to claim 4,
The charging of a secondary battery for a vehicle, wherein the polarization state estimating means detects a polarization state by paying attention to a voltage change based on activation polarization among voltage changes of the secondary battery caused by charging and discharging. Control device.
JP2002005731A 2002-01-15 2002-01-15 Charge control device for secondary battery for vehicle Expired - Lifetime JP3891845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005731A JP3891845B2 (en) 2002-01-15 2002-01-15 Charge control device for secondary battery for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005731A JP3891845B2 (en) 2002-01-15 2002-01-15 Charge control device for secondary battery for vehicle

Publications (2)

Publication Number Publication Date
JP2003209935A true JP2003209935A (en) 2003-07-25
JP3891845B2 JP3891845B2 (en) 2007-03-14

Family

ID=27644693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005731A Expired - Lifetime JP3891845B2 (en) 2002-01-15 2002-01-15 Charge control device for secondary battery for vehicle

Country Status (1)

Country Link
JP (1) JP3891845B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411274C (en) * 2005-05-20 2008-08-13 株式会社岛野 DC power supply device for human powered vehicles
US7531909B2 (en) 2006-10-24 2009-05-12 Denso Corporation Method and apparatus for controlling charging operations for battery
US7615986B2 (en) 2006-04-10 2009-11-10 Yazaki Corporation Temperature detection function-incorporating current sensor
JP2009268176A (en) * 2008-04-22 2009-11-12 Nippon Soken Inc Charging control apparatus for secondary battery for vehicle
US7750602B2 (en) 2006-08-10 2010-07-06 Denso Corporation Method and apparatus for managing charge/discharge current of on-vehicle battery to control on-vehicle generator in consideration of offset of charge/discharge current
JP2010225582A (en) * 2009-02-24 2010-10-07 Idemitsu Kosan Co Ltd Electrical apparatus
US8040108B2 (en) 2007-08-01 2011-10-18 Denso Corporation Apparatus for estimating state of charge of rechargeable battery charged by vehicle-mounted power generation apparatus
DE102011001038A1 (en) 2010-03-05 2011-12-29 Denso Corporation Charging control system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411274C (en) * 2005-05-20 2008-08-13 株式会社岛野 DC power supply device for human powered vehicles
US7615986B2 (en) 2006-04-10 2009-11-10 Yazaki Corporation Temperature detection function-incorporating current sensor
US7750602B2 (en) 2006-08-10 2010-07-06 Denso Corporation Method and apparatus for managing charge/discharge current of on-vehicle battery to control on-vehicle generator in consideration of offset of charge/discharge current
US7531909B2 (en) 2006-10-24 2009-05-12 Denso Corporation Method and apparatus for controlling charging operations for battery
DE102007050587B4 (en) * 2006-10-24 2017-05-24 Denso Corporation Method and device for controlling charging processes for a battery
US8040108B2 (en) 2007-08-01 2011-10-18 Denso Corporation Apparatus for estimating state of charge of rechargeable battery charged by vehicle-mounted power generation apparatus
JP2009268176A (en) * 2008-04-22 2009-11-12 Nippon Soken Inc Charging control apparatus for secondary battery for vehicle
JP2010225582A (en) * 2009-02-24 2010-10-07 Idemitsu Kosan Co Ltd Electrical apparatus
DE102011001038A1 (en) 2010-03-05 2011-12-29 Denso Corporation Charging control system
US8686692B2 (en) 2010-03-05 2014-04-01 Denso Corporation Charge control system

Also Published As

Publication number Publication date
JP3891845B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
CN111431261B (en) Power supply system for vehicle
KR100554241B1 (en) Apparatus for battery capacity measurement and for remaining capacity calculation
US8552688B2 (en) On-vehicle battery condition estimation device
JP6384412B2 (en) Power supply
JP5093251B2 (en) Vehicle control device
JP2003180004A (en) Method for calculating parameter of power battery of electric motor vehicle
JP2000324702A (en) Method and apparatus for detecting discharge capacity of battery and controller for car battery
JP2008199860A (en) Targeted charged capacity calculating method, targeted charged capacity calculating device and charged capacity control unit
US10498154B2 (en) Electric power system
JP2003209935A (en) Charge controller for secondary battery for vehicle
JP4127078B2 (en) Vehicle power supply control device
JP2004003460A (en) Controlling equipment and control method of vehicle
JP3436203B2 (en) Apparatus for calculating remaining capacity of rechargeable battery for vehicle, automatic stop / start device for engine, and control device for electric rotating machine
JPH10319100A (en) Battery charging state detecting device
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
JP5081722B2 (en) Charge control device for secondary battery
JP5285323B2 (en) Charge control device for secondary battery for vehicle
JP4112895B2 (en) Secondary battery charge state detection device
JP7354918B2 (en) power converter
JPH05322998A (en) Battery capacity discriminator
JP7036081B2 (en) Control device
JP2001268806A (en) Control device of hybrid vehicle
JP2002281602A (en) Voltage-computing method of power supply for electric vehicle, and power supply unit for the electric vehicle
JP2007037259A (en) Power generation controller for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term