JP2003203636A - Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery - Google Patents

Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery

Info

Publication number
JP2003203636A
JP2003203636A JP2001400140A JP2001400140A JP2003203636A JP 2003203636 A JP2003203636 A JP 2003203636A JP 2001400140 A JP2001400140 A JP 2001400140A JP 2001400140 A JP2001400140 A JP 2001400140A JP 2003203636 A JP2003203636 A JP 2003203636A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrode plate
aqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001400140A
Other languages
Japanese (ja)
Inventor
Tatsuya Hashimoto
達也 橋本
Shoichiro Watanabe
庄一郎 渡邊
Akira Matsuo
明 松尾
Sumuto Ishida
澄人 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001400140A priority Critical patent/JP2003203636A/en
Publication of JP2003203636A publication Critical patent/JP2003203636A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery that is superior in charging and discharging cycle characteristics and storage characteristics by improving the positive electrode conductive assistant of the non-aqueous electrolyte secondary battery. <P>SOLUTION: As a conductive assistant for a positive electrode pole plate, expanded graphite having the DBP absorption quantity of 200 ml/100 g or more and 500 ml/100 g or less is used, thereby, the active material, the conductive assistant, and the binder are uniformly dispersed, thus adhesion is improved and uniform reaction is carried out. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池正極用導電剤及び、これを用いた正極板と非水電解液
二次電池に関し、特に充放電サイクル特性や保存特性に
優れた非水電解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a conductive agent for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode plate and a non-aqueous electrolyte secondary battery using the same, and particularly excellent in charge / discharge cycle characteristics and storage characteristics. And a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、携帯電話、携帯情報端末等の携帯
電子機器の性能は、搭載される半導体素子、電子回路だ
けでなく、充放電可能な二次電池の性能に大きく依存し
ており、搭載される二次電池の容量アップと共に、軽量
・コンパクト化も同時に実現することが望まれている。
これらの要望に応える二次電池として、ニッケルカドミ
ウム蓄電池の約2倍のエネルギー密度を有するニッケル
水素蓄電池が開発され、次いで、これを上回るリチウム
イオン電池が開発され、主流になっている。
2. Description of the Related Art In recent years, the performance of mobile electronic devices such as mobile phones and personal digital assistants largely depends not only on the performance of semiconductor elements and electronic circuits, but also on the performance of rechargeable secondary batteries. It is desired that the capacity of the secondary battery to be mounted be increased and that the weight and size be reduced at the same time.
As a secondary battery that meets these demands, a nickel-hydrogen storage battery having an energy density about twice that of a nickel-cadmium storage battery has been developed, and a lithium-ion battery having a higher energy density than that has been developed and has become the mainstream.

【0003】このリチウムイオン電池は、正極と負極と
をセパレータを介して渦巻状に巻回や積層した極板群を
電池ケースに収容し、非水電解液を注液し、かしめ封口
やレーザー封口することによって構成されている。この
電池に用いられる電池用極板は、一般的に活物質(正極
活物質または負極活物質)、導電剤、結着剤(バインダ
ー)等を、集電体に塗布、乾燥した後に、圧延したもの
を、所定の寸法形状にスリットすることにより作製され
ている。
In this lithium ion battery, an electrode plate group in which a positive electrode and a negative electrode are spirally wound or laminated via a separator is housed in a battery case, a nonaqueous electrolytic solution is injected, and caulking sealing or laser sealing is performed. It is configured by The battery electrode plate used in this battery is generally rolled after applying an active material (a positive electrode active material or a negative electrode active material), a conductive agent, a binder (binder), etc. to a current collector, drying the same. It is manufactured by slitting a product into a predetermined size and shape.

【0004】より具体的に電池用極板を作製する手法と
しては、活物質と結着剤とを溶剤に混練分散したペース
トを、集電体の片面もしくは両面に塗布、乾燥、圧延す
ることにより、極板を作製する方法が採用されている。
More specifically, as a method for producing a battery electrode plate, a paste prepared by kneading and dispersing an active material and a binder in a solvent is applied to one side or both sides of a current collector, dried and rolled. , A method of manufacturing an electrode plate is adopted.

【0005】そして、充放電サイクル特性や保存特性に
優れた非水電解液二次電池を得る為に、正極板を構成す
る導電剤として、比表面積とDBP吸収量を規定したカ
ーボンブラックとグラファイトを併用する方法(特開昭
62−211863号公報)、粒子径、DBP吸収量や
比表面積を規定したカーボンブラックを使用する方法
(特開平9−213309号公報)、DBP吸収量やヨ
ウ素吸着量を規定したカーボンブラックを使用する方法
(特開2001−110424号公報)が提案されてい
る。
In order to obtain a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and storage characteristics, carbon black and graphite having a specific surface area and a DBP absorption amount defined as conductive agents constituting the positive electrode plate. The combined use method (Japanese Patent Laid-Open No. 62-213863), the method using carbon black whose particle size, DBP absorption amount and specific surface area are specified (Japanese Laid-Open Patent Publication No. 9-213309), the DBP absorption amount and the iodine adsorption amount A method using the specified carbon black (Japanese Patent Laid-Open No. 2001-110424) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】これらのカーボンブラ
ックは、正極板の導電性の改良等を認めることができ
る。しかし、カーボンブラックがストラクチャー構造を
有することから、ペースト状態での正極活物質と結着剤
との均一分散が難しく、ペーストが保管中に凝固し、固
液分離や沈降などを生じてしまう。そして、その結果と
して、塗布、乾燥後において、活物質、導電剤、結着剤
の偏析により、集電体との密着性が不充分で、かつ、反
応の不均一性から、高温保存や充放電サイクルを行う
と、集電体からの活物質の剥離、脱落が生じ、電池容量
が低下するといった課題があった。
With these carbon blacks, it is possible to recognize improvements in the conductivity of the positive electrode plate. However, since carbon black has a structure structure, it is difficult to uniformly disperse the positive electrode active material and the binder in a paste state, and the paste is solidified during storage, resulting in solid-liquid separation or sedimentation. As a result, after coating and drying, segregation of the active material, the conductive agent, and the binder causes insufficient adhesion to the current collector and nonuniformity of the reaction. When the discharge cycle is performed, there is a problem that the active material is peeled off from the current collector and is dropped off, and the battery capacity is reduced.

【0007】また、黒鉛は、結晶の面方向の導電性には
優れるがc軸方向の導電性には劣るため、正極容量の低
下を招いていた。
Further, graphite is excellent in the conductivity in the crystal plane direction but inferior in the conductivity in the c-axis direction, so that the capacity of the positive electrode is reduced.

【0008】そこで、正極の導電剤として膨張化黒鉛を
用いる提案が特開平10−188993号公報、特開2
000−12023号公報等に提案されているが、DB
P吸収量については記載されていない。
Therefore, a proposal of using expanded graphite as a conductive agent for the positive electrode is disclosed in JP-A-10-188993 and JP-A-2.
000-12023, etc.
The P absorption amount is not described.

【0009】[0009]

【課題を解決するための手段】本発明は上記のような課
題を解決するもので、正極用導電剤としてJIS K6
217(ゴム用カーボンブラックの基本性能の試験方
法)に規定されるA法によって測定されるDBP吸収量
が200ml/100g以上、500ml/100g以
下の膨張化黒鉛を用いる非水電解液二次電池正極用導電
剤である。
The present invention is intended to solve the above-mentioned problems and provides JIS K6 as a conductive agent for a positive electrode.
Non-aqueous electrolyte secondary battery positive electrode using expanded graphite having a DBP absorption amount of 200 ml / 100 g or more and 500 ml / 100 g or less as measured by the A method defined in 217 (Testing method for basic performance of carbon black for rubber) It is a conductive agent.

【0010】そして、少なくともこの導電剤とリチウム
含有金属酸化物を主成分とする正極活物質、結着剤から
なる正極板、負極板、セパレータ及び非水電解液とを備
えた非水電解液二次電池である。
Then, a non-aqueous electrolyte solution comprising at least this positive electrode active material containing a conductive material and a lithium-containing metal oxide as a main component, a positive electrode plate made of a binder, a negative electrode plate, a separator and a non-aqueous electrolyte solution. It is the next battery.

【0011】正極の導電剤として、DBP吸収量が20
0ml/100g以上、500ml/100g以下の膨
張化黒鉛を用いることにより、膨張化黒鉛は膨張化処理
により配向しにくい形状となっているために、混練分散
時に分散性が向上し、極板内部でランダムな形状とな
り、黒鉛のようにc軸方向の導電性に左右されることな
く、均一で高い導電性を示し、充放電サイクル特性や保
存特性が改善される。
As a conductive agent for the positive electrode, the DBP absorption amount is 20.
By using the expanded graphite in an amount of 0 ml / 100 g or more and 500 ml / 100 g or less, the expanded graphite has a shape that is difficult to be oriented by the expansion treatment, so that the dispersibility is improved during kneading and dispersion, and the inside of the electrode plate is improved. It becomes a random shape, shows uniform and high conductivity without being influenced by conductivity in the c-axis direction like graphite, and improves charge / discharge cycle characteristics and storage characteristics.

【0012】また、カーボンブラックのようなストラク
チャー構造を持たないために、正極活物質や結着剤との
凝集が起こりにくい。そのため、極板内で活物質、導電
剤および結着剤それぞれが均一分散されるために集電体
との密着性が改善されると共に均一反応が進行するため
に電池容量の劣化を小さくすることができる。
Further, since it does not have a structure structure like carbon black, aggregation with the positive electrode active material and the binder is unlikely to occur. Therefore, since the active material, the conductive agent and the binder are uniformly dispersed in the electrode plate, the adhesion with the current collector is improved, and the uniform reaction proceeds, so that the deterioration of the battery capacity is reduced. You can

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の一実施形態に係る円筒型
リチウム二次電池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium secondary battery according to an embodiment of the present invention.

【0015】図1に示すように、正極板5と負極板6と
がセパレータ7を介在して渦巻状に巻回された極板群
が、有底筒状の電池ケース8に収容されており、負極板
6から連接する負極リード9が下部絶縁板10を介し
て、前記ケース8と電気的に接続され、正極板5から連
接する正極リード3が上部絶縁板4を介して、封口板1
の内部端子に電気的に接続されており、非水電解液(図
示せず)を注液し、封口板1と電池ケース8とが絶縁ガ
スケット2を介してかしめ封口されている。
As shown in FIG. 1, an electrode plate group in which a positive electrode plate 5 and a negative electrode plate 6 are spirally wound with a separator 7 interposed is housed in a battery case 8 having a cylindrical shape with a bottom. The negative electrode lead 9 connected to the negative electrode plate 6 is electrically connected to the case 8 via the lower insulating plate 10, and the positive electrode lead 3 connected to the positive electrode plate 5 is connected via the upper insulating plate 4 to the sealing plate 1.
Is electrically connected to the internal terminal of the battery, a nonaqueous electrolytic solution (not shown) is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed by the insulating gasket 2.

【0016】この正極板5は、アルミニウム製の箔やラ
ス加工やエッチング処理された箔からなる集電体の片側
または両面に正極活物質、結着剤、導電剤、必要に応じ
て増粘剤を溶剤に混練分散させたペーストを塗布、乾
燥、圧延して作製することができる。そして、正極板の
厚みは巻芯を用いて、その形状にできるだけ忠実に巻回
する必要があり、130μm〜200μmの厚みで、柔
軟性があることが好ましい。
The positive electrode plate 5 comprises a positive electrode active material, a binder, a conductive agent and, if necessary, a thickening agent on one or both sides of a current collector made of an aluminum foil or a foil subjected to lath processing or etching treatment. Can be prepared by coating, drying and rolling a paste prepared by kneading and dispersing in a solvent. The thickness of the positive electrode plate needs to be wound as faithfully as possible to its shape using a winding core, and is preferably 130 μm to 200 μm thick and flexible.

【0017】正極活物質としては、例えば、リチウムイ
オンをゲストとして受け入れ得るリチウム含有遷移金属
化合物が使用される。例えば、コバルト、マンガン、ニ
ッケル、クロム、鉄およびバナジウムから選ばれる少な
くとも一種類の金属とリチウムとの複合金属酸化物、L
iCoO2、LiMnO2、LiNiO2、LiCoxNi
(1-x)2(0<x<1)、LiCrO2、αLiFe
2、LiVO2等が好ましい。
As the positive electrode active material, for example, a lithium-containing transition metal compound capable of accepting lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium and lithium, L
iCoO 2 , LiMnO 2 , LiNiO 2 , LiCo x Ni
(1-x) O 2 (0 <x <1), LiCrO 2 , αLiFe
O 2 , LiVO 2 and the like are preferable.

【0018】結着剤としては、使用する溶剤や電解液に
対して安定な材料であれば、特に限定されない。その具
体例としては、ポリフッ化ビニリデン(PVDF)、フ
ッ化ビニリデン(VDF)とヘキサフルオロプロピレン
(HFP)の共重合体(P(VDF−HFP))、ポリ
テトラフルオロエチレン、スチレン・ブタジエンゴム、
イソプロピレンゴム、ブタジエンゴム、エチレンプロピ
レンジエタンポリマー等を挙げることができる。
The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolytic solution used. Specific examples thereof include polyvinylidene fluoride (PVDF), copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) (P (VDF-HFP)), polytetrafluoroethylene, styrene-butadiene rubber,
Examples thereof include isopropylene rubber, butadiene rubber, ethylene propylene diethane polymer and the like.

【0019】増粘剤としては、カルボシキメチルセルロ
ース、メチルセルロース、ヒドロキシメチルセルロー
ス、エチルセルロース、ポリビニルアルコール、酸化ス
ターチ、リン酸化スターチ、ガゼイン等を挙げることが
できる。
Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch and casein.

【0020】導電剤としては、DBP吸収量が200m
l/100g以上、500ml/100g以下の膨張化
黒鉛を用いる。膨張化黒鉛は、膨張化処理により配向し
にくい形状となっているために、混練分散時に分散性が
向上し、極板内部でランダムな形状となり、黒鉛のよう
にc軸方向の導電性に左右されることなく、均一で高い
導電性を示すため、充放電サイクル特性や保存特性に優
れた非水電解液二次電池が得られる。
The conductive agent has a DBP absorption of 200 m.
Expanded graphite of 1/100 g or more and 500 ml / 100 g or less is used. Expanded graphite has a shape that does not easily orient due to the expansion treatment, so the dispersibility is improved during kneading and dispersion, and it becomes a random shape inside the electrode plate. As a result, a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics and storage characteristics can be obtained because it shows uniform and high conductivity.

【0021】ところで、膨張化黒鉛の吸収量が200m
l/g未満の場合、導電性が不十分で充放電サイクル特
性が良くない。逆に吸収量が大きくなりすぎると、クラ
ックが発生する。これは、膨張化が過剰に進行して、導
電剤の体積が大きくなることで、膨張黒鉛が脆いものと
なり、ペースト製造時の撹拌や圧延時のせん断応力など
により、微粉化が進行したものと考えられる。製造工程
の安定化を考慮すれば、DBP吸収量は200〜400
ml/100gの範囲がより好ましい。
By the way, the absorbed amount of expanded graphite is 200 m.
When it is less than 1 / g, the conductivity is insufficient and the charge / discharge cycle characteristics are not good. Conversely, if the amount of absorption becomes too large, cracks will occur. This is because expansion proceeds excessively and the volume of the conductive agent increases, making the expanded graphite brittle, and the progress of pulverization due to agitation during paste production and shear stress during rolling. Conceivable. Considering the stabilization of the manufacturing process, the DBP absorption amount is 200 to 400.
The range of ml / 100g is more preferable.

【0022】溶剤としては、結着剤が溶解可能な溶剤が
適切で、有機系結着剤の場合は、N−メチル−2−ピロ
リドン(NMP)、N,N−ジメチルホルムアミド、テ
トラヒドロフラン、ジメチルアセトアミド、ジメチルス
ルホキシド、ヘキサメチルスルホルアミド、テトラメチ
ル尿素、アセトン、メチルエチルケトン等の有機溶剤を
単独またはこれらを混合した混合溶剤が好ましく、水系
結着剤の場合は水や温水が好ましい。
As the solvent, a solvent capable of dissolving the binder is suitable, and in the case of an organic binder, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide. , Dimethylsulfoxide, hexamethylsulfolamide, tetramethylurea, acetone, methylethylketone, and other organic solvents are preferably used alone or mixed, and in the case of an aqueous binder, water or warm water is preferable.

【0023】また、負極板6は、集電体の片側または両
面に負極活物質と結着剤、必要に応じて導電剤を溶剤に
混練分散させたペーストを塗布、乾燥、圧延して作製す
ることができる。そして、負極板6の厚みは巻芯を用い
て、その形状にできるだけ忠実に巻回する必要があり、
正極板5と同様に140μm〜210μmの厚みで、柔
軟性があることが好ましい。
The negative electrode plate 6 is prepared by applying, drying, and rolling a paste prepared by kneading and dispersing a negative electrode active material, a binder, and optionally a conductive agent in a solvent on one side or both sides of the current collector. be able to. Then, the thickness of the negative electrode plate 6 needs to be wound as faithfully as possible to its shape by using a winding core,
Similar to the positive electrode plate 5, it is preferable that the thickness is 140 μm to 210 μm and that it is flexible.

【0024】この負極集電体として用いる銅または銅合
金は、特に限定されるものではなく、圧延箔、電解箔な
どが挙げられ、その形状も箔、孔開き箔、エキスパンド
材、ラス材等であっても構わない。
The copper or copper alloy used as the negative electrode current collector is not particularly limited, and examples thereof include rolled foil, electrolytic foil, and the like, and the shapes thereof include foil, perforated foil, expanded material, lath material and the like. It doesn't matter.

【0025】また、銅の厚みは引張り強度が強いほど好
ましいが、厚くなると電池内部の空隙体積が少なくな
り、エネルギー密度が低下するので20μm以下が好ま
しく、8〜15μmの範囲が最適である。
Further, the stronger the tensile strength is, the more preferable the thickness of copper is, but if the thickness is thicker, the void volume inside the battery decreases and the energy density decreases, so 20 μm or less is preferable, and the range of 8 to 15 μm is optimum.

【0026】負極活物質としては、例えば、リチウムイ
オンを吸蔵、脱離し得る黒鉛型結晶構造を有するグラフ
ァイトを含む材料、例えば天然黒鉛や人造黒鉛が使用さ
れる。特に、格子面(002)の面間隔(d002)が
3.350〜3.400Åである黒鉛型結晶構造を有す
る炭素材料を使用することが好ましい。
As the negative electrode active material, for example, a material containing graphite having a graphite type crystal structure capable of absorbing and desorbing lithium ions, such as natural graphite or artificial graphite is used. In particular, it is preferable to use a carbon material having a graphite type crystal structure in which the lattice spacing (d 002 ) of the lattice plane (002) is 3.350 to 3.400 Å.

【0027】結着剤、溶剤および必要に応じて加えるこ
とができる導電剤、可塑剤は正極と同様のものを使用す
ることができる。
As the binder, the solvent, and the conductive agent and plasticizer which can be added if necessary, the same ones as those for the positive electrode can be used.

【0028】セパレータ7としては、厚さ10〜30μ
mのポリエチレン樹脂、ポリプロピレン樹脂などの微多
孔性ポリオレフイン系樹脂が好ましい。
The separator 7 has a thickness of 10 to 30 μm.
m is preferably a microporous polyolefin resin such as polyethylene resin or polypropylene resin.

【0029】非水電解液としては、非水溶媒と電解質か
らなり、非水溶媒としては、主成分として環状カーボネ
ートおよび鎖状カーボネートが含有される。前記環状カ
ーボネートとしては、エチレンカーボネート(EC)、
プロピレンカーボネート(PC)、およびブチレンカー
ボネート(BC)から選ばれる少なくとも一種であるこ
とが好ましい。また、前記鎖状カーボネートとしては、
ジメチルカーボネート(DMC)、ジエチルカーボネー
ト(DEC)、およびエチルメチルカーボネート(EM
C)等から選ばれる少なくとも一種であることが好まし
い。
The non-aqueous electrolytic solution comprises a non-aqueous solvent and an electrolyte, and the non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. As the cyclic carbonate, ethylene carbonate (EC),
It is preferably at least one selected from propylene carbonate (PC) and butylene carbonate (BC). Further, as the chain carbonate,
Dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EM
It is preferably at least one selected from C) and the like.

【0030】電解質としては、例えば、電子吸引性の強
いリチウム塩を使用し、例えば、LiPF6、LiB
4、LiClO4、LiAsF6、LiCF3SO3、L
iN(SO2CF32、LiN(SO2252、Li
C(SO2CF33等が挙げられる。これらの電解質
は、一種類で使用しても良く、二種類以上組み合わせて
使用しても良い。これらの電解質は、前記非水溶媒に対
して0.5〜1.5Mの濃度で溶解させることが好まし
い。
As the electrolyte, for example, a lithium salt having a strong electron-withdrawing property is used, and for example, LiPF 6 or LiB is used.
F 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , L
iN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , Li
C (SO 2 CF 3) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved in the non-aqueous solvent at a concentration of 0.5 to 1.5M.

【0031】[0031]

【実施例】以下、本発明を実施例および比較例を用いて
詳細に説明するが、これらは本発明を何ら限定するもの
ではない。
The present invention will be described in detail below with reference to examples and comparative examples, but these do not limit the present invention in any way.

【0032】(実施例1)まず、正極活物質としてLi
CoO2粉末を50重量部、導電剤としてDBP吸収量
が400ml/100gの膨張化黒鉛を1.0重量部、
結着剤としてPVDFを0.75重量部をNMP98.
25重量部に溶解した溶液200重量部を配合し、混練
分散して正極用ペーストを得た。
Example 1 First, as a positive electrode active material, Li was used.
50 parts by weight of CoO 2 powder, 1.0 part by weight of expanded graphite having a DBP absorption of 400 ml / 100 g as a conductive agent,
As a binder, 0.75 part by weight of PVDF was added to NMP98.
200 parts by weight of a solution dissolved in 25 parts by weight was mixed, kneaded and dispersed to obtain a positive electrode paste.

【0033】得られた正極用ペーストを厚み20μmの
アルミニウム箔の両面にダイコーターを用いて塗布、乾
燥、圧延、切断して厚み0.18mmの正極板5を作製
し、実施例正極板1とした。
The obtained positive electrode paste was applied onto both sides of an aluminum foil having a thickness of 20 μm using a die coater, dried, rolled, and cut to produce a positive electrode plate 5 having a thickness of 0.18 mm, and the positive electrode plate 1 of Example was prepared. did.

【0034】(実施例2)導電剤としてDBP吸収量が
200ml/100gの膨張化黒鉛を用いた以外は実施
例1と同様にして作製した正極板5を実施例正極板2と
した。
Example 2 A positive electrode plate 5 prepared in the same manner as in Example 1 except that expanded graphite having a DBP absorption amount of 200 ml / 100 g was used as a conductive agent was used as an example positive electrode plate 2.

【0035】(実施例3)導電剤としてDBP吸収量が
500ml/100gの膨張化黒鉛を用いた以外は実施
例1と同様にして作製した正極板5を実施例正極板3と
した。
Example 3 A positive electrode plate 5 produced in the same manner as in Example 1 except that expanded graphite having a DBP absorption of 500 ml / 100 g was used as a conductive agent was used as an example positive electrode plate 3.

【0036】(比較例1)導電剤としてDBP吸収量が
400ml/100gのカーボンブラックを用いた以外
は実施例1と同様にして作製した正極板5を比較例正極
板1とした。
Comparative Example 1 A positive electrode plate 5 prepared in the same manner as in Example 1 except that carbon black having a DBP absorption of 400 ml / 100 g was used as a conductive agent was used as a comparative positive electrode plate 1.

【0037】(比較例2)導電剤としてDBP吸収量が
400ml/100gの黒鉛を用いた以外は実施例1と
同様にして作製した正極板5を比較例正極板2とした。
Comparative Example 2 A positive electrode plate 5 was prepared in the same manner as in Example 1 except that graphite having a DBP absorption of 400 ml / 100 g was used as a conductive agent.

【0038】(比較例3)導電剤としてDBP吸収量が
150ml/100gの膨張化黒鉛を用いた以外は実施
例1と同様にして作製した正極板5を比較例正極板3と
した。
Comparative Example 3 A positive electrode plate 5 prepared in the same manner as in Example 1 except that expanded graphite having a DBP absorption amount of 150 ml / 100 g was used as a conductive agent was used as a comparative positive electrode plate 3.

【0039】(比較例4)導電剤としてDBP吸収量が
600ml/100gの膨張化黒鉛を用いた以外は実施
例1と同様にして作製した正極板5を比較例正極板4と
した。
Comparative Example 4 A positive electrode plate 5 prepared in the same manner as in Example 1 except that expanded graphite having a DBP absorption of 600 ml / 100 g was used as a conductive agent was used as a comparative positive electrode plate 4.

【0040】このようにして得られた実施例正極板1〜
実施例正極板3、比較例正極板1〜比較例正極板4の正
極板5について表面状態を確認した。表面状態の確認
は、正極板1000cm2の表面に存在する凝集塊およ
び1mm以上のクラック及びピンホールの数を目視によ
り計数し、その結果を表1に示した。
The positive electrode plates 1 to 1 obtained in this way
The surface states of the positive electrode plates 3 of the example positive electrode plate 3 and the comparative positive electrode plate 1 to the comparative positive electrode plate 4 were confirmed. For confirmation of the surface state, the number of aggregates and cracks and pinholes of 1 mm or more existing on the surface of the positive electrode plate of 1000 cm 2 were visually counted, and the results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1の結果より、カーボンブラックを導電
剤として用いた場合は、分散が不十分となり凝集塊が発
生した。また、黒鉛を導電剤として用いた場合は配向し
やすい為に、クラックが発生した。また、膨張化黒鉛に
ついても吸収量が小さい場合には、充放電サイクル特性
が悪く、逆に大きすぎるとクラックが発生した。これ
は、膨張化が過剰に進行して、導電剤の体積が大きくな
ることで、膨張黒鉛が脆いものとなり、ペースト製造時
の撹拌や圧延時のせん断応力などにより、微粉化が進行
したものと考えられる。製造工程の安定化を考慮すれ
ば、DBP吸収量は200〜400ml/100gの範
囲がより好ましいことが明らかになった。
From the results shown in Table 1, when carbon black was used as the conductive agent, the dispersion was insufficient and agglomerates were generated. Further, when graphite was used as a conductive agent, it was easy to be oriented, and thus cracks were generated. Also, with respect to the expanded graphite, when the absorption amount was small, the charge-discharge cycle characteristics were poor, and conversely, when it was too large, cracks occurred. This is because expansion proceeds excessively and the volume of the conductive agent increases, making the expanded graphite brittle, and the progress of pulverization due to agitation during paste production and shear stress during rolling. Conceivable. Considering the stabilization of the manufacturing process, it was revealed that the DBP absorption amount is more preferably in the range of 200 to 400 ml / 100 g.

【0043】次に、負極活物質として鱗片状黒鉛粉末5
0重量部、結着剤としてスチレンブタジエンゴム5重量
部、増粘剤としてカルボキシルメチルセルロース1重量
部を水99重量部に溶解した増粘剤23重量部とを混練
分散して負極用ペーストを得た。得られた負極用ペース
トを厚さ12μmの銅箔からなる負極集電体の両面にダ
イコーターを用いて塗布、乾燥、圧延、切断して、厚み
0.20mmの負極板6を作製した。
Next, flake graphite powder 5 was used as the negative electrode active material.
0 parts by weight, 5 parts by weight of styrene-butadiene rubber as a binder, and 23 parts by weight of a thickener prepared by dissolving 1 part by weight of carboxymethyl cellulose in 99 parts by weight of water as a thickener were kneaded and dispersed to obtain a paste for negative electrode. . The obtained negative electrode paste was applied onto both surfaces of a negative electrode current collector made of copper foil having a thickness of 12 μm using a die coater, dried, rolled, and cut to prepare a negative electrode plate 6 having a thickness of 0.20 mm.

【0044】上記実施例正極板1〜実施例正極板3、比
較例正極板1〜比較例正極板4の正極板5と負極板6と
をセパレータ7を介して絶縁した状態で渦巻状に巻回し
た極板群を耐非水電解液性のステンレス鋼板を深絞り成
形し電池ケース8内に収容し、非水電解液を注液した。
非水電解液としては、エチレンカーボネート30vol
%と、ジエチルカーボネート50vol%とプロピオン
酸メチル20vol%からなる混合溶媒に電解質として
LiPF6を1mol/literの濃度に溶解したも
のを用いた。この非水電解液は、正極活物質層および負
極活物質層内に含浸されて、電池反応において、セパレ
ータの微少孔を通して正極板5と負極板6間のLiイオ
ンの移動を担う。
The positive electrode plate 1 to the positive electrode plate 3 of the above-described example, the positive electrode plate 5 of the comparative example positive electrode plate 1 to the comparative example positive electrode plate 4 and the negative electrode plate 6 are spirally wound while being insulated from each other through the separator 7. The rotated electrode plate group was deep-drawn from a non-aqueous electrolyte resistant stainless steel plate, housed in the battery case 8, and the non-aqueous electrolyte solution was injected.
As the non-aqueous electrolyte, 30 vol of ethylene carbonate
%, 50% by volume of diethyl carbonate and 20% by volume of methyl propionate, LiPF 6 was dissolved as an electrolyte in a concentration of 1 mol / liter as an electrolyte. The nonaqueous electrolytic solution is impregnated into the positive electrode active material layer and the negative electrode active material layer, and plays a role of transferring Li ions between the positive electrode plate 5 and the negative electrode plate 6 through the minute holes of the separator in the battery reaction.

【0045】そして、上記電池ケース8の開口部上部に
封口板1を配設し、絶縁ガスケット2を介してかしめ封
口し、直径17mm、高さ50mmのサイズで電池容量
が780mAhの円筒形非水電解液二次電池を作製し、
実施例正極板1〜実施例正極板3、比較例正極板1〜比
較例正極板4にそれぞれ対応する実施例電池1〜実施例
電池3、比較例電池1〜比較例電池4とした。
Then, a sealing plate 1 is arranged above the opening of the battery case 8 and caulked and sealed with an insulating gasket 2, and a cylindrical non-aqueous liquid having a diameter of 17 mm and a height of 50 mm and a battery capacity of 780 mAh. Making an electrolyte secondary battery,
Example battery 1 to example battery 3 and comparative example battery 1 to comparative example battery 4 corresponding to example positive electrode plate 1 to example positive electrode plate 3 and comparative example positive electrode plate 1 to comparative example positive electrode plate 4, respectively.

【0046】これらの電池について、充放電サイクル特
性と保存特性を評価した。充放電サイクル特性は、各1
0個の電池を用い20℃の環境下において、電池電圧が
4.2Vに達するまでは550mA(0.7CmA)の
定電流充電を行った後、さらに電流値が減衰して40m
A(0.05CmA)になるまで充電した後、780m
A(1CmA)の定電流で3.0Vの放電終止電圧まで
放電する充放電条件にて充放電サイクルを繰り返して評
価を行った。この時、3サイクル目における電池容量を
初期容量とし、初期容量に対して電池容量が80%に低
下するまでのサイクル数を測定した。充放電サイクル数
の平均値の結果を表2に示す。
Charge / discharge cycle characteristics and storage characteristics of these batteries were evaluated. 1 charge / discharge cycle characteristic
In the environment of 20 ° C using 0 batteries, constant current charging of 550mA (0.7CmA) was performed until the battery voltage reached 4.2V, and then the current value further attenuated to 40m.
780m after charging to A (0.05CmA)
The evaluation was performed by repeating the charge / discharge cycle under the charge / discharge conditions of discharging to a discharge end voltage of 3.0 V with a constant current of A (1 CmA). At this time, the battery capacity in the third cycle was taken as the initial capacity, and the number of cycles until the battery capacity decreased to 80% of the initial capacity was measured. Table 2 shows the results of the average value of the number of charge / discharge cycles.

【0047】保存特性は、各20個の電池を用い20℃
の環境下において、上記充放電条件にて電池容量を測定
した後、60℃の環境下に充電状態で20日間保存した
後、再度電池容量を測定することで判断した。得られた
保存前後の電池容量から保存回復性を次式に従って求め
た。(保存回復性(%)=((保存後容量)/(初期容
量))×100)。この保存回復性の平均値の結果を表
2に示す。
The storage characteristics were 20 ° C. using 20 batteries each.
In this environment, the battery capacity was measured under the above-mentioned charge and discharge conditions, and then the battery capacity was measured again after storing the battery in a charged state for 20 days in an environment of 60 ° C. From the obtained battery capacity before and after storage, the storage recoverability was determined according to the following formula. (Storage recoverability (%) = ((capacity after storage) / (initial capacity)) × 100). Table 2 shows the result of the average value of the storage recoverability.

【0048】[0048]

【表2】 [Table 2]

【0049】表2の結果より、実施例電池1〜実施例電
池3の電池は比較例電池1〜比較例電池4の電池と比べ
て、充放電サイクルを繰り返しても電池容量の劣化が少
なく充放電サイクル特性に優れていることがわかった。
From the results of Table 2, the batteries of Example battery 1 to Example battery 3 were less charged than the batteries of Comparative example battery 1 to Comparative example battery 4 even if the charge / discharge cycle was repeated, and the battery capacity was less deteriorated. It was found that the discharge cycle characteristics were excellent.

【0050】各実施例の電池は導電剤として、DBP吸
収量が200ml/100g以上、500ml/100
gの膨張化黒鉛を用いているので、黒鉛と比べて配向し
にくい形状であるため、混練分散時にペースト内部での
分散性が良いため、集電体との密着性が改善され、ま
た、軸方向の導電性に左右されることなく、均一で高い
導電性を示すので電池容量の劣化が少ないと考えられ
る。
In each of the batteries of the examples, as a conductive agent, the DBP absorption amount was 200 ml / 100 g or more, 500 ml / 100.
Since expanded graphite of g is used, it has a shape that is less likely to be oriented than graphite, so the dispersibility in the paste during kneading and dispersion is good, and the adhesion with the current collector is improved. It is considered that the battery capacity is less deteriorated because it exhibits uniform and high conductivity without being influenced by the conductivity in the direction.

【0051】また、表2の結果より、高温保存において
も各実施例の電池は各比較例の電池と比較して、容量劣
化が少なく容量回復性に優れていることが明らかになっ
た。
Further, from the results of Table 2, it was revealed that the batteries of Examples were less in capacity deterioration and excellent in capacity recovery even in high temperature storage than the batteries of Comparative Examples.

【0052】[0052]

【発明の効果】以上説明したように、本発明によれば活
物質、導電剤および結着剤それぞれが均一分散されるた
めに集電体との密着性に優れ、均一反応が進行するため
に充放電サイクル特性、保存特性に優れた非水電解液二
次電池が得られる。
As described above, according to the present invention, since the active material, the conductive agent and the binder are uniformly dispersed, the adhesiveness with the current collector is excellent and the uniform reaction proceeds. A non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and storage characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係るリチウム二次電池の
縦断面図
FIG. 1 is a vertical cross-sectional view of a lithium secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 封口板 2 絶縁ガスケット 3 正極リード 4 上部絶縁板 5 正極板 6 負極板 7 セパレータ 8 電池ケース 9 負極リード 10 下部絶縁板 1 Seal plate 2 Insulation gasket 3 Positive lead 4 Upper insulating plate 5 Positive plate 6 Negative plate 7 separator 8 battery case 9 Negative electrode lead 10 Lower insulation plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石田 澄人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ04 AJ05 AK03 AL07 AM03 AM07 BJ02 BJ14 CJ08 DJ08 DJ16 EJ04 HJ07 5H050 AA07 AA10 BA17 CA08 CA09 CB08 DA02 DA10 EA09 FA05 FA17 GA10 HA00 HA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Matsuo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Sumito Ishida             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H029 AJ04 AJ05 AK03 AL07 AM03                       AM07 BJ02 BJ14 CJ08 DJ08                       DJ16 EJ04 HJ07                 5H050 AA07 AA10 BA17 CA08 CA09                       CB08 DA02 DA10 EA09 FA05                       FA17 GA10 HA00 HA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極用導電剤として、JIS K621
7(ゴム用カーボンブラックの基本性能の試験方法)に
規定されるA法によって測定されるDBP吸収量が20
0ml/100g以上、500ml/100g以下の膨
張化黒鉛を用いることを特徴とする非水電解液二次電池
正極用導電剤。
1. A conductive material for a positive electrode according to JIS K621.
The DBP absorption amount measured by the A method specified in 7 (Testing method for basic performance of carbon black for rubber) is 20.
A conductive agent for a positive electrode of a non-aqueous electrolyte secondary battery, characterized by using expanded graphite of 0 ml / 100 g or more and 500 ml / 100 g or less.
【請求項2】 少なくとも請求項1記載の導電剤、リチ
ウム含有金属酸化物を主成分とする正極活物質、結着剤
からなる正極板。
2. A positive electrode plate comprising at least the conductive agent according to claim 1, a positive electrode active material containing a lithium-containing metal oxide as a main component, and a binder.
【請求項3】 請求項2記載の正極板、負極板、セパレ
ータ及び非水電解液を備えた非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery comprising the positive electrode plate, the negative electrode plate, the separator and the non-aqueous electrolytic solution according to claim 2.
JP2001400140A 2001-12-28 2001-12-28 Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery Pending JP2003203636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400140A JP2003203636A (en) 2001-12-28 2001-12-28 Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400140A JP2003203636A (en) 2001-12-28 2001-12-28 Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2003203636A true JP2003203636A (en) 2003-07-18

Family

ID=27639812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400140A Pending JP2003203636A (en) 2001-12-28 2001-12-28 Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2003203636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054174A (en) * 2004-07-15 2006-02-23 Matsushita Electric Ind Co Ltd Preparation method of positive electrode mixture coating for lithium secondary, and positive electrode for lithium secondary battery
WO2014064499A1 (en) 2012-10-22 2014-05-01 Toyota Jidosha Kabushiki Kaisha Sealed nonaqueous electrolyte secondary battery and method of producing same
JP2015220123A (en) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
US10236537B2 (en) 2014-04-21 2019-03-19 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054174A (en) * 2004-07-15 2006-02-23 Matsushita Electric Ind Co Ltd Preparation method of positive electrode mixture coating for lithium secondary, and positive electrode for lithium secondary battery
WO2014064499A1 (en) 2012-10-22 2014-05-01 Toyota Jidosha Kabushiki Kaisha Sealed nonaqueous electrolyte secondary battery and method of producing same
US9876227B2 (en) 2012-10-22 2018-01-23 Toyota Jidosha Kabushiki Kaisha Sealed nonaqueous electrolyte secondary battery and method of producing same
US10236537B2 (en) 2014-04-21 2019-03-19 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP2015220123A (en) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
US9515313B2 (en) 2014-05-19 2016-12-06 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery and method of producing same

Similar Documents

Publication Publication Date Title
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP5472759B2 (en) Lithium secondary battery
US8734990B2 (en) Positive electrode of lithium secondary battery and method for producing the same
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP4017376B2 (en) Lithium secondary battery
JP4026351B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JP2007172879A (en) Battery and its manufacturing method
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP7003775B2 (en) Lithium ion secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JP2004158213A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2004030939A (en) Manufacturing method of lithium secondary battery
JP2006024392A (en) Charging method of lithium-ion secondary battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
JP2007172878A (en) Battery and its manufacturing method
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP2003203636A (en) Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106