JP2003209212A - Magazine type plasma cleaning system - Google Patents

Magazine type plasma cleaning system

Info

Publication number
JP2003209212A
JP2003209212A JP2002042344A JP2002042344A JP2003209212A JP 2003209212 A JP2003209212 A JP 2003209212A JP 2002042344 A JP2002042344 A JP 2002042344A JP 2002042344 A JP2002042344 A JP 2002042344A JP 2003209212 A JP2003209212 A JP 2003209212A
Authority
JP
Japan
Prior art keywords
gas
plasma
magazine
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002042344A
Other languages
Japanese (ja)
Inventor
Miyuki Saito
幸 斎藤
Toshihiko Hatanaka
俊彦 畑中
Shunji Miura
俊二 三浦
Rikuo Sakurai
陸生 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORI ENGINEERING KK
Original Assignee
MORI ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORI ENGINEERING KK filed Critical MORI ENGINEERING KK
Priority to JP2002042344A priority Critical patent/JP2003209212A/en
Publication of JP2003209212A publication Critical patent/JP2003209212A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8501Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/85013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform plasma cleaning while containing the surface of BGA, CSP, MCM substrate or the lead frame for QFP or SOP in a magazine. <P>SOLUTION: Distance between a high frequency power applying electrode 1' and a ground electrode 2 is variable in the range of 5-25 cm and the frequency of high frequency power is selected optimally in the range of 10-160 kHz in order to prevent the occurrence of a sheath in each substrate 4 contained in a magazine 3. Plasma is generated uniformly on the surface of each substrate in the magazine 3 and the surface of each substrate or the lead frame is cleaned. Bonding reliability of gold wire is enhanced while enhancing bonding reliability of molding resin. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はICチップまたは半導体
チップのBGA、CSP、MCMまたはQFP、SOP
等のパッケージへの組立工程において、ICチップ等を
搭載したBGA、CSP用の樹脂基板またはQFP、S
OP用のリードフレームをワイヤボンディング前または
モールド前処理として、プラズマ処理を適用し、ワイヤ
ボンディングの信頼性向上、またはモールド樹脂の基板
への接合の信頼性向上をはかることを目的としたプラズ
マクリーニングに関する。
The present invention relates to an IC chip or a semiconductor chip such as BGA, CSP, MCM or QFP, SOP.
In the process of assembling into packages such as BGA, CSP resin substrate or QFP, S for mounting IC chips etc.
The plasma cleaning is applied to the OP lead frame before wire bonding or as mold pretreatment to improve the reliability of the wire bonding or the bonding of the mold resin to the substrate. .

【0002】[0002]

【従来の技術】従来は樹脂基板やリードフレーム上の有
機物による汚れは一般的に酸素ガス(O)とアルゴン
ガス(Ar)の混合ガスを使用して13.56MHz等
の高周波印加電力により、プラズマを発生させ除去され
ている。また金属や金属化合物等はアルゴンガス(A
r)とCF等の弗素化合物、CCl等の塩素
系化合物、または水素ガス(H)との混合ガスを使用
して同様にプラズマを発生させ、酸化物等を除去してい
る。これらの不用物を除去する場合、プラズマ粒子によ
る化学反応で除去する場合と、イオン等の荷電粒子を電
界により加速して試料に衝突させ、RIE効果(反応性
イオンエッチング)により除去する方法等が行われてい
る。
2. Description of the Related Art Conventionally, contamination of a resin substrate or a lead frame with an organic substance is generally performed by using a mixed gas of oxygen gas (O 2 ) and argon gas (Ar) with high frequency applied power of 13.56 MHz. Plasma is generated and removed. In addition, metals and metal compounds are argon gas (A
r) and a fluorine compound such as CF 4 , a chlorine-based compound such as C 2 Cl 3 F 3 or a mixed gas of hydrogen gas (H 2 ) is used to similarly generate plasma to remove oxides and the like. ing. When removing these unnecessary substances, there are a method of removing by a chemical reaction by plasma particles, a method of accelerating charged particles such as ions by an electric field to collide with a sample, and removing by RIE effect (reactive ion etching). Has been done.

【0003】特にBGA、CPS等のICパッケージに
おいては、基板のコストダウンとともに半田ボールの接
続信頼性向上からAuメッキが薄い方が半田の接続信頼
性が高いので、基板の配線Cu板上のNiメッキを3〜
5μmの厚さにつけた後、Auメッキを従来の還元無電
解メッキ法により0.2ミリ程度の厚さであったが置換
型無電解メッキ法(フラッシュメッキ法)により0.0
5〜0.03μmと薄くメッキするようになったため、
ワイヤボンダの接続信頼性に問題が発生している。従っ
て基板面上の有機物を除去するだけでなく、Auメッキ
上のNi化合物等をプラズマ処理により除去して、ワイ
ヤボンディングの信頼性を向上させるとともに半田ボー
ルの基板面上への接続信頼性を向上させることが行われ
ている。
Particularly in IC packages such as BGA and CPS, the lower the Au plating is, the higher the solder connection reliability is because the cost of the substrate is reduced and the connection reliability of the solder balls is improved. 3 to plating
After applying a thickness of 5 μm, the Au plating was about 0.2 mm thick by the conventional reduction electroless plating method, but 0.0 by the substitution type electroless plating method (flash plating method).
Since it has come to be thinly plated with 5 to 0.03 μm,
There is a problem with the connection reliability of the wire bonder. Therefore, not only the organic substances on the substrate surface are removed, but also Ni compounds etc. on the Au plating are removed by plasma treatment to improve the reliability of wire bonding and the reliability of connection of solder balls on the substrate surface. Is being done.

【0004】また従来から、Auメッキ上のNi等の金
属化合物を除去するために、減圧可能なチャンバ中に平
行平板電極を設置して、数十Pa程度のガス圧力でAr
ガスを用いて13.56MHzの高周波電力を印加する
ことによりプラズマを発生させて、高周波印加電極側に
負のセルフバイアス電圧を発生させ、この電極上にマガ
ジン中に収納されたクリーニングすべき基板を1〜2枚
程度枚葉的に取り出し設置して、Arイオン等のRIE
効果により、これらの金属化合物例えばNi(O
H)、NiOまたはNi等を除去することによ
りAu濃度をあげて、ボンディング性を向上させること
が行われている。
Further, conventionally, in order to remove a metal compound such as Ni on Au plating, a parallel plate electrode is installed in a chamber capable of reducing pressure, and Ar is applied at a gas pressure of about several tens Pa.
Plasma is generated by applying high frequency power of 13.56 MHz using gas to generate a negative self-bias voltage on the high frequency application electrode side, and the substrate to be cleaned stored in the magazine is placed on this electrode. Approximately 1 or 2 sheets are taken out and installed individually, and RIE such as Ar ion is performed.
Depending on the effect, these metal compounds such as Ni (O
H) 2 , NiO, Ni 2 O 3 and the like are removed to increase the Au concentration and improve the bondability.

【0005】半導体チップまたはICチップ等のパッケ
ージング工程において一般に使用されているパッケージ
用基板またはリードフレームを搬送しやすいようにマガ
ジン中(一般的に基板等は20〜30枚程度を収納でき
るようになっている)に収納して各工程間を搬送してい
るが、プラズマによるクリーニングをする場合には、図
1に示してあるように片側のマガジン(3)から一枚ず
つ基板(4)を取り出して、1回のプラズマ処理で1枚
または2枚程度を枚葉的に高周波電力印加電極(1)上
に設置してから排出口(10)よりチャンバ内を真空に
した後、プラズマ用ガスをガス導入口(9)よりガスを
導入して、電力を印加してプラズマを発生させて、基板
をプラズマ処理した後、別のマガジン(3’)に再び収
納して、各基板がすべてプラズマ処理された後マガジン
毎に次工程に搬送している。
A package substrate or lead frame generally used in a packaging process for semiconductor chips or IC chips is stored in a magazine so that it can be easily transported (generally, about 20 to 30 substrates can be stored). However, when cleaning with plasma, as shown in FIG. 1, the substrates (4) are transferred one by one from one magazine (3) on one side. After taking out, one or two sheets are placed on the high-frequency power applying electrode (1) one by one in a single plasma treatment, and then the chamber is evacuated from the exhaust port (10). Gas is introduced from the gas introduction port (9), electric power is applied to generate plasma, the substrate is plasma-treated, and then the substrate is stored again in another magazine (3 ') to remove each substrate. After all plasma processing, they are transported to the next process for each magazine.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法ではマガジンから基板を1枚、1枚取り
出してプラズマ処理している為に生産性が悪く、コスト
的に問題があり、より合理的でより生産性を高くするた
めに、基板を1枚、1枚取り出してプラズマ処理するの
でなく、基板をマガジンに収納したままの状態で、マガ
ジン中でプラズマ処理することが要望されている。
However, in such a conventional method, since the substrates are taken out from the magazine one by one and processed by plasma, the productivity is poor and there is a problem in cost, which is more rational. In order to increase the productivity more efficiently, it is desired to perform plasma processing in the magazine while the substrates are stored in the magazine, instead of taking out the substrates one by one and performing the plasma processing.

【0007】しかし、従来の方式では一般的に13.5
6MHz等の高周波を電力として使用しているために電
圧の変動に対して電子は追従できるが、イオンが電子よ
り重いために追従できないため各電極間のガス空間にイ
オンが捕捉されるために電極間のガス空間がプラス電位
になり、それに対応して電極面積の小さい高周波電力印
加電極側がマイナス電位、すなわちマイナスのセルフバ
イアス電圧が発生する。従ってプラズマ中に発生したイ
オンがこの電極上の基板面上に電気的に引き付けられ、
基板面上にイオンが衝突することにより基板面上にある
不用な金属化合物等を物理的スパッタリングにより除去
する方式のため、各基板がマガジン中に多重に収納され
た状態では、各基板をプラズマによりこれら不用な金属
または金属化合物を除去することは困難であるという問
題点があった。本発明はこのような問題点を解決するた
めにマガジンに基板が一括して収納された状態でプラズ
マ処理することを提供するものである。
However, in the conventional method, generally 13.5.
Electrons can follow voltage fluctuations because a high frequency such as 6 MHz is used as electric power, but since ions cannot follow because they are heavier than electrons, ions are trapped in the gas space between each electrode The gas space between them has a positive potential, and correspondingly, a negative potential, that is, a negative self-bias voltage is generated on the side of the high-frequency power application electrode having a small electrode area. Therefore, the ions generated in the plasma are electrically attracted to the substrate surface on this electrode,
Since the unnecessary metal compounds on the surface of the substrate are removed by physical sputtering due to the collision of the ions on the surface of the substrate, when each substrate is stored in multiple layers in the magazine, each substrate is exposed to the plasma. There is a problem that it is difficult to remove these unnecessary metals or metal compounds. In order to solve such a problem, the present invention provides plasma processing in a state where substrates are collectively stored in a magazine.

【0008】[0008]

【課題を解決するための手段】本発明の方式はマガジン
から基板を1枚、1枚取り出して処理する方法ではな
く、マガジン内に基板が収納されたままの状態でプラズ
マ処理を行ないボンディングの信頼性向上とともに基板
とモールド樹脂との密着性を同時に向上させることを目
的としたマガジン方式プラズマクリーニング方法であ
り、生産性の向上とともに品質的にも実用的に問題のお
きないレベルでの均一な処理が可能となった。
The method of the present invention is not a method of processing the substrates one by one by taking them out from the magazine, but the reliability of bonding by performing the plasma processing with the substrates stored in the magazine. This is a magazine-type plasma cleaning method that aims to improve the adhesiveness between the substrate and the mold resin at the same time as improving the productivity. Became possible.

【0009】[0009]

【発明の実施の形態】図2により、本発明の実施例を説
明する。図2のように減圧可能なアルミニウムまたSU
S製のチャンバ(7)中に設置された平行平板電極型の
高周波電力印加電極(1’)と設置用電極(2)間の各
対向した電極面上にセラミック等の材質で構成された厚
さ1mm〜3mm程度で、面積は各電極の大きさと同程
度の絶縁板を各電極面上に接して設置する。また各電極
と各絶縁板には多数の小径の穴を形成して、チャンバ外
部より高周波電極とこの面上の絶縁板の多数の穴を通し
てプラズマ反応ガスを導入して、マガジンを通して更に
設置電極面の絶縁板と設置電極を通してプラズマ反応ガ
スが排出されるような構造で設置する。またこれら電極
面上の絶縁板はプラズマ処理の目的物により必要でない
場合は必要としない。また部分的なストリーマ放電防止
やまたはマガジン内の電界をより均一にする必要のある
場合、更にはアーク放電防止をしやすくするためには絶
縁板を使用した方がより効果的である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. Aluminum or SU that can be decompressed as shown in Fig. 2.
A thickness composed of a material such as ceramics on each opposing electrode surface between the parallel plate electrode type high frequency power applying electrode (1 ′) installed in the chamber (7) made of S and the installation electrode (2) An insulating plate having a size of about 1 mm to 3 mm and an area equivalent to the size of each electrode is placed in contact with each electrode surface. A large number of small diameter holes are formed in each electrode and each insulating plate, and the plasma reaction gas is introduced from the outside of the chamber through the high frequency electrode and the large number of holes in the insulating plate on this surface. The plasma reaction gas is discharged through the insulating plate and the installation electrode of. The insulating plate on these electrode surfaces is not necessary if it is not necessary depending on the object of plasma treatment. Further, when it is necessary to prevent partial streamer discharge or to make the electric field in the magazine more uniform, it is more effective to use an insulating plate in order to easily prevent arc discharge.

【0010】電極間距離は約5cm〜25cmの範囲で
可変できるようにすることにより、マガジンの幅の大き
さに対応して最適の電極間隔を設定できるようにさせ
る。またマガジンは電極間に設置した絶縁板の中間また
は絶縁板がないときには極間の中間に設置する。各電極
または絶縁板とマガジンの間隔は数mmから数cmの間
で目的に応じて間隔の最適値を設定できるようにする。
これらの間隔はプラズマガスの流通の均一性との関係が
深いため、一般的には実験データ等から設定するのが良
い。
By making the distance between the electrodes variable in the range of about 5 cm to 25 cm, the optimum electrode interval can be set according to the width of the magazine. The magazine is placed between the insulating plates installed between the electrodes or between the electrodes when there is no insulating plate. The distance between each electrode or the insulating plate and the magazine is set within a range from several mm to several cm so that the optimum value of the distance can be set according to the purpose.
Since these intervals are closely related to the uniformity of plasma gas flow, they are generally set based on experimental data.

【0011】一般的に、基板上に付着した不必要な有機
物を除去するにはOガスやArガスまたはこれらの混
合ガスが使用されており、有機物をプラズマ中でH
ガスやCOガスにして除去しているが、本方式もまっ
たく同じようにしてマガジン中にて除去することができ
る。さらに不必要な金属化合物や不純物(スミア等を含
む)はN2ガス(またはArガス)H2ガス等により効
率良く還元、分解または破壊することができるのはプラ
ズマ表面相互反応(イオンアシスト反応)によるもので
あるガス圧力は目的に応じ0.1Paから数百Paの範
囲で最適値で行なう事が好ましい。また上記の電極間隔
に対して高周波電力の周波数は10kHzから160k
Hzの範囲で最適の周波数を選定する。電力は目的物の
容量により数百Wから数kWが必要である。
[0011] In general, to remove unwanted organic matter deposited on the substrate is used O 2 gas and Ar gas or a mixed gas, H 2 O the organic matter in the plasma
The gas or CO 2 gas is used for removal, but this method can be used for removal in the magazine in exactly the same manner. Further, unnecessary metal compounds and impurities (including smear etc.) can be efficiently reduced, decomposed or destroyed by N2 gas (or Ar gas) H2 gas etc. by the plasma surface mutual reaction (ion assist reaction). The gas pressure is preferably in the range of 0.1 Pa to several hundreds of Pa depending on the purpose. In addition, the frequency of the high frequency power is 10 kHz to 160 k with respect to the above electrode spacing
Select the optimum frequency in the range of Hz. The electric power needs to be several hundred W to several kW depending on the capacity of the target.

【0012】従来13.56MHz等の高周波を使用す
る場合が多いが、この場合基板がマガジンに収納された
ままではうまく基板面のプラズマクリーニングが出来な
かったのは、マガジン中での各基板面上にてプラズマの
発生がなく、マガジンの外部で発生したプラズマ粒子を
マガジン中に導入していたため、基板面上での反応が弱
く、特に金属化合物等の還元、分解、破壊等が不充分で
あったため、目的を達成することがほとんど不可能であ
った。
Conventionally, a high frequency such as 13.56 MHz is often used, but in this case, the plasma cleaning of the substrate surface could not be performed properly when the substrate was stored in the magazine. Since plasma was not generated in the magazine and the plasma particles generated outside the magazine were introduced into the magazine, the reaction on the substrate surface was weak, and reduction, decomposition, destruction, etc. of metal compounds, etc. were particularly insufficient. Therefore, it was almost impossible to achieve the purpose.

【0013】その理由は13.56MHzのように高周
波の場合にはプラズマで発生した電子は、電圧の変動に
対して追従できるが、質量が電子の約1800倍以上重
いイオンは電圧変動に追従できない。その理由はイオン
はわずか半周期で20μm程度しか動けないために電極
間のガス空間に捕捉され、プラズマ空間がプラス電位と
なり、それに対応して面積比の小さい高周波電力印加電
極側がマイナスに帯電され、電極上にマイナスのセルフ
バイアス電圧が発生する。またマガジンも金属で導体で
あるためマイナスに帯電するとともに各基板の両面は銅
などにより配線されているためにマイナスに同様に帯電
する。このためにマガジン中の各基板間隔が一般的に5
〜6mmと狭く、マガジン自体とともに各基板面にシー
スが発生し、各基板間への電子の導入を妨げるために、
プラズマを発生させるための強いエネルギーを持った電
子、またはイオンが各基板の隙間に入りにくくなる為に
各基板間でプラズマの発生が不可能であった。また発生
しても不均一であった。
The reason is that in the case of a high frequency such as 13.56 MHz, the electrons generated in the plasma can follow the voltage fluctuation, but the ions whose mass is about 1800 times heavier than the electron cannot follow the voltage fluctuation. . The reason is that ions move only about 20 μm in a half cycle, so they are trapped in the gas space between the electrodes, the plasma space has a positive potential, and the corresponding high frequency power application electrode side with a small area ratio is negatively charged, A negative self-bias voltage is generated on the electrodes. Further, since the magazine is also made of metal and is a conductor, it is negatively charged, and since both sides of each substrate are wired with copper or the like, they are similarly negatively charged. For this reason, the distance between each substrate in the magazine is generally 5
It is as narrow as ~ 6 mm, and a sheath is generated on the surface of each substrate along with the magazine itself to prevent the introduction of electrons between each substrate.
Since it is difficult for electrons or ions having strong energy for generating plasma to enter the gaps between the substrates, it is impossible to generate plasma between the substrates. Even if it occurred, it was non-uniform.

【0014】各基板の間隔を8mm以上にするかまたは
各基板の銅配線等をなくして、全面絶縁体である場合は
同じ条件でもプラズマを発生させることが可能であるこ
とから、各マガジンとともに各基板にシースを発生させ
ないようにして、電子を各基板の隙間に導入するように
する事が必要となる。また基板間隔を8mm以上に広く
することは、生産性を大きく損なうため実用的ではな
い。
Since it is possible to generate plasma under the same conditions if the distance between the substrates is 8 mm or more, or if copper wiring or the like of each substrate is eliminated and the substrate is a full-face insulator, it is possible to generate plasma with each magazine. It is necessary to prevent the sheath from being generated in the substrates and to introduce electrons into the gaps between the substrates. In addition, widening the substrate interval to 8 mm or more impairs productivity, and is not practical.

【0015】以上のことから、マガジンと各基板面にシ
ースを発生させないようにするためには、マイナスのセ
ルフバイアス電圧の発生を防止するようにすることが必
要であり、電極間においてもイオンが電圧の変動に追従
できるようにする事が重要であり、5cm〜25cm位
の範囲の電極間距離にして、プラズマを発生させる場合
には周波数を10キロHzから160kHzの範囲で電
極間距離に対応した最適の周波数を選定することがよい
ことが判った。
From the above, in order to prevent the sheath from being generated on the magazine and each substrate surface, it is necessary to prevent the negative self-bias voltage from being generated, and the ions are also generated between the electrodes. It is important to be able to follow the fluctuation of the voltage, and the distance between the electrodes is in the range of 5 cm to 25 cm, and when plasma is generated, the frequency corresponds to the distance between the electrodes in the range of 10 kHz to 160 kHz. It was found that it is better to select the optimum frequency.

【0016】標準のマガジンの幅は一般的に2cm〜1
0cm程度であり、また長さは約20cm程度であるた
め、電極間にこれらのマガジンを配置して数mmの絶縁
板を挟んでも電極間距離に5cm〜25cmあれば良
く、これらのマガジンの幅に合わせて最適の電極間距離
を設定することが良い。またマガジンによっては側面に
ガス導入のためのスリットがないものもあるためそれら
に対しては電極間にマガジンを長さ方向に配置して各基
板間に電極を通してガスが流通するようにしてプラズマ
を発生させるようにすることが好ましい。
The width of a standard magazine is generally 2 cm to 1
Since the length is about 0 cm and the length is about 20 cm, it is sufficient if the distance between the electrodes is 5 cm to 25 cm even if these magazines are arranged between the electrodes and an insulating plate of several mm is sandwiched between them. It is preferable to set the optimum inter-electrode distance according to the above. In addition, some magazines do not have slits for introducing gas on the side surface.Therefore, a magazine is arranged between the electrodes in the longitudinal direction so that gas can flow through the electrodes between the substrates to generate plasma. It is preferable to generate it.

【0017】以下これらの電極間隔に対しての最適の周
波数を決定するための方法について説明する。今電子の
走行時間が高周波電圧の半周期(T/2sec)より長
い場合は、電子は電極間に捕捉される。このときのカッ
トオフ周波数(Fec)は一般的に次のように表され
る。 Fec=μeE/πd(1/sec) (1) μe:電子移動度(m/V・sec) d:電極間距離 E:電界 μeE:駆動速度 またイオンが電極間に補足される周波数を(Fic)と
すれば同様に Fic=μiE/πd(1/sec) (2) μi=イオン移動度(m/V・sec) μiE=駆動速度 で表される。ただし上記はガス圧力によって電子移動度
とイオン移動度は電子、及びイオンの衝突周波数により
変動する。また電子よりもイオンは重量が重いために、
イオンの電極間のガス空間に補捉される周波数(Fi
c)は電子のカットオフ周波数(Fec)より小さいの
で、イオンのFicをベースにして最適周波数を決定す
れば良いことになる。
A method for determining the optimum frequency for these electrode intervals will be described below. If the transit time of the electrons is longer than the half cycle (T / 2 sec) of the high frequency voltage, the electrons are trapped between the electrodes. The cutoff frequency (Fec) at this time is generally expressed as follows. Fec = μeE / πd (1 / sec) (1) μe: Electron mobility (m 2 / V · sec) d: Electrode distance E: Electric field μeE: Driving speed and frequency at which ions are captured between electrodes ( Similarly, Fic = μiE / πd (1 / sec) (2) μi = ion mobility (m 2 / V · sec) μiE = driving speed. However, the electron mobility and the ion mobility vary depending on the collision frequency of electrons and ions depending on the gas pressure. Also, because ions are heavier than electrons,
The frequency (Fi) that is trapped in the gas space between the electrodes of the ions
Since c) is smaller than the electron cutoff frequency (Fec), the optimum frequency should be determined based on the ion Fic.

【0018】イオンの電極間のガス空間に補捉させる周
波数(Fic)は、電極間距離(d)を1cmとし、ガ
ス圧力(P)が1気圧(760Torr)の時、約20
0kHzになるとの報告がされている。またガス圧力
(P)が約1Pa程度の低圧力の場合には400kHz
でイオンの振幅は2cmとなる。従って今電極間隔を1
0cmとしイオンの衝突用波数(1/see)νmiと
したとき、 高圧力の場合νmi>ωとなり、Fic≒20kHz 低圧力の場合νmi<ωとなり、Fic≒80kHz となりこの範囲が最も有効的であることが証明された。
イオンが電極間のガス空間に補捉されない周波数は上記
の範囲になる。ここでωは印加する高周波電力の角周波
数を表す。よって電極間距離10cmの間にマガジンを
配置してプラズマ処理する場合には、使用するガスの種
類と流量すなわちガス圧力に応じて、高周波電力の周波
数を約20kHz〜80kHzに設定することにより、
イオンの電極間のガス空間での補捉がなく、マガジンま
たは各基板面でのセルフバイアス電圧の発生がなく、各
基板間に電子の導入が容易となり、各基板間でのプラズ
マの発生が可能となり、基板面上の有機物のみならず金
属化合物を効率良く還元、分解、破壊することが可能と
なり、目的とするクリーニングの成果をあげることがで
きた。
The frequency (Fic) for capturing ions in the gas space between the electrodes is about 20 when the distance (d) between the electrodes is 1 cm and the gas pressure (P) is 1 atm (760 Torr).
It is reported that the frequency will be 0 kHz. When the gas pressure (P) is a low pressure of about 1 Pa, 400 kHz
Then, the amplitude of the ion becomes 2 cm. Therefore, the electrode spacing is now 1
When the ion collision wave number (1 / see) νmi is set to 0 cm, νmi> ω for high pressure, and Fic≈20 kHz, νmi <ω for low pressure, and Fic≈80 kHz, which is the most effective range. It was proved.
The frequency at which ions are not trapped in the gas space between the electrodes is in the above range. Here, ω represents the angular frequency of the applied high frequency power. Therefore, when plasma is processed by disposing a magazine between the electrodes with a distance of 10 cm, by setting the frequency of the high frequency power to about 20 kHz to 80 kHz according to the type and flow rate of the gas used, that is, the gas pressure,
There is no capture of ions in the gas space between the electrodes, no self-bias voltage is generated in the magazine or each substrate surface, it is easy to introduce electrons between each substrate, and plasma can be generated between each substrate As a result, not only organic substances on the surface of the substrate but also metal compounds can be efficiently reduced, decomposed and destroyed, and the desired cleaning results could be achieved.

【0019】しかし必要以上のガスの高圧力下では、電
子、イオンの衝突回数が多くなり、発熱の問題が発生す
るために、マガジン中での基板処理の場合は数百Pa以
下のガス圧力下で行う事が好ましい。
However, when the gas pressure is higher than necessary, the number of collisions of electrons and ions increases, and the problem of heat generation occurs. Therefore, in the case of substrate processing in a magazine, a gas pressure of several hundred Pa or less is used. Is preferable.

【0020】尚、放電維持電圧を出来るだけ低く、また
プラズマ密度を高くするには周波数を高くした方が良
く、特に50kHz以上では、周波数に応じて放電維持
電圧が低下してゆくので電極間隔は出来るだけ小さく、
尚且つガス圧力を出来るだけ低くすることにより、周波
数を高くしてもイオンが電極間に補捉されないようにす
ることを考慮することもまた重要である。
In order to make the discharge sustaining voltage as low as possible and increase the plasma density, it is better to increase the frequency. Particularly, at 50 kHz or higher, the discharge sustaining voltage decreases according to the frequency. As small as possible,
It is also important to consider that the gas pressure is made as low as possible so that ions are not trapped between the electrodes even if the frequency is increased.

【0021】また放電開始電圧はガスの種類、ガスの圧
力(P)と電極間距離(d)により変わる。このPdの
積により最小値を持つというパッシェンの法則がある。
従ってできるだけPd積の最小値近くで圧力(P)と電
極間距離(d)を設定することが望ましい。
The discharge starting voltage changes depending on the type of gas, the gas pressure (P) and the inter-electrode distance (d). There is Paschen's law that the minimum value is obtained by the product of Pd.
Therefore, it is desirable to set the pressure (P) and the inter-electrode distance (d) as close as possible to the minimum value of the Pd product.

【0022】例えばNガスの場合 Pdの最小値は約
0.7Pa・mであり、距離(d)10cmのとき圧力
(P)は約7Paとなり、OガスではPd値の最小値
は約0.5Pa・mであり10cmで約5Pa、 H
ガスで最小値は約1.5Pa・mで10cmでは約15
Paとなる。このようにガスの種類とガス圧力および電
極間距離により最適の高周波電力の周波数を決定するこ
とが重要となる。
For example, in the case of N 2 gas, the minimum value of Pd is about 0.7 Pa · m, the pressure (P) becomes about 7 Pa when the distance (d) is 10 cm, and the minimum value of Pd value is about 7 Pa in O 2 gas. It is 0.5 Pa · m and about 5 Pa at 10 cm, H 2
The minimum value for gas is about 1.5 Pa · m and about 15 for 10 cm.
It becomes Pa. As described above, it is important to determine the optimum frequency of the high frequency power according to the type of gas, the gas pressure and the distance between the electrodes.

【0023】又、Pd積の大きい領域では圧力が高く、
電極間隔が大きいので細いストリーマ放電が生じやす
い、また逆にPd積の小さいときはグロー放電が支配的
となる。またPd積が大きく電界分布が不平等になりや
すい場合はコロナ放電が起こりやすい。
Further, the pressure is high in the region where the Pd product is large,
Since the electrode interval is large, a thin streamer discharge is likely to occur, and conversely, when the Pd product is small, the glow discharge becomes dominant. If the Pd product is large and the electric field distribution is likely to be uneven, corona discharge is likely to occur.

【0024】一般的に電極間に絶縁板を入れないでプラ
ズマ発生しても良いが、電極間に絶縁板を入れることに
より、プラズマ発生前は絶縁板のない場合と同様に電極
間の電界は、外部から印加する高周波電圧に比例してガ
ス部では直線的に電界が強く発生して、電極間とともに
マガジン中の各基板間にてプラズマを発生する。プラズ
マが発生して、イオン、電子、活性粒子が発生して絶縁
板面に電子、またはイオンが交互にチャージ、ディスチ
ャージを1/4周期毎に発生し、印加電圧の最高及び最
低値付近では放電がストップするようになり、放電が間
欠的になるので、コロナ放電やストリーマ放電の防止と
ともに発熱を制御でき、アーク放電防止もし易くする。
Generally, plasma may be generated without inserting an insulating plate between the electrodes. However, by inserting an insulating plate between the electrodes, an electric field between the electrodes is generated before the plasma generation as in the case without the insulating plate. An electric field is strongly generated linearly in the gas portion in proportion to the high-frequency voltage applied from the outside, and plasma is generated between the electrodes and between the substrates in the magazine. Plasma is generated, and ions, electrons, and active particles are generated, and electrons or ions are alternately charged and discharged on the insulating plate surface every ¼ cycle, and discharge occurs near the maximum and minimum applied voltages. Is stopped and the discharge is intermittent, so that it is possible to prevent corona discharge and streamer discharge, control heat generation, and easily prevent arc discharge.

【0025】電圧を背負うのでプラズマ発生部での平均
値的電界は小さくなり、マガジン中での電界も小さくな
る。従ってマガジン中の各基板に対する荷電粒子による
損傷も小さくすることができる。よって過度のプラズマ
の発生防止により、発熱を制御することができるととも
に各基板面上でのプラズマ発生を均一化し易い。マガジ
ンは各絶縁板に接続しても良いが、プラズマ粒子のマガ
ジン中の各基板面上への流通と発生を均一化させるため
には、各絶縁板とある間隔で離して配置した方が良い結
果が得られ、絶縁板は無くてもプラズマ発生上は問題な
いが、1/4周期毎のチャージ、ディスチャージによ
り、電子及びイオン等の動きが交互に頻繁となり、合わ
せて各基板面上での活性化を均一化し易くなった。
Since the voltage is carried on the back side, the average electric field in the plasma generating section becomes small and the electric field in the magazine also becomes small. Therefore, it is possible to reduce the damage due to the charged particles to each substrate in the magazine. Therefore, by preventing excessive plasma generation, heat generation can be controlled and plasma generation on each substrate surface can be easily made uniform. The magazine may be connected to each insulating plate, but in order to make the distribution and generation of plasma particles on each substrate surface in the magazine uniform, it is better to place them at a certain distance from each insulating plate. The results are obtained, and there is no problem in plasma generation without the insulating plate, but the movements of electrons and ions, etc. become alternately and frequently due to the charge and discharge in every 1/4 cycle, and in addition, on each substrate surface. It became easier to make the activation uniform.

【0026】さて、金属酸化物等をHガスプラズマに
より還元するような場合にHガスでは正イオンと電子
の付着した負イオンが電子、励起原子、分子、フリラジ
カルとともに存在するために正イオンのみならず負イオ
ンを有効的に活用することが重要であり、13.56M
Hzでの負のセルフバイアス電圧を利用する方法よりは
低周波でのプラズマ処理は有効的である。
When a metal oxide or the like is reduced by H 2 gas plasma, positive ions and negative ions to which electrons are attached are present in H 2 gas together with electrons, excited atoms, molecules and free radicals. It is important to effectively use not only ions but also negative ions.
Plasma treatment at low frequencies is more effective than the method utilizing a negative self-bias voltage at Hz.

【0027】またプラズマが容器壁あるいは固体面に接
するとき、その表面状態によりプラズマ粒子の組成が大
きく変化する。特にHガスに対して、励起水素H
負イオン水素H、水素原子H、正イオン水素Hが存
在してこれらの成分比が大きく変化する。従って電極及
び電極面上の絶縁体の材質、特にチャンバの壁表面の状
態は重要で、Al等の不動態表面処理をすること
が安定なプラズマクリーニング等を行うには非常に重要
な要因である。
When the plasma comes into contact with the container wall or the solid surface, the composition of the plasma particles greatly changes depending on the surface state. Especially for H 2 gas, excited hydrogen H * ,
Negative ion hydrogen H , hydrogen atom H, and positive ion hydrogen H + are present, and their component ratios change greatly. Therefore, the material of the electrodes and the insulator on the electrode surface, especially the condition of the wall surface of the chamber is important, and it is very important to perform a passive surface treatment such as Al 2 O 3 for stable plasma cleaning. It is a factor.

【0028】また、高周波グロー放電によるプラズマ生
成において、プラズマ密度とプラズマ粒子の成分比を目
的に応じて制御することは非常に重要である。そのため
に高周波印加電力のパワー、周波数、電極間距離、電極
間での絶縁板の有無、チャンバの材質、電極とチャンバ
間の容量、温度、ガスの種類、ガス圧力とガス流量等の
制御が重要となる。特にガス圧力と流量との関係は重要
で、ガス圧力とともに流量の制御を同時に行う事が好ま
しい。小径の多数の穴のあいた高周波電力印加電極と絶
縁板を通してチャンバ外部よりガスを接地電極間に導入
してプラズマを発生させ、マガジン中の基板をプラズマ
処理して、これらのプラズマガス粒子を接地電極側より
排出する場合に、ガスの流れの上流側から下流側へ放電
が広がり、空間的にプラズマの成分比に変化を生ずる。
電極間で発生した電子、イオン、励起原子(分子)、ラ
ジカル粒子などの活性種が、それぞれ寿命をもってお
り、それぞれ密度が時間と共に減少しないから下流に向
かって流れると同時に、電極間では新しいガスがプラズ
マとして生成されながら下流に流れる。従ってガス流量
が少ない場合は往往にして反応種が不足して、反応速度
が遅くなり、またガス流量大きすぎると反応種の反応領
域での滞在時間が減少して、反応種が反応する前に排気
され結果として反応速度が遅くなる。すなわち最適のガ
ス圧力と最適のガス流量の制御が安定なプラズマクリー
ニングをする場合には重要となる。
Further, in plasma generation by high frequency glow discharge, it is very important to control the plasma density and the component ratio of plasma particles according to the purpose. Therefore, it is important to control the power of high frequency applied power, frequency, distance between electrodes, presence or absence of insulating plate between electrodes, chamber material, capacity between electrodes and chamber, temperature, gas type, gas pressure and gas flow rate, etc. Becomes Especially, the relationship between the gas pressure and the flow rate is important, and it is preferable to control the flow rate together with the gas pressure. Gas is introduced from the outside of the chamber between the ground electrodes to generate plasma through the high-frequency power application electrode having a large number of small holes and an insulating plate, and the substrate in the magazine is plasma-processed, and these plasma gas particles are ground electrode. When the gas is discharged from the side, the discharge spreads from the upstream side to the downstream side of the gas flow and spatially changes the plasma component ratio.
Active species such as electrons, ions, excited atoms (molecules), and radical particles generated between the electrodes have their respective lifetimes and their density does not decrease with time, so that they flow downstream and at the same time, new gas is generated between the electrodes. It is generated as plasma and flows downstream. Therefore, when the gas flow rate is low, the reaction species are often insufficient, and the reaction speed becomes slow. Also, when the gas flow rate is too high, the residence time of the reaction species in the reaction region decreases and the reaction species react before they react. Evacuation results in a slower reaction rate. That is, control of the optimum gas pressure and the optimum gas flow rate is important for stable plasma cleaning.

【0029】上記のようにマガジン中に収納された多く
の基板を均一にクリーニングするためには、マガジンの
外部からのみプラズマ粒子を導入するよりは、マガジン
中の各基板面上にて均一にプラズマを発生させ、基板面
上でのプラズマ粒子の成分比をできる限り均一化するこ
とが最も重要である。
As described above, in order to uniformly clean many substrates housed in the magazine, rather than introducing plasma particles only from the outside of the magazine, the plasma is evenly distributed on each substrate surface in the magazine. Is generated, and it is most important to make the component ratio of plasma particles on the substrate surface as uniform as possible.

【0030】[0030]

【実施例】以下、本発明の具体的プラズマ処理の実施例
を説明する。図2のようにチャンバ(7)中に高周波印
加電極(1’)と接地電極(8)を平行平板型に構成設
置し、各電極面上にアルミナ絶縁板(厚さ3mm、幅2
4cm、高さ20cm)を配置して、電極間隔を約10
cmとし、各絶縁板のほぼ中間の位置にマガジン(3)
(幅5.5cm、長さ20cm、高さ14.5cm各基
板(4)間隔6mm、20枚収納可、材質Al)に基板
(4)(厚さ0.36mm、幅5.0cm、長さ18.
7cm、材質BT、Cu配線厚さ10μm、Niメッキ
4μm、メッキ0.05μm)を20枚マガジン中に収
納したものをチャンバ(7)に絶縁体(8)を介して配
置する。各電極(1)(2)及び絶縁板には径1mmφ
の小さな穴を4mm間隔で多数形成してガスの導入を均
一化するようにした。ガス流量はHガス200cc/
sec、Nガス50cc/sec、ガス圧力40P
a、高周波電力(5)340W、周波数40kHz、処
理時間3分、チャンバ内温度初期25℃、処理後38℃
に上昇した。上記の条件でプラズマ処理した基板をAu
線28μmで,一般の超音波ボンダ機にてボンディング
のテストを行った。処理前のボンダの引張強度は平均値
で3.2g標準偏差で1.7〜2.2であったものが上
記条件でのプラズマ処理したものは平均値で13.8
g、標準偏差は0.9と向上した。これらは従来から使
用されているAuメッキ厚さ0.2μmの基板を使用し
たとほぼ同程度の引張強度であった。
EXAMPLES Examples of specific plasma processing of the present invention will be described below. As shown in FIG. 2, a high frequency applying electrode (1 ′) and a ground electrode (8) are installed in a parallel plate type in a chamber (7), and an alumina insulating plate (thickness 3 mm, width 2
4 cm, height 20 cm) and the electrode spacing is about 10
cm, and the magazine (3) at a position approximately in the middle of each insulating plate.
(Width 5.5 cm, length 20 cm, height 14.5 cm, each substrate (4) spacing 6 mm, 20 sheets can be stored, material Al) substrate (4) (thickness 0.36 mm, width 5.0 cm, length) 18.
7 cm, material BT, Cu wiring thickness 10 μm, Ni plating 4 μm, plating 0.05 μm) housed in a magazine of 20 pieces is placed in a chamber (7) via an insulator (8). Diameter 1mmφ for each electrode (1) (2) and insulating plate
A large number of small holes were formed at intervals of 4 mm so that the introduction of gas was made uniform. Gas flow rate is H 2 gas 200 cc /
sec, N 2 gas 50 cc / sec, gas pressure 40P
a, high frequency power (5) 340 W, frequency 40 kHz, processing time 3 minutes, chamber temperature 25 ° C initially, 38 ° C after processing
Rose to. The plasma-treated substrate under the above conditions was Au.
A bonding test was performed with a general ultrasonic bonder machine at a line of 28 μm. The tensile strength of the bonder before the treatment had an average value of 3.2 g with a standard deviation of 1.7 to 2.2, but the plasma treated under the above conditions had an average value of 13.8.
g, the standard deviation improved to 0.9. These had almost the same tensile strength as that of a conventionally used substrate having an Au plating thickness of 0.2 μm.

【0031】[0031]

【発明の効果】本発明は以上に述べたような特徴を有し
ているので、上記の結果からマガジンに多数の基板を収
納した状態でのプラズマ処理により、効率良く且つ品質
上も問題ないレベルでAu線のボンディングができるこ
とにより、生産性が大きく向上して、コストダウンが可
能となった。
Since the present invention has the characteristics as described above, from the above results, it is possible to perform efficiently and without any problem in quality by the plasma processing in the state where a large number of substrates are stored in the magazine. By being able to bond the Au wire, the productivity is greatly improved and the cost can be reduced.

【0032】上記の説明はチャンバ中にマガジンを電極
間に1個設置してプラズマ処理する方式で説明したが、
マガジンを多数個電極間に配置しても同様にプラズマ処
理することは可能である。またマガジンの大きさに準じ
た電極間距離を設定して、最適の周波数での高周波電力
を印加することにより多種類のマガジンに適用可能であ
り、極めて合理的にプラズマ処理が可能で、Au線のボ
ンディングの信頼性向上とともにモールド樹脂と基板と
の密着性を向上させることができた。また基板面上の不
用な有機物だけを除去する場合は、使用ガスとしてAr
ガスとOガスの混合ガスが有効的である。
In the above description, one magazine is installed between the electrodes in the chamber for plasma processing.
Even if a large number of magazines are arranged between the electrodes, it is possible to perform the plasma processing in the same manner. Also, it can be applied to many kinds of magazines by setting the inter-electrode distance according to the size of the magazine and applying high frequency power at the optimum frequency, and it is possible to perform plasma processing extremely rationally and Au wire. It was possible to improve not only the reliability of bonding but also the adhesion between the mold resin and the substrate. Moreover, when removing only unnecessary organic substances on the substrate surface, Ar is used as a used gas.
A mixed gas of gas and O 2 gas is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】枚葉RIE方式のプラズマクリーニング実施例
のチャンバ内の断面図
FIG. 1 is a sectional view of the inside of a chamber of a single-wafer RIE type plasma cleaning embodiment.

【図2】本発明の実施例におけるマガジン方式プラズマ
クリーニングシステムの断面図
FIG. 2 is a sectional view of a magazine-type plasma cleaning system according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:高周波電力印加電極 1’:高周波電力印加電極(シャワ構造) 2:設置電極(シャワ構造) 3,3’:マガジン 4:基板またはリードフレーム 5:高周波電力電源 6:ブロッキングコンデンサー 7:チャンバ 8:絶縁体 9:ガス導入口 10:ガス排出口 1: High frequency power application electrode 1 ': High frequency power application electrode (shower structure) 2: Installed electrode (shower structure) 3,3 ': Magazine 4: substrate or lead frame 5: High frequency power source 6: Blocking condenser 7: Chamber 8: Insulator 9: Gas inlet 10: Gas outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜井 陸生 埼玉県入間郡三芳町北永井字鶴ノ舞585− 9株式会社モリエンジニアリング内 Fターム(参考) 5F004 AA13 BA06 BA07 BB11 BB29 BD01 5F067 AA04 DA00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Rikuo Sakurai             585-, Tsurunomai, Kita-Nagai, Miyoshi-cho, Iruma-gun, Saitama Prefecture             9 Within Mori Engineering Co., Ltd. F-term (reference) 5F004 AA13 BA06 BA07 BB11 BB29                       BD01                 5F067 AA04 DA00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ICチップまたは半導体チップをパッケー
ジ、または回路基板に組立をする場合に、BGA、CS
P、MCM用の基板またはQFP、SOP用のリードフ
レームの収納されたマガジンを真空チャンバ中に平行平
板型に配置した電力印加電極及び接地電極間にチャンバ
内壁と絶縁体を介して設置させる。
1. A BGA, CS when assembling an IC chip or a semiconductor chip on a package or a circuit board.
A magazine in which a P or MCM substrate or a QFP or SOP lead frame is housed is installed between a power applying electrode and a ground electrode arranged in a parallel plate type in a vacuum chamber via an inner wall of the chamber and an insulator.
【請求項2】各電極にはプラズマ発生用ガスの導入用、
またはプラズマガスの排出用の小径の穴を多数形成し
て、チャンバ外部より一方の電極の穴からガスを導入
し、他の電極の穴からチャンバ外部にガスを排出させる
ようにする。または両電極の穴よりチャンバ外部からガ
スを導入して、チャンバの一部にガスの排出用の穴を形
成してガスをチャンバの外部に排出するようにする。各
電極間距離は5cmから25cmの間に可変できるよう
にする。
2. An electrode for introducing a plasma generating gas to each electrode,
Alternatively, a large number of small-diameter holes for discharging plasma gas are formed so that gas is introduced from the outside of the chamber through the hole of one electrode and discharged through the hole of the other electrode to the outside of the chamber. Alternatively, gas is introduced from the outside of the chamber through the holes of both electrodes, and a hole for discharging the gas is formed in a part of the chamber so that the gas is discharged to the outside of the chamber. The distance between electrodes should be variable between 5 cm and 25 cm.
【請求項3】印加する交流電力の周波数の半周期毎にプ
ラズマにより発生した各種活性粒子のなかで荷電粒子で
ある電子及びイオンが印加交流電力の変動に追従して各
電極間のガス空間に捕捉されないように電極間距離とガ
ス圧力に適応した周波数10kHzから160kHzの
範囲で周波数を最適値に選定して、マガジンに収納され
た各基板またはリードフレーム間でプラズマを均一に発
生できるようにしたことを特徴とする請求項1又は2記
載のマガジン方式プラズマクリーニングシステム。
3. Electrons and ions, which are charged particles among various active particles generated by plasma in every half cycle of the frequency of the applied AC power, follow the fluctuations of the applied AC power and enter the gas space between the electrodes. The frequency was selected to be the optimum value within the range of 10 kHz to 160 kHz, which was adapted to the distance between the electrodes and the gas pressure so as not to be captured, so that plasma could be uniformly generated between each substrate or lead frame housed in the magazine. 3. The magazine type plasma cleaning system according to claim 1, wherein the plasma cleaning system is a magazine type plasma cleaning system.
JP2002042344A 2002-01-16 2002-01-16 Magazine type plasma cleaning system Pending JP2003209212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042344A JP2003209212A (en) 2002-01-16 2002-01-16 Magazine type plasma cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042344A JP2003209212A (en) 2002-01-16 2002-01-16 Magazine type plasma cleaning system

Publications (1)

Publication Number Publication Date
JP2003209212A true JP2003209212A (en) 2003-07-25

Family

ID=27655220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042344A Pending JP2003209212A (en) 2002-01-16 2002-01-16 Magazine type plasma cleaning system

Country Status (1)

Country Link
JP (1) JP2003209212A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061929A1 (en) * 2002-12-27 2004-07-22 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus, and method for manufacturing semiconductor device
JP2005329353A (en) * 2004-05-21 2005-12-02 Fuiisa Kk Plasma treatment method and apparatus
JP2006049548A (en) * 2004-08-04 2006-02-16 Sharp Corp Semiconductor laser apparatus and manufacturing method thereof
JP2008029930A (en) * 2006-07-27 2008-02-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning apparatus
JP2008186994A (en) * 2007-01-30 2008-08-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning device
US8152142B2 (en) 2006-10-05 2012-04-10 Nissho Engineering Co., Ltd. Service water pipe faucet direct-connected ozone water producer with self-power generator
US9171829B2 (en) 2014-03-14 2015-10-27 Kabushiki Kaisha Toshiba Photocoupler

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061929A1 (en) * 2002-12-27 2004-07-22 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus, and method for manufacturing semiconductor device
US7514377B2 (en) 2002-12-27 2009-04-07 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus and manufacturing method of semiconductor device
JP2005329353A (en) * 2004-05-21 2005-12-02 Fuiisa Kk Plasma treatment method and apparatus
JP4549735B2 (en) * 2004-05-21 2010-09-22 フィーサ株式会社 Plasma processing method and apparatus
JP2006049548A (en) * 2004-08-04 2006-02-16 Sharp Corp Semiconductor laser apparatus and manufacturing method thereof
JP4630596B2 (en) * 2004-08-04 2011-02-09 シャープ株式会社 Manufacturing method of semiconductor laser device
JP2008029930A (en) * 2006-07-27 2008-02-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning apparatus
US8152142B2 (en) 2006-10-05 2012-04-10 Nissho Engineering Co., Ltd. Service water pipe faucet direct-connected ozone water producer with self-power generator
JP2008186994A (en) * 2007-01-30 2008-08-14 Hitachi High-Tech Instruments Co Ltd Plasma cleaning device
US9171829B2 (en) 2014-03-14 2015-10-27 Kabushiki Kaisha Toshiba Photocoupler
US9355925B2 (en) 2014-03-14 2016-05-31 Kabushiki Kaisha Toshiba Photocoupler

Similar Documents

Publication Publication Date Title
CN101272881B (en) Apparatus for the removal of a metal oxide from a substrate and methods therefor
US6949735B1 (en) Beam source
JP2007150012A (en) Device and method for processing plasma
KR100782621B1 (en) Plasma processing method and plasma processing device
JP2003209212A (en) Magazine type plasma cleaning system
JP2007281166A (en) Bonding method and bonder and bonded substrate
JP2007208302A (en) Plasma processing method and plasma processing device
JP2005209885A (en) Plasma etching apparatus
CN110335802B (en) Pre-cleaning chamber and filtering device thereof
JP2002141325A (en) Vacuum plasma device of magazine electrode method
JP3891028B2 (en) Substrate surface modification method
WO2014030224A1 (en) Plasma treatment device and plasma treatment method
Zongjie et al. Plasma cleaning and its application in microwave module wire bonding technology
Abarro et al. Batch Microwave Plasma Cleaning for Robustification of Automotive Devices an Alternative to Strip-Type Radiofrequency Plasma
JP2003031555A (en) Surface treatment apparatus
KR102018987B1 (en) Substrate processing apparatus and film-forming apparatus
KR100471454B1 (en) Method for manufacturing tape substrate board
JP2002043289A (en) Method and device for plasma processing
JP3739308B2 (en) Plasma processing method
JP3960080B2 (en) Plasma processing method
JP2020523759A (en) Plasma processing device
JP2003234334A (en) Plasma treatment method and apparatus
JP2001158979A (en) Plasma cleaning device
Abarro et al. BATCH MICROWAVE PLASMA CLEANING FOR ROBUSTNESS ENHANCEMENT OF AUTOMOTIVE DEVICES: AN ALTERNATIVE TO STRIP-TYPE RADIOFREQUENCY PLASMA
KR101533711B1 (en) Microwave plasma processing chamber having mutli separated electrode