JP2003195243A - Faraday rotator - Google Patents

Faraday rotator

Info

Publication number
JP2003195243A
JP2003195243A JP2001400165A JP2001400165A JP2003195243A JP 2003195243 A JP2003195243 A JP 2003195243A JP 2001400165 A JP2001400165 A JP 2001400165A JP 2001400165 A JP2001400165 A JP 2001400165A JP 2003195243 A JP2003195243 A JP 2003195243A
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
bismuth
garnet single
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001400165A
Other languages
Japanese (ja)
Other versions
JP3917859B2 (en
Inventor
Yohei Hanaki
陽平 花木
Hisashi Matsuda
久 松田
Kazushi Shirai
一志 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photocrystal Inc
Original Assignee
Photocrystal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photocrystal Inc filed Critical Photocrystal Inc
Priority to JP2001400165A priority Critical patent/JP3917859B2/en
Publication of JP2003195243A publication Critical patent/JP2003195243A/en
Application granted granted Critical
Publication of JP3917859B2 publication Critical patent/JP3917859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bismuth-substituted rare earth iron garnet single crystal film in which the direction of magnetization is vertical to the film surface, a nucleation magnetic field is equal to or smaller than a saturation magnetic field and the value of the saturation magnetic field is small. <P>SOLUTION: The bismuth-substituted rare earth iron garnet single crystal film grown by a liquid phase epitaxial method is heated for two hours or longer within a temperature range whose lower limit valve is higher than the growing temperature of the bismuth-substituted rate earth iron garnet single crystal film by 50°C and whose higher limit value is higher than the growing temperature of the garnet single crystal film by 120°C to obtain a Faraday rotator. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光アイソレータや光ス
イッチ等の光デバイスに使用されるファラデー回転子用
材料となるビスマス置換希土類鉄ガーネット単結晶膜に
関し、更に詳しくは、飽和磁界が小さく、光デバイスの
構成を小型化できるビスマス置換希土類鉄ガーネット単
結晶膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bismuth-substituted rare earth iron garnet single crystal film used as a material for a Faraday rotator used in optical devices such as optical isolators and optical switches. The present invention relates to a bismuth-substituted rare earth iron garnet single crystal film capable of miniaturizing the structure of an optical device.

【0002】[0002]

【従来の技術】近年、光ファイバ通信の発展にはめざま
しいものがある。光ファイバ通信分野では、ファラデー
回転子を利用した光アイソレータ、光サーキュレータ及
び光スイッチといった光デバイスが不可欠である。この
ファラデー回転子としては、液相エピタキシャル法(L
PE法)で育成したビスマス置換希土類鉄ガーネット単
結晶膜が利用される。また、これら、光デバイスでは、
飽和磁界Hsを越える磁界をかけて、ファラデー回転子
を磁気的に十分飽和させる。この磁界は、一般には、永
久磁石や電磁石によって印加される。したがって、この
ような構成の光デバイスでは、ファラデー回転子の飽和
磁界Hsが大きいと、永久磁石や電磁石を大型にする必
要が生じてしまう。ファラデー回転子の飽和磁界Hsが
小さければ、永久磁石または電磁石は小型なものでよ
く、光デバイスの小型化やコストダウンに有利である。
2. Description of the Related Art In recent years, the development of optical fiber communication has been remarkable. In the field of optical fiber communication, optical devices such as optical isolators, optical circulators, and optical switches using Faraday rotators are indispensable. As the Faraday rotator, a liquid phase epitaxial method (L
A bismuth-substituted rare earth iron garnet single crystal film grown by PE method is used. Also, in these optical devices,
A magnetic field exceeding the saturation magnetic field Hs is applied to magnetically saturate the Faraday rotator. This magnetic field is generally applied by a permanent magnet or an electromagnet. Therefore, in the optical device having such a configuration, if the saturation magnetic field Hs of the Faraday rotator is large, it becomes necessary to increase the size of the permanent magnet or the electromagnet. If the saturation magnetic field Hs of the Faraday rotator is small, the permanent magnet or the electromagnet may be small in size, which is advantageous for downsizing the optical device and reducing the cost.

【0003】通常一般に、ビスマス置換希土類鉄ガーネ
ット単結晶の化学組成は、(RBi)(FeM)
12[但し、RはイットリウムYや希土類元素、MはA
l、Ga、In、Si、Scなどの元素を意味する]で
表される。このビスマス置換希土類鉄ガーネット単結晶
膜の飽和磁界Hsは、その構成元素の種類と組み合わせ
とに依存することが、既に知られている。したがって、
構成元素を組み合わせることで、飽和磁界Hsを極めて
小さくすることも可能である。また、LPE法で育成し
たビスマス置換希土類鉄ガーネット単結晶膜には、一軸
磁気異方性定数Kuが生じる。構成元素を組み合わせて
飽和磁界Hsを小さくすると、磁気的なヒステリシスが
大きくなる。したがって、ビスマス置換希土類鉄ガーネ
ット単結晶膜を磁化させたり、磁化の方向を切り替える
ためには、飽和磁界Hsを越える磁界が必要となること
が一般に知られている。その磁界を核形成磁界Hn(ま
たは保磁力Hc)と定義すると、Hn(又はHc)は、
Hn(又はHc)∝Ku/Hsの関係式で表され
る。("Nucleation of domain walls in iron garnet s
ingle crystals grown from liquid phase epitaxy" Jo
urnal of Applied Physics, Vol.82, 2457-2460,(199
7))。この関係式からも明らかなように、飽和磁界Hs
が小さくなると、Hnの増大は避けられない。
Generally, the chemical composition of a bismuth-substituted rare earth iron garnet single crystal is (RBi) 3 (FeM) 5 O.
12 [However, R is yttrium Y and rare earth elements, M is A
means an element such as l, Ga, In, Si, Sc, or the like]. It is already known that the saturation magnetic field Hs of this bismuth-substituted rare earth iron garnet single crystal film depends on the type and combination of its constituent elements. Therefore,
By combining the constituent elements, the saturation magnetic field Hs can be made extremely small. A uniaxial magnetic anisotropy constant Ku occurs in the bismuth-substituted rare earth iron garnet single crystal film grown by the LPE method. When the saturation magnetic field Hs is reduced by combining the constituent elements, the magnetic hysteresis increases. Therefore, it is generally known that a magnetic field exceeding the saturation magnetic field Hs is required to magnetize the bismuth-substituted rare earth iron garnet single crystal film or switch the direction of magnetization. When the magnetic field is defined as a nucleation magnetic field Hn (or coercive force Hc), Hn (or Hc) is
It is expressed by the relational expression of Hn (or Hc) ∝Ku / Hs. ("Nucleation of domain walls in iron garnet s
ingle crystals grown from liquid phase epitaxy "Jo
urnal of Applied Physics, Vol.82, 2457-2460, (199
7)). As is clear from this relational expression, the saturation magnetic field Hs
When becomes smaller, the increase of Hn cannot be avoided.

【0004】ここで、飽和磁界を、単に、Hsと表記し
た場合は、無限大の膜に換算したときの飽和磁界であ
る。実際のサンプルは、特定の形状を有する。この実際
のサンプルにおける飽和磁界の値をHs*とすれば(以
後、本明細書では、実際のサンプルにて測定される値を
Hs*と記載する)、Hs*の値はHsに形状因子N
(0から1の値)を掛けた値Hs×N=Hs*となる。
すなわち、実際のサンプルの飽和磁界Hs*は、無限大
の膜に換算した飽和磁界Hsより小さい。そして、経験
的には、Hn(又はHc)∝Ku/Hsの関係式におい
て、HsにHs*の値を代入して考えることができ、測
定される核形成磁界は、ほぼこのHs*の値に相当する
量大きくなる。なお、無限大の膜におけるHsの値は、
3インチ育成基板で、Hs*≒1.0×Hs、10mm
角の基板で、Hs*≒0.95×Hs、1mm角の基板
で、Hs*≒0.6×Hsの関係にあった。
Here, when the saturation magnetic field is simply expressed as Hs, it is the saturation magnetic field when converted into an infinite film. The actual sample has a specific shape. Assuming that the value of the saturation magnetic field in this actual sample is Hs * (hereinafter, the value measured in the actual sample is described as Hs *), the value of Hs * is Hs in the form factor N.
The value Hs × N = Hs * is obtained by multiplying (value from 0 to 1).
That is, the saturation magnetic field Hs * of the actual sample is smaller than the saturation magnetic field Hs converted into an infinite film. Then, empirically, in the relational expression of Hn (or Hc) ∝Ku / Hs, it is possible to consider by substituting the value of Hs * for Hs, and the measured nucleation magnetic field is almost the value of this Hs *. The amount corresponding to becomes larger. The value of Hs in an infinite film is
3 inch growth substrate, Hs * ≈1.0 × Hs, 10 mm
The square substrate had a relationship of Hs * ≈0.95 × Hs, and the square substrate had a relationship of Hs * ≈0.6 × Hs.

【0005】本発明者等は、小さな飽和磁界Hsを有す
るビスマス置換希土類鉄ガーネット単結晶膜が欲しいと
いう社会的な要請に応えるために、新たなビスマス置換
希土類鉄ガーネット単結晶の組成を研究し、(GdRB
i)(FeAlGa) 12[但し、RはY、Y
b、Luの群から選ばれた少なくとも1種類の元素を意
味する]を開発した(特開平07−315995号公
報)。しかしながら、その後、(GdRBi)(Fe
AlGa)12においても、2つの重要な技術的課
題を解決しなければならないことが明らかになった。そ
の一つは、ファラデー回転子の形状が小さくなると、フ
ァラデー回転子の飽和磁界Hs*は、育成直後のビスマ
ス置換希土類鉄ガーネット単結晶膜の飽和磁界Hs*よ
りも小さくなるが、逆に核形成磁界Hnは、ばらつきが
広がり、形状因子Nを越える大きな値のものが生じると
いう問題である。もう一つは、磁気的に飽和するのに必
要な磁界よりも数倍大きな磁界を印加すると、何らかの
理由で、核形成磁界Hnが増大するという問題である
(Journal of Applied Physics, Vol.82, 2457-2460,(1
997))。上記二つの課題を解決すべく、本発明者等は、
核形成磁界Hnを更に低減するための検討を行った。
The present inventors have a small saturation magnetic field Hs.
Bismuth-substituted rare earth iron garnet single crystal film
New bismuth replacement to meet the societal demand
The composition of rare earth iron garnet single crystals was studied, and (GdRB
i)Three(FeAlGa)5O 12[However, R is Y, Y
b, means at least one element selected from the group Lu
Taste] was developed (Japanese Patent Laid-Open No. 07-315995)
News). However, after that, (GdRBi)Three(Fe
AlGa)5O12Also in two important technical divisions
It became clear that the problem had to be resolved. So
One is that as the Faraday rotator becomes smaller,
The saturation magnetic field Hs * of the Aaraday rotator is
Saturation magnetic field Hs * of S-substituted rare earth iron garnet single crystal film
However, the nucleation magnetic field Hn has
If there is a large value that spreads and exceeds the form factor N,
That is the problem. The other is essential for magnetic saturation.
If you apply a magnetic field that is several times larger than the required magnetic field,
The reason is that the nucleation magnetic field Hn increases.
(Journal of Applied Physics, Vol.82, 2457-2460, (1
997)). In order to solve the above two problems, the present inventors have
A study was conducted to further reduce the nucleation magnetic field Hn.

【0006】核形成磁界Hnを下げるのに残された手段
としては、Hn(又はHc)∝Ku/Hsの関係式か
ら、一軸磁気異方性定数Kuを下げることが容易に推察
される。一軸磁気異方性定数Kuを発生させる要因に
は、結晶育成過程において磁性希土類イオンと鉄イオン
の対が結晶全体として異方的に配列することにより生じ
る成長誘導磁気異方性と、種結晶基板とビスマス置換希
土類鉄ガーネット単結晶膜との間の熱膨張係数の違いか
ら生じる応力誘導磁気異方性がある。これらの磁気異方
性は、ガーネット単結晶膜を900〜1300℃で焼き
なますと、減少することが知られている("磁気バブ
ル"、桜井等著、オーム社、1982年)。この効果を
利用して、所定の熱処理条件の下で熱処理を行い、核形
成磁界Hnを減少させたビスマス置換希土類鉄ガーネッ
ト単結晶膜を光スイッチに応用する事例もある(特開平
07−301775号公報)。
As the remaining means for lowering the nucleation magnetic field Hn, it is easily inferred from the relational expression of Hn (or Hc) ∝Ku / Hs to lower the uniaxial magnetic anisotropy constant Ku. The factors that generate the uniaxial magnetic anisotropy constant Ku include growth-induced magnetic anisotropy caused by anisotropic pairing of magnetic rare earth ions and iron ions in the entire crystal during the crystal growth process, and a seed crystal substrate. There is a stress-induced magnetic anisotropy that results from the difference in the coefficient of thermal expansion between bismuth-substituted rare earth iron garnet single crystal films. It is known that these magnetic anisotropies are reduced when a garnet single crystal film is annealed at 900 to 1300 ° C. (“Magnetic Bubble”, Sakurai et al., Ohmsha, 1982). Taking advantage of this effect, there is a case in which a bismuth-substituted rare earth iron garnet single crystal film having a reduced nucleation magnetic field Hn is applied to an optical switch by performing a heat treatment under a predetermined heat treatment condition (JP-A-07-301775). Gazette).

【0007】しかし一方では、Gaイオンなどの非磁性
イオンで置換したビスマス置換希土類鉄ガーネット単結
晶膜を熱処理すると、Gaイオンの再配置によって、飽
和磁界Hsが変化することも知られている("バブル技
術ハンドブック"、電気学会、オーム社、1981
年)。例えば、特開平07−301775号公報に開示
された条件で、本願の請求項4に記載したビスマス置換
希土類鉄ガーネット単結晶膜を高温で、熱処理すると、
飽和磁界Hs*が91(Oe)から163(Oe)に増
加することを、本発明者らは、確認した。
On the other hand, however, it is also known that when the bismuth-substituted rare earth iron garnet single crystal film substituted with non-magnetic ions such as Ga ions is heat-treated, the saturation magnetic field Hs changes due to rearrangement of Ga ions (" Bubble Technology Handbook ", The Institute of Electrical Engineers, Ohmsha, 1981
Year). For example, when the bismuth-substituted rare earth iron garnet single crystal film according to claim 4 of the present application is heat-treated at a high temperature under the conditions disclosed in JP-A-07-301775,
The present inventors have confirmed that the saturation magnetic field Hs * increases from 91 (Oe) to 163 (Oe).

【0008】また、ビスマス置換希土類鉄ガーネット単
結晶膜の膜面からの反射戻り光を避けようとして、膜面
を入射光に対して斜めに配置する光アイソレータなどの
光デバイスがある。ビスマス置換希土類鉄ガーネット単
結晶膜をあまり高温で熱処理すると、一軸磁気異方性定
数が非常に小さくなって、磁化の方向が膜面に垂直では
なくなり、外部磁界の方向に追従してしまう。このよう
な単結晶を上記光デバイスに使用すると、入射光に対す
る配置角度によってファラデー回転角が異なり、性能上
の不具合が生じることを本発明者らは見出した。
Further, there is an optical device such as an optical isolator in which the film surface of the bismuth-substituted rare earth iron garnet single crystal film is arranged obliquely with respect to the incident light in order to avoid the reflected return light from the film surface. If the bismuth-substituted rare earth iron garnet single crystal film is heat-treated at a too high temperature, the uniaxial magnetic anisotropy constant becomes very small, the direction of magnetization is not perpendicular to the film surface, and the direction of the external magnetic field is followed. The present inventors have found that when such a single crystal is used in the above optical device, the Faraday rotation angle varies depending on the arrangement angle with respect to the incident light, resulting in a performance problem.

【0009】[0009]

【発明が解決しようとする課題】熱処理によって角型ヒ
ステリシスを抑制することで、核形成磁界Hnを下げる
熱処理技術は極めて有用である。しかしながら、既に発
表された事例においても、また本発明者等の実験におい
ても、熱処理条件によっては、飽和磁界Hs*が上昇し
たり、また、外部磁界の方向が変わると、単結晶膜が容
易にその方向に磁化されるという現象がある。しかし、
ビスマス置換希土類鉄ガーネット単結晶膜が、光アイソ
レータ、光サーキュレータ及び光スイッチに利用できる
ための条件は、単結晶の膜面に垂直な方向に磁化できる
ことと、飽和磁界Hs*が小さいことである。したがっ
て、外部磁界の方向により容易に磁化方向が変わる現象
は、光デバイス用のビスマス置換希土類鉄ガーネット単
結晶膜を製作するのに妨げとなる。
The heat treatment technique for reducing the nucleation magnetic field Hn by suppressing the square hysteresis by heat treatment is extremely useful. However, in the cases already published and in the experiments by the present inventors, depending on the heat treatment conditions, when the saturation magnetic field Hs * rises or the direction of the external magnetic field changes, the single crystal film is easily formed. There is a phenomenon of being magnetized in that direction. But,
The conditions for using the bismuth-substituted rare earth iron garnet single crystal film in an optical isolator, an optical circulator, and an optical switch are that it can be magnetized in a direction perpendicular to the film surface of the single crystal and that the saturation magnetic field Hs * is small. Therefore, the phenomenon that the magnetization direction easily changes depending on the direction of the external magnetic field hinders the production of a bismuth-substituted rare earth iron garnet single crystal film for an optical device.

【0010】本発明の目的は、磁化の方向が膜面に垂
直であり、核形成磁界Hnが飽和磁界Hs*以下であ
り、飽和磁界Hs*の値が小さなビスマス置換希土類
鉄ガーネット単結晶膜を提供することにある。また、こ
のようなビスマス置換希土類鉄ガーネット単結晶膜を製
作するための熱処理において、飽和磁界Hs*の上昇を
抑え、かつ磁化の方向が膜面に垂直となる熱処理条件を
見出すことにある。
An object of the present invention is to provide a bismuth-substituted rare earth iron garnet single crystal film in which the magnetization direction is perpendicular to the film surface, the nucleation magnetic field Hn is less than or equal to the saturation magnetic field Hs *, and the saturation magnetic field Hs * has a small value. To provide. In addition, in the heat treatment for producing such a bismuth-substituted rare earth iron garnet single crystal film, it is to find a heat treatment condition that suppresses the rise of the saturation magnetic field Hs * and the direction of magnetization is perpendicular to the film surface.

【0011】[0011]

【課題を解決するための手段】本発明者等は、小さな飽
和磁界Hs*を有するビスマス置換希土類鉄ガーネット
単結晶膜が膜面に垂直な方向に磁化されるという特性を
失わずに、核形成磁界Hnが飽和磁界Hs*以下となる
ための熱処理条件を検討した。このような条件とする理
由は、以下の通りである。すなわち、熱処理の温度は、
ビスマス置換希土類鉄ガーネット単結晶膜の育成温度と
深く関係すること、また、熱処理時間は熱処理温度と深
く関係することによる。熱処理を行う温度範囲は、核形
成磁界Hnの低減に効果のある温度の下限値として、ガ
ーネット単結晶膜の育成温度よりも50℃高い温度を定
め、また飽和磁界Hs*の増加を抑え、膜面に垂直な方
向に磁化する特性を確保できる温度の上限値として、ガ
ーネット単結晶膜の育成温度よりも120℃高い温度を
定めた。また、この温度範囲で、ビスマス置換希土類鉄
ガーネット単結晶膜を2時間以上加熱処理する。上記し
た熱処理条件は、下記の実施例及び比較例の実験結果か
ら導き出した。この熱処理方法は、液相エピタキシャル
法にて育成された飽和磁界200(Oe)未満のビスマ
ス置換希土類鉄ガーネット単結晶膜に適用すると、特に
効果的であった。
The present inventors have developed a nucleation method without losing the property that a bismuth-substituted rare earth iron garnet single crystal film having a small saturation magnetic field Hs * is magnetized in a direction perpendicular to the film surface. The heat treatment conditions for the magnetic field Hn to be equal to or less than the saturation magnetic field Hs * were examined. The reason for such a condition is as follows. That is, the temperature of the heat treatment is
This is because it is deeply related to the growth temperature of the bismuth-substituted rare earth iron garnet single crystal film, and the heat treatment time is deeply related to the heat treatment temperature. The temperature range for heat treatment is set as a lower limit of the temperature effective for reducing the nucleation magnetic field Hn, which is 50 ° C. higher than the growth temperature of the garnet single crystal film, and the saturation magnetic field Hs * is suppressed from increasing. A temperature higher by 120 ° C. than the growth temperature of the garnet single crystal film was set as the upper limit of the temperature at which the property of magnetizing in the direction perpendicular to the plane can be secured. Further, in this temperature range, the bismuth-substituted rare earth iron garnet single crystal film is heat-treated for 2 hours or more. The heat treatment conditions described above were derived from the experimental results of the following examples and comparative examples. This heat treatment method was particularly effective when applied to a bismuth-substituted rare earth iron garnet single crystal film grown by a liquid phase epitaxial method and having a saturation magnetic field of less than 200 (Oe).

【0012】[0012]

【実施例】以下、本発明を実施例によって、その実施態
様と効果を具体的に、かつ詳細に説明するが、以下の例
は、具体的に説明するものであって、本発明の実施態様
や発明の範囲を限定するものとしては意図されていな
い。
EXAMPLES Hereinafter, the present invention will be described in detail and in detail by way of examples, but the following examples will specifically describe the present invention. And is not intended to limit the scope of the invention.

【0013】実施例1 容量3000mlの白金製の坩堝に、酸化鉛〔PbO、
4N〕3448g、酸化ビスマス〔Bi、4N〕
4377g、酸化第2鉄〔Fe、4N〕455
g、酸化ほう素〔B、5N〕165g、酸化ガド
リニウム〔Gd、3N〕26.0g、酸化ガリウ
ム〔Ga、3N〕91g、酸化イットリウム〔Y
、3N〕16.0gを仕込んだ。これを精密縦型
管状電気炉の所定の位置に設置し、1000℃に加熱溶
融し、十分に攪拌して均質なビスマス置換希土類鉄ガー
ネット単結晶育成用の融液とした。
Example 1 A platinum crucible having a volume of 3000 ml was charged with lead oxide [PbO,
4N] 3448 g, bismuth oxide [Bi 2 O 3 , 4N]
4377 g, ferric oxide [Fe 2 O 3 , 4N] 455
g, boron oxide [B 2 O 3 , 5N] 165 g, gadolinium oxide [Gd 2 O 3 , 3N] 26.0 g, gallium oxide [Ga 2 O 3 , 3N] 91 g, yttrium oxide [Y
2 O 3 , 3N] 16.0 g was charged. This was placed at a predetermined position in a precision vertical tubular electric furnace, heated and melted at 1000 ° C., and sufficiently stirred to obtain a homogeneous bismuth-substituted rare earth iron garnet single crystal growing melt.

【0014】ここに得られた融液の温度を飽和温度以下
の温度、すなわち、766℃まで低下させた後、常法に
従って、厚さが500μmで、格子定数が12.497
±0.002Åの3インチ(111)ガーネット単結晶
[(GdCa)(GaMgZr)12]基板の片
面を、融液表面に接触させた。この基板を回転させなが
らエピタキシャル成長を行い、厚さ275μmのビスマ
ス置換希土類鉄ガーネット単結晶厚膜(以下BIG−1
と略称する)を作製した。BIG−1に付着している融
液成分を塩酸水溶液で溶解した後、10.5mm×1
0.5mmの大きさに分割した。分割して得られた28
枚のBIG−1を研磨し、基板を除去した。研磨後の飽
和磁界Hs*は91(Oe)であった。
After the temperature of the melt thus obtained is lowered to a temperature equal to or lower than the saturation temperature, that is, 766 ° C., the thickness is 500 μm and the lattice constant is 12.497 according to a conventional method.
One side of a ± 0.002Å 3-inch (111) garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate was brought into contact with the melt surface. Epitaxial growth was performed while rotating this substrate to obtain a 275 μm thick bismuth-substituted rare earth iron garnet single crystal thick film (hereinafter referred to as BIG-1).
Will be abbreviated). After dissolving the melt component adhering to BIG-1 with a hydrochloric acid aqueous solution, 10.5 mm × 1
The size was divided into 0.5 mm. 28 obtained by dividing
The sheet of BIG-1 was polished and the substrate was removed. The saturated magnetic field Hs * after polishing was 91 (Oe).

【0015】28枚のBIG−1のうち2枚を電気炉内
のPtプレート上に載置し、830℃で、10時間加熱
した。この試料の飽和磁界Hs*は88(Oe)であっ
た。すなわち、研磨後の飽和磁界Hs*91(Oe)と
の差は測定誤差の範囲内にあり、飽和磁界Hs*の実質
的な上昇はなかった。飽和磁界Hs*の測定後、1.2
mm×1.2mmの大きさに切断して、64個のチップ
を得た。これらのチップの核形成磁界Hnを測定した結
果、すべてのチップが飽和磁界以下の30〜80(O
e)であった。
Two out of 28 BIG-1 were placed on a Pt plate in an electric furnace and heated at 830 ° C. for 10 hours. The saturation magnetic field Hs * of this sample was 88 (Oe). That is, the difference from the saturated magnetic field Hs * 91 (Oe) after polishing was within the range of measurement error, and the saturated magnetic field Hs * did not substantially increase. After measuring the saturation magnetic field Hs *, 1.2
It was cut into a size of mm × 1.2 mm to obtain 64 chips. As a result of measuring the nucleation magnetic field Hn of these chips, it was found that all chips had a magnetic field of 30 to 80 (O
e).

【0016】実施例2 実施例1で得たBIG−1のうち2枚を電気炉内のPt
プレート上に載置し、840℃で、10時間加熱した。
この試料の飽和磁界Hs*は90(Oe)であった。研
磨後の飽和磁界Hs*91(Oe)との差は測定誤差の
範囲内にあり、飽和磁界Hs*の実質的な上昇はなかっ
た。このBIG−1を1.2mm×1.2mmの大きさ
に切断して核形成磁界Hnを測定した結果、8〜84
(Oe)の範囲となり、飽和磁界Hs*が、研磨直後の
飽和磁界Hs*91(Oe)を超える試料は無かった。
Example 2 Two of the BIG-1 obtained in Example 1 were replaced with Pt in an electric furnace.
It was placed on a plate and heated at 840 ° C. for 10 hours.
The saturation magnetic field Hs * of this sample was 90 (Oe). The difference from the saturated magnetic field Hs * 91 (Oe) after polishing was within the range of measurement error, and the saturated magnetic field Hs * did not substantially increase. This BIG-1 was cut into a size of 1.2 mm × 1.2 mm and the nucleation magnetic field Hn was measured.
In the range of (Oe), there was no sample in which the saturation magnetic field Hs * exceeded the saturation magnetic field Hs * 91 (Oe) immediately after polishing.

【0017】実施例3 実施例1で得たBIG−1のうち2枚を電気炉内のPt
プレート上に載置し、890℃で、10時間加熱した。
この試料の飽和磁界Hs*は107(Oe)であった。
このBIG−1を1.2mm×1.2mmの大きさに切
断して核形成磁界Hnを測定した結果、30〜50(O
e)の範囲となり、飽和磁界Hs*は、最高でも91
(Oe)であった。
Example 3 Two of the BIG-1 obtained in Example 1 were replaced with Pt in an electric furnace.
It was placed on a plate and heated at 890 ° C. for 10 hours.
The saturation magnetic field Hs * of this sample was 107 (Oe).
This BIG-1 was cut into a size of 1.2 mm × 1.2 mm and the nucleation magnetic field Hn was measured.
e), and the saturation magnetic field Hs * is 91 at maximum.
It was (Oe).

【0018】実施例4 容量3000mlの白金製の坩堝に、酸化鉛〔PbO、
4N〕3448g、酸化ビスマス〔Bi、4N〕
4377g、酸化第2鉄〔Fe、4N〕455
g、酸化ほう素〔B、5N〕165g、酸化ガド
リニウム〔Gd、3N〕26.0g、酸化ガリウ
ム〔Ga、3N〕91g、酸化イットリウム〔Y
、3N〕16.0gを仕込んだ。これを精密縦型
管状電気炉の所定の位置に設置し、1000℃に加熱溶
融し、十分に攪拌して均質なビスマス置換希土類鉄ガー
ネット単結晶育成用の融液とした。
Example 4 A platinum crucible having a capacity of 3000 ml was charged with lead oxide [PbO,
4N] 3448 g, bismuth oxide [Bi 2 O 3 , 4N]
4377 g, ferric oxide [Fe 2 O 3 , 4N] 455
g, boron oxide [B 2 O 3 , 5N] 165 g, gadolinium oxide [Gd 2 O 3 , 3N] 26.0 g, gallium oxide [Ga 2 O 3 , 3N] 91 g, yttrium oxide [Y
2 O 3 , 3N] 16.0 g was charged. This was placed at a predetermined position in a precision vertical tubular electric furnace, heated and melted at 1000 ° C., and sufficiently stirred to obtain a homogeneous bismuth-substituted rare earth iron garnet single crystal growing melt.

【0019】ここに得られた融液の温度を飽和温度以下
の温度、すなわち、769℃まで低下させた後、常法に
従って、厚さが630μmで、格子定数が12.497
±0.002Åの3インチ(111)ガーネット単結晶
[(GdCa)(GaMgZr)12]基板の片
面を融液表面に接触させた。この基板を回転させながら
エピタキシャル成長を行い、厚さ355μmのビスマス
置換希土類鉄ガーネット単結晶厚膜(以下BIG−2と
略称する)を作製した。BIG−2に付着している融液
成分を塩酸水溶液で溶解したのち、10.5mm×1
0.5mmの大きさに分割した。その後、分割して得ら
れた26枚のBIG−2を研磨し、基板を除去した。研
磨後の飽和磁界Hs*は97(Oe)であった。
After the temperature of the melt thus obtained is lowered to a temperature equal to or lower than the saturation temperature, that is, 769 ° C., the thickness is 630 μm and the lattice constant is 12.497 according to a conventional method.
One surface of a ± 0.002Å 3-inch (111) garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate was brought into contact with the melt surface. Epitaxial growth was performed while rotating this substrate to produce a bismuth-substituted rare earth iron garnet single crystal thick film (hereinafter referred to as BIG-2) having a thickness of 355 μm. After dissolving the melt component adhering to BIG-2 with a hydrochloric acid aqueous solution, 10.5 mm × 1
The size was divided into 0.5 mm. After that, 26 pieces of BIG-2 obtained by dividing were polished to remove the substrate. The saturation magnetic field Hs * after polishing was 97 (Oe).

【0020】26枚のBIG−2のうち2枚を電気炉内
のPtプレート上に載置し、830℃で、10時間加熱
した。この試料の飽和磁界Hs*は97(Oe)であ
り、研磨後の飽和磁界Hs*97(Oe)との差は測定
誤差の範囲内にあり、飽和磁界Hs*の実質的な上昇は
なかった。飽和磁界Hs*の測定後、1.2mm×1.
2mmの大きさに切断して、64個のチップを得た。こ
れらのチップも核形成磁界Hnを測定した結果、すべて
の試料が飽和磁界Hs*以下の36〜74(Oe)であ
った。
Two of the 26 BIG-2 were placed on a Pt plate in an electric furnace and heated at 830 ° C. for 10 hours. The saturation magnetic field Hs * of this sample was 97 (Oe), the difference from the saturation magnetic field Hs * 97 (Oe) after polishing was within the range of measurement error, and the saturation magnetic field Hs * did not increase substantially. . After measuring the saturation magnetic field Hs *, 1.2 mm × 1.
It was cut into a size of 2 mm to obtain 64 chips. As a result of measuring the nucleation magnetic field Hn of these chips as well, all the samples had a saturation magnetic field Hs * of 36 to 74 (Oe).

【0021】実施例5 容量3000mlの白金製の坩堝に、酸化鉛〔PbO、
4N〕3448g、酸化ビスマス〔Bi、4N〕
4377g、酸化第2鉄〔Fe、4N〕455
g、酸化ほう素〔B、5N〕165g、酸化ガド
リニウム〔Gd、3N〕26.0g、酸化ガリウ
ム〔Ga、3N〕91g、酸化イットリウム〔Y
、3N〕16.0gを仕込んだ。これを精密縦型
管状電気炉の所定の位置に設置し、1000℃に加熱溶
融し、十分に攪拌して均質なビスマス置換希土類鉄ガー
ネット単結晶育成用の融液とした。
Example 5 A platinum crucible having a volume of 3000 ml was charged with lead oxide [PbO,
4N] 3448 g, bismuth oxide [Bi 2 O 3 , 4N]
4377 g, ferric oxide [Fe 2 O 3 , 4N] 455
g, boron oxide [B 2 O 3 , 5N] 165 g, gadolinium oxide [Gd 2 O 3 , 3N] 26.0 g, gallium oxide [Ga 2 O 3 , 3N] 91 g, yttrium oxide [Y
2 O 3 , 3N] 16.0 g was charged. This was placed at a predetermined position in a precision vertical tubular electric furnace, heated and melted at 1000 ° C., and sufficiently stirred to obtain a homogeneous bismuth-substituted rare earth iron garnet single crystal growing melt.

【0022】ここに得られた融液の温度を飽和温度以下
の温度、すなわち、767℃まで低下させた後、常法に
従って、厚さが630μmで、格子定数が12.497
±0.002Åの3インチ(111)ガーネット単結晶
[(GdCa)(GaMgZr)12]基板の片
面を融液表面に接触させた。この基板を回転させながら
エピタキシャル成長を行い、厚さ310μmのビスマス
置換希土類鉄ガーネット単結晶厚膜(以下BIG−3と
略称する)を作製した。BIG−3に付着している融液
成分を塩酸水溶液で溶解したのち、10.5mm×1
0.5mmの大きさに分割した。分割して得られた26
枚のBIG−3を研磨し、基板を除去した。研磨後の飽
和磁界Hs*は100(Oe)であった。
After the temperature of the melt thus obtained is lowered to a temperature equal to or lower than the saturation temperature, that is, 767 ° C., the thickness is 630 μm and the lattice constant is 12.497 according to a conventional method.
One surface of a ± 0.002Å 3-inch (111) garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate was brought into contact with the melt surface. Epitaxial growth was performed while rotating this substrate to produce a bismuth-substituted rare earth iron garnet single crystal thick film (hereinafter referred to as BIG-3) having a thickness of 310 μm. After dissolving the melt component adhering to BIG-3 with a hydrochloric acid aqueous solution, 10.5 mm × 1
The size was divided into 0.5 mm. 26 obtained by dividing
The BIG-3 sheets were polished and the substrate was removed. The saturated magnetic field Hs * after polishing was 100 (Oe).

【0023】26枚のBIG−3のうち2枚を電気炉内
のPtプレート上に載置し、850℃で、10時間加熱
した。この試料の飽和磁界Hs*は102(Oe)であ
った。飽和磁界Hs*の測定後、1.2mm×1.2m
mの大きさに切断して、64個のチップを得た。これら
のチップも核形成磁界Hnを測定した結果、すべての試
料が飽和磁界Hs*以下の25〜63(Oe)であっ
た。
Two of the 26 BIG-3s were placed on a Pt plate in an electric furnace and heated at 850 ° C. for 10 hours. The saturation magnetic field Hs * of this sample was 102 (Oe). 1.2mm × 1.2m after measuring the saturation magnetic field Hs *
It was cut into a size of m to obtain 64 chips. The nucleation magnetic field Hn of these chips was also measured, and as a result, all samples had a saturation magnetic field Hs * of 25 to 63 (Oe).

【0024】次に、500(Oe)の外部磁界を、膜面
に対して20度傾けて印加し、ファラデー回転角の変化
を調べた。外部磁界を垂直に加えた場合と、斜めに加え
た場合とで、ファラデー回転角を比較したが、変化は見
られなかった。
Next, an external magnetic field of 500 (Oe) was applied with an inclination of 20 degrees with respect to the film surface, and changes in the Faraday rotation angle were examined. The Faraday rotation angle was compared between when the external magnetic field was applied vertically and when it was obliquely applied, but no change was observed.

【0025】比較例1 実施例1で得た研磨後のBIG−1を、1.2mm×
1.2mmの大きさに切断して核形成磁界Hnの値が5
0〜210(Oe)の範囲となり、飽和磁界Hs*の値
91(Oe)を超える試料が61個あった。
Comparative Example 1 The polished BIG-1 obtained in Example 1 was 1.2 mm ×
The value of the nucleation magnetic field Hn is 5 after cutting to a size of 1.2 mm.
There were 61 samples in the range of 0 to 210 (Oe), which exceeded the saturation magnetic field Hs * value of 91 (Oe).

【0026】比較例2 実施例1で得たBIG−1のうち2枚を電気炉内のPt
プレート上に載置し、820℃で、10時間加熱した。
この試料の飽和磁界Hs*は86(Oe)であった。研
磨後の飽和磁界Hs*の値91(Oe)との差は測定誤
差の範囲内にあり、飽和磁界Hs*の実質的な上昇はな
かった。この試料を1.2mm×1.2mmの大きさに
切断して、64個のチップを得た。これらの核形成磁界
Hnを測定した結果、69〜136(Oe)の範囲とな
り、熱処理前の飽和磁界Hs*91(Oe)を超える試
料が43個あった。
Comparative Example 2 Two of the BIG-1 obtained in Example 1 were Pt in an electric furnace.
It was placed on a plate and heated at 820 ° C. for 10 hours.
The saturation magnetic field Hs * of this sample was 86 (Oe). The difference between the saturated magnetic field Hs * after polishing and the value 91 (Oe) was within the range of the measurement error, and the saturated magnetic field Hs * did not substantially increase. This sample was cut into a size of 1.2 mm × 1.2 mm to obtain 64 chips. As a result of measuring these nucleation magnetic fields Hn, it was in the range of 69 to 136 (Oe), and 43 samples exceeded the saturation magnetic field Hs * 91 (Oe) before the heat treatment.

【0027】比較例3 実施例1で得たBIG−1のうち2枚を電気炉内のPt
プレート上に載置し、900℃で、10時間加熱した。
この試料の飽和磁界Hs*は125(Oe)であり、飽
和磁界Hs*が熱処理前の91(Oe)から28(O
e)上昇した。次に、250(Oe)の外部磁界を、膜
面に対して、60度傾けて印加してファラデー回転角の
変化を調べた。ファラデー回転角が3%低下した。
Comparative Example 3 Two of the BIG-1 obtained in Example 1 were Pt in an electric furnace.
It was placed on a plate and heated at 900 ° C. for 10 hours.
The saturation magnetic field Hs * of this sample is 125 (Oe), and the saturation magnetic field Hs * changes from 91 (Oe) before heat treatment to 28 (Oe).
e) It has risen. Next, an external magnetic field of 250 (Oe) was applied at an angle of 60 degrees with respect to the film surface, and changes in the Faraday rotation angle were examined. The Faraday rotation angle decreased by 3%.

【0028】比較例4 実施例1で得たBIG−1のうち2枚を電気炉内のPt
プレート上に載置し、1100℃で、10時間加熱し
た。この試料の飽和磁界Hs*は163(Oe)であ
り、飽和磁界Hs*が熱処理前の91(Oe)から66
(Oe)上昇した。次に、250(Oe)の外部磁界
を、膜面に対して60度傾けて印加してファラデー回転
角の変化を調べた。ファラデー回転角が40%低下し
た。
Comparative Example 4 Two of the BIG-1 obtained in Example 1 were replaced with Pt in an electric furnace.
It was placed on a plate and heated at 1100 ° C. for 10 hours. The saturation magnetic field Hs * of this sample was 163 (Oe), and the saturation magnetic field Hs * was 66 from 91 (Oe) before the heat treatment.
(Oe) It rose. Next, an external magnetic field of 250 (Oe) was applied with a tilt of 60 degrees with respect to the film surface, and changes in the Faraday rotation angle were examined. The Faraday rotation angle decreased by 40%.

【0029】[0029]

【発明の効果】本発明によれば、ビスマス置換希土類鉄
ガーネット単結晶膜の育成温度よりも50℃高い温度を
下限値とし、育成温度よりも120℃高い温度を上限値
とする温度範囲内で、ガーネット単結晶膜を2時間以上
加熱処理する。この熱処理により、小さな飽和磁界Hs
*を有するビスマス置換希土類鉄ガーネット単結晶膜が
膜面に垂直な方向に磁化されるという特性を失わずに、
核形成磁界Hnが飽和磁界Hs*以下とすることができ
る。
According to the present invention, the lower limit of the temperature is 50 ° C. higher than the growth temperature of the bismuth-substituted rare earth iron garnet single crystal film, and the upper limit is 120 ° C. higher than the growth temperature. The garnet single crystal film is heat-treated for 2 hours or more. Due to this heat treatment, a small saturation magnetic field Hs
Without losing the characteristic that the bismuth-substituted rare earth iron garnet single crystal film having * is magnetized in the direction perpendicular to the film surface,
The nucleation magnetic field Hn can be equal to or lower than the saturation magnetic field Hs *.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白井 一志 東京都葛飾区新宿六丁目一番一号 フォト クリスタル株式会社内 Fターム(参考) 2G017 AA03 AD12 2H079 AA03 BA02 CA06 DA13 4G077 AA03 BC22 BC27 BC28 CG02 CG07 EA02 EC08 FE11 FJ03 QA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazushi Shirai             No. 1 Shinjuku 6-chome, Katsushika-ku, Tokyo Photo             Within Crystal Co., Ltd. F-term (reference) 2G017 AA03 AD12                 2H079 AA03 BA02 CA06 DA13                 4G077 AA03 BC22 BC27 BC28 CG02                       CG07 EA02 EC08 FE11 FJ03                       QA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液相エピタキシャル法にて育成されたビ
スマス置換希土類鉄ガーネット単結晶膜を、該ビスマス
置換希土類鉄ガーネット単結晶膜の育成温度よりも50
℃高い温度を下限値とし、ガーネット単結晶膜の育成温
度よりも120℃高い温度を上限値とする温度範囲内
で、2時間以上加熱処理したことを特徴とするファラデ
ー回転子。
1. A bismuth-substituted rare earth iron garnet single crystal film grown by a liquid phase epitaxial method is heated to a temperature higher than the growth temperature of the bismuth-substituted rare earth iron garnet single crystal film by 50.
A Faraday rotator characterized by being heat-treated for 2 hours or more within a temperature range in which a temperature higher by ℃ is a lower limit value and a temperature higher by 120 ° C than a growth temperature of a garnet single crystal film is an upper limit value.
【請求項2】 前記ビスマス置換希土類鉄ガーネット単
結晶膜が(RBi) (FeM)12の化学組成を
有し、RはY、La、Ce、Pr、Nd、Sm、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの群
から選ばれる少なくとも一種であり、Mは、Ga、S
c、Al、Inの群から選ばれる少なくとも一種である
ことを特徴とする請求項1に記載のファラデー回転子。
2. The bismuth-substituted rare earth iron garnet unit
Crystal film is (RBi) Three(FeM)5O12The chemical composition of
And R is Y, La, Ce, Pr, Nd, Sm, Eu,
Group of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
Is at least one selected from the group consisting of Ga and S
at least one selected from the group consisting of c, Al, and In
The Faraday rotator according to claim 1, wherein.
【請求項3】 前記ビスマス置換希土類鉄ガーネット単
結晶膜が(GdRBi)(FeAlGa)12
化学組成を有し、RはY、Yb、Luの群から選ばれた
少なくとも1種であることを特徴とする請求項1に記載
のファラデー回転子。
3. The bismuth-substituted rare earth iron garnet single crystal film has a chemical composition of (GdRBi) 3 (FeAlGa) 5 O 12 , and R is at least one selected from the group of Y, Yb, and Lu. The Faraday rotator according to claim 1, wherein.
【請求項4】 前記ビスマス置換希土類鉄ガーネット単
結晶膜が(GdYBi)(FeGa)Gであり、その育
成温度が740℃から790℃であり、熱処理温度が8
20℃から900℃であることを特徴とする請求項1に
記載のファラデー回転子。
4. The bismuth-substituted rare earth iron garnet single crystal film is (GdYBi) (FeGa) G, the growth temperature is 740 ° C. to 790 ° C., and the heat treatment temperature is 8
The Faraday rotator according to claim 1, wherein the temperature is 20 ° C to 900 ° C.
【請求項5】 前記ビスマス置換希土類鉄ガーネット単
結晶膜は、熱処理前に、200(Oe)未満の飽和磁界
を有することを特徴とする請求項1に記載のファラデー
回転子。
5. The Faraday rotator according to claim 1, wherein the bismuth-substituted rare earth iron garnet single crystal film has a saturation magnetic field of less than 200 (Oe) before heat treatment.
JP2001400165A 2001-12-28 2001-12-28 Faraday rotator Expired - Fee Related JP3917859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400165A JP3917859B2 (en) 2001-12-28 2001-12-28 Faraday rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400165A JP3917859B2 (en) 2001-12-28 2001-12-28 Faraday rotator

Publications (2)

Publication Number Publication Date
JP2003195243A true JP2003195243A (en) 2003-07-09
JP3917859B2 JP3917859B2 (en) 2007-05-23

Family

ID=27604879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400165A Expired - Fee Related JP3917859B2 (en) 2001-12-28 2001-12-28 Faraday rotator

Country Status (1)

Country Link
JP (1) JP3917859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370988A (en) * 2020-04-17 2020-07-03 中国科学院福建物质结构研究所 1.55 mu m wave band Q-switched pulse laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370988A (en) * 2020-04-17 2020-07-03 中国科学院福建物质结构研究所 1.55 mu m wave band Q-switched pulse laser
CN111370988B (en) * 2020-04-17 2021-08-10 中国科学院福建物质结构研究所 1.55 mu m wave band Q-switched pulse laser

Also Published As

Publication number Publication date
JP3917859B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
EP0248212A2 (en) Magnetic device and method of manufacture
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
US5608570A (en) Article comprising a magneto-optic material having low magnetic moment
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
US6673146B2 (en) Method of manufacturing a magnet-free faraday rotator
JP3458865B2 (en) Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use
JP2003195243A (en) Faraday rotator
JP2011011944A (en) Faraday rotator
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
JPH08290997A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JPH1031112A (en) Faraday rotator which shows square hysteresis
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JPH0766114B2 (en) Magneto-optical element material
Fratello et al. Growth and characterization of magnetooptic garnet films with planar uniaxial anisotropy
Park et al. Growth of epitaxial garnet film by LPE for application to integrated magneto‐optic light switch arrays
US6770223B1 (en) Article comprising a faraday rotator that does not require a bias magnet
JP5439931B2 (en) Manufacturing method of Faraday rotator
Fratello et al. Compositional design of Faraday rotator materials
JPH04304418A (en) Faraday rotator
CN100346195C (en) 45 deg. Faraday rotator without adding bias magnetic field
JPH11212042A (en) Production of faraday rotator
Machida et al. Growth of Bi-substituted garnet thick epitaxial films for optical isolators
JPH07118094A (en) Magnetic garnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees