JP2003208898A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JP2003208898A
JP2003208898A JP2002323205A JP2002323205A JP2003208898A JP 2003208898 A JP2003208898 A JP 2003208898A JP 2002323205 A JP2002323205 A JP 2002323205A JP 2002323205 A JP2002323205 A JP 2002323205A JP 2003208898 A JP2003208898 A JP 2003208898A
Authority
JP
Japan
Prior art keywords
lead
tin
tin alloy
alloy layer
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002323205A
Other languages
Japanese (ja)
Other versions
JP2003208898A5 (en
JP4678117B2 (en
Inventor
Toshimichi Nakamura
中村  利通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002323205A priority Critical patent/JP4678117B2/en
Publication of JP2003208898A publication Critical patent/JP2003208898A/en
Publication of JP2003208898A5 publication Critical patent/JP2003208898A5/ja
Application granted granted Critical
Publication of JP4678117B2 publication Critical patent/JP4678117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery having the excellent charge recovering ability after a deep discharge as a failure of a pure lead grid, while maintaining the excellent trickle service life performance of the pure lead grid. <P>SOLUTION: A grid formed by punching or expanding a sheet formed with lead-tin group alloy plate layer in at least one surface of a pure lead (99.9% or more) plate is used for a positive electrode plate, and when thickness ratio of the lead-tin alloy layer in relation to the sheet thickness is X(%) and a tin content ratio in relation to the weight of the lead-tin alloy layer is Y (mass %), X and Y are set to satisfy 0.5≤X≤40, desirably, 0.5≤X≤30 and 0.5≤Y≤-0.625X+50. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池に関する
ものである。
TECHNICAL FIELD The present invention relates to a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池の用途は、通常は一定の電圧で
充電を行い、必要時に放電を行う、いわゆるトリクル用
途(フロート用途)と放電、充電を繰り返す、いわゆ
る、サイクル用途に分けられる。前者のトリクル用途で
の鉛蓄電池の劣化原因は正極格子の腐食である。これは
格子材料に用いられる合金は粒界で形成されており、充
電中にその粒界が選択的に腐食されるためである。その
対策としてU.S.P.3862861には純鉛シート
を加工した格子体を用いることが提案されている。
2. Description of the Related Art Applications of lead-acid batteries are generally divided into so-called trickle applications (float applications) in which charging is performed at a constant voltage and discharging when necessary, and so-called cycle applications in which discharging and charging are repeated. The former cause of deterioration of lead-acid batteries in trickle applications is corrosion of the positive electrode grid. This is because the alloy used for the lattice material is formed at grain boundaries and the grain boundaries are selectively corroded during charging. As a countermeasure, U. S. P. It has been proposed to use a grid body obtained by processing a pure lead sheet for 3862861.

【0003】純鉛は鉛合金のように粒界が明瞭でないの
で上述の問題が発生せず、優れたトリクル寿命が得られ
る。しかし、格子に純鉛を用いた場合、サイクル用途
で、特に深い放電が行われたときに充電しても容量が回
復しない欠点を有している。この対策として、純鉛に代
わり、鉛―スズ合金を圧延によりシート状にし、打ち抜
き加工又はエキスパンド加工して得られた格子を使用す
る方法が、U.S.P.5120620に提案されてい
る。この方法によって深放電後の充電受け入れ特性は改
善されるが、鉛―スズ合金であるため粒界が存在し、ト
リクル寿命において正極格子の腐食が進行し、純鉛格子
に比べて短寿命である問題がある。
Unlike lead alloys, the grain boundaries of pure lead are not clear, so the above problems do not occur, and an excellent trickle life can be obtained. However, when pure lead is used for the grid, it has a drawback that the capacity does not recover even if it is charged in cycle applications, especially when deep discharge is performed. As a measure against this, a method of using a grid obtained by punching or expanding a sheet of lead-tin alloy by rolling, instead of pure lead, is disclosed in U.S. Pat. S. P. 5120620. This method improves the charge acceptance property after deep discharge, but since it is a lead-tin alloy, it has grain boundaries, and the corrosion of the positive electrode lattice progresses during trickle life, which is shorter than that of pure lead lattice. There's a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、上述のような純鉛格子の優れたトリクル寿
命性能を維持しながら、純鉛格子の欠点である深放電後
の充電回復性の優れた鉛蓄電池を提供することにある。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to maintain the excellent trickle life performance of the pure lead grid as described above, while recovering the charge after deep discharge which is a drawback of the pure lead grid. It is to provide a lead acid battery having excellent properties.

【0005】[0005]

【課題を解決するための手段】課題を解決するための手
段として、請求項1によれば、純鉛(99.9%以上)板表
面の少なくとも一方に、鉛−スズ系合金層を形成したシ
ートを打ち抜き加工またはエキパンド加工して形成した
格子体を正極板に用いたことを特徴するものである。
As means for solving the problems, according to claim 1, a sheet having a lead-tin alloy layer formed on at least one of the surfaces of a pure lead (99.9% or more) plate is provided. The positive electrode plate is characterized by using a lattice body formed by punching or expanding.

【0006】純鉛のシートを打ち抜きあるいはエキスパ
ンド加工により形成した格子体はは絶えず充電をする使
用条件では優れた性能を示すが、深い放電が入った場合
の充電回復特性の劣る欠点があったの対して、本願の発
明者は、該シートの少なくとも一面に鉛−スズ系合金層
を形成することによって深い放電を行っても充電回復性
が低下しないことを本願の発明者は見出した。
The grid body formed by punching or expanding a pure lead sheet shows excellent performance under continuous charging conditions, but has a drawback of poor charge recovery characteristics in the case of deep discharge. On the other hand, the inventor of the present application has found that the charge recovery property does not decrease even if deep discharge is performed by forming a lead-tin alloy layer on at least one surface of the sheet.

【0007】請求項2によれば、シートの総厚みに対す
る鉛−スズ系合金層の比率をX(%)、前記鉛―スズ系
合金層のスズ含有量をY(質量%)としたとき、X、Y
が次式、0.5≦X≦40かつ0.5≦Y≦−0.62
5X+50を満たすことを特徴とするものである。
According to claim 2, when the ratio of the lead-tin alloy layer to the total thickness of the sheet is X (%) and the tin content of the lead-tin alloy layer is Y (mass%), X, Y
Is the following equation, 0.5 ≦ X ≦ 40 and 0.5 ≦ Y ≦ −0.62
It is characterized by satisfying 5X + 50.

【0008】本願の発明者は、純鉛シートの少なくとも
一面に鉛−スズ系合金層を形成することによって深い放
電後の充電回復特性が改善されることを見出したが、さ
らに、該シート厚に対してする一体化した鉛−スズ系合
金層の厚み比率および鉛−スズ系合金に対するスズ含有
量を変えた試料を作製し、試験を行った結果、シート厚
に対する鉛−スズ系合金層の比率をX(%)、前記鉛―
スズ系合金層のスズ含有量をY(質量%)としたとき
に、0.5≦X≦40かつ0.5≦Y≦−0.625X
+50を満たせば、本発明の純鉛の効果を有しながら
も、深い放電に対して優れた充電回復特性がより顕著に
得られることを見出した。
The inventor of the present application has found that the charge recovery characteristic after deep discharge is improved by forming a lead-tin alloy layer on at least one surface of a pure lead sheet. On the other hand, the thickness ratio of the integrated lead-tin-based alloy layer and the sample in which the tin content was changed with respect to the lead-tin-based alloy were prepared, and the results were tested. As a result, the ratio of the lead-tin-based alloy layer to the sheet thickness X (%), the lead-
When the tin content of the tin-based alloy layer is Y (mass%), 0.5 ≦ X ≦ 40 and 0.5 ≦ Y ≦ −0.625X
It has been found that when +50 is satisfied, excellent charge recovery characteristics for deep discharge can be more remarkably obtained while having the effect of pure lead of the present invention.

【0009】[0009]

【発明の実施の形態】以下に本発明を実施例に基づき詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on Examples.

【0010】本実施例では、純鉛シートの軟らかい特性
を利用して、正・負極板およびセパレータを渦巻状に巻
回して円筒型電槽に挿入した円筒型制御弁式鉛蓄電池に
ついて述べる。 [蓄電池A](本発明品) 厚さ10mmの純鉛(99.99%)板に、厚さ0.4
mmの鉛―10質量%スズ合金板を重ね合わせ、圧延加
工することにより、厚さ0.6mmの一体化したシート
を製作した。このシートを打ち抜き加工することによ
り、5mm×7mmの升目を持つ格子体を製作した。
In this embodiment, a cylindrical control valve type lead storage battery will be described in which positive and negative electrode plates and a separator are spirally wound and inserted into a cylindrical battery case by utilizing the soft characteristics of a pure lead sheet. [Battery A] (product of the present invention) A pure lead (99.99%) plate having a thickness of 10 mm and a thickness of 0.4
mm lead-10 mass% tin alloy plates were overlaid and rolled to form an integrated sheet having a thickness of 0.6 mm. By punching this sheet, a lattice having 5 mm × 7 mm grids was manufactured.

【0011】上記格子体に、t−PbO、Pb
金属Pbの混合粉末に希硫酸を加えてペースト状とした
ものを塗布して正極板を製作した。
In the above lattice, t-PbO, Pb 3 O 4 ,
A positive electrode plate was manufactured by applying a mixed powder of metal Pb to which paste was added by adding dilute sulfuric acid.

【0012】負極板は、純鉛(鉛:99.99質量%)
シートからなる格子体を用い、これにt−PbO、金属
Pbの混合粉末に希硫酸を加えてペースト状としたもの
を塗布して製作した。
The negative electrode plate is made of pure lead (lead: 99.99% by mass).
A grid body made of a sheet was used, and a paste-like powder prepared by adding dilute sulfuric acid to a mixed powder of t-PbO and metal Pb was applied to this.

【0013】極板厚さは、正・負極板ともに0.9mm
とした。
The electrode plate thickness is 0.9 mm for both positive and negative electrode plates.
And

【0014】これらの正・負極板とガラスセパレータと
を組み合せ、高い圧迫力(約100kPa)を加えて渦
巻状に巻回してエレメント(正・負極板およびセパレー
タを重ね合わせた構成要素をエレメントいう)とし、こ
のエレメントを直径49mm、高さ100mmの円筒形
容器に収納し、5時間率での放電容量(定格容量)が1
0Ahの円筒形制御弁式鉛蓄電池を製作した。
A combination of these positive and negative electrode plates and a glass separator is spirally wound by applying a high compression force (about 100 kPa) to form an element (a component in which the positive and negative electrode plates and the separator are superposed is referred to as an element). This element was stored in a cylindrical container having a diameter of 49 mm and a height of 100 mm, and the discharge capacity (rated capacity) at a rate of 5 hours was 1
A 0 Ah cylindrical valve regulated lead-acid battery was manufactured.

【0015】なお、セパレータには、平均直径約1μm
のガラス繊維を主体とし、シリカを20質量%混抄し
た、厚さ約0.9mm、多孔度約91%のものを用い、
20kPaの荷重下で圧迫した際の厚さが0.8mmの
ものを用いた。
The separator has an average diameter of about 1 μm.
Of glass fiber of 20% by mass, silica having a thickness of about 0.9 mm and porosity of about 91% is used.
The thickness was 0.8 mm when compressed under a load of 20 kPa.

【0016】電解液として、希硫酸中に硫酸ナトリウム
を25g/l溶解させた比重1.24(at 20℃)
のものを用い、蓄電池容器に約115g注液した後に、
電槽化成を行った。ここで、電槽化成とは、未化成状態
のエレメントを電槽内に挿入し、電解液を注入した状態
で行う化成のことをいう。
As an electrolytic solution, a specific gravity of 1.24 (at 20 ° C.) in which 25 g / l of sodium sulfate is dissolved in dilute sulfuric acid.
After injecting about 115g into the storage battery container,
The battery case was formed. Here, the battery case formation refers to a process of forming an unformed element in a battery case and injecting an electrolytic solution.

【0017】以上の構成、方法により作製した蓄電池を
Aとする。
A storage battery manufactured by the above configuration and method is designated as A.

【0018】本発明による一実施例の蓄電池Aの優れた
特性を示すために従来品との比較試験を行った。その際
の比較対照に用いた蓄電池を具体的に示す。 [蓄電池B](比較例) 純鉛(Pb:99.99質量%)板を圧延加工した厚さ
0.6mmのシートから前記と同様の方法により製作し
た格子体を正極板に用い、その他の構成を前記の蓄電池
Aと同様にして、蓄電池Bを作製した。 [蓄電池C](比較例) 99.0質量%鉛−1.0質量%スズ合金板を圧延加工
した厚さ0.6mmのシートから前記と同様の方法によ
り製作した格子体を正極板に用い、その他の構成を前記
の蓄電池Aと同様にして、蓄電池Cを作製した。
In order to show the excellent characteristics of the storage battery A of one example according to the present invention, a comparative test with a conventional product was conducted. The storage battery used for comparison and comparison at that time is specifically shown. [Battery B] (Comparative Example) A pure lead (Pb: 99.99 mass%) plate was rolled to form a 0.6 mm-thick sheet, and a grid body manufactured by the same method as described above was used for the positive electrode plate. A storage battery B was made in the same configuration as the storage battery A. [Rechargeable Battery C] (Comparative Example) A grid body manufactured by a method similar to the above from a sheet having a thickness of 0.6 mm obtained by rolling a 99.0 mass% lead-1.0 mass% tin alloy plate was used as a positive electrode plate. A storage battery C was manufactured in the same manner as the storage battery A except for the above.

【0019】以上の3種類の蓄電池について、深放電後
の充電受け入れ特性およびトリクル寿命の比較試験を行
った。それらの結果を以下に示す。 [深放電後の充電受け入れ特性] (試験条件)上記の蓄電池を2Aの電流で終止電圧1.
7Vまで放電した後、さらに100Ωの抵抗を14日間
接続して、蓄電池を深い放電状態とした。この後、抵抗
を取り外した蓄電池を0℃の環境下で16時間放置した
後に、2.4V(制限電流50A)の定電圧充電を10
分間行い、このときの充電電流の変化を観察した。 (試験結果)試験結果を図1に示す。
For the above three types of storage batteries, comparative tests of charge acceptance characteristics and trickle life after deep discharge were conducted. The results are shown below. [Charge acceptance characteristics after deep discharge] (Test conditions) The above storage battery was cut off at a final voltage of 1.A at a current of 2A.
After discharging to 7 V, a resistance of 100Ω was further connected for 14 days to put the storage battery in a deep discharge state. After that, the storage battery from which the resistance has been removed is allowed to stand for 16 hours in an environment of 0 ° C., and then a constant voltage charge of 2.4 V (limit current 50 A) is applied for 10
It was performed for a minute, and the change of the charging current at this time was observed. (Test Results) The test results are shown in FIG.

【0020】純鉛を用いた蓄電池Bでは、10分間の充
電中、充電電流は0Aで推移し、ほとんど充電されず、
充電受け入れ特性は悪かった。一方、本発明品の蓄電池
Aおよび鉛―スズ合金のみを用いた蓄電池Cは、充電電
流が流れ、充電受け入れ特性は良好であった。
In the storage battery B using pure lead, the charging current changes to 0 A during charging for 10 minutes and is hardly charged,
The charge acceptance characteristics were poor. On the other hand, in the storage battery A of the present invention and the storage battery C using only the lead-tin alloy, the charging current flowed and the charge acceptance characteristics were good.

【0021】この試験結果から、深放電後の充電特性の
改善には、正極格子体中のスズの存在が有効であること
がわかる。特に、本発明の蓄電池Aの正極格子体は、蓄
蓄電池Cに比べてスズ含有量が少ないが、スズが正極活
物質と接触する部分に集中的に存在するため、そのスズ
の存在がより効果的に作用したといえる。 [トリクル(フロート)寿命試験] (試験条件)上記の蓄電池を、環境温度60℃の気相中
においてトリクル充電電圧2.275Vで常時充電し、
1ヶ月毎に取り出して放電電流10A(終止電圧1.0
V)で容量試験を行った。 (試験結果)試験結果を図2に示す。
From these test results, it is found that the presence of tin in the positive electrode grid is effective for improving the charging characteristics after deep discharge. In particular, the positive electrode grid of the storage battery A of the present invention has a smaller tin content than the storage battery C, but the presence of tin is more effective because the tin is concentrated in the portion in contact with the positive electrode active material. It can be said that it worked. [Trickle (float) life test] (Test conditions) The above storage battery is constantly charged at a trickle charge voltage of 2.275 V in a gas phase at an environmental temperature of 60 ° C.
It is taken out every month and the discharge current is 10 A (the final voltage is 1.0
The capacity test was performed in V). (Test Results) The test results are shown in FIG.

【0022】鉛―スズ合金のみを用いた蓄電池Cでは、
5ヶ月目の容量が初期容量の50%を切ったが、蓄電池
Aおよび純鉛を用いた蓄電池Bでは、10ヶ月目も初期
容量の50%以上を維持していた。
In the storage battery C using only the lead-tin alloy,
Although the capacity at the 5th month fell below 50% of the initial capacity, the storage battery A and the storage battery B using pure lead maintained 50% or more of the initial capacity at the 10th month.

【0023】試験後、蓄電池を解体し、正極板を調査し
たところ、蓄電池Cでは合金格子体の特徴である粒界腐
食がかなり進行していたが、蓄電池A、蓄電池Bでは格
子体の粒界腐食はほとんど認められなかった。
After the test, the storage battery was disassembled and the positive electrode plate was examined. As a result, the intergranular corrosion, which is a feature of the alloy lattice in the storage battery C, progressed considerably, but the grain boundaries of the lattice in the storage batteries A and B were significantly increased. Almost no corrosion was observed.

【0024】これらの試験結果から明らかなように、蓄
電池Aの正極格子体は、純鉛(Pb:99.99質量
%)板に鉛―10質量%スズ合金板を重ね合わせ、圧延
加工することにより一体化したシートからなっているの
で、鉛―スズ合金のみを圧延したものと異なり、スズ
が、活物質が接する表面部に部分的に集中しており、他
の部分では純鉛が多く存在するため、トリクル寿命にお
ける純鉛の効果が有効的に得られたものと考えられる。 [蓄電池D−1〜K−5]次に、蓄電池Aの構成におい
て、純鉛シートに重ね合わせる鉛−スズ合金層の厚さお
よび鉛−スズ合金に対するスズ含有量の適正な範囲につ
いて試験結果に基づいて説明する。 [鉛―スズ合金層の厚さおよびスズ含有量の蓄電池性能
に及ぼす影響] (試験条件)一体化されたシートの総厚さに対する鉛―
スズ合金層の厚さの比率および鉛−スズ合金の重量当た
りスズ含有量の影響を調べるために、鉛−スズ合金に対
するスズ含有量を0.3質量%、0.5質量%、1質量
%、10質量%、20質量%、25質量%、30質量
%、40質量%、45質量%、50質量%を含有する鉛
―スズ合金板を圧延加工して、厚さ0.03mm、0.
05mm、0.11mm、0.42mm、2.5mm、
4.3mm、6.7mmおよび8.2mmのシート材を
作製した。そして、この鉛―スズ合金シート材と厚さ1
0mmの純鉛(Pb:99.99質量%)板を重ね合わ
せ、厚さ0.6mmにあるまで圧延加工することによ
り、シート厚に対する鉛−スズ合金層の厚み比率および
鉛−スズ合金層に対するスズ含有量の異なる純鉛板と鉛
―スズ合金板とが一体化したシートを製作した。
As is clear from these test results, the positive electrode grid of the storage battery A is obtained by stacking a lead-10% by mass tin alloy plate on a pure lead (Pb: 99.99% by mass) plate and rolling it. Since it is made of a single sheet, the tin is partially concentrated on the surface part in contact with the active material, unlike the case where only the lead-tin alloy is rolled, and there is much pure lead in other parts. Therefore, it is considered that the effect of pure lead on the trickle life was effectively obtained. [Rechargeable batteries D-1 to K-5] Next, in the configuration of the rechargeable battery A, the test results were obtained regarding the thickness of the lead-tin alloy layer to be superimposed on the pure lead sheet and the appropriate range of the tin content with respect to the lead-tin alloy. It will be explained based on. [Effects of lead-tin alloy layer thickness and tin content on battery performance] (Test conditions) Lead relative to total thickness of integrated sheet-
In order to investigate the influence of the thickness ratio of the tin alloy layer and the tin content per weight of the lead-tin alloy, the tin content relative to the lead-tin alloy was 0.3% by mass, 0.5% by mass, and 1% by mass. A lead-tin alloy plate containing 10% by mass, 20% by mass, 25% by mass, 30% by mass, 40% by mass, 45% by mass, and 50% by mass was rolled to a thickness of 0.03 mm, 0.
05mm, 0.11mm, 0.42mm, 2.5mm,
Sheet materials of 4.3 mm, 6.7 mm and 8.2 mm were produced. And this lead-tin alloy sheet material and thickness 1
By stacking 0 mm pure lead (Pb: 99.99 mass%) plates and rolling them to a thickness of 0.6 mm, the thickness ratio of the lead-tin alloy layer to the sheet thickness and the lead-tin alloy layer were measured. A sheet in which a pure lead plate having a different tin content and a lead-tin alloy plate were integrated was manufactured.

【0025】次に、これらのシートを打ち抜いて5mm
×7mmの升目を持つ正極格子体を製作し、それらを正
極板に用いて、29種類の蓄電池(蓄電池D−1〜蓄電
池K−5)を製作した。これらの蓄電池では、正極格子
体以外の構成は、蓄電池Aと同じとした。
Next, these sheets are punched out and 5 mm
A positive electrode grid having squares of 7 mm was manufactured, and using them as a positive electrode plate, 29 types of storage batteries (storage battery D-1 to storage battery K-5) were manufactured. In these storage batteries, the configuration other than the positive electrode grid was the same as that of the storage battery A.

【0026】蓄電池D−1〜蓄電池K−5に用いた正極
格子体のシート総厚さに対する鉛−スズ合金層の厚さ比
率X(%)と、鉛−スズ合金層のSn含有量Y(質量
%)を、表1および表2に示す。
The thickness ratio X (%) of the lead-tin alloy layer to the total sheet thickness of the positive electrode grid used in the storage batteries D-1 to K-5 and the Sn content Y (of the lead-tin alloy layer Mass%) is shown in Table 1 and Table 2.

【0027】[0027]

【表1】 [Table 1]

【表2】 [Table 2]

【0028】これら29種類の蓄電池について、深放電
後の充電受け入れ特性試験とトリクル寿命試験を行っ
た。いずれの試験も、上述した蓄電池A、B、Cの比較
試験を行った際と同じ条件である。
With respect to these 29 types of storage batteries, a charge acceptance characteristic test after deep discharge and a trickle life test were conducted. Both tests are under the same conditions as when the above-mentioned comparative test of the storage batteries A, B and C was performed.

【0029】試験結果を以下に示す。The test results are shown below.

【0030】[0030]

【表3】 [Table 3]

【表4】 [Table 4]

【0031】表3および4において、深放電後の充電受
け入れ特性試験とトリクル寿命試験の結果を以下の基準
により評価した。すなわち、試験開始から試験終了まで
の間に充電電流が流れた(即ち、充電を受け入れること
ができる)場合を「良好」と判断した。 (深放電後の充電受け入れ特性試験結果) ○:充電受け入れ特性が良好であったもの ×:充電受け入れ特性が悪かったもの (トリクル寿命試験結果) ○:トリクル寿命試験における10ヶ月目の放電容量が
初期容量の50%以上のもの ×:トリクル寿命試験における10ヶ月目の放電容量が
初期容量の50%未満のもの 次に、上記Xの値を横軸に、Yの値を縦軸にとった図3
において、深放電後の充電受け入れ特性試験とトリクル
寿命試験のいずれにおいても良好であったものを○印を
もって示し、いずれか一方の試験で不良であったものに
×印を付して示した。
In Tables 3 and 4, the results of the charge acceptance characteristic test after deep discharge and the trickle life test were evaluated according to the following criteria. That is, the case where the charging current flows (that is, the charging can be accepted) between the start of the test and the end of the test is determined as “good”. (Result of charge acceptance characteristic test after deep discharge) ○: Good charge acceptance characteristic ×: Poor charge acceptance characteristic (trickle life test result) ○: 10-month discharge capacity in trickle life test 50% or more of initial capacity x: discharge capacity at 10 months in trickle life test is less than 50% of initial capacity Next, the value of X is taken on the horizontal axis and the value of Y is taken on the vertical axis. Figure 3
In Table 1, the good ones in both the charge acceptance characteristic test after deep discharge and the trickle life test are shown by ◯, and the bad ones in either test are shown by x.

【0032】図3において、0.5≦X≦40で、かつ
0.5≦Y≦−0.625X+50の領域に位置する鉛
蓄電池が、トリクル寿命性能に優れ、しかも、良好な深
放電後の充電受け入れ特性を示すことが明らかになっ
た。
In FIG. 3, the lead-acid battery located in the region of 0.5 ≦ X ≦ 40 and 0.5 ≦ Y ≦ −0.625X + 50 has an excellent trickle life performance and, after a good deep discharge, is obtained. It became clear that it exhibits charge acceptance characteristics.

【0033】さらに、上記のトリクル寿命試験の結果
を、以下の基準により再評価した。
Further, the results of the above trickle life test were re-evaluated according to the following criteria.

【0034】○:トリクル寿命試験における10ヶ月目
の放電容量が初期容量の70%以上のもの ×:トリクル寿命試験における10ヶ月目の放電容量が
初期容量の70%未満のもの その結果を表5および表6に示す。
◯: The discharge capacity at 10 months in the trickle life test is 70% or more of the initial capacity. ×: The discharge capacity at 10 months in the trickle life test is less than 70% of the initial capacity. The results are shown in Table 5. And shown in Table 6.

【0035】[0035]

【表5】 [Table 5]

【表6】 [Table 6]

【0036】この再評価結果に基づき、受け入れ特性試
験とトリクル寿命試験のいずれにおいても良好であった
ものを○印を付し、いずれか一方の試験で不良であった
ものに×印を付して、図4に示した。
Based on the results of this re-evaluation, those that were good in both the acceptance characteristic test and the trickle life test are marked with a circle, and those that were defective in either one of the tests are marked with a cross. And shown in FIG.

【0037】図4において、0.5≦X≦30で、かつ
0.5≦Y≦−0.625X+50の領域に位置する鉛
蓄電池が、トリクル寿命性能に優れ、しかも、良好な深
放電後の充電受け入れ特性を示すことが明らかになっ
た。
In FIG. 4, the lead-acid battery located in the region of 0.5 ≦ X ≦ 30 and 0.5 ≦ Y ≦ −0.625X + 50 has an excellent trickle life performance and, after a good deep discharge, a good result. It became clear that it exhibits charge acceptance characteristics.

【0038】図3において、X<0.5およびY<0.
5の領域においては、深放電後の充電受け入れ特性が悪
くなっている。これは、これらの領域においては、鉛−
スズ系合金層の厚さが薄いか、もしくは鉛−スズ系合金
層中のスズ含有量が少ないため、純鉛正極格子体の欠点
である深放電後の充電受け入れ特性の劣る点を十分解消
し得なかったためと考えられる。
In FIG. 3, X <0.5 and Y <0.
In the region of No. 5, the charge acceptance characteristics after deep discharge are poor. This means that in these areas lead-
Since the thickness of the tin-based alloy layer is thin or the tin content in the lead-tin-based alloy layer is low, the disadvantage of the pure lead positive electrode grid, which is the inferior charge acceptance property after deep discharge, is sufficiently solved. It is thought that it was because I did not get.

【0039】また、X>50およびY>−0.625X
+50の領域において、トリクル充電寿命特性が悪くな
っている。これは、これらの領域においては、鉛−スズ
系合金層の厚さや、スズ含有量が過大であり、粒界腐食
が進行した結果、トリクル充電寿命に影響を与える正極
格子体中に残存する導電経路(非腐食部分)が狭くなっ
たためと考えられる。
Also, X> 50 and Y> -0.625X
In the +50 region, the trickle charge life characteristic is poor. This is because, in these regions, the thickness of the lead-tin alloy layer and the tin content are excessive, and as a result of the progress of intergranular corrosion, the conductivity remaining in the positive electrode grid that affects the trickle charge life. It is considered that the route (non-corrosion part) became narrower.

【0040】したがって、シートの総厚さに対する鉛−
スズ系合金層の厚さの比率Xに関して言えば、トリクル
寿命性能と深放電後の充電受け入れ特性のいずれをも改
善するためには、0.5≦X≦40、より好ましくは
0.5≦X≦30とするのが良い。また、同様の観点か
ら、鉛−スズ系合金層の質量当たりのスズ含有量Yに関
して言えば、0.5≦Y≦−0.625X+50とする
のが良い。さらには、前記のXとYを、0.5≦X≦4
0(より好ましくは0.5≦X≦30)と0.5≦Y≦
−0.625X+50で区画される領域内の値とするの
が最も適正であると言える。
Therefore, the lead-based on the total thickness of the sheet
Regarding the thickness ratio X of the tin-based alloy layer, in order to improve both the trickle life performance and the charge acceptance property after deep discharge, 0.5 ≦ X ≦ 40, more preferably 0.5 ≦ X ≦ 40. It is preferable that X ≦ 30. From the same viewpoint, regarding the tin content Y per mass of the lead-tin alloy layer, 0.5 ≦ Y ≦ −0.625X + 50 is preferable. Furthermore, the above X and Y are set to 0.5 ≦ X ≦ 4.
0 (more preferably 0.5 ≦ X ≦ 30) and 0.5 ≦ Y ≦
It can be said that the most appropriate value is a value within the area divided by -0.625X + 50.

【0041】以上のように、純鉛(99.99質量%以
上)板に、鉛―スズ系合金板を重ね合わせ、圧延加工す
ることにより一体化したシートから製作した格子体を正
極板に用いることで、トリクル寿命性能が優れ、しか
も、深放電後の充電受け入れ特性に問題の発生しない制
御弁式鉛蓄電池を得ることができることがわかった。
As described above, the positive lead plate is a grid body made of an integrated sheet obtained by stacking a lead-tin alloy plate on a pure lead (99.99 mass% or more) plate and rolling it. Thus, it was found that it is possible to obtain a valve-regulated lead-acid battery that has excellent trickle life performance and that does not cause a problem in charge acceptance characteristics after deep discharge.

【0042】上記の実施形態では、鉛−スズ系合金とし
て、スズを0.5〜50質量%含有する鉛−スズ合金を
用いたが、スズの存在が深放電後の充電受け入れ特性の
改善に寄与していることから、鉛−スズ−カルシウム合
金などのスズと他の金属成分を含んでなる鉛合金を用い
ても良い。なお、このときのスズ含有量Y(質量%)も
0.5≦Y≦−0.625X+50の関係を満たしてお
く必要がある。
In the above embodiment, a lead-tin alloy containing tin in an amount of 0.5 to 50 mass% was used as the lead-tin alloy, but the presence of tin improves the charge acceptance characteristics after deep discharge. Since it contributes, a lead alloy containing tin and another metal component such as a lead-tin-calcium alloy may be used. The tin content Y (mass%) at this time also needs to satisfy the relationship of 0.5 ≦ Y ≦ −0.625X + 50.

【0043】上記の実施形態では、円筒型制御弁式鉛蓄
電池について本発明の有効性を述べてきたが、その効果
は、制御弁式鉛蓄電池おいてのみ得られるのではなく、
その効果が正極板に起因しているのであることから、流
動液が存在する、いわゆる、開放型鉛蓄電池においても
同様の正極板を用いることによって同じ効果が得られる
ことは言うまでもない。
In the above embodiment, the effectiveness of the present invention has been described for the cylindrical control valve type lead storage battery, but the effect is not obtained only in the control valve type lead storage battery.
Since the effect is caused by the positive electrode plate, it goes without saying that the same effect can be obtained by using a similar positive electrode plate even in a so-called open-type lead acid battery in which a fluid is present.

【0044】また、上記の実施形態では、純鉛板からな
る層に鉛−スズ系合金層を圧延加工により一体化させた
が、純鉛板の表面に鉛−スズ系合金層を設ける方法とし
ては、化学的蒸着法、物理的蒸着法、あるいは拡散浸透
法、電気化学的メッキ法などを利用することができる。
ただ、これらの方法の中では、圧延加工による方法が最
も簡便で、低コストであり、量産性にも優れている。
Further, in the above embodiment, the lead-tin alloy layer is integrated with the layer made of the pure lead plate by rolling. However, as a method of providing the lead-tin alloy layer on the surface of the pure lead plate, For example, a chemical vapor deposition method, a physical vapor deposition method, a diffusion permeation method, an electrochemical plating method, or the like can be used.
However, of these methods, the rolling method is the simplest, the cost is low, and the mass productivity is excellent.

【0045】[0045]

【発明の効果】以上述べたように、純鉛(99.99
%)板表面の少なくとも一方に、鉛―スズ合金板層を形
成したシートを打ち抜き加工またはエキパンド加工で形
成した格子体を正極板に用いることで、トリクル寿命性
能が優れ、しかも深放電後の充電受け入れ性に問題のな
い鉛蓄電池を得ることができ、特に、シート厚みに対す
る鉛−スズ合金層の厚み比率をX(%)とし、鉛−スズ
合金層に対するスズ含有量をY(質量%)とした時に、
0.5≦X≦40、好ましくは0.5≦X≦30かつ
0.5≦Y≦−0.625X+50を満足することによ
って上記効果がより一層顕著に得られ、その工業的価値
は極めて大きい。
As described above, pure lead (99.99) is used.
%) By using a grid formed by punching or expanding a sheet with a lead-tin alloy plate layer on at least one of the plate surfaces for the positive electrode plate, excellent trickle life performance and charging after deep discharge are achieved. It is possible to obtain a lead storage battery having no problem in acceptability, and in particular, the thickness ratio of the lead-tin alloy layer to the sheet thickness is X (%), and the tin content in the lead-tin alloy layer is Y (mass%). When I did
By satisfying 0.5 ≦ X ≦ 40, preferably 0.5 ≦ X ≦ 30 and 0.5 ≦ Y ≦ −0.625X + 50, the above effect can be obtained more remarkably, and its industrial value is extremely large. .

【図面の簡単な説明】[Brief description of drawings]

【図1】深放電後の充電受け入れ特性試験[Figure 1] Charge acceptance characteristic test after deep discharge

【図2】トリクル(フロート)寿命試験[Fig. 2] Trickle (float) life test

【図3】一体化したシートの総厚みに対する鉛−スズ合
金層の厚み比率および鉛−スズ合金層のスズ含有量(質
量%)と蓄電池性能との関係
FIG. 3 is a relationship between the thickness ratio of the lead-tin alloy layer to the total thickness of the integrated sheet and the tin content (mass%) of the lead-tin alloy layer, and the storage battery performance.

【図4】図3の試験結果を蓄電池のトリクル寿命が良好
である評価基準を高くして再評価した結果を示す図。
FIG. 4 is a view showing a result of re-evaluating the test result of FIG. 3 by increasing an evaluation criterion for a good trickle life of a storage battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 純鉛(99.9%以上)板表面の少なくとも
一方に、鉛−スズ系合金層を形成したシートを打ち抜き
加工またはエキスパンド加工して形成した格子体を正極
板に用いたことを特徴とする鉛蓄電池。
1. A positive electrode plate comprising a grid body formed by punching or expanding a sheet having a lead-tin alloy layer formed on at least one surface of a pure lead (99.9% or more) plate. And lead acid battery.
【請求項2】 シートの総厚みに対する鉛−スズ系合金
層の比率をX(%)、前記鉛―スズ系合金層のスズ含有
量をY(質量%)としたとき、X、Yが次式、0.5≦
X≦40かつ0.5≦Y≦−0.625X+50を満た
すことを特徴とする請求項1記載の鉛蓄電池
2. When the ratio of the lead-tin alloy layer to the total thickness of the sheet is X (%) and the tin content of the lead-tin alloy layer is Y (mass%), X and Y are as follows: Expression, 0.5 ≦
The lead storage battery according to claim 1, wherein X ≦ 40 and 0.5 ≦ Y ≦ −0.625X + 50 are satisfied.
JP2002323205A 2001-11-06 2002-11-06 Lead acid battery Expired - Fee Related JP4678117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323205A JP4678117B2 (en) 2001-11-06 2002-11-06 Lead acid battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-341179 2001-11-06
JP2001341179 2001-11-06
JP2002323205A JP4678117B2 (en) 2001-11-06 2002-11-06 Lead acid battery

Publications (3)

Publication Number Publication Date
JP2003208898A true JP2003208898A (en) 2003-07-25
JP2003208898A5 JP2003208898A5 (en) 2005-12-15
JP4678117B2 JP4678117B2 (en) 2011-04-27

Family

ID=27666947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323205A Expired - Fee Related JP4678117B2 (en) 2001-11-06 2002-11-06 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4678117B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505345A (en) * 2005-08-10 2009-02-05 ドイチェ エキサイド ゲーエムベーハー Electrode plate grid
JP2017068953A (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Punching current collector for lead-acid storage battery, method of manufacturing the same and lead-acid storage battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124064A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Grid body for lead storage battery and its manufacture
JPS6386352A (en) * 1986-09-30 1988-04-16 Shin Kobe Electric Mach Co Ltd Lead acid battery
JPH0355757A (en) * 1989-03-29 1991-03-11 Aisin Seiki Co Ltd Lead storage battery
JPH0574464A (en) * 1991-09-12 1993-03-26 Matsushita Electric Ind Co Ltd Sealed lead-acid storage battery
JPH1154126A (en) * 1997-08-04 1999-02-26 Japan Storage Battery Co Ltd Lattice for lead-acid battery
WO2001004976A1 (en) * 1999-07-09 2001-01-18 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
JP2001023646A (en) * 1999-07-13 2001-01-26 Japan Storage Battery Co Ltd Manufacture of lead alloy rolled sheet for lead-acid battery grid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124064A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Grid body for lead storage battery and its manufacture
JPS6386352A (en) * 1986-09-30 1988-04-16 Shin Kobe Electric Mach Co Ltd Lead acid battery
JPH0355757A (en) * 1989-03-29 1991-03-11 Aisin Seiki Co Ltd Lead storage battery
JPH0574464A (en) * 1991-09-12 1993-03-26 Matsushita Electric Ind Co Ltd Sealed lead-acid storage battery
JPH1154126A (en) * 1997-08-04 1999-02-26 Japan Storage Battery Co Ltd Lattice for lead-acid battery
WO2001004976A1 (en) * 1999-07-09 2001-01-18 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
JP2001023646A (en) * 1999-07-13 2001-01-26 Japan Storage Battery Co Ltd Manufacture of lead alloy rolled sheet for lead-acid battery grid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505345A (en) * 2005-08-10 2009-02-05 ドイチェ エキサイド ゲーエムベーハー Electrode plate grid
JP2017068953A (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Punching current collector for lead-acid storage battery, method of manufacturing the same and lead-acid storage battery

Also Published As

Publication number Publication date
JP4678117B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP6504055B2 (en) Control valve type lead storage battery
JP6032498B2 (en) Control valve type lead acid battery
JP4501330B2 (en) Lead acid battery
JP2006156371A (en) Negative electrode collector for lead-acid battery
JP2006066283A (en) Cathode plate for sealed lead-acid battery, and the sealed lead-acid battery using the cathode plate
US7223499B2 (en) Lead battery
JP2003208898A (en) Lead-acid battery
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP5145644B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP2004186013A (en) Electrode collector, its manufacturing method and sealed lead-acid battery
JP2004079198A (en) Lead accumulator
JP2004200028A (en) Manufacturing method of lead acid storage battery electrode grid
JP4374626B2 (en) Lead acid battery
JP2005044760A (en) Manufacturing method of lead-acid storage battery positive electrode plate lattice
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH10208750A (en) Lead-acid battery
JPH1154129A (en) Lead-acid battery
JP2000195524A (en) Sealed lead-acid battery
JP2001307718A (en) Lead battery and its manufacturing method
JPH07147160A (en) Lead-acid battery
JP2002203565A (en) Sealed lead storage battery
JP2003178806A (en) Charging control method of lead-acid battery
JPS5828171A (en) Lead storage battery
JP2004152578A (en) Lead storage battery and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4678117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees