JP2003207438A - Particle diameter distribution measuring apparatus and method of defoaming for particle diameter distribution measuring apparatus - Google Patents

Particle diameter distribution measuring apparatus and method of defoaming for particle diameter distribution measuring apparatus

Info

Publication number
JP2003207438A
JP2003207438A JP2002002045A JP2002002045A JP2003207438A JP 2003207438 A JP2003207438 A JP 2003207438A JP 2002002045 A JP2002002045 A JP 2002002045A JP 2002002045 A JP2002002045 A JP 2002002045A JP 2003207438 A JP2003207438 A JP 2003207438A
Authority
JP
Japan
Prior art keywords
dispersion medium
measured
particle size
size distribution
defoaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002002045A
Other languages
Japanese (ja)
Other versions
JP3845309B2 (en
Inventor
Hideyuki Ikeda
英幸 池田
Yoshiaki Tokawa
喜昭 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002002045A priority Critical patent/JP3845309B2/en
Publication of JP2003207438A publication Critical patent/JP2003207438A/en
Application granted granted Critical
Publication of JP3845309B2 publication Critical patent/JP3845309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle diameter distribution measuring apparatus and a method of defoaming for the particle diameter distribution measuring apparatus capable of surely removing air bubbles accumulated in a circulatory system, and conducting accurate measurements in a laser diffraction/scattering particle diameter distribution measuring apparatus. <P>SOLUTION: The particle diameter distribution measuring apparatus 1 obtains a particle diameter distribution of a measuring object particles S by applying light L to a measuring object sample S' comprising measuring object particles S dispersed in a dispersion medium Lq, detecting an intensity distribution of scattered light Ls from the measuring object particles S, and calculating based on the intensity distribution. The apparatus 1 includes a function P for removing air bubbles mixed in the dispersion medium Lq by processes S1 to S3 including at least ultrasonic defoaming processes S2, S3 facilitating coalescence and elimination of the air bubbles contained in the dispersion medium Lq by using an ultrasonic oscillator 9 for resolving the aggregation of the measuring object particles S. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はサンプル液中に混入
している気泡を除去するための粒径分布測定装置および
粒径分布測定装置の脱泡方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle size distribution measuring device for removing bubbles mixed in a sample liquid and a defoaming method for the particle size distribution measuring device.

【0002】[0002]

【従来の技術】従来より、循環系に充填した分散媒に測
定対象粒子を投入して測定対象試料を生成した後に、こ
の測定対象試料を循環させながら光を照射し、測定対象
試料からの散乱光の強度分布を検出して、検出された散
乱光の強度分布を基に演算することにより、測定対象粒
子の粒径分布を求める粒径分布測定装置がある。
2. Description of the Related Art Conventionally, particles to be measured are put into a dispersion medium filled in a circulation system to generate a sample to be measured, and then light is irradiated while the sample to be measured is circulated to scatter from the sample to be measured. There is a particle size distribution measuring device that obtains the particle size distribution of particles to be measured by detecting the intensity distribution of light and performing calculation based on the detected intensity distribution of scattered light.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の装置では、循環系に分散媒を注入し循環用ポン
プでフローセルに分散媒を供給するときに、分散媒中に
気泡が混入し、この気泡もフローセル内に導入してしま
うことがあった。このような場合、不安定な気泡によっ
て光の散乱や屈折が生じるので、測定値に誤差が生じた
り、測定不能になることもあった。なお、本明細書にお
ける「気泡」とは、測定対象粒子とほゞ同程度またはこ
れより小さい泡から測定対象粒子よりも十分に大きい空
気の塊の全てを含むものである。
However, in the above-described conventional apparatus, when the dispersion medium is injected into the circulation system and the dispersion medium is supplied to the flow cell by the circulation pump, bubbles are mixed in the dispersion medium, Bubbles were sometimes introduced into the flow cell. In such a case, unstable air bubbles cause light scattering and refraction, which may cause an error in the measurement value or make the measurement impossible. The term "air bubbles" in the present specification includes all the air masses that are substantially the same as or smaller than the particles to be measured and are sufficiently larger than the particles to be measured.

【0004】とりわけ、粒径の細かい測定対象粒子の凝
集を防ぐために、分散媒にヘキサメタリン酸ナトリウム
などの界面活性剤を添加して分散媒の表面張力を減少さ
せたときには、気泡が壊れにくくなり、分散媒を循環系
に充填させるべく前記循環用ポンプを動作させると、多
量の気泡が分散媒に混入していた。そして、測定対象粒
子を含まないブランク測定を行うときには含まれていた
気泡が、測定対象粒子を含む測定時においては気泡同士
が結合してその径が大きくなったり、フローセル外に排
出されて、その状態が変化することがあった。
In particular, in order to prevent the agglomeration of particles to be measured having a small particle diameter, when a surface tension of the dispersion medium is reduced by adding a surfactant such as sodium hexametaphosphate to the dispersion medium, bubbles are less likely to break, When the circulation pump was operated to fill the circulation medium with the dispersion medium, a large amount of bubbles were mixed in the dispersion medium. Then, the bubbles that were included when performing a blank measurement that does not include the particles to be measured, the bubbles are bonded to each other at the time of the measurement that includes the particles to be measured have a large diameter, or are discharged to the outside of the flow cell, The state could change.

【0005】つまり、循環系に気泡が残るとブランク測
定時に気泡からの散乱光によってブランク値が上がり、
サンプル測定時にこの気泡が自然崩壊することになり、
気泡から生じていた散乱光強度が変化することにより、
粒子からの正確な散乱光を得ることができず、正確な粒
径分布を得られないことがあった。
That is, when bubbles remain in the circulation system, the blank value increases due to scattered light from the bubbles during blank measurement,
When measuring the sample, these bubbles will collapse naturally,
By changing the scattered light intensity generated from the bubbles,
Accurate scattered light from the particles could not be obtained, and an accurate particle size distribution could not be obtained.

【0006】そこで、操作者は、循環系に分散媒を注入
した後に循環系内の気泡が排除されるように、循環系に
気泡がなくなるまで十分の時間を待つことや、循環用ポ
ンプの動作をある程度の時間動作した後に停止するなど
して間欠的に行う泡抜き操作を行なうことがあった。と
ころが、この泡抜き操作は、操作者の経験に頼って行わ
れるものであるから再現性が悪く、操作者の経験によっ
て測定結果に大きな差が生じていた。
Therefore, the operator waits for a sufficient time until the bubbles in the circulation system disappear, or the operation of the circulation pump so that the bubbles in the circulation system are removed after the dispersion medium is injected into the circulation system. There was a case where the bubble removing operation was intermittently performed by, for example, stopping after operating for a certain time. However, since this bubble removal operation is performed depending on the experience of the operator, the reproducibility is poor, and the experience of the operator causes a large difference in the measurement results.

