JP2003196760A - Fire detector - Google Patents
Fire detectorInfo
- Publication number
- JP2003196760A JP2003196760A JP2001395898A JP2001395898A JP2003196760A JP 2003196760 A JP2003196760 A JP 2003196760A JP 2001395898 A JP2001395898 A JP 2001395898A JP 2001395898 A JP2001395898 A JP 2001395898A JP 2003196760 A JP2003196760 A JP 2003196760A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- detecting element
- temperature detecting
- temperature
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fire-Detection Mechanisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、温度検出素子を用
いて火災による気流の温度変化を検出する火災感知器に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fire detector for detecting a temperature change of an air flow due to a fire by using a temperature detecting element.
【0002】[0002]
【従来の技術】従来、この種の火災感知器としては、例
えば図17に示すものがある(実開昭55−15049
0)。この火災感知器は、回路基板105を内蔵した感
知器本体101に対し金属製の保護ケース102に収納
した温度検出素子103を突出して配置し、保護ケース
102の先端に火災による熱気流に対する温度の応答速
度を速めるために集熱板104を設けている。温度検出
素子103としてはトランジスタが使用されている。2. Description of the Related Art Conventionally, as a fire detector of this type, there is one shown in, for example, FIG.
0). In this fire detector, a temperature detection element 103 housed in a metal protective case 102 is arranged so as to project from a sensor body 101 having a built-in circuit board 105. A heat collecting plate 104 is provided to increase the response speed. A transistor is used as the temperature detecting element 103.
【0003】図18は従来の火災熱感知器の他の例であ
る。この火災感知器にあっては、回路基板105を内蔵
した感知器本体101に対し樹脂コーティング106が
施こされたサーミスタを温度検出素子103として使っ
ている。温度検出素子103の周囲には防護構造107
が設けられる。FIG. 18 shows another example of a conventional fire heat detector. In this fire detector, a thermistor in which a resin coating 106 is applied to a sensor body 101 having a built-in circuit board 105 is used as a temperature detecting element 103. A protective structure 107 is provided around the temperature detecting element 103.
Is provided.
【0004】この場合、温度検出素子103は樹脂コー
ティング106を介して外気に接しているので、図17
のような集熱板等の特別な集熱構造がなくても十分な応
答速度が得られる。In this case, since the temperature detecting element 103 is in contact with the outside air via the resin coating 106, the temperature detecting element 103 shown in FIG.
Even if there is no special heat collecting structure such as a heat collecting plate, a sufficient response speed can be obtained.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の火災感知器にあっては次のような問題があ
る。まず図17の火災感知器にあっては、保護ケース1
02の壁を通して感知器本体101へ熱が逃げないよう
にするため、感知器本体101と温度検出素子103の
間を離して配置する必要があり、そのため、小型化が困
難になる問題がある。However, such a conventional fire detector has the following problems. First, in the fire detector of FIG. 17, the protective case 1
In order to prevent heat from escaping to the sensor body 101 through the wall of 02, it is necessary to dispose the sensor body 101 and the temperature detecting element 103 apart from each other, which causes a problem that miniaturization becomes difficult.
【0006】また図18の火災感知器にあっては、配線
108の部分を通して熱エネルギーが逃げないよう感知
器本体101と温度検出素子103との間を離して配置
する必要があり、また、配線108の部分の機械的強度
が低いので、防護構造107が必要とされ、したがって
小型化が困難となる問題がある。Further, in the fire detector of FIG. 18, it is necessary to dispose the detector main body 101 and the temperature detecting element 103 apart from each other so that the heat energy does not escape through the portion of the wiring 108. Since the mechanical strength of the portion 108 is low, the protective structure 107 is required, and thus there is a problem that miniaturization is difficult.
【0007】本発明は、火災の熱気流による温度の応答
性が高く小型化可能な火災感知器を提供することを目的
とする。It is an object of the present invention to provide a fire detector which has a high temperature responsiveness due to the heat flow of a fire and can be miniaturized.
【0008】[0008]
【課題を解決するための手段】この目的を達成するた
め、本発明の火災感知器は、外側を熱気流を受ける感熱
面とした基板と、この基板の内側に熱的に接触して基板
の温度を検出する温度検出素子と、基板内側の外周部に
接して基板との間で閉鎖空間を形成し閉鎖空間内に温度
検出素子を内包する保護ケースとを備えたことを特徴と
する。In order to achieve this object, the fire detector of the present invention has a substrate having a heat sensitive surface on the outside for receiving a hot air flow and a substrate which is in thermal contact with the inside of the substrate. A temperature detecting element for detecting a temperature, and a protective case which is in contact with an outer peripheral portion inside the substrate to form a closed space between the substrate and the temperature detecting element is included in the closed space are provided.
【0009】このような本発明の火災感知器の構造によ
り、基板と温度検出素子で構成される感熱部が平面状で
あるため、薄型化と小型化が容易である。According to the structure of the fire detector of the present invention as described above, since the heat sensitive portion composed of the substrate and the temperature detecting element is flat, it is easy to make the device thinner and smaller.
【0010】ここで、基板は、基板内側の略中心に温度
検出素子を有するとともに、基板の厚みdと熱伝導率λ
diskの積が1.1×10-4[W/K]以下であることを
満たす形状および材質であることを特徴とする。Here, the substrate has a temperature detecting element substantially at the center inside the substrate, and the thickness d of the substrate and the thermal conductivity λ.
The shape and the material satisfy the requirement that the product of disks is 1.1 × 10 −4 [W / K] or less.
【0011】このため、火災の熱気流を基板で受けた際
に、温度検出素子から見て基板を介して逃げる熱量Q
diskが閉鎖空間の空気を介して逃げる熱量Qairと同程
度以下になり、熱エネルギーの流れに関して基板を空気
と同一視できるようになり、実質的に温度検出素子を空
気中に浮かせた状態に近い熱応答性、即ち速い熱応答と
大きな温度上昇が得られる。Therefore, when the heat flow of a fire is received by the substrate, the amount of heat Q escaping through the substrate as seen from the temperature detecting element.
The amount of heat that the disk escapes through the air in the enclosed space is less than or equal to Q air, and the substrate can be equated with the air in terms of the flow of thermal energy, so that the temperature detecting element is substantially suspended in the air. A close thermal response, that is, a fast thermal response and a large temperature rise can be obtained.
【0012】また本発明の火災感知器は、基板と保護ケ
ースで形成される閉鎖空間に樹脂材料または断熱材料が
充填されていても良い。Further, in the fire detector of the present invention, the closed space formed by the substrate and the protective case may be filled with a resin material or a heat insulating material.
【0013】[0013]
【発明の実施の形態】図1は、本発明の火災感知器にお
ける基本構造である。この基本構造は、基板1、温度検
出素子2、保護ケースとして機能する感知器本体3から
構成される。基板1は外側を熱気流を受ける感熱面と
し、温度検出素子2は基板1の裏面の中央付近、即ち基
板1と感知器本体3の接合部に接しない裏面に設置さ
れ、基板1の内側に熱的に接触して基板1の温度を検出
する。1 is a basic structure of a fire detector according to the present invention. This basic structure comprises a substrate 1, a temperature detecting element 2, and a sensor body 3 that functions as a protective case. The outside of the substrate 1 is a heat-sensitive surface that receives a hot air flow, and the temperature detecting element 2 is installed near the center of the back surface of the substrate 1, that is, on the back surface that is not in contact with the joint between the substrate 1 and the sensor body 3, and inside the substrate 1. The temperature of the substrate 1 is detected by making thermal contact.
【0014】更に感知器本体4は、温度検出素子2と基
板1内側の外周部に接して基板1との間で閉鎖空間を形
成し、この閉鎖空間内に温度検出素子2を内包してい
る。Further, the sensor body 4 is in contact with the temperature detecting element 2 and the outer peripheral portion inside the substrate 1 to form a closed space between the substrate 1 and the temperature detecting element 2 in the closed space. .
【0015】ここで、基板1、温度検出素子2、感知器
本体3は次の条件を満たすようにしている。まず基板1
の厚さdとしては、機械的強度と熱応答性の点から0.
1[mm]以上で且つ0.8[mm]以下が望ましい
(0.1[mm] ≦d ≦0.8[mm])。Here, the substrate 1, the temperature detecting element 2, and the sensor main body 3 are set to satisfy the following conditions. First, substrate 1
The thickness d is 0 .. from the viewpoint of mechanical strength and thermal response.
It is desirable that it is 1 [mm] or more and 0.8 [mm] or less (0.1 [mm] ≤ d ≤ 0.8 [mm]).
【0016】また基板1の材質としては、熱伝導率が小
さく一定の強度を有するプラスチックやガラス類が望ま
しい。望ましくは、基板1の厚さdとその熱伝導率λ
diskの積が次の条件を満たす形状および材質とする。The material of the substrate 1 is preferably plastic or glass having a small thermal conductivity and a certain strength. Desirably, the thickness d of the substrate 1 and its thermal conductivity λ
The product and shape of disk satisfy the following conditions.
【0017】
d・λdisk≦1.1×10-4 [W/K] (1)
但し、d :基板の厚さ[m]
λdisk :基板の熱伝導率[W/(m・K)]
図2は、上記条件式(1)で使用されている記号の説明
図であり、r0は温度検出素子の半径または平均半径、
rは基板の半径または平均半径、dは基板の厚さ、λ
diskは基板の熱伝導率Rdiskは温度検出素子と本体間の
基板を介しての熱抵抗、Rairは温度検出素子と本体間
の空気を介しての熱抵抗をそれぞれ表す。D · λ disk ≦ 1.1 × 10 −4 [W / K] (1) where d: thickness of the substrate [m] λ disk : thermal conductivity of the substrate [W / (m · K) FIG. 2 is an explanatory diagram of symbols used in the conditional expression (1), where r 0 is the radius or average radius of the temperature detecting element,
r is the radius or average radius of the substrate, d is the thickness of the substrate, λ
disk is the thermal conductivity of the substrate R disk is the thermal resistance through the substrate between the temperature detecting element and the main body, and R air is the thermal resistance through the air between the temperature detecting element and the main body.
【0018】そこで図2の記号を用いて各部の機能を説
明する。図3(A)は各部の熱的な関係を表す説明図で
ある。熱気流から薄い基板1を介して温度検出素子2に
与えられた熱エネルギーは、基板1および空気を介して
感知器本体3へ逃げる。The functions of the respective parts will be described with reference to the symbols in FIG. FIG. 3A is an explanatory diagram showing the thermal relationship of each part. The thermal energy given to the temperature detecting element 2 from the hot airflow via the thin substrate 1 escapes to the sensor body 3 via the substrate 1 and air.
【0019】ここで温度検出素子2に与えられる熱エネ
ルギーをQin、感知器本体3に逃げる総熱エネルギーを
Qlossとすると、温度検出素子2の温度上昇ΔTsは、
QinとQlossの差に比例する。Assuming that the thermal energy applied to the temperature detecting element 2 is Q in and the total thermal energy escaping to the sensor body 3 is Q loss , the temperature rise ΔT s of the temperature detecting element 2 is
It is proportional to the difference between Q in and Q loss .
【0020】[0020]
【数1】 [Equation 1]
【0021】Qinは外的条件によって決まるので、これ
を同一と仮定すると、温度上昇ΔT sを最大とするため
にはQlossをできるだけ小さくすることが効果的であ
る。QinIs determined by external conditions, so this
Assuming the same, the temperature rise ΔT sTo maximize
QlossIt is effective to make
It
【0022】そこで、温度検出素子2から基板1を介し
て逃げる熱エネルギー流量をQdisk、空気を介して逃げ
る熱エネルギー流量をQairとすると、熱流量Qdisk,
Qairは、それぞれの熱抵抗RdiskおよびRairに逆比例
し、その間に次の関係式(2)と(3)が成り立つ。Therefore, assuming that the thermal energy flow rate escaping from the temperature detecting element 2 via the substrate 1 is Q disk , and the thermal energy flow rate escaping via air is Q air , the heat flow rate Q disk ,
Q air is inversely proportional to the respective thermal resistances R disk and R air , and the following relational expressions (2) and (3) are established therebetween.
【0023】[0023]
【数2】 [Equation 2]
【0024】熱流量QdiskがQairと同程度以下、即ち
Qdisk≦Qairになるよう構成すると、熱エネルギーの
流れに関して基板1を空気と同一視できるようになる。If the heat flow rate Q disk is equal to or less than Q air , that is, Q disk ≤Q air , the substrate 1 can be regarded as air with respect to the flow of heat energy.
【0025】このため基板1を空気と同一視でき、感知
器本体3へ逃げる総熱エネルギー量が小さいため、図3
(B)のように、温度検出素子2を空気中に浮かせた状
態に近い熱応答性、すなわち速い熱応答と大きな温度上
昇が得られる。また、基板1と温度検出素子2で構成さ
れる感熱部が平面状であるため、火災感知器の薄型化と
小型化が容易である。Therefore, the substrate 1 can be identified with air, and the total amount of heat energy that escapes to the sensor body 3 is small.
As shown in (B), a thermal response close to a state in which the temperature detecting element 2 is floated in the air, that is, a fast thermal response and a large temperature rise can be obtained. In addition, since the heat-sensitive portion composed of the substrate 1 and the temperature detecting element 2 is flat, it is easy to make the fire detector thin and compact.
【0026】尚、以上の説明においては、基板1の表面
に垂直な方向の熱抵抗は基板1を厚さ0.8[mm]以
下と十分薄くすれば無視できるので、考慮していない。In the above description, the thermal resistance in the direction perpendicular to the surface of the substrate 1 can be neglected if the substrate 1 is made sufficiently thin with a thickness of 0.8 [mm] or less, and is not considered.
【0027】次に図2の記号を用いて(1)式で与えら
れる基板の条件の根拠を説明する。温度検出素子2の感
熱部分となる感熱部の半径をr0、基板1の半径をr、
基板の熱伝導率をλdisk、空気の熱伝導率をλairとお
くと、基板の熱抵抗Rdiskおよび空気の熱抵抗 Rairは
次の式(4)と式(5)で近似される値となる。Next, the basis of the substrate condition given by the equation (1) will be described with reference to the symbols in FIG. The radius of the heat-sensitive portion that is the heat-sensitive portion of the temperature detection element 2 is r 0 , the radius of the substrate 1 is r,
Assuming that the thermal conductivity of the substrate is λ disk and the thermal conductivity of air is λ air , the thermal resistance R disk of the substrate and the thermal resistance R air of air are approximated by the following equations (4) and (5). It becomes a value.
【0028】[0028]
【数3】 [Equation 3]
【0029】式(4)及び式(5)の導出を更に詳細に
説明すると次のようになる。図4は基板の熱抵抗Rdisk
を求めるための説明図である。The derivation of equations (4) and (5) will be described in more detail as follows. Figure 4 shows the thermal resistance of the substrate R disk
It is explanatory drawing for calculating | requiring.
【0030】図4において、基板1の厚さをd[m
m]、半径r0[mm]の円柱側面から、中心を同じく
する厚さd[mm]、半径r[mm]の円柱側面までの
熱抵抗をR[K/W]、円柱側面の面積をSとして、熱
抵抗Rを求める。微小半径dr間の温度差dT[K]は
半径方向の熱流束qr[W/m2]が流れようとしたとき
に、熱抵抗dR[K/W]があることによって生ずる。
これを式に表すと式(6)のようになる。In FIG. 4, the thickness of the substrate 1 is set to d [m
m] and the radius r 0 [mm] of the cylinder side surface to the thickness d [mm] with the same center and the radius r [mm] of the cylinder side surface, the thermal resistance is R [K / W], and the area of the cylinder side surface is The thermal resistance R is obtained as S. The temperature difference dT [K] between the minute radii dr is caused by the thermal resistance dR [K / W] when the heat flux q r [W / m 2 ] in the radial direction is about to flow.
When this is expressed in a formula, it becomes like a formula (6).
【0031】dT=S・qr・dR (6)
ここで熱流速qrは熱伝導率λの定義から式(7)で表
される。DT = Sq r dR (6) Here, the heat flow velocity q r is expressed by the equation (7) from the definition of the thermal conductivity λ.
【0032】[0032]
【数4】 [Equation 4]
【0033】(7)
式(7)を式(6)に代入すると、熱抵抗dRは式
(8)で表される。(7) Substituting equation (7) into equation (6), the thermal resistance dR is expressed by equation (8).
【0034】[0034]
【数5】 [Equation 5]
【0035】(8)
求める熱抵抗Rは半径r0の円柱側面から半径rの円柱
側面までの間の熱抵抗であるから式(8)は、(8) The thermal resistance R to be obtained is the thermal resistance between the side surface of the cylinder having the radius r 0 and the side surface of the cylinder having the radius r 0 .
【0036】[0036]
【数6】 [Equation 6]
【0037】(9)
となる。また円柱側面の面積Sは、S=2πrdである
から、これを代入して次式が得られる。(9) is obtained. Further, since the area S of the side surface of the cylinder is S = 2πrd, the following equation is obtained by substituting this.
【0038】[0038]
【数7】 [Equation 7]
【0039】以上により、基板1の厚さをd[mm]、
半径r0[mm]の円柱側面から、中心を同じくする厚
さd[mm]、半径r[mm]の円柱側面までの熱抵抗
R[K/W]は式(4)で表される。From the above, the thickness of the substrate 1 is set to d [mm],
The thermal resistance R [K / W] from the side surface of the cylinder having the radius r 0 [mm] to the side surface of the cylinder having the same center thickness d [mm] and radius r [mm] is expressed by the equation (4).
【0040】図5は空気の熱抵抗Rairを求めるための
説明図である。図5において、半径r0[mm]の半球
面から、中心を同じくする半球面までの熱抵抗をR[K
/W]、半球面間を埋めている材質の熱伝導率をλ、半
球面の表面積をSとして熱抵抗Rを求める。FIG. 5 is an explanatory diagram for obtaining the thermal resistance R air of air . In FIG. 5, the thermal resistance from a hemisphere having a radius r 0 [mm] to a hemisphere having the same center is represented by R [K
/ W], the thermal conductivity of the material filling the space between the hemispheres is λ, and the surface area of the hemisphere is S, and the thermal resistance R is determined.
【0041】微小半径dr間の温度差dT[K]は半径
方向の熱流束qr[W/m2]が流れようとしたときに、
熱抵抗dR[K/W]があることによって生ずる。これ
を式に表すと式(6)のようになる。The temperature difference dT [K] between the minute radii dr is, when the radial heat flux q r [W / m 2 ] is about to flow,
It is caused by the presence of thermal resistance dR [K / W]. When this is expressed in a formula, it becomes like a formula (6).
【0042】dT=S・qr・dR (10)
ここで熱流速qrは熱伝導率λの定義から式(11)で
表される。DT = Sq r dR (10) Here, the heat flow rate q r is expressed by the equation (11) from the definition of the thermal conductivity λ.
【0043】[0043]
【数8】 [Equation 8]
【0044】(11)
式(11)を式(10)に代入すると、熱抵抗Rは式
(12)で表される。(11) When the equation (11) is substituted into the equation (10), the thermal resistance R is represented by the equation (12).
【0045】[0045]
【数9】 [Equation 9]
【0046】(12)
求める熱抵抗Rは半径r0の半球面から半径rの半球面
までの間の熱抵抗であるから式(12)は、(12) Since the calculated thermal resistance R is the thermal resistance between the hemisphere with radius r 0 and the hemisphere with radius r, equation (12) is
【0047】[0047]
【数10】 [Equation 10]
【0048】となる。また円柱側面の面積Sは、S=2
πr2であるから、これを代入して次式が得られる。It becomes The area S of the side surface of the cylinder is S = 2
Since it is πr 2 , the following equation is obtained by substituting this.
【0049】[0049]
【数11】 [Equation 11]
【0050】以上により、半径r0[mm]の半球面か
ら、中心を同じくする半径r[mm]の半球面までの熱
抵抗R[K/W]は式(5)で表される。As described above, the thermal resistance R [K / W] from the hemisphere having the radius r 0 [mm] to the hemisphere having the same radius r [mm] is expressed by the equation (5).
【0051】ここで、r0およびrに、火災感知器の感
熱部として現実的な寸法r0=2[mm]とr=15
[mm]を代入し、空気の熱伝導率としてλair=0.
024[W/(m・K)]を用いる。その結果、式
(4)と式(5)は、それぞれ式(13)と式(14)
のように書き換えられる。Here, for r 0 and r, realistic dimensions r 0 = 2 [mm] and r = 15 for the heat-sensitive part of the fire detector.
Substituting [mm], the thermal conductivity of air is λ air = 0.
024 [W / (m · K)] is used. As a result, the equations (4) and (5) are changed to the equations (13) and (14), respectively.
Can be rewritten as
【0052】[0052]
【数12】 [Equation 12]
【0053】尚、温度検出素子は、保護ケースとしての
感知器本体3内に内包されるため、対流が生じないもの
として空気を固体として取り扱っているが、自然対流な
どを考慮して空気への熱伝達率を用いて解析を行っても
よいことはいうまでもない。Since the temperature detecting element is contained in the sensor body 3 as a protective case, air is treated as solid so that convection does not occur, but natural convection and the like are taken into consideration. It goes without saying that the analysis may be performed using the heat transfer coefficient.
【0054】一方、Qlossを小さく抑えるためには、基
板1を介して逃げる熱エネルギー流量Qdiskを空気を介
して逃げる熱エネルギー流量Qairと同程度にすること
が望ましい(Qdisk≦Qair)。式(3)からこの条件
を熱抵抗に置き換えると、式(15)と表現される。
Rdisk≧Rair ・・・(15)
この式(15)に、式(13)、式(14)を代入する
と、式(16)の条件が求まる。
d・λdisk≦1.1×10-4[W/K] ・・・(16)
式(15)に基板の厚さdと熱伝導率λdiskの具体的な
数値を代入して例示する。基板の厚さをd=0.1[m
m]とする場合、式(16)から熱伝導率の条件として
λdisk ≦1.1[W/(m・K)]
が求まる。On the other hand, in order to suppress Q loss to a small value, it is desirable that the thermal energy flow rate Q disk escaping via the substrate 1 be made approximately equal to the thermal energy flow rate Q air escaping via air (Q disk ≤Q air ). Replacing this condition with thermal resistance from the equation (3), it is expressed as the equation (15). R disk ≧ R air (15) By substituting the equations (13) and (14) into the equation (15), the condition of the equation (16) is obtained. d · λ disk ≦ 1.1 × 10 −4 [W / K] (16) An example is given by substituting the specific values of the substrate thickness d and the thermal conductivity λ disk into the equation (15). . The thickness of the substrate is d = 0.1 [m
m], λ disk ≦ 1.1 [W / (m · K)] is obtained as a condition of thermal conductivity from the equation (16).
【0055】火災感知器の外カバーの材質として使われ
るポリカーボネート樹脂(λdisk≒0.23[W/(m
・K)])や、プリント基板で使われるエポキシ樹脂
(λ disk ≒0.30[W/(m・K)])、ホウケイ
酸ガラス(パイレックス(登録商標)7740(R))
(λdisk ≒1.1[W/(m・K)])等が条件を満
たすことがわかる。Used as a material for the outer cover of the fire detector
Polycarbonate resin (λdisk≈ 0.23 [W / (m
・ K)]) and epoxy resin used in printed circuit boards
(Λ disk ≒ 0.30 [W / (m · K)]), Hokei
Acid glass (Pyrex (registered trademark) 7740 (R))
(Λdisk ≈1.1 [W / (m · K)]) etc. meet the conditions
I know you can do it.
【0056】厚さdの値が望ましい範囲(0.1[m
m] ≦d ≦0.8[mm])より厚い場合(d=1.
0[mm])を例示する。式(16)にd=1.0[m
m]を代入すると、熱伝導率の条件として
λdisk ≦0.11[W/(m・K)]
が求まる。このため基板1が厚い場合には、一定以上の
機械的強度を持ち、かつλdisk≦0.11[W/(m・
K)]を満たす材料を得るのは困難である。The value of the thickness d is within a desirable range (0.1 [m
m] ≤ d ≤ 0.8 [mm]) (d = 1.
0 [mm]) is illustrated. In Expression (16), d = 1.0 [m
[m] is substituted, λ disk ≦ 0.11 [W / (m · K)] is obtained as a condition of thermal conductivity. Therefore, when the substrate 1 is thick, it has a mechanical strength of a certain level or more and λ disk ≦ 0.11 [W / (m ·
K)] is difficult to obtain.
【0057】一方、望ましい範囲(0.1[mm]≦d
≦0.8[mm])より薄い場合(d=0.05[m
m])では、熱伝導率の条件は
λdisk≦2.2[W/(m・K)]
となる。ほぼ全てのプラスチック材料やガラス類等が、
この条件を満たすが、厚さが0.1[mm] 未満で
は、十分な機械的この強度を得るのが困難である。On the other hand, a desirable range (0.1 [mm] ≦ d
<0.8 [mm]) (d = 0.05 [m
m]), the condition of thermal conductivity is λ disk ≦ 2.2 [W / (m · K)]. Almost all plastic materials and glass,
Although this condition is satisfied, if the thickness is less than 0.1 [mm], it is difficult to obtain sufficient mechanical strength.
【0058】プラスチックやガラス類より熱伝導率の高
い材質を使う場合について例示する。材質としてアルミ
(金属)を使う場合、式(16)にλdisk≒237[W
/(m・K)]を代入すると、条件式は
d ≦4.6×10-3[mm]
となる。この場合には基板1を非常に薄くする必要があ
るため、十分な機械的強度を得るのが困難である。An example of using a material having a higher thermal conductivity than plastic or glass will be described. When aluminum (metal) is used as the material, λ disk ≈ 237 [W
/ (M · K)], the conditional expression becomes d ≦ 4.6 × 10 −3 [mm]. In this case, since it is necessary to make the substrate 1 very thin, it is difficult to obtain sufficient mechanical strength.
【0059】また、材質としてアルミ(セラミックス)
を使う場合、式(16)にλdisk≒36[W/(m・
K)]を代入すると、条件式は
d≦3.1×10-2[mm]
となる。この場合もアルミと同様に基板1を非常に薄く
する必要があるため、十分な機械的強度を得るのが困難
である。Aluminum (ceramics) is used as the material.
Is used, λ disk ≈ 36 [W / (m ·
K)], the conditional expression becomes d ≦ 3.1 × 10 −2 [mm]. In this case as well, it is difficult to obtain sufficient mechanical strength because the substrate 1 needs to be made very thin like aluminum.
【0060】図6は、基板の材質としてλdisk≒0.2
6[W/(m・K)]のプラスチックを使用し、厚さd
= 0.2、0.3、0.4、0.8、1.6[mm]
とした場合の温度検出素子2の温度上昇のようすであ
る。FIG. 6 shows that the material of the substrate is λ disk ≈0.2.
6 [W / (m · K)] plastic is used and thickness d
= 0.2, 0.3, 0.4, 0.8, 1.6 [mm]
In this case, the temperature rise of the temperature detecting element 2 is caused.
【0061】厚さdと熱伝導率λdiskの積(d・
λdisk)が条件式
d・λdisk≦1.1×10-4[W/K]
を満たす場合に、特に上昇温度が高くなることがわか
る。The product of the thickness d and the thermal conductivity λ disk (d ·
It can be seen that the temperature rise is particularly high when λ disk ) satisfies the conditional expression d · λ disk ≦ 1.1 × 10 −4 [W / K].
【0062】以上のように、一般的な火災感知器の大き
さにおいて、基板1の厚さdと熱伝導率λdisk が
d・λdisk≦1.1×10-4[W/K]
の条件を満たすとき、十分な機械的強度を保ちつつ最適
な応答が得られる。As described above, in the size of a general fire detector, the thickness d of the substrate 1 and the thermal conductivity λ disk are d · λ disk ≦ 1.1 × 10 −4 [W / K]. When the conditions are satisfied, an optimum response can be obtained while maintaining sufficient mechanical strength.
【0063】図7は、感熱部の半径r0と基板1の半径
rを変化させたときの式(13)、(14)から求めた
熱抵抗Rdisk,Rairを用いた(15)の関係を満足す
る条件式
d・λdisk≒α×10-4[W/K]
における係数αの値を列挙している。In FIG. 7, the thermal resistances R disk and R air obtained from the equations (13) and (14) when the radius r 0 of the heat sensitive part and the radius r of the substrate 1 are changed are used in (15). The values of the coefficient α in the conditional expression d · λ disk ≈α × 10 −4 [W / K] satisfying the relationship are listed.
【0064】このうち実用的な見地から前述したように
r0=2.0[mm]、r=15[mm]の係数α=
1.1が望ましい。勿論、半径r0と基板1の半径rが
これ以外の値をとるときには、それぞれに対応した条件
を満足する基板1の厚さdとその熱伝導係数λdisk
の積となるように形状および材質を決めればよい。From a practical point of view, as described above, the coefficient α of r 0 = 2.0 [mm] and r = 15 [mm] =
1.1 is preferable. Of course, when the radius r 0 and the radius r of the substrate 1 take other values, the thickness d of the substrate 1 and its thermal conductivity coefficient λdisk satisfying the corresponding conditions.
The shape and material may be determined so that the product of
【0065】図8は温度検出素子として熱電対を使用し
た場合の実施形態である。図8において、この実施形態
の火災感知器は、(1)式の条件を満足する材質と形状
を持った基板1、基板1の中央裏側に温度検出素子とし
て配置された熱電対2a、及び熱電対2aの周囲を囲ん
で保護ケースとして設けられた感知器本体3で構成さ
れ、感知器本体3を天井面などの取付面4に設置してい
る。FIG. 8 shows an embodiment in which a thermocouple is used as the temperature detecting element. In FIG. 8, the fire detector according to this embodiment includes a substrate 1 having a material and a shape satisfying the condition of the expression (1), a thermocouple 2a arranged as a temperature detecting element on the back side of the center of the substrate 1, and a thermoelectric element. The sensor main body 3 is provided as a protective case surrounding the pair 2a, and the sensor main body 3 is installed on a mounting surface 4 such as a ceiling surface.
【0066】この実施形態で温度検出素子として使用し
ている熱電対2aは、図1の基本構成に示したような平
板状の感熱部ではないが、その実質的な半径rは例えば
r0=2mm程度とすることで同様に構成することがで
きる。The thermocouple 2a used as the temperature detecting element in this embodiment is not a flat plate-shaped heat sensitive portion as shown in the basic configuration of FIG. 1, but its substantial radius r is, for example, r 0 = The same configuration can be achieved by setting the distance to about 2 mm.
【0067】図9は基板と感知器本体との間の空間に充
填材を設けた本発明の実施形態の説明図である。この実
施形態にあっては、基板1の背後中央に設けた温度検出
素子2の外側を覆って設けた感知器本体3の内部の空間
に、図1の実施形態のような空気ではなく、空気に代え
て充填材11を設けている。この充填材としては、熱伝
導率が十分に小さい発泡性樹脂や断熱材を使用すること
ができる。FIG. 9 is an explanatory view of an embodiment of the present invention in which a filler is provided in the space between the substrate and the sensor body. In this embodiment, in the space inside the sensor body 3 which covers the outside of the temperature detecting element 2 provided at the center of the back of the substrate 1, the air is not the air as in the embodiment of FIG. Instead of this, a filler 11 is provided. As the filler, a foaming resin or a heat insulating material having a sufficiently small thermal conductivity can be used.
【0068】図10は基板と温度検出素子の間に金属箔
を挟んだ本発明の実施形態の説明図である。この実施形
態にあっては、基板1の裏面中央に配置する温度検出素
子2の間に金属箔5を挟み込んでいる。このように基板
1と温度検出素子2の間に金属箔を挟み込むことで、基
板1で受けた熱気流による熱エネルギが金属箔5に蓄え
られ、温度検出素子2の温度上昇を助ける作用が得られ
る。FIG. 10 is an explanatory view of an embodiment of the present invention in which a metal foil is sandwiched between the substrate and the temperature detecting element. In this embodiment, the metal foil 5 is sandwiched between the temperature detecting elements 2 arranged in the center of the back surface of the substrate 1. By sandwiching the metal foil between the substrate 1 and the temperature detecting element 2 in this way, the heat energy due to the heat flow received by the substrate 1 is stored in the metal foil 5, and an action of assisting the temperature rise of the temperature detecting element 2 is obtained. To be
【0069】図11は金属箔を温度検出素子の電極素子
として配置した本発明の実施形態の説明図である。この
実施形態にあっては、基板1の裏面側のほぼ中央に温度
検出素子2を配置する際に、その電極端子として例えば
2つの金属箔5を両側に配置して基板1との間には挟み
込んでいる。金属箔5からは両側に配線6が引き出され
ている。FIG. 11 is an explanatory view of an embodiment of the present invention in which a metal foil is arranged as an electrode element of a temperature detecting element. In this embodiment, when the temperature detecting element 2 is arranged substantially in the center on the back surface side of the substrate 1, for example, two metal foils 5 are arranged on both sides as electrode terminals thereof and are placed between the substrate 1 and the metal foil 5. It's sandwiched. Wirings 6 are drawn out from the metal foil 5 on both sides.
【0070】この実施形態にあっても、電極端子として
配置した金属箔5は、基板1で熱気流を受けた際の熱エ
ネルギーが蓄えられ、温度検出素子2の温度上昇を助け
る作用が得られる。Also in this embodiment, the metal foil 5 arranged as the electrode terminal stores the thermal energy when the substrate 1 receives the hot air flow, and has the function of assisting the temperature rise of the temperature detecting element 2. .
【0071】図12は図11の実施形態に加え、更に基
板の裏面に温度検出素子以外に他の電気部品を配置した
実施形態である。この実施形態にあっては、基板1の裏
面中央には電極端子として一対の金属箔5を介して温度
検出素子2が配置され、金属箔5からは両側に配線6が
引き出されている。この配線6の途中には必要に応じて
電気部品7が設けられている。このように基板1の裏面
側を電気部品7の実装面とすることで、別途、電気回路
の実装基板を設けた場合の実装効率を高めることができ
る。FIG. 12 shows an embodiment in which, in addition to the embodiment shown in FIG. 11, other electric components besides the temperature detecting element are arranged on the back surface of the substrate. In this embodiment, the temperature detecting element 2 is arranged in the center of the back surface of the substrate 1 as an electrode terminal via a pair of metal foils 5, and wirings 6 are drawn out from the metal foils 5 on both sides. An electric component 7 is provided in the middle of the wiring 6 as required. By using the back surface side of the substrate 1 as the mounting surface of the electric component 7 in this manner, it is possible to improve the mounting efficiency when a mounting substrate for an electric circuit is separately provided.
【0072】図13は基板と感知器本体との間に電気回
路を配置した本発明の実施形態である。この実施形態に
あっては、基板1の裏面ほぼ中央に設けた温度検出素子
2の周囲を覆って感知器本体3が設けられており、この
感知器本体3と基板1との間の内部空間に電気回路8を
設け、電気回路8に対し配線6によって温度検出素子2
との接続を行っている。FIG. 13 shows an embodiment of the present invention in which an electric circuit is arranged between the substrate and the sensor body. In this embodiment, the sensor body 3 is provided so as to cover the temperature detecting element 2 provided substantially in the center of the back surface of the substrate 1, and the internal space between the sensor body 3 and the substrate 1 is provided. The electric circuit 8 is provided on the electric circuit 8, and the temperature detecting element 2 is connected to the electric circuit 8 by the wiring 6.
Is connected with.
【0073】このように基板1と感知器本体3の間の密
閉空間に電気回路8が設けられることで、温度検出素子
2と同様、外気との遮断ができ、湿気や腐食性ガスなど
による影響を受けないことから、耐久性を向上できる。Since the electric circuit 8 is provided in the sealed space between the substrate 1 and the sensor body 3 as described above, it is possible to shut off the outside air as in the case of the temperature detecting element 2 and the influence of moisture or corrosive gas. The durability can be improved because it is not subject to damage.
【0074】図14は基板に集熱構造を設けた本発明の
実施形態の説明図である。この実施形態にあっては、裏
面中央に温度検出素子2を配置した基板1の表面側に、
温度検出素子2に相対して金属部材を使用した集熱構造
9例えば集熱板を設けている。FIG. 14 is an explanatory view of an embodiment of the present invention in which the substrate has a heat collecting structure. In this embodiment, on the front surface side of the substrate 1 in which the temperature detecting element 2 is arranged in the center of the back surface,
A heat collecting structure 9 using a metal member, for example, a heat collecting plate is provided opposite to the temperature detecting element 2.
【0075】このように基板1の表面ほぼ中央に温度検
出素子2に相対して集熱構造9を設けることで、火災の
熱気流を受けたときの温度検出素子2の温度上昇を集熱
構造9によって更に速くすることができる。Thus, by providing the heat collecting structure 9 facing the temperature detecting element 2 substantially in the center of the surface of the substrate 1, the temperature rising of the temperature detecting element 2 when receiving the heat flow of a fire is collected. 9 can make it even faster.
【0076】図15は基板中心部に金属部材を配置して
その裏側に温度検出素子を配置した本発明の実施形態の
説明図である。この実施形態にあっては、基板1の中央
にアルミなどの熱伝導率の高い金属部材10を埋め込ん
でおり、裏側に露出した金属部材10に対し温度検出素
子2を設け、その外側を覆って保護ケースとしての感知
器本体3を設けている。FIG. 15 is an explanatory view of an embodiment of the present invention in which a metal member is arranged in the center of the substrate and a temperature detecting element is arranged on the back side thereof. In this embodiment, a metal member 10 having a high thermal conductivity such as aluminum is embedded in the center of the substrate 1, the temperature detecting element 2 is provided for the metal member 10 exposed on the back side, and the outside thereof is covered. A sensor body 3 is provided as a protective case.
【0077】このように基板1の中央に設けた金属部材
10により火災による熱気流を受けると、その熱エネル
ギーが直接金属部材10を通って温度検出素子2に加わ
り、温度検出素子2の温度上昇が基板1の介在により妨
げられることなく、より速く温度上昇することができ
る。When a heat flow due to a fire is received by the metal member 10 provided in the center of the substrate 1 as described above, the heat energy is directly applied to the temperature detecting element 2 through the metal member 10 and the temperature of the temperature detecting element 2 rises. The temperature can be raised faster without being hindered by the interposition of the substrate 1.
【0078】図16は基板1の表面側ほぼ中央に温度検
出素子を配置した例である。この例にあっては、基板1
のほぼ中央外側に露出して温度検出素子2を配置してお
り、火災による熱気流を直接、温度検出素子2で受ける
ことで、温度上昇を速くすることができる。基板1の外
部に配置された温度検出素子2に対しては、樹脂コーテ
ィングなどの保護膜を施し、湿気や腐食性ガスによる影
響を防ぐようにする。また温度検出素子2に対する配線
は、基板1を貫通して感知器本体3内から行う。FIG. 16 shows an example in which a temperature detecting element is arranged substantially in the center of the front surface side of the substrate 1. In this example, the substrate 1
By arranging the temperature detecting element 2 so as to be exposed to the outside substantially in the center, and directly receiving the heat flow due to the fire at the temperature detecting element 2, the temperature rise can be accelerated. A protective film such as a resin coating is applied to the temperature detecting element 2 arranged outside the substrate 1 to prevent the influence of moisture or corrosive gas. Wiring for the temperature detecting element 2 is performed from inside the sensor body 3 by penetrating the substrate 1.
【0079】なお本発明は、その目的と利点を損なわな
い適宜の変形を含み、上記の実施形態に限定されない。
また本発明は、上記の実施形態に示した数値による限定
も受けない。The present invention is not limited to the above embodiment, including appropriate modifications that do not impair the object and advantages thereof.
Further, the present invention is not limited by the numerical values shown in the above embodiments.
【0080】[0080]
【発明の効果】以上説明してきたように本発明によれ
ば、外側を熱気流を受ける感熱面とした基板の内側に熱
的に接触して基盤の温度を検出する温度検出素子を設
け、更に基板内側の外周部に接して基板との間で閉鎖空
間を形成して、この閉鎖空間内に温度検出素子を内包す
る保護ケースとを備えた構造により、基板と温度検出素
子で構成される感熱部が平面状となり、火災感知器の薄
型化と小型化を容易に達成することができる。As described above, according to the present invention, there is provided a temperature detecting element for detecting the temperature of the substrate by thermally contacting the inside of the substrate whose outside is a heat sensitive surface for receiving a heat flow. A heat-sensitive structure composed of the substrate and the temperature detecting element is formed by a structure including a closed space that is in contact with the outer peripheral portion inside the substrate Since the part has a flat shape, it is possible to easily achieve a thin and compact fire detector.
【0081】また本発明にあっては、基板の内側ほぼ中
心に温度検出素子を配置した状態で、基板の厚みとその
熱伝導率の積が1.1×10-4[W/K]以下となるよ
うな形状及び材質としたことで、熱エネルギの流れに関
し基板を空気とほぼ同一視できるようにし、実質的に温
度検出素子を空気中に浮かせた状態に近い熱応答とし
て、火災による熱気流を受けた際に速い熱応答と大きな
温度上昇が得られる。Further, in the present invention, the product of the thickness of the substrate and its thermal conductivity is 1.1 × 10 −4 [W / K] or less with the temperature detecting element arranged substantially in the center of the substrate. By making the shape and material so that the flow of heat energy can be almost equated with the air in the substrate, the thermal response due to the fire is substantially the same as that of the temperature detection element floating in the air. A fast thermal response and a large temperature rise are obtained when subjected to flow.
【図1】本発明の基本時実施形態の説明図FIG. 1 is an explanatory view of a basic embodiment of the present invention.
【図2】図1における各部の記号の説明図FIG. 2 is an explanatory diagram of symbols of each part in FIG.
【図3】図1における各部の熱的な関係を表した説明図FIG. 3 is an explanatory diagram showing a thermal relationship of each part in FIG.
【図4】図2の基板熱抵抗の算出に関する説明図FIG. 4 is an explanatory diagram related to calculation of substrate thermal resistance in FIG.
【図5】図2の空気熱抵抗の算出に関する説明図5 is an explanatory diagram related to calculation of air heat resistance in FIG.
【図6】本発明で基板の厚さdを変化させたときの温度
検出素子による検出温度のようすを示した特性図FIG. 6 is a characteristic diagram showing the temperature detected by the temperature detecting element when the thickness d of the substrate is changed in the present invention.
【図7】感熱部半径r0と基板半径rを変えたときの条
件式の説明図FIG. 7 is an explanatory diagram of conditional expressions when the radius r0 of the heat-sensitive part and the radius r of the substrate are changed.
【図8】温度検出素子に熱電対を使用した本発明の実施
形態の説明図FIG. 8 is an explanatory diagram of an embodiment of the present invention in which a thermocouple is used as a temperature detecting element.
【図9】基板と感知器本体との空間に発泡性樹脂などを
充填した本発明の実施形態の説明図FIG. 9 is an explanatory diagram of an embodiment of the present invention in which a space between a substrate and a sensor body is filled with a foaming resin or the like.
【図10】基板と温度検出素子の間に金属箔を挟んだ本
発明の実施形態の説明図FIG. 10 is an explanatory diagram of an embodiment of the present invention in which a metal foil is sandwiched between a substrate and a temperature detection element.
【図11】金属箔を温度検出素子の電極端子とした本発
明の実施形態の説明図FIG. 11 is an explanatory diagram of an embodiment of the present invention in which a metal foil is used as an electrode terminal of a temperature detection element.
【図12】基板裏面に温度検出素子以外に電気部品を配
置した本発明の実施形態の説明図FIG. 12 is an explanatory view of an embodiment of the present invention in which electric components other than the temperature detecting element are arranged on the back surface of the substrate.
【図13】基板と感知器本体の間に電気回路を配置した
本発明の実施形態の説明図FIG. 13 is an explanatory diagram of an embodiment of the present invention in which an electric circuit is arranged between a substrate and a sensor body.
【図14】基板に集熱構造を設けた本発明の実施形態の
説明図FIG. 14 is an explanatory diagram of an embodiment of the present invention in which a substrate is provided with a heat collecting structure.
【図15】基板表面に温度検出素子を配置した本発明の
実施形態の説明図FIG. 15 is an explanatory diagram of an embodiment of the present invention in which a temperature detecting element is arranged on the surface of a substrate.
【図16】基板中心部に金属部材を配置してその裏側に
温度検出素子を配置した本発明の実施形態の説明図FIG. 16 is an explanatory diagram of an embodiment of the present invention in which a metal member is arranged in the center of the substrate and a temperature detecting element is arranged on the back side thereof.
【図17】従来の火災感知器構造の説明図FIG. 17 is an explanatory diagram of a conventional fire detector structure.
【図18】従来の火災感知器の他の構造の説明図FIG. 18 is an explanatory view of another structure of the conventional fire detector.
1:基板 2:温度検出素子 3:感知器本体 4:取付面 5:金属箔 6:配線 7:電気部品 8:電気回路 9:集熱構造 10:金属部材 1: substrate 2: Temperature detection element 3: Sensor body 4: Mounting surface 5: Metal foil 6: Wiring 7: Electrical parts 8: Electric circuit 9: Heat collecting structure 10: Metal member
───────────────────────────────────────────────────── フロントページの続き (72)発明者 島 裕史 東京都品川区上大崎2丁目10番43号 ホー チキ株式会社内 Fターム(参考) 5C085 AA01 AB01 AC03 BA12 CA30 DA10 FA02 FA20 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroshi Shima 2-1043 Kamiosaki, Shinagawa-ku, Tokyo Ho Chiki Co., Ltd. F-term (reference) 5C085 AA01 AB01 AC03 BA12 CA30 DA10 FA02 FA20
Claims (3)
と、 前記基板の内側に熱的に接触して前記基板の温度を検出
する温度検出素子と、 前記基板内側の外周部に接して前記基板との間で閉鎖空
間を形成し、前記閉鎖空間内に前記温度検出素子を内包
する保護ケースと、を備えたことを特徴とする火災感知
器。1. A substrate having a heat-sensitive surface on the outside that receives a heat flow, a temperature detection element that is in thermal contact with the inside of the substrate to detect the temperature of the substrate, and is in contact with an outer peripheral portion inside the substrate. A fire detector, comprising: a protective case that forms a closed space between the substrate and the closed space, and that includes the temperature detecting element.
基板は、前記基板内側の略中心に前記温度検出素子を有
するとともに、前記基板の厚みと熱伝導率の積が1.1
×10-4[W/K]以下であることを満たす形状および
材質であることを特徴とする火災感知器。2. The fire detector according to claim 1, wherein the substrate has the temperature detecting element substantially at the center inside the substrate, and the product of the thickness and the thermal conductivity of the substrate is 1.1.
A fire detector characterized by having a shape and a material satisfying the condition of x10 -4 [W / K] or less.
て、前記閉鎖空間に樹脂材料または断熱材料が充填され
ていることを特徴とする火災感知器。3. The fire detector according to claim 1 or 2, wherein the closed space is filled with a resin material or a heat insulating material.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001395898A JP2003196760A (en) | 2001-12-27 | 2001-12-27 | Fire detector |
DE60214310T DE60214310T2 (en) | 2001-09-21 | 2002-09-17 | fire detector |
EP02256456A EP1298617B1 (en) | 2001-09-21 | 2002-09-17 | Fire sensor |
US10/246,481 US7011444B2 (en) | 2001-09-21 | 2002-09-19 | Fire sensor |
AU2002301220A AU2002301220B2 (en) | 2001-09-21 | 2002-09-20 | Fire heat sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001395898A JP2003196760A (en) | 2001-12-27 | 2001-12-27 | Fire detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003196760A true JP2003196760A (en) | 2003-07-11 |
Family
ID=27602157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001395898A Pending JP2003196760A (en) | 2001-09-21 | 2001-12-27 | Fire detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003196760A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006215985A (en) * | 2005-02-07 | 2006-08-17 | Hochiki Corp | Heat sensor |
JP2007200111A (en) * | 2006-01-27 | 2007-08-09 | Hochiki Corp | Thermal sensor |
GB2437871B (en) * | 2005-02-07 | 2009-10-28 | Hochiki Co | Heat detector with heat detecting unit connected to casing via stress absorber for absorbing distortion |
JP2010218044A (en) * | 2009-03-13 | 2010-09-30 | Nohmi Bosai Ltd | Heat sensor |
JP2017041010A (en) * | 2015-08-18 | 2017-02-23 | ホーチキ株式会社 | Heat detector |
-
2001
- 2001-12-27 JP JP2001395898A patent/JP2003196760A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006215985A (en) * | 2005-02-07 | 2006-08-17 | Hochiki Corp | Heat sensor |
GB2437871B (en) * | 2005-02-07 | 2009-10-28 | Hochiki Co | Heat detector with heat detecting unit connected to casing via stress absorber for absorbing distortion |
US7802918B2 (en) | 2005-02-07 | 2010-09-28 | Hochiki Corporation | Heat detector |
JP4585877B2 (en) * | 2005-02-07 | 2010-11-24 | ホーチキ株式会社 | Heat sensor |
JP2007200111A (en) * | 2006-01-27 | 2007-08-09 | Hochiki Corp | Thermal sensor |
JP4592603B2 (en) * | 2006-01-27 | 2010-12-01 | ホーチキ株式会社 | Heat sensor |
JP2010218044A (en) * | 2009-03-13 | 2010-09-30 | Nohmi Bosai Ltd | Heat sensor |
JP2017041010A (en) * | 2015-08-18 | 2017-02-23 | ホーチキ株式会社 | Heat detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05264367A (en) | Temperature sensor | |
JP2006258520A (en) | Probe for electronic clinical thermometer | |
JP2013531248A (en) | Infrared temperature measurement and stabilization | |
JP2003344156A (en) | Infrared sensor and electronic apparatus using the same | |
WO2006118894A1 (en) | Heated pressure transducer | |
JP2014182073A (en) | Heat flow sensor | |
JP2003196760A (en) | Fire detector | |
JP2003057117A (en) | Probe used for infrared thermometer | |
JP4844252B2 (en) | Thermal mass flow meter | |
JP3083901B2 (en) | Atmosphere sensor | |
JPS6332874A (en) | Temperature sensor fitting structure for storage battery | |
JP3337306B2 (en) | Temperature measurement method | |
JP6477058B2 (en) | Infrared sensor | |
JP4552564B2 (en) | Thin temperature sensor and manufacturing method thereof | |
JP6128374B2 (en) | Infrared sensor device | |
JP3073944B2 (en) | Flat sheet interface sensor | |
JPH0774763B2 (en) | Temperature detector | |
JPH09307030A (en) | Cooling device with condensation-preventive function | |
JP3456647B2 (en) | Liquid flow sensor | |
JPS6113121A (en) | Heat flow sensor | |
JP7563610B2 (en) | Temperature Measuring Device | |
JPS6111638Y2 (en) | ||
JPH0454444A (en) | Dew condensation sensor | |
SU821948A1 (en) | Temperature sensor for measuring water surface temperature | |
JP2016145756A (en) | Temperature sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060113 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060131 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061107 |