JP2003200443A - Method for manufacturing heat-resistant resin tubular article - Google Patents

Method for manufacturing heat-resistant resin tubular article

Info

Publication number
JP2003200443A
JP2003200443A JP2002001520A JP2002001520A JP2003200443A JP 2003200443 A JP2003200443 A JP 2003200443A JP 2002001520 A JP2002001520 A JP 2002001520A JP 2002001520 A JP2002001520 A JP 2002001520A JP 2003200443 A JP2003200443 A JP 2003200443A
Authority
JP
Japan
Prior art keywords
support
heat
resistant resin
tubular product
tubular article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002001520A
Other languages
Japanese (ja)
Inventor
Tokio Fujita
時男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002001520A priority Critical patent/JP2003200443A/en
Publication of JP2003200443A publication Critical patent/JP2003200443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat-resistant resin tubular article prevented from getting out of shape by heating and drying and excellent in releasability after molding. <P>SOLUTION: In the method for manufacturing the heat resistant resin tubular article including a process for applying a heat-resistant resin material solution to the surface of a cylindrical mold and solidifying the formed layer by heating and drying until bringing the same to a self-supporting state and peeling the solidified tubular article from the surface of the mold and a process for baking the tubular article in such a state that a support having an outer diameter smaller than the inner diameter of the tubular article is inserted in the tubular article, the support is hollow and hermetically closed at its upper end and has fine holes provided to the side surface thereof. After the completion of the baking process, air is fed into the hollow part of the support under pressure and air is injected in the gap between the outside of the support and the heat- resistant resin tubular article from the fine holes of the side surface of the support to peel the heat-resistant resin tubular article from the support. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明は、耐熱性樹脂管状物の製
造方法に関する。耐熱性樹脂管状物は、たとえば、電子
写真方式の複写機、プリンター、ファクシミリ等の画像
形成装置に使われる定着搬送ベルト、転写定着用ベルト
等に用いられる。
TECHNICAL FIELD The present invention relates to a method for producing a heat-resistant resin tubular product. The heat-resistant resin tubular material is used, for example, as a fixing / conveying belt and a transfer / fixing belt used in image forming apparatuses such as electrophotographic copying machines, printers, and facsimiles.

【0002】[0002]

【従来の技術】従来より、電子写真方式の画像形成装置
用の回転部材としてロールやドラムが用いられてきた。
近年、装置の小型化等を解決するために、これらの部材
に代わってプラスチック製のベルトが実用に供されてい
る。このような用途に用いられるプラスチック製ベルト
には、耐熱性樹脂が用いられる。たとえば、耐熱性樹脂
として、ポリカーボネートやエチレンテトラフルオロエ
チレン共重合体等の熱可塑性樹脂を用いたもの(特開平
10−10880号公報、特開2000−25097号
公報等)や、熱硬化性樹脂である耐熱性樹脂を用いたも
のが提案されている。これら耐熱性樹脂のなかでもポリ
イミド樹脂を用いたシームレスベルトが耐熱性、耐久性
の点で優れている。
2. Description of the Related Art Conventionally, rolls and drums have been used as rotating members for electrophotographic image forming apparatuses.
In recent years, plastic belts have been put into practical use in place of these members in order to solve downsizing of the apparatus. A heat resistant resin is used for a plastic belt used for such an application. For example, as the heat-resistant resin, one using a thermoplastic resin such as polycarbonate or ethylene tetrafluoroethylene copolymer (JP-A-10-10880, JP-A-2000-25097, etc.) or a thermosetting resin may be used. Those using a certain heat resistant resin have been proposed. Among these heat resistant resins, a seamless belt using a polyimide resin is excellent in heat resistance and durability.

【0003】これらシームレスベルトの製造方法では、
円筒型の金型の外面に耐熱性樹脂材料溶液を塗布し、さ
らに中空リングを通過させることにより所定の厚さに仕
上げた後に、加熱、乾燥により焼き付けを行いフィルム
化する方法、または中空金型の内面に耐熱性樹脂材料溶
液を所定の厚さになるように塗布した後、加熱、乾燥に
より焼き付けを行いフィルム化する方法等により耐熱性
樹脂材料を固化した固化ベルトを得る工程を有する。
In these seamless belt manufacturing methods,
A method in which a heat-resistant resin material solution is applied to the outer surface of a cylindrical mold, and then a hollow ring is passed to finish it to a predetermined thickness, followed by baking by heating and drying, or a hollow mold. After applying a heat-resistant resin material solution to a predetermined thickness on the inner surface of the above, a step of obtaining a solidified belt obtained by solidifying the heat-resistant resin material by a method of baking into a film by heating and drying is provided.

【0004】前記工程において、フィルムを金型から剥
離させる方法に着目すると、(1)固化の途中で管状物
を金型から剥離し、支持体に移し替えてフィルム化を完
成させる方法が採用されている(特開昭60−1664
24号公報、特開平7−156287号公報、特開20
00−271946号公報等)。この方法では、管状物
の線熱膨張係数が支持体の線熱膨張係数より小さいこと
を利用して、支持体が収縮した後に容易に支持体より取
り出すことが可能である。
Focusing on the method of peeling the film from the mold in the above step, (1) a method of peeling the tubular material from the mold during solidification and transferring it to a support to complete film formation is adopted. (JP-A-60-1664)
24, JP-A-7-156287, JP-A-20
No. 00-271946). In this method, since the linear thermal expansion coefficient of the tubular material is smaller than that of the support, it can be easily taken out from the support after the support contracts.

【0005】また、前記(1)以外に、(2)中空金型
の内面で耐熱性樹脂管状物を成形し、加熱、乾燥により
フィルム化を完成させた後、前記中空金型内から剥離さ
せる方法等が挙げられる。
In addition to the above (1), (2) a heat-resistant resin tubular product is molded on the inner surface of the hollow mold, heated and dried to form a film, and then peeled from the hollow mold. Methods and the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記
(1)の方法では、得られる耐熱性樹脂管状物は、特定
の樹脂に限定されてしまう問題がある。また、耐熱性樹
脂管状物の線熱膨張係数が支持体の線熱膨張係数より大
きいと、支持体に密着して支持体より抜けないという問
題もある。また、前記(2)の方法では、中空金型内で
耐熱性樹脂管状物を焼成すると固化時の体積収縮により
焼成中に剥がれてしまう問題がある。あるいは、中空金
型内に密着して剥がれない問題も発生する。
However, the method (1) has a problem that the heat-resistant resin tubular product obtained is limited to a specific resin. Further, if the coefficient of linear thermal expansion of the heat-resistant resin tubular product is larger than that of the support, there is a problem in that it adheres to the support and does not come off from the support. Further, in the method (2), when the heat-resistant resin tubular product is fired in the hollow mold, there is a problem that the heat-resistant resin tubular product is peeled off during firing due to volume contraction during solidification. Alternatively, there is a problem that the hollow mold does not come into close contact with the inside of the mold so that it cannot be peeled off.

【0007】そこで、本発明の目的は、加熱、乾燥によ
る形崩れを防ぎ、かつ、成形後の剥離性に優れた耐熱性
樹脂管状物の製造方法を提供することにある。
[0007] Therefore, an object of the present invention is to provide a method for producing a heat-resistant resin tubular product which is prevented from losing its shape due to heating and drying and which is excellent in peelability after molding.

【0008】[0008]

【課題を解決するための手段】本発明者は前記課題を解
決すべく鋭意検討を重ねた結果、以下に示す方法により
前記目的を達成できることを見出し、本発明を完成する
に至った。
As a result of intensive studies to solve the above problems, the present inventor has found that the above object can be achieved by the method described below, and has completed the present invention.

【0009】すなわち、本発明の耐熱性樹脂管状物の製
造方法は、耐熱性樹脂材料溶液を円筒状金型面に塗布
し、加熱、乾燥により自己支持できるまで固化させた
後、固化した管状物を前記金型面から剥離させる工程、
および前記管状物の内径より小さい外径を有する支持体
を前記管状物に挿入した状態で焼成する工程を含む耐熱
性樹脂管状物の製造方法において、前記支持体は中空
で、その上端が密閉され、その側面に細孔を有するもの
であり、前記焼成工程終了後、前記支持体の中空部に気
体を圧送し、前記側面の細孔から支持体外部と耐熱性樹
脂管状物との間に気体を注入することにより、前記支持
体から前記耐熱性樹脂管状物を剥離する工程をさらに含
むことを特徴とする。
That is, in the method for producing a heat-resistant resin tubular product of the present invention, the heat-resistant resin material solution is applied to the surface of a cylindrical mold, solidified by heating and drying until self-supporting, and then the solidified tubular product. A step of peeling from the mold surface,
In the method for producing a heat-resistant resin tubular product, which comprises a step of firing a support having an outer diameter smaller than the inner diameter of the tubular product in the tubular product, the support is hollow and its upper end is closed. , Which has pores on the side surface thereof, and after the firing step is completed, gas is pressure-fed to the hollow portion of the support, and gas is introduced between the outside of the support and the heat-resistant resin tubular material through the pores on the side surface. By further injecting the heat-resistant resin tubular material from the support.

【0010】前記耐熱性樹脂管状物の線熱膨張係数は、
前記支持体の線熱膨張係数より大きいことが好ましい。
The linear thermal expansion coefficient of the heat-resistant resin tubular product is
It is preferably larger than the linear thermal expansion coefficient of the support.

【0011】[作用効果]本発明の耐熱性樹脂管状物の
製造方法によると、焼成工程終了時の支持体と耐熱性樹
脂管状物との密着状態から、圧送された気体により管状
物の内径を拡大させて非密着状態とし、支持体と管状物
の間にクリアランスを発生させる。そうすることによ
り、本発明の方法は、成形された管状物を容易にかつ短
時間で剥離させるという効果を奏する。また、本発明の
耐熱性樹脂管状物の製造方法によると、耐熱性樹脂管状
物の線熱膨張係数が支持体の線熱膨張係数より大きい場
合であっても、支持体の中空部から気体を圧送する剥離
工程により、成形された管状物を容易にかつ短時間で剥
離させるという効果を奏する。したがって、耐熱性樹脂
管状物の線熱膨張係数の大小に限定されることなく、当
該管状物を効率的に製造することができる。
[Operation and Effect] According to the method for producing a heat-resistant resin tubular product of the present invention, the inner diameter of the tubular product is changed by the gas fed under pressure from the state of close contact between the support and the heat-resistant resin tubular product at the end of the firing step. It is expanded to a non-contact state, and a clearance is generated between the support and the tubular object. By doing so, the method of the present invention has an effect of easily peeling the formed tubular article in a short time. Further, according to the method for producing a heat-resistant resin tubular product of the present invention, even if the linear thermal expansion coefficient of the heat-resistant resin tubular product is larger than the linear thermal expansion coefficient of the support, gas from the hollow portion of the support The peeling step of feeding under pressure has the effect of easily peeling the molded tubular product in a short time. Therefore, the tubular article can be efficiently produced without being limited by the linear thermal expansion coefficient of the heat-resistant resin tubular article.

【0012】[0012]

【発明の実施の形態】本発明の耐熱性樹脂管状物の製造
方法において対象となる耐熱性樹脂は、フィルムに成形
が可能な樹脂であれば特に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The heat-resistant resin used in the method for producing a heat-resistant resin tubular product of the present invention is not particularly limited as long as it is a resin that can be molded into a film.

【0013】本発明の耐熱性樹脂管状物の製造方法で用
いられる、耐熱性樹脂材料溶液は、各種のものを使用で
きる。たとえば、ポリカーボネート、ポリアミド、ポリ
エーテルケトン、ポリエーテルサルフォン等の熱可塑性
樹脂からなる管状物の場合には、耐熱性樹脂材料溶液と
して当該熱可塑性樹脂の有機溶剤溶液が用いられ、エチ
レンテトラフルオロエチレン共重合体からなる管状物の
場合には、耐熱性樹脂材料溶液としてそのディスパージ
ョンが用いられる。一方、ポリイミド樹脂からなる管状
物の場合には、耐熱性樹脂材料溶液として、ポリイミド
前駆体溶液であるポリアミド酸溶液が用いられる。ポリ
イミド樹脂は、管状物を形成する耐熱性樹脂のなかで
も、耐熱性、耐久性の点が優れている。以下に、主にポ
リイミド樹脂の前駆体溶液であるポリアミド酸溶液につ
いて説明する。
As the heat-resistant resin material solution used in the method for producing a heat-resistant resin tubular product of the present invention, various solutions can be used. For example, in the case of a tubular product made of a thermoplastic resin such as polycarbonate, polyamide, polyetherketone, or polyethersulfone, an organic solvent solution of the thermoplastic resin is used as the heat-resistant resin material solution. In the case of a tubular product made of a copolymer, its dispersion is used as a heat resistant resin material solution. On the other hand, in the case of a tubular product made of a polyimide resin, a polyamic acid solution which is a polyimide precursor solution is used as the heat resistant resin material solution. Polyimide resin is excellent in heat resistance and durability among heat resistant resins that form tubular products. The polyamic acid solution, which is a polyimide resin precursor solution, will be described below.

【0014】ポリアミド酸溶液は、溶媒中で酸二無水物
成分とジアミン成分を反応させることにより得られる。
酸二無水物の具体例としては、ピロメリット酸二無水
物、3,3’,4,4’−ベンゾフェノンテトラカルボ
ン酸二無水物、3,3’,4,4’−ビフェニルテトラ
カルボン酸二無水物、2,3,3’,4’−ビフェニル
テトラカルボン酸二無水物、2,3,6,7−ナフタレ
ンテトラカルボン酸二無水物、1,2,5,6−ナフタ
レンテトラカルボン酸二無水物、1,4,5,8−ナフ
タレンテトラカルボン酸二無水物、2,2’−ビス
(3,4−ジカルボキシフェニル)プロパン二無水物、
ビス(3,4−ジカルボキシフェニル)スルホン二無水
物、ペリレン−3,4,9,10−テトラカルボン酸二
無水物、ビス(3,4−ジカルボキシフェニル)エーテ
ル二無水物、エチレンテトラカルボン酸二無水物等が挙
げられる。
The polyamic acid solution is obtained by reacting an acid dianhydride component and a diamine component in a solvent.
Specific examples of the acid dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. Anhydride, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride Anhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) propane dianhydride,
Bis (3,4-dicarboxyphenyl) sulfone dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, ethylene tetracarboxylic acid Examples thereof include acid dianhydride.

【0015】また、このような酸二無水物と反応させる
ジアミンの具体例としては、4,4’−ジアミノジフェ
ニルエーテル、3,3’−ジアミノジフェニルメタン、
4,4’−ジアミノジフェニルメタン、3,3’−ジク
ロロベンジジン、4,4’−ジアミノジフェニルスルフ
ィド、3,3’−ジアミノジフェニルスルホン、1,5
−ジアミノナフタレン、m−フェニレンジアミン、p−
フェニレンジアミン、3,3’−ジメチル−4,4’−
ビフェニルジアミン、ベンジジン、3,3’−ジメチル
ベンジジン、3,3’−ジメトキシベンジジン、4,
4’−ジアミノフェニルスルホン、4,4’−ジアミノ
ジフェニルスルフィド、4,4’−ジアミノジフェニル
プロパン、2,4−ビス(β−アミノ−第三ブチル)ト
ルエン、ビス(p−β−アミノ−第三ブチルフェニル)
エーテル、ビス(p−β−メチル−δ−アミノフェニ
ル)ベンゼン、ビス−p−(1,1−ジメチル−5−ア
ミノペンチル)ベンゼン、1−イソプロピル−2,4−
m−フェニレンジアミン、m−キシリレンジアミン、p
−キシリレンジアミン、ジ(p−アミノシクロヘキシ
ル)メタン、ヘキサメチレンジアミン、ヘプタメチレン
ジアミン、オクタメチレンジアミン、ノナメチレンジア
ミン、デカメチレンジアミン、ジアミノプロピルテトラ
メチレン、3−メチルヘプタメチレンジアミン、4,4
−ジメチルヘプタメチレンジアミン、2,11−ジアミ
ノドデカン、1,2−ビス−(3−アミノプロポキシ)
エタン、2,2−ジメチルプロピレンジアミン、3―メ
トキシヘキサメチレンジアミン、2,5−ジメチルヘキ
サメチレンジアミン、2,5−ジメチルペンタメチレン
ジアミン、3−メチルペンタメチレンジアミン、5−メ
チルノナメチレンジアミン、2,17−ジアミノエイコ
サデカン、1,4−ジアミノシクロヘキサン、1,10
−ジアミノ−1,10−ジメチルデカン、1,12−ジ
アミノオクタデカン、2,2−ビス〔4−(4−アミノ
フェノキシ)フェニル〕プロパン、ピペラジン、H2
(CH23 O(CH22 OCH2 NH2 、H 2
(CH23 S(CH23 NH2 、H2 N(CH2
3 N(CH3 )(CH23 NH2 等が挙げられる。
Further, it is reacted with such an acid dianhydride.
Specific examples of the diamine include 4,4'-diaminodiphene.
Nyl ether, 3,3'-diaminodiphenylmethane,
4,4'-diaminodiphenylmethane, 3,3'-diglycan
Lolobenzidine, 4,4'-diaminodiphenylsulfate
, 3,3'-diaminodiphenyl sulfone, 1,5
-Diaminonaphthalene, m-phenylenediamine, p-
Phenylenediamine, 3,3'-dimethyl-4,4'-
Biphenyldiamine, benzidine, 3,3'-dimethyl
Benzidine, 3,3'-dimethoxybenzidine, 4,
4'-diaminophenyl sulfone, 4,4'-diamino
Diphenyl sulfide, 4,4'-diaminodiphenyl
Propane, 2,4-bis (β-amino-tert-butyl) to
Ruene, bis (p-β-amino-tert-butylphenyl)
Ether, bis (p-β-methyl-δ-aminopheni
) Benzene, bis-p- (1,1-dimethyl-5-a
Minopentyl) benzene, 1-isopropyl-2,4-
m-phenylenediamine, m-xylylenediamine, p
-Xylylenediamine, di (p-aminocyclohexyl)
) Methane, hexamethylenediamine, heptamethylene
Diamine, octamethylenediamine, nonamethylenedia
Min, decamethylenediamine, diaminopropyl tetra
Methylene, 3-methylheptamethylenediamine, 4,4
-Dimethylheptamethylenediamine, 2,11-diami
Nododecane, 1,2-bis- (3-aminopropoxy)
Ethane, 2,2-dimethylpropylenediamine, 3-me
Toxyhexamethylenediamine, 2,5-dimethylhex
Samethylenediamine, 2,5-dimethylpentamethylene
Diamine, 3-methylpentamethylenediamine, 5-me
Cirnonamethylenediamine, 2,17-diaminoeico
Sadecan, 1,4-diaminocyclohexane, 1,10
-Diamino-1,10-dimethyldecane, 1,12-di
Amino octadecane, 2,2-bis [4- (4-amino
Phenoxy) phenyl] propane, piperazine, H2 N
(CH2 )3 O (CH2 )2 OCH2 NH2 , H 2 N
(CH2 )3 S (CH2 )3 NH2 , H2 N (CH2 )
3 N (CH3 ) (CH2 )3 NH2 Etc.

【0016】ポリイミド樹脂の線熱膨張係数を変えるに
は、前記酸二無水物とジアミンを適宜選択して配合する
ことにより行う。また、前記酸二無水物およびジアミン
は、それぞれ単独であるいは2種以上を併用して使用し
てもよい。
The linear thermal expansion coefficient of the polyimide resin is changed by appropriately selecting and blending the acid dianhydride and diamine. The acid dianhydride and diamine may be used alone or in combination of two or more.

【0017】これらの酸二無水物成分とジアミン成分を
重合反応させる際の溶媒としては適宜なものを用いうる
が、溶解性等の点から有機極性溶媒が好ましく用いら
れ、N,N−ジアルキルアミド類が好ましい。具体的に
はN,N−ジメチルホルムアミド、N,N−ジメチルア
セトアミド、N,N−ジエチルホルムアミド、N,N−
ジエチルアセトアミド、N,N−ジメチルメトキシアセ
トアミド、ジメチルスルホキシド、ヘキサメチルホスホ
ルトリアミド、N−メチル−2−ピロリドン、ピリジ
ン、ジメチルスルホキシド、テトラメチレンスルホン、
ジメチルテトラメチレンスルホン等が挙げられる。これ
らは単独で使用することもでき、複数併用することもで
きる。さらに、前記有機極性溶媒にクレゾール、フェノ
ール、キシレノール等のフェノール類、ベンゾニトリ
ル、ヘキサン、ベンゼン、トルエン等を単独でもしくは
併せて混合することもできる。ただし、生成するポリア
ミド酸の加水分解による低分子量化を防ぐため、水の混
入は避けることが好ましい。
As a solvent for polymerizing the acid dianhydride component and the diamine component, an appropriate solvent can be used, but an organic polar solvent is preferably used in view of solubility and the like, and N, N-dialkylamide is used. Classes are preferred. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-
Diethylacetamide, N, N-dimethylmethoxyacetamide, dimethylsulfoxide, hexamethylphosphortriamide, N-methyl-2-pyrrolidone, pyridine, dimethylsulfoxide, tetramethylenesulfone,
Examples thereof include dimethyltetramethylene sulfone. These can be used alone or in combination. Further, cresol, phenol, phenols such as xylenol, benzonitrile, hexane, benzene, toluene and the like can be mixed alone or in combination with the organic polar solvent. However, it is preferable to avoid mixing of water in order to prevent lowering of the molecular weight due to hydrolysis of the generated polyamic acid.

【0018】前記酸二無水物成分とジアミン成分を有機
極性溶媒中で重合反応させることによりポリアミド酸溶
液が得られる。その際のモノマー濃度(溶媒中における
酸二無水物成分とジアミン成分)は、種々の条件に応じ
て設定されるが、5〜30重量%が好ましい。また、反
応温度は80℃以下に設定することが好ましく、より好
ましくは5〜60℃である。反応時間は、0.5〜10
時間が好ましい。
A polyamic acid solution is obtained by polymerizing the acid dianhydride component and the diamine component in an organic polar solvent. The monomer concentration (acid dianhydride component and diamine component in the solvent) at that time is set according to various conditions, but is preferably 5 to 30% by weight. Further, the reaction temperature is preferably set to 80 ° C. or lower, more preferably 5 to 60 ° C. The reaction time is 0.5 to 10
Time is preferred.

【0019】重合反応の進行に従い溶液粘度が上昇する
が、対数粘度[η]が0.5以上のポリアミド酸を得る
のが好ましい。対数粘度[η]が 0.5 以上のポリアミ
ド酸を用いて形成されるポリイミド樹脂管状物は耐熱性
が特に優れているという利点がある。
Although the solution viscosity increases as the polymerization reaction progresses, it is preferable to obtain a polyamic acid having a logarithmic viscosity [η] of 0.5 or more. A polyimide resin tubular product formed by using a polyamic acid having a logarithmic viscosity [η] of 0.5 or more has an advantage of being particularly excellent in heat resistance.

【0020】前記対数粘度は、毛細管粘度計を用いてポ
リアミド酸溶液と溶媒の落下時間を各々測定し、下記式
によって算出される値である。
The above-mentioned logarithmic viscosity is a value calculated by the following formula by measuring the drop time of the polyamic acid solution and the solvent using a capillary viscometer.

【0021】[0021]

【数1】[η]=(ln(t1 /t0 ))/c (式中、t0 は溶媒の落下時間、t1 は溶液の落下時
間、c は溶液中におけるポリアミド酸の濃度(g/d
l)である)。
## EQU1 ## [η] = (ln (t 1 / t 0 )) / c (where, t 0 is the dropping time of the solvent, t 1 is the dropping time of the solution, and c is the concentration of the polyamic acid in the solution ( g / d
l)).

【0022】本発明における耐熱性樹脂材料溶液(特に
ポリアミド酸溶液)には、熱伝導性、導電性、帯電防止
性、半導電性、高摺動性、高強度、高弾性等の種々の目
的やその用途により適宜充填剤を添加してもよい。例え
ば、窒化アルミニウム、窒化ホウ素、アルミナ、炭化珪
素、窒化珪素、シリカ等の熱伝導性無機粉末や、カーボ
ンブラック、アルミニウム、ニッケル、酸化錫、チタン
酸カリウム等の導電性乃至半導電性粉末、ポリテトラフ
ルオロエチレン(PTFE)、テトラフルオロエチレン
−へキサフルオロプロピレン共重合体(FEP)、テト
ラフルオロエチレン−パーフルオロアルキルビニルエー
テル共重合体(PFA)のフッ素樹脂等が挙げられる。
充填剤の充填量は、本発明の範囲内でその目的に応じ決
定することができる。
The heat-resistant resin material solution (particularly polyamic acid solution) in the present invention has various purposes such as thermal conductivity, conductivity, antistatic property, semiconductivity, high slidability, high strength and high elasticity. A filler may be added as appropriate depending on the application. For example, heat conductive inorganic powders such as aluminum nitride, boron nitride, alumina, silicon carbide, silicon nitride, and silica, conductive or semiconductive powders such as carbon black, aluminum, nickel, tin oxide, potassium titanate, and poly, Examples thereof include tetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) fluororesin.
The filling amount of the filler can be determined according to the purpose within the scope of the present invention.

【0023】本発明の耐熱性樹脂管状物の製造方法は、
前記耐熱性樹脂材料溶液を円筒状金型面に塗布し、加
熱、乾燥により自己支持できるまで固化させた後、固化
した管状物を前記金型面から剥離させる工程を含む。
The method for producing the heat-resistant resin tubular product of the present invention is as follows:
The method includes the steps of applying the heat-resistant resin material solution to the surface of a cylindrical mold, solidifying the solution by heating and drying until self-supporting, and then peeling the solidified tubular product from the surface of the mold.

【0024】前記円筒状金型は、従来からシームレスベ
ルト等の製造に用いられているものであればどのような
ものでも差し支えなく、外面に管状物の形成面がある円
筒型の金型、内面に管状物の形成面がある中空構造円筒
状の金型のいずれも使用できる。通常、耐熱性樹脂材料
溶液は、管状物の形状に応じた円筒状金型を用い、その
内面に塗布する。
The cylindrical mold may be any as long as it has been conventionally used for producing a seamless belt or the like, and a cylindrical mold having an outer surface on which a tubular material is formed, an inner surface Any of the hollow-structured cylindrical molds having a tubular object forming surface can be used. Usually, the heat-resistant resin material solution is applied to the inner surface of a cylindrical metal mold according to the shape of the tubular material.

【0025】金型の材質としては、金属、ガラス、セラ
ミック等の強度、耐熱性に優れたものを用いることが好
ましい。金型の円筒外径または中空内径は、成形される
管状物の内径または外径に合わせて任意に選ぶことがで
きる。
As the material of the mold, it is preferable to use metal, glass, ceramic or the like having excellent strength and heat resistance. The cylindrical outer diameter or hollow inner diameter of the mold can be arbitrarily selected according to the inner diameter or outer diameter of the tubular product to be molded.

【0026】前記金型面は特に制限されないが、前記耐
熱性樹脂材料溶液が塗布される側の面に、予めシリコー
ン処理、フッ素処理等の離型処理を施すことが好まし
い。
The mold surface is not particularly limited, but it is preferable to subject the surface on which the heat-resistant resin material solution is applied to a release treatment such as silicone treatment or fluorine treatment in advance.

【0027】次いで、任意に離型処理された円筒状金型
面にポリアミド酸溶液等の耐熱性樹脂材料溶液を塗布す
る。
Next, a solution of a heat-resistant resin material such as a polyamic acid solution is applied to the surface of the cylindrical mold that has been arbitrarily released.

【0028】耐熱性樹脂材料溶液を円筒状金型に均一に
塗布する方法は、公知の方法を適用することが可能で、
例えば、ディスペンサーにより塗布する方法、スクレー
パを用いる方法、弾丸状走行体を用いる方法等が挙げら
れる。
As a method for uniformly applying the heat-resistant resin material solution to the cylindrical mold, a known method can be applied.
For example, a method of applying with a dispenser, a method of using a scraper, a method of using a bullet-shaped running body and the like can be mentioned.

【0029】前記加熱温度は、耐熱性樹脂材料溶液に用
いた溶媒を蒸発させることができ、固化管状物が自己支
持できるようになる温度であれば特に制限はなく、耐熱
性樹脂材料溶液に応じて適宜に設定できる。耐熱性樹脂
材料溶液としてポリアミド酸溶液を用いる場合には、そ
の溶媒が急激に蒸発するための微小ボイドの発生を防止
するためには230℃以下が好ましく、加熱時間の短縮
という観点から80℃以上が好ましい。加熱時間は加熱
温度に応じて適宜設定され、通常、10〜60分程度で
ある。
The heating temperature is not particularly limited as long as it can evaporate the solvent used in the heat-resistant resin material solution and enables the solidified tubular material to support itself, and it depends on the heat-resistant resin material solution. Can be set appropriately. When a polyamic acid solution is used as the heat-resistant resin material solution, it is preferably 230 ° C or lower in order to prevent the generation of minute voids due to rapid evaporation of the solvent, and 80 ° C or higher from the viewpoint of shortening the heating time. Is preferred. The heating time is appropriately set according to the heating temperature, and is usually about 10 to 60 minutes.

【0030】前記円筒状金型から固化管状物を剥離する
方法としては、特に制限されるものではない。金型の離
型処理と管状物を焼成前に取り出すことにより、容易に
剥離することができる。
The method for peeling the solidified tubular product from the cylindrical mold is not particularly limited. The mold can be easily peeled off by releasing the mold and taking out the tubular material before firing.

【0031】剥離した固化管状物の厚みは、樹脂の種類
や用途等により適宜設定されるが、ポリアミド酸溶液を
用いた場合、10〜150μmの範囲内にすることが好
ましい。
The thickness of the solidified tubular product which has been peeled off is appropriately set depending on the type and application of the resin, but when a polyamic acid solution is used, it is preferably within the range of 10 to 150 μm.

【0032】また、本発明の耐熱性樹脂管状物の製造方
法は、前記管状物の内径より小さい外径を有する支持体
を前記管状物に挿入した状態で焼成する工程を含む。
Further, the method for producing a heat-resistant resin tubular product of the present invention includes a step of baking a support having an outer diameter smaller than the inner diameter of the tubular product inserted in the tubular product.

【0033】前記支持体は、その外径が前記管状物の内
径より小さいものであって、中空で、その上端が密閉さ
れ、その側面に細孔を有するものである。例えば、中空
状の棒体が例示される。図1に、本発明に用いられる支
持体の一例を示す。
The support has an outer diameter smaller than the inner diameter of the tubular article, is hollow, has its upper end sealed, and has pores on its side surfaces. For example, a hollow rod body is exemplified. FIG. 1 shows an example of the support used in the present invention.

【0034】図1は、支持体1の側面図であり、側面に
細孔2を有している。
FIG. 1 is a side view of the support 1 having pores 2 on the side.

【0035】図2は、図1の支持体1に固化管状物4が
挿入された状態を示す断面図である。支持体1の内部
は、中空部3が形成されている。
FIG. 2 is a sectional view showing a state in which the solidified tubular article 4 is inserted into the support 1 of FIG. A hollow portion 3 is formed inside the support 1.

【0036】支持体1は、焼成温度に耐えうる材質から
なり、その線熱膨張係数は、焼成温度付近の温度条件下
で耐熱性樹脂管状物の線熱膨張係数よりも大きくても小
さくてもよく、鉄、アルミニウム、ステンレス等の金属
やこれらの合金からなる支持体が例示される。本発明の
方法においては、後述する剥離工程を有することから、
耐熱性樹脂管状物の線熱膨張係数よりも小さい値を有す
るものであることが好ましい。
The support 1 is made of a material that can withstand the firing temperature, and its linear thermal expansion coefficient may be larger or smaller than the linear thermal expansion coefficient of the heat-resistant resin tubular product under temperature conditions near the firing temperature. Often, a support made of a metal such as iron, aluminum or stainless steel, or an alloy thereof is exemplified. In the method of the present invention, since it has a peeling step described below,
The heat-resistant resin tubular material preferably has a value smaller than the linear thermal expansion coefficient.

【0037】支持体の線熱膨張係数は、製造される管状
物の樹脂の種類に応じて設定される。例えば、ポリイミ
ド樹脂製の管状物の線熱膨張係数は、一般的に1×10
-5〜10×10-5cm/cm/℃であるので、支持体の
線熱膨張係数は、前記値以下であることが好ましい。
The linear thermal expansion coefficient of the support is set according to the type of resin of the tubular product to be produced. For example, the linear thermal expansion coefficient of a tubular product made of a polyimide resin is generally 1 × 10
Since it is −5 to 10 × 10 −5 cm / cm / ° C., the linear thermal expansion coefficient of the support is preferably equal to or less than the above value.

【0038】本発明において、線熱膨張係数は、JIS
K7197−1991に準じて測定した値である。
In the present invention, the coefficient of linear thermal expansion is JIS
It is a value measured according to K7197-1991.

【0039】支持体の側面の細孔2は、支持体の使用条
件下で支持体の形状を変形させることなく、圧送した気
体が通過して管状物と支持体との間にクリアランスを発
生させうるものであれば、細孔の大きさ、形状および数
に特に制限はない。
The pores 2 on the side surface of the support body allow the pressure-fed gas to pass therethrough without causing deformation of the shape of the support body under the conditions of use of the support body to generate a clearance between the tubular object and the support body. If it is possible, the size, shape and number of the pores are not particularly limited.

【0040】支持体1が固化管状物4と接触する側面
部、および支持体上端部は、支持体の使用条件下で支持
体の形状が変形せず、かつ、気体の圧送時の圧力に耐え
得る程度の厚さであればよい。
The side surface of the support 1 in contact with the solidified tubular material 4 and the upper end of the support do not change their shape under the conditions of use of the support, and can withstand the pressure during gas feeding. The thickness should be as thick as possible.

【0041】管状物が挿入される部分の支持体の長さ
は、焼成工程中の管状物の形状を保持するため、管状物
と同じかそれより長いことが好ましい。
The length of the support at the portion where the tubular product is inserted is preferably the same as or longer than that of the tubular product in order to maintain the shape of the tubular product during the firing process.

【0042】前記支持体1に挿入した固化管状物4は、
支持体ごと加熱して焼成される。焼成工程で、固化管状
物4から残存溶媒等が除去される。耐熱性樹脂材料溶液
としてポリアミド酸溶液を用いた場合には、焼成工程で
残存溶媒の除去、閉環水の除去およびイミド転化反応の
完結を行う。焼成温度は、耐熱性樹脂の成分に応じて適
宜設定されるが、残存溶媒または閉環水の除去という観
点から、前記円筒状金型上での加熱温度以上が好まし
く、固化管状物や支持体の耐熱性という観点から430
℃以下が好ましい。通常、この時の加熱時間は10〜6
0分である。
The solidified tubular article 4 inserted into the support 1 is
The whole support is heated and baked. In the firing step, the residual solvent and the like are removed from the solidified tubular product 4. When a polyamic acid solution is used as the heat-resistant resin material solution, the residual solvent is removed, the ring-closing water is removed, and the imide conversion reaction is completed in the firing step. The firing temperature is appropriately set depending on the components of the heat-resistant resin, but from the viewpoint of removing the residual solvent or the ring-closing water, it is preferably the heating temperature on the cylindrical mold or higher, and the solidified tubular product or the support is 430 from the viewpoint of heat resistance
C. or less is preferable. Usually, the heating time at this time is 10-6
0 minutes.

【0043】以上のようにして得られた耐熱性樹脂管状
物を、支持体より取り出す。このために、本発明におい
ては、前記焼成工程終了後、前記支持体の中空部に気体
を圧送し、前記側面の細孔から支持体外部と耐熱性樹脂
管状物との間に気体を注入することにより、前記支持体
から前記耐熱性樹脂管状物を剥離する工程をさらに含
む。
The heat-resistant resin tubular product thus obtained is taken out from the support. Therefore, in the present invention, after the firing step is completed, gas is pressure-fed to the hollow portion of the support, and the gas is injected from the pores of the side surface between the outside of the support and the heat-resistant resin tubular material. Accordingly, the method further includes a step of peeling the heat-resistant resin tubular product from the support.

【0044】前記支持体の中空部に気体を圧送する手段
としては、特に制限されるものではない。図3にその一
例を示す。図3では、支持体1の底部に気体圧送台5を
装着させている。気体を入口6から圧送させて中空部3
に注入し、細孔2から支持体外部と耐熱性樹脂管状物7
との間を通過させる。気体の通過時に気体の圧力により
耐熱性樹脂管状物7の内径が拡大して、支持体外部と耐
熱性樹脂管状物7との間にクリアランスが生じ、それに
より支持体1から耐熱性樹脂管状物が剥離する。
The means for feeding the gas under pressure to the hollow portion of the support is not particularly limited. FIG. 3 shows an example thereof. In FIG. 3, the gas feed table 5 is attached to the bottom of the support 1. Gas is pumped from the inlet 6 and the hollow portion 3
To the outside of the support and the heat-resistant resin tubular material 7 through the pores 2.
To pass between. When the gas passes, the inner diameter of the heat-resistant resin tubular product 7 is expanded by the pressure of the gas, and a clearance is generated between the outside of the support and the heat-resistant resin tubular product 7, whereby the heat-resistant resin tubular product is removed from the support 1. Peels off.

【0045】圧送する気体は、特に制限されるものでは
なく、空気、窒素等が挙げられる。圧送条件としては、
管状物を変形、破損させない程度で行い、コンプレッサ
ー等により10〜200kPaの圧力で圧送することが
好ましい。
The gas to be fed under pressure is not particularly limited, and examples thereof include air and nitrogen. The conditions for pumping are:
It is preferable that the tubular article is deformed or damaged without being deformed and is fed under pressure of 10 to 200 kPa by a compressor or the like.

【0046】本発明の方法により得られた耐熱性樹脂管
状物は、支持体から剥離する際に折れ、皺、傷等が発生
することなく、高品質のものである。
The heat-resistant resin tubular product obtained by the method of the present invention is of high quality without being broken, wrinkled or scratched when peeled from the support.

【0047】また、本発明の方法により得られる耐熱性
樹脂管状物は上記のような単層構造に限定されるもので
はなく、多層構造であってもよい。多層構造にするため
には、前記支持体上に固化管状物を支持しているとき、
離型性、弾性、光導電性等のさらなる機能を付与するた
めに、PTFE、FEP、PFA等のフッ素樹脂、シリ
コーンゴムまたはフッ素ゴム等をスプレーコート、ディ
ッピング等の方法を用いて管状物の外周面に更に積層す
ることができる。
The heat-resistant resin tubular product obtained by the method of the present invention is not limited to the above-mentioned single-layer structure but may have a multi-layer structure. In order to make a multilayer structure, when supporting the solidified tubular article on the support,
In order to impart further functions such as releasability, elasticity, photoconductivity, etc., fluorocarbon resin such as PTFE, FEP, PFA, silicone rubber or fluororubber etc. is applied to the outer periphery of the tubular object by spray coating, dipping or the like method. It can be further laminated to the surface.

【0048】[0048]

【実施例】以下、本発明の構成と効果を具体的に示す実
施例等について説明する。
EXAMPLES Examples and the like specifically showing the constitution and effects of the present invention will be described below.

【0049】(実施例1)N−メチル−2 −ピロリドン
791.6g中に、ポリイミド樹脂固形分に対し30重
量部(49. 4g)となるように六方晶窒化ホウ素を混
合撹拌し、次いで3 ,3 ’,4 ,4 ’−ビフェニルテト
ラカルボン酸二無水物117.6gとp −フェニレンジ
アミン21. 6gと4 ,4 ’−ジアミノジフェニルエー
テル40.0gを混合し、窒素雰囲気中で室温にて7時
間撹拌しながら重合反応させて、ポリアミド酸溶液を得
た。
Example 1 Hexagonal boron nitride was mixed and stirred in 791.6 g of N-methyl-2-pyrrolidone so as to be 30 parts by weight (49.4 g) with respect to the solid content of the polyimide resin, and then 3 , 3 ', 4,4'-biphenyltetracarboxylic dianhydride 117.6 g and p-phenylenediamine 21.6 g were mixed with 4,4'-diaminodiphenyl ether 40.0 g at room temperature under nitrogen atmosphere. A polymerization reaction was carried out while stirring for a time to obtain a polyamic acid solution.

【0050】上記において、p−フェニレンジアミン
(剛性を発現するジアミン)と4 ,4’−ジアミノジフ
ェニルエーテル(可撓性を発現するジアミン)のモル比
は5/5であった。
In the above, the molar ratio of p-phenylenediamine (diamine expressing rigidity) and 4,4'-diaminodiphenyl ether (diamine expressing flexibility) was 5/5.

【0051】このポリアミド酸溶液を内径30mm、長
さ500mmの円筒状金型(ステンレス製)の内周面に
塗布し、弾丸状走行体を自重により加工走行させ、次い
で1500rpmで10分間回転させて均一な塗膜厚と
した後、フィルム自体が支持できるようになるまで15
0℃で約60分加熱し、溶媒除去と一部イミド転化を行
った。この固化管状物を前記金型より剥離したところ、
長さ450mm、外径30mm、厚み30μmであっ
た。
This polyamic acid solution was applied to the inner peripheral surface of a cylindrical mold (made of stainless steel) having an inner diameter of 30 mm and a length of 500 mm, the bullet-shaped running body was processed and run by its own weight, and then rotated at 1500 rpm for 10 minutes. After making the coating film thickness uniform, it becomes 15 until the film itself can be supported.
The mixture was heated at 0 ° C. for about 60 minutes to remove the solvent and partially convert the imide. When the solidified tubular product was peeled from the mold,
The length was 450 mm, the outer diameter was 30 mm, and the thickness was 30 μm.

【0052】ついで、図2に示すように、アルミニウム
製の支持体1に前記固化管状物4を挿入し、これを40
0℃、30分間加熱して,溶媒および閉環水の除去なら
びにイミド転化の完結を行い、支持体1上にポリイミド
樹脂製管状物を形成させた。ついで、図3に示すよう
に、気体圧送台5を支持体1の底部にセットし、50k
Paの圧力で空気を圧送しながら、支持体1からポリイ
ミド製管状物を剥離した。
Then, as shown in FIG. 2, the solidified tubular article 4 is inserted into the aluminum support 1 and the solid tubular article 4 is inserted into the support 40.
By heating at 0 ° C. for 30 minutes, the removal of the solvent and the ring-closing water and the completion of the imide conversion were completed, and a tubular body made of a polyimide resin was formed on the support 1. Then, as shown in FIG. 3, the gas feed table 5 is set on the bottom of the support 1 and the pressure is reduced to 50 k.
The polyimide tubular product was peeled from the support 1 while air was being sent under a pressure of Pa.

【0053】このようにして抜き取ったポリイミド樹脂
製管状物には折れ、皺、傷等の外観不良が生じず、しか
も、抜き取り時間は1本当たり3秒と非常に短いもので
あった。
The polyimide resin tubular product thus extracted did not suffer from appearance defects such as folds, wrinkles and scratches, and the extraction time was as short as 3 seconds per piece.

【0054】このときの支持体1を構成するアルミニウ
ムの線熱膨張係数は2.3×10-5cm/cm/℃であ
るのに対し、ポリイミド樹脂製管状物の線熱膨張係数は
3.5×10-5cm/cm/℃と大きかった。線熱膨張
係数は、JIS K7197−1991に準じて、セイ
コーインスツルメント社製熱分析装置TMA/SS60
00にて測定した。
At this time, the linear thermal expansion coefficient of aluminum constituting the support 1 is 2.3 × 10 −5 cm / cm / ° C., whereas the linear thermal expansion coefficient of the polyimide resin tubular product is 3. It was as large as 5 × 10 −5 cm / cm / ° C. The coefficient of linear thermal expansion is in accordance with JIS K7197-1991, a thermal analyzer TMA / SS60 manufactured by Seiko Instruments Inc.
It was measured at 00.

【0055】(実施例2)ステンレス製の支持体を使用
したこと以外は実施例1と同様にして、ポリイミド樹脂
製管状物を得た。得られたポリイミド樹脂製管状物を、
実施例1と同様にして剥離した。
Example 2 A polyimide resin tubular product was obtained in the same manner as in Example 1 except that a stainless steel support was used. The obtained polyimide resin tubular product,
It was peeled off in the same manner as in Example 1.

【0056】このようにして抜き取ったポリイミド樹脂
製管状物には折れ、皺、傷等の外観不良が生じず、しか
も、抜き取り時間は1本当たり3秒と非常に短いもので
あった。
The polyimide resin tubular product extracted in this manner did not suffer from appearance defects such as folds, wrinkles and scratches, and the extraction time was very short, 3 seconds per piece.

【0057】このときの支持体1を構成するステンレス
の線熱膨張係数は1.7×10-5cm/cm/℃である
のに対し、ポリイミド樹脂製管状物の線熱膨張係数は
3.5×10-5cm/cm/℃と大きかった。
At this time, the linear thermal expansion coefficient of the stainless steel forming the support 1 is 1.7 × 10 −5 cm / cm / ° C., whereas the linear thermal expansion coefficient of the polyimide resin tubular product is 3. It was as large as 5 × 10 −5 cm / cm / ° C.

【0058】(比較例1)支持体の材質がアルミニウム
で、形状が中空部を有しない円筒状で気体圧送を行わな
かったこと以外は実施例1と同様にして、ポリイミド樹
脂製管状物を形成した。室温まで冷却した後、形成され
たポリイミド樹脂製管状物を抜き取ろうとしたが、支持
体に密着して抜き取るのに非常に力を要し、抜き取り時
間が1本当たり10秒かかり、作業性が非常に悪かっ
た。また、このようにして抜き取ったポリイミド樹脂製
管状物には折れ、皺、傷等の外観不良が生じた。
(Comparative Example 1) A polyimide resin tubular article was formed in the same manner as in Example 1 except that the support was made of aluminum and the shape of the support was cylindrical and did not have a hollow portion and gas was not fed under pressure. did. After cooling to room temperature, the formed polyimide resin tubular product was tried to be extracted, but it took a very strong force to extract the polyimide resin tubular product in close contact with the support, and the extraction time was 10 seconds per one, and workability was improved. It was very bad. In addition, the polyimide resin tubular product thus extracted had breakage, wrinkles, scratches, and other defective appearance.

【0059】このときの支持体を構成するアルミニウム
の綿膨張係数は2.3×10-5cm/cm/℃であるの
に対し、ポリイミド樹脂製管状物の綿膨張係数は3.5
×10-5cm/cm/℃と大きかった。
At this time, the cotton expansion coefficient of aluminum constituting the support is 2.3 × 10 −5 cm / cm / ° C., while the cotton expansion coefficient of the polyimide resin tubular product is 3.5.
It was as large as × 10 -5 cm / cm / ° C.

【0060】(比較例2)支持体の材質がステンレス
で、形状が中空部を有しない円筒状で気体圧送を行わな
かったこと以外は実施例1と同様にして、ポリイミド樹
脂製管状物を形成した。室温まで冷却した後、形成され
たポリイミド樹脂製管状物を抜き取ろうとしたが、支持
体に密着して抜き取ることが出来なかった。
(Comparative Example 2) A polyimide resin tubular article was formed in the same manner as in Example 1 except that the material of the support was stainless steel, and the shape was a cylindrical shape having no hollow portion, and gas was not fed under pressure. did. After cooling to room temperature, the formed polyimide resin tubular product was tried to be extracted, but it could not be extracted because it adhered to the support.

【0061】このときの支持体を構成するステンレスの
熱線膨張係数は1.7×10-5cm/cm/℃であるの
に対し、ポリイミド樹脂製管状物の熱線膨張係数は3.
5×10-5cm/cm/℃と大きかった。
At this time, the coefficient of linear thermal expansion of the stainless steel constituting the support is 1.7 × 10 −5 cm / cm / ° C., whereas the coefficient of linear thermal expansion of the polyimide resin tubular product is 3.
It was as large as 5 × 10 −5 cm / cm / ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる支持体の側面図FIG. 1 is a side view of a support used in the present invention.

【図2】図1の支持体に管状物を挿入した状態を示す断
面図
FIG. 2 is a cross-sectional view showing a state in which a tubular object is inserted in the support body of FIG.

【図3】図1の支持体に管状物が挿入された状態で気体
圧送を行っている状態を示す断面図
FIG. 3 is a cross-sectional view showing a state in which gas is being fed with a tubular object inserted in the support of FIG.

【符号の説明】[Explanation of symbols]

1 支持体 2 細孔 3 中空部 4 固化管状物 5 気体圧送台 6 入口 7 耐熱性樹脂管状物 1 support 2 pores 3 Hollow part 4 Solidified tubular objects 5 Gas pump 6 entrance 7 Heat-resistant resin tubular material

フロントページの続き Fターム(参考) 4F205 AC05 AD12 AE01 AG08 AH12 GA01 GB01 GC01 GD02 GF03 GF24 GN13 GN29 4F213 AA40 AG16 WA03 WA22 WA39 WA53 WA58 WA87 WA92 WB01 WC03 WF24 WK03 WW06 WW15 WW21 Continued front page    F-term (reference) 4F205 AC05 AD12 AE01 AG08 AH12                       GA01 GB01 GC01 GD02 GF03                       GF24 GN13 GN29                 4F213 AA40 AG16 WA03 WA22 WA39                       WA53 WA58 WA87 WA92 WB01                       WC03 WF24 WK03 WW06 WW15                       WW21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性樹脂材料溶液を円筒状金型面に塗
布し、加熱、乾燥により自己支持できるまで固化させた
後、固化した管状物を前記金型面から剥離させる工程、
および前記管状物の内径より小さい外径を有する支持体
を前記管状物に挿入した状態で焼成する工程を含む耐熱
性樹脂管状物の製造方法において、前記支持体は中空
で、その上端が密閉され、その側面に細孔を有するもの
であり、前記焼成工程終了後、前記支持体の中空部に気
体を圧送し、前記側面の細孔から支持体外部と耐熱性樹
脂管状物との間に気体を注入することにより、前記支持
体から前記耐熱性樹脂管状物を剥離する工程をさらに含
むことを特徴とする製造方法。
1. A step of applying a heat-resistant resin material solution to a cylindrical mold surface, solidifying by heating and drying until self-supporting, and then peeling the solidified tubular product from the mold surface,
In the method for producing a heat-resistant resin tubular product, which comprises a step of firing a support having an outer diameter smaller than the inner diameter of the tubular product in the tubular product, the support is hollow and its upper end is closed. , Which has pores on the side surface thereof, and after the firing step is completed, gas is pressure-fed to the hollow portion of the support, and gas is introduced between the outside of the support and the heat-resistant resin tubular material through the pores on the side surface. And a step of peeling off the heat-resistant resin tubular product from the support by injecting.
【請求項2】 前記耐熱性樹脂管状物の線熱膨張係数が
前記支持体の線熱膨張係数より大きい請求項1に記載の
製造方法。
2. The manufacturing method according to claim 1, wherein the heat-resistant resin tubular material has a coefficient of linear thermal expansion larger than that of the support.
JP2002001520A 2002-01-08 2002-01-08 Method for manufacturing heat-resistant resin tubular article Pending JP2003200443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002001520A JP2003200443A (en) 2002-01-08 2002-01-08 Method for manufacturing heat-resistant resin tubular article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001520A JP2003200443A (en) 2002-01-08 2002-01-08 Method for manufacturing heat-resistant resin tubular article

Publications (1)

Publication Number Publication Date
JP2003200443A true JP2003200443A (en) 2003-07-15

Family

ID=27641623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001520A Pending JP2003200443A (en) 2002-01-08 2002-01-08 Method for manufacturing heat-resistant resin tubular article

Country Status (1)

Country Link
JP (1) JP2003200443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664450A (en) * 2019-02-14 2019-04-23 厦门石地医疗科技有限公司 The method that leaching creeping quadratic method and device and leaching are moulded into type Miniature precision device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664450A (en) * 2019-02-14 2019-04-23 厦门石地医疗科技有限公司 The method that leaching creeping quadratic method and device and leaching are moulded into type Miniature precision device
CN109664450B (en) * 2019-02-14 2020-10-30 厦门石地医疗科技有限公司 Plastic dipping leveling method and device and method for dip molding miniature precision device

Similar Documents

Publication Publication Date Title
WO1991001220A1 (en) Composite tubular article and its production method
JPH07178741A (en) Polyimide composite tubular object and method and device for production thereof
US6001440A (en) Heat-conductive polyimide films, process for their preparation and their use
JP5129059B2 (en) Polyimide tubular body and method for producing the same
JP2011209578A (en) Tubular body and method for manufacturing the same
JP2003200443A (en) Method for manufacturing heat-resistant resin tubular article
JP2000147928A (en) Composite tubular object
JP4798853B2 (en) Seamless belt and manufacturing method thereof
JP5101137B2 (en) Polyimide belt and manufacturing method thereof
JP4071651B2 (en) Composite belt and manufacturing method thereof
JP3260679B2 (en) Seamless tubular film and device using the same
JP2005246793A (en) Method for producing shaped polyimide film
JPH0243046A (en) Composite tubular matter and manufacture thereof
JP3226326B2 (en) Manufacturing method of composite tubular material
JP4222909B2 (en) Composite tubular body
JP2006301196A (en) Seamless belt
JP2001215821A (en) Fixing belt and method of producing the same
JP3908346B2 (en) Production method of polyimide resin tubular body
JP2007229944A (en) Manufacturing method of seamless belt
JP2004042513A (en) Mold for secondary molding of seamless belt and manufacturing method using the same
JP2007083424A (en) Tubular body and its manufacturing method
JP2625021B2 (en) Deformed tubular article and its manufacturing method
JP2009120788A (en) Polyimide belt and method for manufacturing the same
JP2008100523A (en) Method for manufacturing composite belt
JP2002082550A (en) Fixing belt for electromagnetic induction heating and transfer fixing belt