【0007】本発明はこのような実情を考慮に入れてな
されたものであって、レーザ回折/散乱式粒径分布測定
装置において、循環系に溜まった気泡を確実に除去し、
正確な測定を行うことができる粒径分布測定装置および
粒径分布測定装置の脱泡方法を提供することを目的とし
ている。
The present invention has been made in consideration of such circumstances, and in a laser diffraction / scattering type particle size distribution measuring apparatus, bubbles accumulated in a circulation system are surely removed,
An object of the present invention is to provide a particle size distribution measuring device and a defoaming method of the particle size distribution measuring device that can perform accurate measurement.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の課題を
解決するための手段を以下のように構成している。すな
わち、第1発明の粒径分布測定装置は、分散媒に測定対
象粒子を分散させてなる測定対象試料に光を照射し、測
定対象試料からの散乱光の強度分布を検出して、これを
基に演算することにより、測定対象粒子の粒径分布を求
める粒径分布測定装置であって、測定対象粒子の凝集を
分離させるための超音波発振器を用いて分散媒に含まれ
る気泡の結合および排出を促す超音波脱泡処理を少なく
とも含む脱泡処理によって、分散媒に混入した気泡を取
り除く機能を有することを特徴としている。
The present invention has means for solving the above-mentioned problems as follows. That is, the particle size distribution measuring device of the first invention irradiates a measurement target sample in which the measurement target particles are dispersed in a dispersion medium with light, detects the intensity distribution of scattered light from the measurement target sample, and A particle size distribution measuring device for calculating the particle size distribution of particles to be measured by calculating based on the combination of bubbles contained in the dispersion medium using an ultrasonic oscillator for separating agglomeration of particles to be measured, and It is characterized in that it has a function of removing bubbles mixed in the dispersion medium by a defoaming treatment including at least an ultrasonic defoaming treatment that promotes discharge.

【0009】したがって、前記超音波脱泡処理は気泡を
効果的に結合してこれを排除できるので、界面活性剤を
混入した分散媒であっても、この分散媒に含まれる気泡
を短時間で排出することができ、気泡の影響のない粒径
分布測定を容易に行うことができる。
Therefore, since the ultrasonic defoaming treatment can effectively combine bubbles and eliminate them, even if the dispersion medium contains a surfactant, the bubbles contained in the dispersion medium can be removed in a short time. It can be discharged, and the particle size distribution measurement can be easily performed without the influence of bubbles.

【0010】また、第2発明の粒径分布測定装置は、分
散媒に測定対象粒子を分散させてなる測定対象試料に光
を照射し、測定対象試料からの散乱光の強度分布を検出
して、これを基に演算することにより、測定対象粒子の
粒径分布を求める粒径分布測定装置であって、分散媒に
含まれる気泡の除去を行なう脱泡処理を実行した後に散
乱光強度を測定し、この散乱光強度に基づいて前記脱泡
処理の繰り返しの必要性を判断する機能を有することを
特徴としている。
Further, the particle size distribution measuring device of the second invention irradiates light on a sample to be measured in which particles to be measured are dispersed in a dispersion medium, and detects the intensity distribution of scattered light from the sample to be measured. , A particle size distribution measuring device for calculating the particle size distribution of particles to be measured by calculating based on this, and measuring scattered light intensity after performing a defoaming process for removing bubbles contained in a dispersion medium However, it has a function of judging the necessity of repeating the defoaming process based on the intensity of the scattered light.

【0011】したがって、前記脱泡処理の繰り返し回数
は粒径分布測定に用いられる散乱光強度に基づいて判断
されるので、操作者が目視によって判断する場合に比べ
て、粒径分布測定に悪影響がない程度の気泡であるかど
うかをより的確に判断できる。加えて、判断基準がいつ
も同じであるから操作者の経験に関係なく、確実に脱泡
処理を行って、誰でもどんな分散媒を用いても再現性の
よい測定を行うことができる。
Therefore, the number of repetitions of the defoaming process is judged based on the scattered light intensity used for measuring the particle size distribution, so that the particle size distribution measurement is adversely affected as compared with the case where the operator visually judges. It is possible to more accurately determine whether or not the bubbles are of a certain level. In addition, since the judgment criteria are always the same, regardless of the operator's experience, defoaming treatment can be reliably performed, and anyone can perform measurement with good reproducibility using any dispersion medium.

【0012】気泡を含まない分散媒に光を照射したとき
の散乱光強度を比較値として予め記憶し、実際測定に供
する分散媒に光を照射したときの散乱光強度と前記比較
値とを比較して脱泡処理の繰り返しの必要性を判断し
て、実際測定に供する分散媒の散乱光強度が前記比較値
に対して許容範囲内になるまで脱泡処理を繰り返す場合
には、気泡の混入が所定の許容範囲内になるまで自動的
に脱泡処理を繰り返すための的確な判断を行うことがで
きる。
The scattered light intensity when the dispersion medium containing no bubbles is irradiated with light is stored in advance as a comparison value, and the scattered light intensity when the dispersion medium used for actual measurement is irradiated with the light is compared with the comparison value. Then, if it is necessary to repeat the defoaming process, and if the defoaming process is repeated until the scattered light intensity of the dispersion medium used for actual measurement falls within the allowable range for the comparison value, the inclusion of bubbles It is possible to make an accurate judgment for automatically repeating the defoaming process until is within a predetermined allowable range.

【0013】前記脱泡処理が、凝集した測定対象粒子の
多重結合を分離するための超音波を照射する超音波発振
器を用いて分散媒に含まれる気泡の結合を促して、これ
を除去させる超音波脱泡処理を含む場合には、この超音
波脱泡処理によって気泡を効果的に結合してこれを排除
でき、かつ、この超音波脱泡処理を必要最小限繰り返す
ので、界面活性剤を混入した分散媒であっても、この分
散媒に含まれる気泡をより短時間で排出することがで
き、気泡の影響のない粒径分布測定を迅速かつ容易に行
うことができる。
The defoaming treatment promotes the bonding of bubbles contained in the dispersion medium by using an ultrasonic oscillator for irradiating ultrasonic waves for separating the multiple bonds of the aggregated particles to be measured, and removes them. When the ultrasonic defoaming treatment is included, bubbles can be effectively bound and eliminated by this ultrasonic defoaming treatment, and since this ultrasonic defoaming treatment is repeated to the necessary minimum, a surfactant is mixed. Even with this dispersion medium, the bubbles contained in this dispersion medium can be discharged in a shorter time, and the particle size distribution measurement without the influence of bubbles can be performed quickly and easily.

【0014】第3発明の粒径分布測定装置の脱泡方法
は、分散媒に測定対象粒子を分散させてなる測定対象試
料に光を照射し、測定対象試料からの散乱光の強度分布
を検出して、これを基に演算することにより、測定対象
粒子の粒径分布を求める粒径分布測定装置における脱泡
方法であって、分散媒によるブランク測定を行う前に、
測定対象試料を循環させるためのポンプを間欠的に動作
させて大きな気泡を排出し、測定対象粒子の凝集を分離
するための超音波発振器を用いて分散媒に含まれる小さ
な気泡の結合および排出を促し、前記ポンプを回転させ
ながら前記超音波発振器を用いて分散媒に含まれる隠れ
た気泡の結合および排出を促す一連の脱泡処理を行なう
ことを特徴としている。
The defoaming method of the particle size distribution measuring device of the third invention irradiates light on a sample to be measured in which particles to be measured are dispersed in a dispersion medium, and detects the intensity distribution of scattered light from the sample to be measured. Then, by calculating based on this, a defoaming method in a particle size distribution measuring apparatus for determining the particle size distribution of the particles to be measured, before performing a blank measurement with a dispersion medium,
A pump for circulating the sample to be measured is intermittently operated to discharge large bubbles, and an ultrasonic oscillator for separating agglomeration of particles to be measured is used to combine and discharge small bubbles contained in the dispersion medium. It is characterized in that a series of defoaming treatments are carried out to promote the binding and discharge of hidden bubbles contained in the dispersion medium by using the ultrasonic oscillator while rotating the pump.

【0015】前記一連の脱泡処理は分散媒に含まれる種
々の大きさの気泡を迅速に取り除くことができる。すな
わち、ポンプを間欠的(循環系を1周するのに必要な時
間またはこれより長い時間で動作し、また停止するよう
に)に動作させることにより、循環系を流れる分散媒の
流量を変化させて、大きな気泡および空気の塊を速やか
に排出することができる。また、超音波発振器を用いて
分散媒に含まれる小さな気泡を結合させることにより、
前記ポンプによる排出では排出できなかった小さな気泡
を結合させて、排出しやすい比較的大きな気泡に成長さ
せることができる。また、ポンプを回転させながら前記
超音波発振器を用いて分散媒に含まれる隠れた気泡の結
合を促すことにより、結合して大きくなった気泡を容易
に排出することができる。
The series of defoaming treatments can rapidly remove bubbles of various sizes contained in the dispersion medium. That is, the flow rate of the dispersion medium flowing in the circulation system is changed by operating the pump intermittently (to operate for a time required to complete one round of the circulation system or for a time longer than this, and to stop). Thus, large air bubbles and air lumps can be quickly discharged. Also, by combining small bubbles contained in the dispersion medium using an ultrasonic oscillator,
It is possible to combine small bubbles that could not be discharged by the pump discharge to grow into relatively large bubbles that are easy to discharge. Further, by encouraging the bonding of hidden bubbles contained in the dispersion medium by using the ultrasonic oscillator while rotating the pump, it is possible to easily discharge the bubbles that have become large due to the bonding.

【0016】第4発明の粒径分布測定装置の脱泡方法
は、分散媒に測定対象粒子を分散させてなる測定対象試
料に光を照射し、測定対象試料からの散乱光の強度分布
を検出して、これを基に演算することにより、測定対象
粒子の粒径分布を求める粒径分布測定装置における脱泡
方法であって、分散媒によるブランク測定を行う前に、
分散媒に含まれる気泡を除去する脱泡処理を行った後
に、散乱光強度を測定し、この散乱光強度に基づいて前
記脱泡処理の繰り返しが必要であるかどうか判断するこ
とにより、脱泡処理を繰り返すことを特徴としている。
In the defoaming method of the particle size distribution measuring apparatus of the fourth invention, the measurement target sample in which the measurement target particles are dispersed in a dispersion medium is irradiated with light, and the intensity distribution of scattered light from the measurement target sample is detected. Then, by calculating based on this, a defoaming method in a particle size distribution measuring apparatus for determining the particle size distribution of the particles to be measured, before performing a blank measurement with a dispersion medium,
After performing the defoaming treatment for removing bubbles contained in the dispersion medium, the scattered light intensity is measured, and the defoaming treatment is performed by determining whether or not the defoaming treatment is required to be repeated based on the scattered light intensity. The feature is that the process is repeated.

【0017】前記粒径分布測定装置および粒径分布測定
装置の脱泡方法は、全てソフトウェアのシーケンスによ
って脱泡を行うので、新たなハードウェア上の構成を必
要としておらず、製造コストを抑えることができる。な
お、分散媒を循環させるためのポンプはその速度を自在
に調節できることが望ましい。
In the particle size distribution measuring device and the defoaming method of the particle size distribution measuring device, all the defoaming is performed by a software sequence, so that no new hardware configuration is required and the manufacturing cost can be suppressed. You can It is desirable that the speed of the pump for circulating the dispersion medium can be adjusted freely.

【0018】[0018]

【発明の実施の形態】以下に本発明の粒径分布測定装置
1の好ましい実施例を図面に基づいて詳細に説明する。
図1において、2は粒径分布測定装置1の測定部、3は
この測定部2に接続されて測定結果を出力する演算処理
部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the particle size distribution measuring device 1 of the present invention will be described in detail below with reference to the drawings.
In FIG. 1, 2 is a measuring unit of the particle size distribution measuring apparatus 1, and 3 is an arithmetic processing unit which is connected to the measuring unit 2 and outputs a measurement result.

【0019】4は測定対象粒子Sを純水などの分散媒に
混合攪拌するための液溜め部、5はこの液溜め部4の下
端部に形成された遠心ポンプ、6はこの遠心ポンプ5を
回転させるモータ、7は前記液溜め部4の下端部におい
てポンプ5の吐き出し部側と吸い込み部側にそれぞれ基
端および終端を連通連結する循環流路、8はこの循環流
路7中に設けたフローセル、9は循環路8中に設けた超
音波発振器、10は循環流路7内にある液体(測定対象
試料など)を排出するための電磁弁である。また、前記
各部4〜10は前記測定対象試料S’を循環させる循環
系11を構成する。
Reference numeral 4 denotes a liquid reservoir for mixing and stirring the particles S to be measured in a dispersion medium such as pure water, 5 denotes a centrifugal pump formed at the lower end of the liquid reservoir 4, and 6 denotes the centrifugal pump 5. A motor for rotating, 7 is a circulation passage for connecting the base end and the end to the discharge portion side and the suction portion side of the pump 5 at the lower end portion of the liquid reservoir 4, and 8 is provided in this circulation passage 7. A flow cell, 9 is an ultrasonic oscillator provided in the circulation passage 8, and 10 is an electromagnetic valve for discharging a liquid (a sample to be measured or the like) in the circulation passage 7. Further, each of the units 4 to 10 constitutes a circulation system 11 that circulates the measurement target sample S ′.

【0020】一方、12はHe−Neレーザ光源、13
は光源12からのレーザ光の径を拡大するビーム拡大
器、14は前記フローセル8内の測定対象試料S’によ
る散乱光を検出する複数チャンネルの検出器である。し
たがって、前記各部8,12〜14は光学系15を構成
する。
On the other hand, 12 is a He-Ne laser light source, and 13
Is a beam expander for expanding the diameter of the laser light from the light source 12, and 14 is a multi-channel detector for detecting scattered light by the sample S ′ to be measured in the flow cell 8. Therefore, the respective units 8 and 12 to 14 form an optical system 15.

【0021】また、16は演算処理部3との通信を行っ
て演算処理部3からのコマンドを受信し測定部2全体の
制御を行なうと共に、測定結果を演算処理部3に対して
出力するCPU、17はこのCPU16によって実行可
能である簡単なプログラムPなどを記録してなる記憶部
である。
A CPU 16 communicates with the arithmetic processing unit 3 to receive a command from the arithmetic processing unit 3 to control the measuring unit 2 as a whole and to output a measurement result to the arithmetic processing unit 3. , 17 are storage units for recording a simple program P that can be executed by the CPU 16.

【0022】演算処理部3は測定部2に対して適切コマ
ンドを出力して得られた測定結果を解析することにより
測定対象粒子Sの粒径分布を求め、この粒径分布を表示
部3aに出力する。また、操作者からの指示に応じて循
環系11を適切に制御する為のコマンドを出力したり、
求められた測定結果や粒径分布などを図外のプリンタな
どに出力したり、任意の記録媒体に記録する。
The arithmetic processing unit 3 outputs the appropriate command to the measuring unit 2 to analyze the measurement result obtained and obtains the particle size distribution of the particles S to be measured, and the particle size distribution is displayed on the display unit 3a. Output. In addition, a command for appropriately controlling the circulation system 11 is output according to an instruction from the operator,
The obtained measurement results, particle size distribution, etc. are output to a printer or the like not shown in the figure, or recorded on an arbitrary recording medium.

【0023】前記液溜め部4は循環系11内に充填する
分散媒Lqや測定対象粒子Sさらには界面活性剤Twの
ような分散促進薬の投入口を有し、これらを混合するこ
とによって測定対象試料S’を生成するように構成して
いる。また、本例の場合はこの液溜め部4の下端部に遠
心ポンプ5を形成し、このポンプ5をモータ6によって
回転させることで測定対象試料S’を循環流路7内に充
填させると共にこれを循環させる。前記モータ6は、例
えば15段階で回転速度を可変とするものである。しか
しながら、本発明は液溜め部4、ポンプ5およびモータ
6の構成を限定するものではない。
The liquid reservoir 4 has an inlet for a dispersion medium Lq to be filled in the circulation system 11, particles S to be measured, and a dispersion promoter such as a surfactant Tw, and is measured by mixing these. It is configured to generate the target sample S ′. In the case of this example, a centrifugal pump 5 is formed at the lower end of the liquid reservoir 4, and the pump 5 is rotated by a motor 6 so that the sample S ′ to be measured is filled in the circulation flow path 7 and Circulate. The motor 6 has a variable rotation speed in 15 steps, for example. However, the present invention does not limit the configurations of the liquid reservoir 4, the pump 5, and the motor 6.

【0024】セル8は測定対象試料S’を循環させなが
ら、前記He−Neレーザ光源12からのレーザ光Lが
セル8内の測定対象試料S’を透過するようにガラスな
どの光透過材料で構成されたフローセルである。
The cell 8 is made of a light-transmissive material such as glass so that the laser light L from the He-Ne laser light source 12 can pass through the sample S ′ to be measured in the cell 8 while circulating the sample S ′ to be measured. It is a configured flow cell.

【0025】超音波発振器9は循環流路7内の適宜の位
置に取り付けられて、測定対象試料S’に超音波を照射
することにより、この測定対象試料S’に分散する測定
対象粒子Sの凝集を防止するものであるが、本発明では
この超音波発振器9を用いて分散媒Lqに含まれる気泡
の結合を促して、この気泡の排出(本発明における、気
泡の排出は分散媒Lqに混入している泡や空気層の排出
を意味しており、以下、脱泡するという)を行なうもの
である。
The ultrasonic oscillator 9 is attached at an appropriate position in the circulation channel 7, and by irradiating the sample S ′ to be measured with ultrasonic waves, the particles S to be measured dispersed in the sample S ′ to be measured. Although it is intended to prevent agglomeration, in the present invention, the ultrasonic oscillator 9 is used to promote the bonding of bubbles contained in the dispersion medium Lq, and the bubbles are discharged (in the present invention, the bubbles are discharged to the dispersion medium Lq. It means the discharge of mixed bubbles and air layers, and is referred to as defoaming hereinafter).

【0026】前記レーザ光源12はHe−Neレーザに
限られるものではなく、タングステンランプなどその他
の光源であっても、2つ以上の光源を用いるものであっ
てもよい。とりわけ、タングステンランプはより小さい
粒子径であっても測定可能であるから、タングステンラ
ンプとHe−Neレーザを両方用いることにより、広い
粒径範囲を測定することが可能となる。
The laser light source 12 is not limited to the He-Ne laser, but may be another light source such as a tungsten lamp or may use two or more light sources. In particular, since a tungsten lamp can measure even a smaller particle size, it is possible to measure a wide particle size range by using both a tungsten lamp and a He-Ne laser.

【0027】前記検出器14はレーザ光Lの進行方向の
前方に形成されたリングディテクタ14aと、レーザ光
Lの進行方向に対して側方から後方に形成された複数の
検出器14bとを有している。したがって、レーザ光L
の進行方向に対して前方から後方まで角度ごとに散乱光
Lsの光量を検出することができる。(以下の説明にお
いて各散乱角度ごとの光量の検出値を検出器14のチャ
ンネルごとの出力として表わす)
The detector 14 has a ring detector 14a formed in front of the traveling direction of the laser light L and a plurality of detectors 14b formed rearward from the side in the traveling direction of the laser light L. is doing. Therefore, the laser light L
The light quantity of the scattered light Ls can be detected for each angle from the front to the rear with respect to the traveling direction of. (In the following description, the detected value of the light amount for each scattering angle is represented as the output for each channel of the detector 14)

【0028】前記CPU16は好ましくは省エネルギー
を達成するワンチップマイクロコンピュータであり、前
記ポンプ5のモータ6を回動させたり、超音波発振器9
を動作させると共に、各検出器14からの信号を入力す
るための各種プログラムPを記憶部17から読み出して
これを実行するものである。
The CPU 16 is preferably a one-chip microcomputer that achieves energy saving, and rotates the motor 6 of the pump 5 and the ultrasonic oscillator 9
Is operated, and various programs P for inputting signals from each detector 14 are read from the storage unit 17 and executed.

【0029】前記粒径分布測定装置1を用いて測定対象
粒子Sの粒径分布測定を行なう場合、まず、ブランク測
定に先立って少なくとも水などの分散媒Lqを循環系1
1内に充填させて、気泡の存在しない状態で散乱光Ls
の光量(散乱光強度)をチャンネルごとに検出し、この
ときの光の散乱光強度を比較値として予め記憶してお
く。
When the particle size distribution of the particles S to be measured is measured using the particle size distribution measuring apparatus 1, first, at least the dispersion medium Lq such as water is circulated in the circulation system 1 prior to the blank measurement.
1 and filled with scattered light Ls in the absence of bubbles
Is detected for each channel, and the scattered light intensity of the light at this time is stored in advance as a comparison value.

【0030】なお、このとき用いる分散媒Lqは測定対
象粒子Sを分散させる分散媒Lqと同じものであること
が望ましく、測定対象粒子Sの粒径分布測定に界面活性
剤Twを用いる場合には、比較値として記憶するときの
分散媒Lqにも界面活性剤Twを混合しておくことが望
ましい。この比較値の測定および記憶は測定対象試料S
の粒径分布測定に先立って行われるものであり、粒径分
布測定装置1の製造時に行われ、また、好ましくは定期
的に行われるものである。
The dispersion medium Lq used at this time is preferably the same as the dispersion medium Lq in which the particles S to be measured are dispersed, and when the surfactant Tw is used to measure the particle size distribution of the particles S to be measured, It is desirable that the surfactant Tw is also mixed in the dispersion medium Lq when storing it as a comparison value. This comparison value is measured and stored by the sample S to be measured.
The measurement is performed prior to the measurement of the particle size distribution, and is performed at the time of manufacturing the particle size distribution measuring device 1, and is preferably performed periodically.

【0031】測定対象粒子Sの粒径分布測定を行うとき
には、分散媒Lqと界面活性剤Twを液溜め部4に投入
し、ポンプ5を駆動して、循環系に界面活性剤Tw入り
の分散媒Lqを充填させる。このとき、図示は省略する
が、演算処理部3側の粒径分布測定装置用のソフトウェ
アでは、表示部3a上の測定を行なう測定画面におい
て、画面の適宜の位置に「泡抜き」ボタンを表示してい
る。そして、操作者がこの泡抜きボタンを操作すること
によって、演算処理部3から測定部2に泡抜きコマンド
が出力される。
When the particle size distribution of the particles S to be measured is measured, the dispersion medium Lq and the surfactant Tw are charged into the liquid reservoir 4 and the pump 5 is driven to disperse the surfactant Tw in the circulation system. The medium Lq is filled. At this time, although illustration is omitted, in the software for the particle size distribution measuring device on the arithmetic processing unit 3 side, a “foam removal” button is displayed at an appropriate position on the measurement screen for measurement on the display unit 3a. is doing. Then, when the operator operates this bubble removal button, the bubble removal command is output from the arithmetic processing unit 3 to the measurement unit 2.

【0032】なお、本例のように測定部2を制御するた
めの基本的なプログラムPが測定部2側の記憶部17に
記憶されており、これが測定部2側のCPU16によっ
て実行されるように構成しているので、演算処理部3側
の負担を小さくすることができ、演算処理部3は散乱光
強度の解析に集中することが可能であるが、本発明はこ
の点を限定するものではない。すなわち、測定部2側の
CPU16はより基本的な動作のみを制御し、演算処理
部3がこのプログラムPを実行して一つずつのコマンド
を測定部2に指示してもよい。
A basic program P for controlling the measuring unit 2 as in this example is stored in the storage unit 17 on the measuring unit 2 side, and is executed by the CPU 16 on the measuring unit 2 side. Since it is configured as described above, the load on the arithmetic processing unit 3 side can be reduced, and the arithmetic processing unit 3 can concentrate on the analysis of scattered light intensity. However, the present invention limits this point. is not. That is, the CPU 16 on the measuring unit 2 side may control only a more basic operation, and the arithmetic processing unit 3 may execute the program P to instruct the measuring unit 2 to issue a command one by one.

【0033】何れにしても、粒径分布測定装置1によっ
て実行されるプログラムPには一連の脱泡処理の手順が
指示されているので、CPU16は循環系11を動かす
ポンプ5および循環系11内に設けられた超音波発振器
9のON/OFFおよび強弱調節を、あらかじめ定めら
れたシーケンスに基づいて行なうことができる。
In any case, since the program P executed by the particle size distribution measuring apparatus 1 is instructed to perform a series of defoaming procedures, the CPU 16 causes the pump 5 for moving the circulation system 11 and the inside of the circulation system 11 to operate. ON / OFF and the strength adjustment of the ultrasonic oscillator 9 provided in the can be performed based on a predetermined sequence.

【0034】図2は前記プログラムPによって指示され
る一連の脱泡処理の例を示す図である。以下、図2を図
1と共に用いて、このプログラムPの動作を説明する。
FIG. 2 is a diagram showing an example of a series of defoaming processes instructed by the program P. The operation of the program P will be described below with reference to FIG. 2 together with FIG.

【0035】まず、S1はポンプ5の回転を断続的にO
N/OFFさせる処理を行なうステップである。より詳
細には、分散媒Lqが循環流路7内を一周できる程度か
それより長い所定の時間として、例えば約1秒程度ポン
プ5を駆動した後に、液溜め部4のように上部が開放し
ている部分の下部に位置する気泡が浮力によって排出さ
れる所定の時間として、約1秒程度ポンプ5を止める。
First, in S1, the rotation of the pump 5 is turned on and off intermittently.
This is a step of performing processing for turning off / on. More specifically, after the pump 5 is driven for a predetermined time such that the dispersion medium Lq can make one round in the circulation flow path 7 or longer, for example, for about 1 second, the upper portion is opened like the liquid reservoir 4. The pump 5 is stopped for about 1 second as a predetermined period of time during which bubbles located at the lower part of the existing portion are discharged by buoyancy.

【0036】したがって、前記ポンプ5の間欠動作によ
り、循環流路7内の入り組んだ部分に溜まっている大き
な空気を液溜め部4などの上端が開放している部分から
脱気する。ここで、ポンプ5を断続的にON/OFFさ
せることにより、循環流路7内を流れる分散媒Lqの流
速に変化を付けることができ、これによって循環流路7
の内周面に幾らかの凹凸があっても比較的大きな空気溜
まりを効果的に脱泡することができる。
Therefore, due to the intermittent operation of the pump 5, the large air accumulated in the intricate portion of the circulation passage 7 is degassed from the portion such as the liquid reservoir 4 whose upper end is open. Here, by intermittently turning ON / OFF the pump 5, it is possible to change the flow velocity of the dispersion medium Lq flowing in the circulation flow path 7, and thereby the circulation flow path 7
Even if there are some irregularities on the inner peripheral surface of the, it is possible to effectively deaerate a relatively large air pool.

【0037】S2は一旦ポンプ5を止めて、前記超音波
発振器9を用いて超音波を照射するステップである。す
なわち、本来は測定対象粒子Sの凝集を解消するために
設けられた超音波発振器9を測定対象粒子Sが入ってい
ない分散媒Lqに対して照射することにより、分散媒L
qに混入した気泡の結合を促すことができる。したがっ
て、比較的大きくなった気泡は短時間で浮力によって上
昇し、液溜め部4などから排出される。
Step S2 is a step in which the pump 5 is temporarily stopped and ultrasonic waves are emitted using the ultrasonic oscillator 9. That is, by irradiating the dispersion medium Lq that does not contain the measurement target particles S with the ultrasonic oscillator 9 that was originally provided to eliminate the aggregation of the measurement target particles S, the dispersion medium L
Bonding of bubbles mixed in q can be promoted. Therefore, the relatively large bubbles rise in a short time due to buoyancy and are discharged from the liquid reservoir 4 and the like.

【0038】また、超音波の照射は循環流路7内の全て
の部分に対して一度に行うことができ、循環流路7内の
比較的入り組んだ部分に位置する気泡についてもこれを
おびき出すようにして、その排出を促すことができる。
Further, the irradiation of ultrasonic waves can be carried out at once for all the parts in the circulation flow path 7, and the bubbles located in the relatively complicated parts in the circulation flow path 7 are also attracted. Thus, the discharge can be promoted.

【0039】S3はポンプ5を低速回転させて、分散媒
Lqをゆっくりと循環させた状態で超音波を照射するス
テップである。より詳細には、ポンプ5の回転速度を1
5段階で表現すると2〜3段階程度の回転速度(通常回
転速度の10〜20%程度)で回転させながら、超音波
を照射しつづけることにより、超音波の作用によって細
かい気泡が結合して比較的大きく成長した気泡を容易に
排出することができる。
Step S3 is a step in which the pump 5 is rotated at a low speed, and ultrasonic waves are emitted while the dispersion medium Lq is slowly circulated. More specifically, the rotation speed of the pump 5 is set to 1
Expressed in 5 stages, while continuing to irradiate ultrasonic waves while rotating at a rotation speed of 2 to 3 steps (about 10 to 20% of the normal rotation speed), fine bubbles are combined by the action of ultrasonic waves and compared. Bubbles that have grown significantly larger can be easily discharged.

【0040】ここで、ポンプ5を低速回転させながら超
音波を照射することにより、分散媒Lqが循環系11を
ゆっくり巡回させながら、大きく成長した気泡を液溜め
部4などの上端が開放している部分から脱気できる。ポ
ンプ5の回転速度は液溜め部4などの上端が開放してい
る部分の形状と、分散媒Lqの粘度、前記ステップS1
の脱泡処理では排出できない気泡の大きさによって決ま
る気泡の浮力の大きさなどによって定められる。
Here, by irradiating ultrasonic waves while rotating the pump 5 at a low speed, the dispersion medium Lq slowly circulates in the circulation system 11, while the bubbles that have grown greatly are opened at the upper ends of the liquid reservoir 4 and the like. You can degas from the part where it is. The rotational speed of the pump 5 is determined by the shape of the open portion of the liquid reservoir 4 and the like, the viscosity of the dispersion medium Lq, and the step S1.
It is determined by the buoyancy of bubbles, which is determined by the size of bubbles that cannot be discharged by the defoaming process.

【0041】S4は前記ステップS1〜S3に示した一
連の脱泡処理のシーケンスが終了した時点で実行される
ものであり、セル8にレーザ光Lを照射して、その散乱
光情報を調べるステップである。
Step S4 is executed at the time when the series of defoaming processing shown in steps S1 to S3 is completed, and the step of irradiating the cell 8 with the laser beam L and examining the scattered light information thereof. Is.

【0042】S5は上述した一連の脱泡処理によって十
分の泡抜きが達成できたかどうかを確認するステップで
ある。すなわち、散乱光検出器14のうち、一連の脱泡
処理S1〜S3が一通り終了した時点での散乱光強度
が、気泡による散乱光Lsの影響を受けやすい特定のチ
ャンネルにおいて、前記比較値として予め記憶しておい
た散乱光強度(泡の無い状態での散乱光強度)に比べて
例えば10%などの一定の割合以上高い場合、一連の脱
泡処理S1〜S3をさらに継続させる。
Step S5 is a step for confirming whether or not sufficient defoaming has been achieved by the series of defoaming processes described above. That is, in the scattered light detector 14, the scattered light intensity at the time when the series of defoaming processes S1 to S3 is completed is performed as the comparison value in a specific channel that is easily affected by the scattered light Ls due to the bubbles. When the intensity of scattered light stored in advance (intensity of scattered light in the absence of bubbles) is higher than a predetermined percentage, such as 10%, the series of defoaming processes S1 to S3 is further continued.

【0043】すなわち、本発明の粒径分布測定装置1
は、分散媒Lqに含まれる気泡の除去を行なう脱泡処理
を実行した後に散乱光強度を測定し、この散乱光強度に
基づいて前記脱泡処理S1〜S3の効果や分散媒Lqに
含まれる気泡の量を確認し、繰り返しの必要性を判断す
る機能を有しているので、常に一定の基準で脱泡処理S
1〜S3をおこなうことができる。つまり、再現性が良
くなる。
That is, the particle size distribution measuring device 1 of the present invention
Is the defoaming process for removing the bubbles contained in the dispersion medium Lq, and then the scattered light intensity is measured. Based on this scattered light intensity, the effects of the defoaming processes S1 to S3 and the dispersion medium Lq are included. Since it has the function of checking the amount of bubbles and judging the necessity of repetition, the defoaming process S is always performed on a fixed basis.
1 to S3 can be performed. That is, the reproducibility is improved.

【0044】また、前記ステップS1におけるポンプ5
の間欠動作の間隔や、ステップS2における超音波の照
射時間や、ステップS3におけるポンプ5を低速回転さ
せながら超音波を照射する時間およびポンプ5の回転速
度を循環系11の形状や分散媒Lqの粘度や界面活性剤
Twによる気泡の壊れにくさ(表面張力の低下率)など
に合わせて最適に設定することにより、一連の脱泡処理
S1〜S3にかかる時間を最小限に抑えることができ
る。すなわち、効果的な脱泡処理を必要最小限の時間で
行うことができる。
Further, the pump 5 in step S1
The intermittent operation interval, the ultrasonic wave irradiation time in step S2, the ultrasonic wave irradiation time in step S3 while rotating the pump 5 at a low speed, and the rotation speed of the pump 5 are determined by the shape of the circulation system 11 and the dispersion medium Lq. The time required for the series of defoaming treatments S1 to S3 can be minimized by optimally setting it in accordance with the viscosity and the degree of difficulty in breaking bubbles due to the surfactant Tw (reduction rate of surface tension). That is, an effective defoaming process can be performed in the necessary minimum time.

【0045】加えて、図2には詳述していないが、前記
一連の脱泡処理S1〜S3を所定回数以上繰り返した後
に測定される散乱光強度が、前記比較値に比べて所定値
以上高い場合には、その散乱が気泡によるものではなく
セルの汚れなどによるものであるから、アラームや表示
部3aに対する表示などによってエラー信号を出力し
て、操作者に異常を通知する。
In addition, although not described in detail in FIG. 2, the scattered light intensity measured after repeating the series of defoaming processes S1 to S3 a predetermined number of times or more is a predetermined value or more as compared with the comparison value. If it is high, the scattering is not due to bubbles but to the dirt of the cell, and therefore an error signal is output by an alarm or a display on the display unit 3a to notify the operator of the abnormality.

【0046】なお、本例ではステップS5において泡抜
きが十分であるかどうかを判断するために、気泡による
散乱光を受けやすい特定のチャンネルにおける散乱光強
度を予め記憶しておいた比較値と比較する例を示してい
るが、本発明はこの点を限定するものではない。すなわ
ち、ステップS4では、複数のチャンネルにおける散乱
光強度の合算値を求め、その合算値を前記比較値の同一
チャンネルにおける合算値との比較により、泡抜きが妥
当な程度行われたかどうかを判断するようにしてもよ
い。
In this example, in order to determine whether or not the bubble removal is sufficient in step S5, the intensity of scattered light in a specific channel which is apt to receive the light scattered by bubbles is compared with a previously stored comparison value. However, the present invention is not limited to this point. That is, in step S4, a total value of scattered light intensities in a plurality of channels is obtained, and the total value is compared with the total value in the same channel of the comparison value to determine whether or not bubble removal is performed to an appropriate degree. You may do it.

【0047】さらには、一連の脱泡処理S1〜S3を行
なう前における散乱光強度と、脱泡処理S1〜S3を行
った後の散乱光強度を比較するようにしてもよい。この
場合、前記ステップS5では、脱泡処理S1〜S3によ
って減少する気泡の量を確認でき、さらなる脱泡処理S
1〜S3を実行するかどうかの判断の基準とすることも
でき、脱泡処理S1〜S3が効果的であるかどうかも判
断することができる。
Further, the scattered light intensity before the series of defoaming processes S1 to S3 may be compared with the scattered light intensity after the series of defoaming processes S1 to S3. In this case, in step S5, the amount of bubbles reduced by the defoaming processes S1 to S3 can be confirmed, and further defoaming process S1.
It can be used as a criterion for determining whether to execute 1 to S3, and it can also be determined whether the defoaming processes S1 to S3 are effective.

【0048】何れにしても、本発明の粒径分布測定装置
1はブランク測定を行う前に、前記一連の脱泡処理S1
〜S3を必要最小限の回数だけ行なうことにより、循環
系から気泡を除去することができ、循環系に泡が残る
と、ブランク測定時に泡からの散乱光によって、ブラン
ク値が上がり、サンプル測定時にこの泡が自動崩壊する
ことにより、泡からの散乱光強度が減るといった事態が
生じることを防ぐことができる。すなわち、特に界面活
性剤Twを用いた場合のように気泡の発生が生じやすい
分散媒Lqであっても、極めて容易に粒子からの正確な
散乱光Lsを測定することができる。
In any case, the particle size distribution measuring apparatus 1 of the present invention performs the series of defoaming treatment S1 before performing the blank measurement.
By performing ~ S3 a minimum number of times, the bubbles can be removed from the circulation system, and if bubbles remain in the circulation system, the blank value increases due to the scattered light from the bubbles during the blank measurement, and the blank value increases during the sample measurement. It is possible to prevent the situation in which the intensity of scattered light from the bubble decreases due to the automatic collapse of the bubble. That is, even if the dispersion medium Lq is apt to generate bubbles, particularly when the surfactant Tw is used, the accurate scattered light Ls from the particles can be measured very easily.

【0049】粒径分布測定に問題となる気泡による影響
は、粒径分布の演算に用いる散乱光Lsの測定値を基に
判断することが適しており、この散乱光強度に気泡によ
る影響が現れていないことにより、粒径分布測定に適す
る程度、気泡の影響がないことを確認することができ
る。
The influence of bubbles which is a problem in the particle size distribution measurement is preferably judged based on the measured value of the scattered light Ls used in the calculation of the particle size distribution, and the influence of the bubbles appears on the scattered light intensity. It is possible to confirm that there is no effect of air bubbles to the extent suitable for particle size distribution measurement.

【0050】[0050]

【発明の効果】以上説明したように、本発明の粒径分布
測定装置および粒径分布測定装置の脱泡方法によれば、
分散媒に含まれる気泡を効果的に脱泡して、気泡による
散乱光の発生を無くし、粒子による散乱光を正確に測定
することができる。とりわけ、循環系に残される気泡に
よる影響をソフトウェアで判断して脱泡処理を繰り返す
ことにより、誰がどんな分散媒を用いて行っても高精度
の粒径分布測定を行なうことができる。
As described above, according to the particle size distribution measuring apparatus and the defoaming method of the particle size distribution measuring apparatus of the present invention,
The bubbles contained in the dispersion medium can be effectively defoamed, the generation of scattered light by the bubbles can be eliminated, and the scattered light by the particles can be accurately measured. In particular, by determining the influence of bubbles left in the circulation system with software and repeating the defoaming process, it is possible to perform highly accurate particle size distribution measurement regardless of who uses any dispersion medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粒径分布測定装置の好ましい一例を示
す構成説明図である。
FIG. 1 is a structural explanatory view showing a preferred example of a particle size distribution measuring device of the present invention.

【図2】本発明の粒径分布測定装置の脱泡方法の一例を
示す図である。
FIG. 2 is a diagram showing an example of a defoaming method of the particle size distribution measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1…粒径分布測定装置、9…超音波発振器、Lq…分散
媒、S…測定対象粒子、S’…測定対象試料、S1〜S
3…脱泡処理、S2,S3…超音波脱泡処理、P(S
4,S5)…繰り返しの必要性を判断する機能、L…レ
ーザ光、Ls…散乱光。
DESCRIPTION OF SYMBOLS 1 ... Particle size distribution measuring apparatus, 9 ... Ultrasonic oscillator, Lq ... Dispersion medium, S ... Particles to be measured, S '... Sample to be measured, S1 to S
3 ... Defoaming treatment, S2, S3 ... Ultrasonic defoaming treatment, P (S
4, S5) ... A function for determining the necessity of repetition, L ... Laser light, Ls ... Scattered light.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 分散媒に測定対象粒子を分散させてなる
測定対象試料に光を照射し、測定対象試料からの散乱光
の強度分布を検出して、これを基に演算することによ
り、測定対象粒子の粒径分布を求める粒径分布測定装置
であって、測定対象粒子の凝集を分離させるための超音
波発振器を用いて分散媒に含まれる気泡の結合および排
出を促す超音波脱泡処理を少なくとも含む脱泡処理によ
って、分散媒に混入した気泡を取り除く機能を有するこ
とを特徴とする粒径分布測定装置。
1. A measurement is performed by irradiating a sample to be measured, in which particles to be measured are dispersed in a dispersion medium, with light, detecting the intensity distribution of scattered light from the sample to be measured, and calculating based on this. A particle size distribution measuring device for obtaining a particle size distribution of target particles, which uses an ultrasonic oscillator for separating agglomeration of particles to be measured, which is an ultrasonic defoaming process for promoting bonding and discharge of bubbles contained in a dispersion medium. A particle size distribution measuring device having a function of removing bubbles mixed in a dispersion medium by a defoaming treatment containing at least.
【請求項2】 分散媒に測定対象粒子を分散させてなる
測定対象試料に光を照射し、測定対象試料からの散乱光
の強度分布を検出して、これを基に演算することによ
り、測定対象粒子の粒径分布を求める粒径分布測定装置
であって、分散媒に含まれる気泡の除去を行なう脱泡処
理を実行した後に散乱光強度を測定し、この散乱光強度
に基づいて前記脱泡処理の繰り返しの必要性を判断する
機能を有することを特徴とする粒径分布測定装置。
2. A measurement is performed by irradiating a measurement target sample, which is obtained by dispersing particles to be measured in a dispersion medium, with light, detecting the intensity distribution of scattered light from the measurement target sample, and calculating based on this. A particle size distribution measuring device for obtaining a particle size distribution of target particles, wherein scattered light intensity is measured after performing a defoaming process for removing bubbles contained in a dispersion medium, and the desorption is performed based on the scattered light intensity. A particle size distribution measuring device having a function of judging the necessity of repeating foam treatment.
【請求項3】 気泡を含まない分散媒に光を照射したと
きの散乱光強度を比較値として予め記憶し、実際測定に
供する分散媒に光を照射したときの散乱光強度と前記比
較値とを比較して脱泡処理の繰り返しの必要性を判断し
て、実際測定に供する分散媒の散乱光強度が前記比較値
に対して許容範囲内になるまで脱泡処理を繰り返す請求
項2に記載の粒径分布測定装置。
3. The scattered light intensity when a dispersion medium not containing bubbles is irradiated with light is stored in advance as a comparison value, and the scattered light intensity when the dispersion medium used for actual measurement is irradiated with the light and the comparison value. The defoaming treatment is repeated until the scattered light intensity of the dispersion medium to be actually measured falls within an allowable range with respect to the comparison value by comparing the above values to determine the necessity of repeating the defoaming treatment. Particle size distribution measuring device.
【請求項4】 前記脱泡処理が、測定対象粒子の凝集を
分離するための超音波を照射する超音波発振器を用いて
分散媒に含まれる気泡の結合を促して、これを除去させ
る超音波脱泡処理を含む請求項2または3に記載の粒径
分布測定装置。
4. An ultrasonic wave in which the defoaming treatment promotes the bonding of bubbles contained in a dispersion medium by using an ultrasonic oscillator for irradiating ultrasonic waves for separating agglomeration of particles to be measured, thereby removing the bubbles. The particle size distribution measuring device according to claim 2, which comprises a defoaming treatment.
【請求項5】 分散媒に測定対象粒子を分散させてなる
測定対象試料に光を照射し、測定対象試料からの散乱光
の強度分布を検出して、これを基に演算することによ
り、測定対象粒子の粒径分布を求める粒径分布測定装置
における脱泡方法であって、分散媒によるブランク測定
を行う前に、測定対象試料を循環させるためのポンプを
間欠的に動作させて大きな気泡を排出し、測定対象粒子
の凝集を分離するための超音波発振器を用いて分散媒に
含まれる小さな気泡の結合および排出を促し、前記ポン
プを回転させながら前記超音波発振器を用いて分散媒に
含まれる隠れた気泡の結合および排出を促す一連の脱泡
処理を行なうことを特徴とする粒径分布測定装置の脱泡
方法。
5. The measurement is carried out by irradiating a sample to be measured in which particles to be measured are dispersed in a dispersion medium with light, detecting the intensity distribution of scattered light from the sample to be measured, and calculating based on this. A defoaming method in a particle size distribution measuring apparatus for obtaining a particle size distribution of target particles, in which a large air bubble is generated by intermittently operating a pump for circulating a sample to be measured before performing a blank measurement with a dispersion medium. Discharge, promote the binding and discharge of small bubbles contained in the dispersion medium using an ultrasonic oscillator for separating the agglomeration of the particles to be measured, contained in the dispersion medium using the ultrasonic oscillator while rotating the pump. A defoaming method for a particle size distribution measuring apparatus, which comprises performing a series of defoaming treatments for promoting the binding and discharge of hidden bubbles.
【請求項6】 分散媒に測定対象粒子を分散させてなる
測定対象試料に光を照射し、測定対象試料からの散乱光
の強度分布を検出して、これを基に演算することによ
り、測定対象粒子の粒径分布を求める粒径分布測定装置
における脱泡方法であって、分散媒によるブランク測定
を行う前に、分散媒に含まれる気泡を除去する脱泡処理
を行った後に、散乱光強度を測定し、この散乱光強度に
基づいて前記脱泡処理の繰り返しが必要であるかどうか
判断することにより、脱泡処理を繰り返すことを特徴と
する粒径分布測定装置の脱泡方法。
6. The measurement is carried out by irradiating a sample to be measured, in which particles to be measured are dispersed in a dispersion medium, with light, detecting the intensity distribution of scattered light from the sample to be measured, and calculating based on this. A defoaming method in a particle size distribution measuring device for obtaining a particle size distribution of target particles, before performing a blank measurement with a dispersion medium, after performing a defoaming process to remove bubbles contained in the dispersion medium, scattered light A defoaming method for a particle size distribution measuring apparatus, characterized in that the defoaming treatment is repeated by measuring the intensity and determining whether or not the defoaming treatment needs to be repeated based on the scattered light intensity.
JP2002002045A 2002-01-09 2002-01-09 Particle size distribution measuring device and defoaming method of particle size distribution measuring device Expired - Fee Related JP3845309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002045A JP3845309B2 (en) 2002-01-09 2002-01-09 Particle size distribution measuring device and defoaming method of particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002045A JP3845309B2 (en) 2002-01-09 2002-01-09 Particle size distribution measuring device and defoaming method of particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2003207438A true JP2003207438A (en) 2003-07-25
JP3845309B2 JP3845309B2 (en) 2006-11-15

Family

ID=27642012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002045A Expired - Fee Related JP3845309B2 (en) 2002-01-09 2002-01-09 Particle size distribution measuring device and defoaming method of particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3845309B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504455A (en) * 2014-01-17 2017-02-09 アクタス メディカル インク Patient access device with gas removal function
CN110411920A (en) * 2019-08-22 2019-11-05 攀钢集团攀枝花钢铁研究院有限公司 The detection method of titanium white first product granularity
WO2021220652A1 (en) * 2020-04-30 2021-11-04 株式会社堀場製作所 Particle size distribution measurement device, particle analysis unit, program for particle size distribution measurement device, and bubble removal method
CN114103031A (en) * 2021-11-22 2022-03-01 兴宇伟业(天津)科技有限公司 Silica gel shaping and processing device and processing method thereof
CN115993312A (en) * 2023-03-23 2023-04-21 四川富乐华半导体科技有限公司 Method for testing organic powder/slurry by using laser particle sizer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504455A (en) * 2014-01-17 2017-02-09 アクタス メディカル インク Patient access device with gas removal function
US10729891B2 (en) 2014-01-17 2020-08-04 Acutus Medical, Inc. Gas-elimination patient access device
CN110411920A (en) * 2019-08-22 2019-11-05 攀钢集团攀枝花钢铁研究院有限公司 The detection method of titanium white first product granularity
WO2021220652A1 (en) * 2020-04-30 2021-11-04 株式会社堀場製作所 Particle size distribution measurement device, particle analysis unit, program for particle size distribution measurement device, and bubble removal method
GB2608569A (en) * 2020-04-30 2023-01-04 Horiba Ltd Particle size distribution measurement device, particle analysis unit, program for particle size distribution measurement device, and bubble removal method
CN114103031A (en) * 2021-11-22 2022-03-01 兴宇伟业(天津)科技有限公司 Silica gel shaping and processing device and processing method thereof
CN114103031B (en) * 2021-11-22 2023-11-21 兴宇伟业(天津)科技有限公司 Silica gel shaping processing device and processing method thereof
CN115993312A (en) * 2023-03-23 2023-04-21 四川富乐华半导体科技有限公司 Method for testing organic powder/slurry by using laser particle sizer
CN115993312B (en) * 2023-03-23 2023-05-26 四川富乐华半导体科技有限公司 Method for testing organic powder/slurry by using laser particle sizer

Also Published As

Publication number Publication date
JP3845309B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US11047786B2 (en) Apparatus and method for measuring particle size distribution, and program for particle size distribution measuring apparatus
JP2720340B2 (en) Laser diffraction particle size distribution measurement method
JP5784294B2 (en) Cell analysis apparatus and cell analysis method
JP2003207438A (en) Particle diameter distribution measuring apparatus and method of defoaming for particle diameter distribution measuring apparatus
JP2017121601A5 (en)
JP3425093B2 (en) Drainage method of sample liquid and cleaning liquid in light scattering type particle size distribution measuring device
JP2010125441A (en) System for producing liquid containing bubble particle
WO2018110043A1 (en) Aggregation monitoring method, aggregation monitoring device, aggregation monitoring probe, and aggregation system
JP2000146817A (en) Grain size distribution measuring device
CN104833565A (en) Excrement stirring control method and excrement stirring apparatus
US20160376640A1 (en) Determination of exosome purity methods and apparatus
US5064765A (en) Assay for determining the propensity of a person to form kidney stones
JP4357138B2 (en) Particle measuring method and apparatus
JPH0236334A (en) Device for sampling suspended liquid for measuring particle size distribution
JPH046465A (en) Method for treating specimen and method and apparatus for measuring specimen
JP2003028778A (en) Particle size distribution measuring device and control program of particle size distribution measuring device
JP3783606B2 (en) Particle size distribution measuring device
JP2013017401A (en) Cell dispersion apparatus
JP4072831B2 (en) Particle size distribution measuring device
JP7452583B2 (en) Method for determining agglomeration state and agglomeration treatment method
JPS6296845A (en) Measuring apparatus for particulate attached on surface
JP3258881B2 (en) Dry particle size distribution analyzer
JP4074492B2 (en) Particle size distribution measuring device
JP3783574B2 (en) Particle size distribution measuring device
JP3049908B2 (en) Particle size distribution analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees