JP2003194537A - Method for inspecting preform for optical fiber and preform for optical fiber - Google Patents
Method for inspecting preform for optical fiber and preform for optical fiberInfo
- Publication number
- JP2003194537A JP2003194537A JP2001399415A JP2001399415A JP2003194537A JP 2003194537 A JP2003194537 A JP 2003194537A JP 2001399415 A JP2001399415 A JP 2001399415A JP 2001399415 A JP2001399415 A JP 2001399415A JP 2003194537 A JP2003194537 A JP 2003194537A
- Authority
- JP
- Japan
- Prior art keywords
- preform
- optical fiber
- value
- inspecting
- inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01228—Removal of preform material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】所定の径に延伸された光ファ
イバ用プリフォームの表面凹凸形状の検査方法及び光フ
ァイバー用プリフォームに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting the surface unevenness of an optical fiber preform stretched to a predetermined diameter and an optical fiber preform.
【0002】[0002]
【従来の技術】CVD法やOVD法により作製された光ファイ
バ用多孔質母材は、焼結して透明ガラス化された後、所
定の外径に延伸されて光ファイバ用プリフォームとされ
る。プリフォームの表面形状を接触式測定器を用いて測
定すると、周方向に数十μmの凹凸が発生している場合
がある。2. Description of the Related Art A porous preform for an optical fiber manufactured by a CVD method or an OVD method is sintered into a vitrified material and then stretched to a predetermined outer diameter to obtain an optical fiber preform. . When the surface shape of the preform is measured using a contact type measuring device, irregularities of several tens of μm may occur in the circumferential direction.
【0003】OVD法は、コアとなる出発基材に対して垂
直な方向にバーナを配置し、出発基材を回転させつつ、
これに沿ってバーナを平行に往復移動させ、火炎反応で
発生するガラス微粒子を出発基材上に堆積させ、多孔質
母材を製造する方法である。このとき、バーナの平行移
動と多孔質母材の回転によって描かれるガラス微粒子の
螺旋状堆積軌跡の重なり合いによって、多孔質母材の表
面に凹凸が発生する。この多孔質母材を焼結して透明ガ
ラス化し、さらに、所定の径に延伸加工して得られるプ
リフォームの表面には、同様に凹凸が存在している。In the OVD method, a burner is arranged in a direction perpendicular to a starting base material to be a core, and the starting base material is rotated,
In this method, the burner is reciprocally moved in parallel along this, and glass fine particles generated by the flame reaction are deposited on the starting base material to produce a porous base material. At this time, unevenness is generated on the surface of the porous base material due to the overlapping of the spiral deposition loci of the glass particles drawn by the parallel movement of the burner and the rotation of the porous base material. The surface of the preform obtained by sintering the porous base material into a transparent glass and further stretching the glass into a predetermined diameter has unevenness similarly.
【0004】通常、プリフォームを線引き工程で光ファ
イバ化する場合、その前工程として、プリフォーム両端
部へのハンドルの取付け、及びプリフォーム開始部の溶
断等が行われる。このような処理を行う際に、プリフォ
ームの表面に凹凸があると、酸水素火炎の光がプリフォ
ーム表面の凹凸で散乱及び発光し、表面の凹凸形状が実
際に存在している凹凸よりも強調して見える現象が発生
する。通常、ハンドルの取り付けは、目視により、ハン
ドルとプリフォームのセンターを合わせて行われるが、
散乱光があるとセンター合わせが困難になるという問題
がある。このため、表面に凹凸のあるプリフォームに対
しては、ガラス旋盤等を用いて酸水素火炎による研磨が
行われる。Usually, when forming a preform into an optical fiber in a drawing step, as a pre-step, attachment of handles to both ends of the preform and fusing of the preform start portion are performed. When performing such a treatment, if there is unevenness on the surface of the preform, the light of the oxyhydrogen flame is scattered and emitted by the unevenness of the preform surface, and the uneven shape of the surface is more than the unevenness that actually exists. A phenomenon that appears emphasized occurs. Usually, the handle is attached by visually aligning the handle and the center of the preform.
There is a problem that center alignment becomes difficult when there is scattered light. For this reason, a preform having an uneven surface is polished with an oxyhydrogen flame using a glass lathe or the like.
【0005】最終的に、プリフォームを製品として出荷
する際に、表面凹凸形状に対して行われる外観検査によ
って、不合格となるものが生じることがある。不合格と
なったものについては、円筒研削処理 (特開平09-32832
8号公報参照)を行う必要がある。表面凹凸形状のあるプ
リフォームを外観検査により検査する際の精度について
は、さらに高い精度が望まれるようになってきた。Finally, when the preform is shipped as a product, the appearance may be rejected by the visual inspection performed on the surface irregularities. For those rejected, cylindrical grinding treatment (Japanese Patent Laid-Open No. 09-32832
(See gazette No. 8). With respect to the accuracy of inspecting a preform having a surface uneven shape by visual inspection, higher accuracy has been demanded.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、プリ
フォームの表面凹凸形状を数値的に定義することにより
検査基準の一定化を図り、検査結果のばらつきを抑え、
処理工程の重複を避け生産性の向上に寄与する光ファイ
バ用プリフォームの表面凹凸形状の検査方法及び光ファ
イバー用プリフォームを提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to numerically define the surface irregularities of a preform so as to make the inspection standard constant and suppress variations in inspection results.
An object of the present invention is to provide a method for inspecting the surface unevenness of an optical fiber preform that avoids duplication of processing steps and contributes to improvement in productivity, and an optical fiber preform.
【0007】[0007]
【課題を解決するための手段】本発明は、上記事情に鑑
みなされたものであり、本発明の光ファイバ用プリフォ
ームの検査方法は、回転する光ファイバ用プリフォーム
の位置を検出し、得られた検出データを2回以上サイン
カーブフィッティングした値を基準値とし、前記検出デ
ータと該基準値との差の標準偏差から該光ファイバ用プ
リフォームの凹凸形状を求めることを特徴としており、
この凹凸形状値が7.0×10-2以下のものを検査基準にお
ける合格とするものである。本発明の光ファイバ用プリ
フォームは、上記検査方法で検査され、前記凹凸形状値
が7.0×10-2以下で検査基準に合格したものである。The present invention has been made in view of the above circumstances, and a method of inspecting an optical fiber preform of the present invention detects and obtains the position of a rotating optical fiber preform. A value obtained by sine-curve fitting the obtained detection data two or more times as a reference value, and obtaining the uneven shape of the optical fiber preform from the standard deviation of the difference between the detection data and the reference value,
Those having a concavo-convex shape value of 7.0 × 10 -2 or less are considered to pass the inspection standard. The optical fiber preform of the present invention has been inspected by the above-mentioned inspection method, and has the irregularity shape value of 7.0 × 10 −2 or less and has passed the inspection standard.
【0008】[0008]
【発明の実施の形態】本発明の光ファイバ用プリフォー
ムの検査方法について、さらに詳述すると、プリフォー
ムの表面凹凸を外周に沿って1度刻み毎に1回転360°測
定して径方向への変化量Rを測定し、その変化量Rに対
しサインカーブフィッティングを少なくとも2回以上行
ってRを求め、プリフォームの非円形状及び測定時のプ
リフォームの振れ回りの影響を排除した後、これらの平
均値Raveから全測定値について偏差量R−Raveを求め
る。次いで、該偏差量の5度毎移動平均の標準偏差を求
め、その値をプリフォーム半径で割り、これを該プリフ
ォーム表面の凹凸形状値とするものであり、この値が7.
0×10-2以下のものを検査基準における合格とするのが
好ましい。なお、凹凸形状値が7.0×10-2を超えるとプ
リフォームの表面凹凸が大きくなり、酸水素火炎による
研磨が必要となるため好ましくない。BEST MODE FOR CARRYING OUT THE INVENTION The method for inspecting a preform for an optical fiber according to the present invention will be described in more detail. After measuring the amount R of change of R, performing sine curve fitting on the amount R of change at least twice to obtain R, and eliminating the influence of the non-circular shape of the preform and the whirling of the preform at the time of measurement, From these average values R ave , the deviation amount R−R ave is calculated for all measured values. Then, the standard deviation of the moving average of the deviation amount for every 5 degrees is obtained, and the value is divided by the preform radius, and this is taken as the irregularity shape value of the preform surface, and this value is 7.
It is preferable that those of 0 × 10 −2 or less pass the inspection standard. In addition, when the irregularity shape value exceeds 7.0 × 10 -2 , the surface irregularities of the preform become large and polishing with an oxyhydrogen flame is required, which is not preferable.
【0009】本発明の光ファイバ用プリフォームの検査
方法について、図を用いて詳細に説明する。図1は、プ
リフォーム表面の凹凸形状測定装置の1例を示す概略正
面図である。図中、1はプリフォーム、2はプリフォー
ムの把持機構、3は接触式変位計、4は回転用モータで
あり、5は、右側の把持機構2に動力を伝達する動力伝
達機構を表している。The optical fiber preform inspection method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic front view showing an example of an uneven shape measuring apparatus for the surface of a preform. In the figure, 1 is a preform, 2 is a preform gripping mechanism, 3 is a contact type displacement gauge, 4 is a rotation motor, and 5 is a power transmission mechanism that transmits power to the right gripping mechanism 2. There is.
【0010】先ず、光ファイバ用プリフォーム1の両端
をそれぞれ把持機構2,2で把持して装置に取り付け、
プリフォーム1の表面に接触式変位計3のセンサヘッド
を押し付け、回転用モータ4を測定に都合のよい速度で
回転させ、回転量1度刻み毎に1回転360°にわたって、
径方向へのセンサヘッドの変化量Rを測定する。測定
は、変位計が設置されている底面に、必ず振動等が発生
していないことを確認したうえで行う。First, both ends of the optical fiber preform 1 are held by the holding mechanisms 2 and 2, respectively, and attached to the apparatus.
The sensor head of the contact type displacement meter 3 is pressed against the surface of the preform 1, the rotation motor 4 is rotated at a speed convenient for the measurement, and the rotation amount is rotated once every 360 degrees for 360 degrees.
The amount of change R of the sensor head in the radial direction is measured. Make sure that the bottom surface where the displacement gauge is installed does not generate any vibration.
【0011】上記測定で得られた変化量R(データ数36
0)に対しサインカーブフィッティング[Rfit=a・sin
(b・θ+c)+d ,a,b,c,d;定数]を行い、各角度θに
対するR[=(R−Rfit)]を求める。上記サインカーブ
フィッティングを2回以上行った後Rの平均値Raveを求
め、各回転角度(1度刻み)毎に偏差量R−Raveを算出す
る。さらに、得られた偏差量R−Raveに対し5度毎の移動
平均を取る。最後に、得られた5度毎の移動平均(デー
タ数72)の標準偏差を求め、その値をプリフォームの半
径で割り、この値をプリフォームの表面凹凸形状値とす
るものである。The change amount R (the number of data 36
0) to sine curve fitting [R fit = a ・ sin
(B · θ + c) + d, a, b, c, d; constant], and R [= (R−R fit )] for each angle θ is obtained. After performing the sine curve fitting two or more times, the average value R ave of R is obtained, and the deviation amount R-R ave is calculated for each rotation angle (in steps of 1 degree). Furthermore, a moving average is taken every 5 degrees for the obtained deviation amount R- Rave . Finally, the standard deviation of the obtained moving average (data number 72) every 5 degrees is obtained, and the value is divided by the radius of the preform, and this value is taken as the surface irregularity shape value of the preform.
【0012】続いて、上記検査方法で数値化した表面凹
凸形状値と、プリフォームの表面の凹凸による酸水素火
炎光の散乱の有無を目視確認した結果との比較検討を行
ったところ、表面凹凸形状値を7.0×10-2以下にする
と、プリフォーム表面凹凸での散乱が発生しないことが
判明した(表1参照)。Subsequently, the surface irregularity shape value quantified by the above inspection method and the result of visually confirming the presence or absence of oxyhydrogen flame light scattering due to the irregularities on the surface of the preform were compared and examined. It was found that when the shape value was 7.0 × 10 -2 or less, scattering did not occur on the surface irregularities of the preform (see Table 1).
【0013】[0013]
【実施例】以下、本発明について実施例を用いて説明す
るが、本発明はこれに限定されるものではない。
(実施例1)図2に示した製造装置6を用いて、外付け
法により光ファイバ用多孔質母材7の製造を行った。バ
ーナ8に四塩化ケイ素ガスを供給し、酸水素火炎中での
加水分解反応で生成するガラス微粒子を、回転する光フ
ァイバ用コア部材9上に、これに沿ってバーナ8を左右
に移動させながら堆積させ、多孔質母材7を製造した。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) Using the manufacturing apparatus 6 shown in FIG. 2, a porous preform 7 for an optical fiber was manufactured by an external attachment method. A silicon tetrachloride gas is supplied to the burner 8 and glass particles produced by a hydrolysis reaction in an oxyhydrogen flame are placed on the rotating optical fiber core member 9 while moving the burner 8 left and right along the core member 9. It was made to deposit and the porous base material 7 was manufactured.
【0014】その後、この多孔質母材7を図3に示した
焼結反応炉10内に装着し、ヘリウムガス、塩素ガスの混
合ガス雰囲気下で1100℃で脱水、塩素ドープを行った
後、さらに加熱装置11の温度を上げて焼結・透明ガラス
化して、外径140mmφ、長さ1500mmの光ファイバ母
材とした。得られた光ファイバ母材をガラス旋盤(また
は電気炉)を用いて延伸し、外径60φmm、長さ1000m
mの光ファイバ用プリフォームを6本得た。After that, the porous base material 7 was mounted in the sintering reaction furnace 10 shown in FIG. 3, dehydrated and chlorine-doped at 1100 ° C. in a mixed gas atmosphere of helium gas and chlorine gas. Further, the temperature of the heating device 11 was raised to sinter / clear vitrify to obtain an optical fiber preform having an outer diameter of 140 mmφ and a length of 1500 mm. The obtained optical fiber preform is drawn using a glass lathe (or electric furnace), and the outer diameter is 60φ mm and the length is 1000 m.
Six m preforms for optical fibers were obtained.
【0015】延伸して得た上記サイズのプリフォーム
を、図1に示す装置に装着した。次に、プリフォーム1
を回転数5rpmで回転させながら、接触式変位計3をプリ
フォームに押し当て、プリフォーム1の一端から250m
mLの間隔毎に、すなわち、250,500,750mmLの3
点で、変化量Rを1度刻み毎に360°測定した。さら
に、上記手順に従ってプリフォーム表面の凹凸形状値を
求め、上記3点の平均値を、測定したプリフォームに対
する表面凹凸形状値とした。同様にして、他の5本のプ
リフォームについても表面凹凸形状値の測定を行った。The preform of the above size obtained by stretching was mounted on the apparatus shown in FIG. Next, preform 1
The contact type displacement meter 3 is pressed against the preform while rotating at 5 rpm and 250 m from one end of the preform 1.
Every interval of mL, that is, 250,500,750mmL 3
At each point, the amount of change R was measured by 360 ° in steps of 1 degree. Further, the irregularity shape value of the preform surface was obtained according to the above procedure, and the average value of the above three points was used as the surface irregularity shape value for the measured preform. Similarly, the surface irregularity shape values were measured for the other five preforms.
【0016】その後、ガラス旋盤を用いてバーナ火炎
(水素300 Nl/min,酸素130 Nl/min)でプリフォーム表
面を火炎研磨した。このとき表面凹凸による散乱の様子
を目視で確認した。以上の結果を表1にまとめて示し
た。表1から、表面凹凸形状値が8.0×10-2以上では、酸
水素火炎による火炎研磨時に散乱を生じることが認めら
れる。Thereafter, the surface of the preform was flame-polished with a burner flame (hydrogen 300 Nl / min, oxygen 130 Nl / min) using a glass lathe. At this time, the state of scattering due to surface irregularities was visually confirmed. The above results are summarized in Table 1. From Table 1, it is recognized that when the surface roughness profile value is 8.0 × 10 -2 or more, scattering occurs during flame polishing with an oxyhydrogen flame.
【0017】[0017]
【表1】 [Table 1]
【0018】これに基づき、表面凹凸形状値が7.0×10
-2以下のものを合格と定義することにより、検査結果に
ばらつきを生じない検査基準の一定化を図ることができ
る。その結果、表面凹凸形状値が7.0×10-2を超えるも
のについてのみ、円筒研削処理を行えばよく、不必要な
処理は避けられ、生産能力の向上を図ることができる。Based on this, the surface irregularity shape value is 7.0 × 10
-By defining the following items as acceptable, it is possible to make the inspection standard constant without causing variations in inspection results. As a result, it is sufficient to perform the cylindrical grinding treatment only for those having a surface irregularity shape value of more than 7.0 × 10 -2 , unnecessary treatment can be avoided, and production capacity can be improved.
【0019】[0019]
【発明の効果】本発明によれば、プリフォームの表面凹
凸形状値を数値的に定義することにより、検査結果にば
らつきを生じない検査基準の一定化を図ることができ、
さらに、表面凹凸形状値が7.0×10-2以下のものを合格
とすることにより、処理工程の重複を避けることがで
き、生産能力の向上を図ることができる。According to the present invention, by numerically defining the surface irregularity shape value of the preform, it is possible to make the inspection standard constant without causing variations in the inspection results.
Furthermore, by accepting those having a surface irregularity shape value of 7.0 × 10 -2 or less, it is possible to avoid duplication of processing steps and improve production capacity.
【図1】 プリフォーム表面の凹凸形状測定装置の1例
を示す概略正面図である。FIG. 1 is a schematic front view showing an example of an uneven shape measuring apparatus for a preform surface.
【図2】 外付け法による多孔質母材の製造装置の1例
を示す概略図である。FIG. 2 is a schematic view showing an example of an apparatus for manufacturing a porous base material by an external attachment method.
【図3】 多孔質母材を焼結・透明ガラス化する焼結反
応炉の1例を示す概略図である。FIG. 3 is a schematic view showing an example of a sintering reaction furnace that sinters a porous base material into transparent glass.
1.……プリフォーム、 2.……把持機構、 3.……接触式変位計 4.……回転用モータ、 5.……動力伝達機構、 6.……多孔質母材の製造装置、 7.……多孔質母材、 8.……バーナ、 9.……コア部材(出発基材)、 10.……焼結反応炉、 11.……加熱装置。 1. ……preform, 2. ...... Gripping mechanism, 3. ...... Contact displacement meter 4. ... Rotating motor, 5. ...... Power transmission mechanism, 6. ...... Production equipment for porous matrix, 7. ...... Porous base material, 8. ...... Burner, 9. ...... Core member (starting base material), Ten. ...... Sintering reaction furnace, 11. …… Heating device.
Claims (3)
置を検出し、得られた検出データを2回以上サインカー
ブフィッティングした値を基準値とし、前記検出データ
と該基準値との差の標準偏差から該光ファイバ用プリフ
ォームの凹凸形状を求めることを特徴とする光ファイバ
用プリフォームの検査方法。1. A standard deviation of a difference between the detection data and the reference value, which is obtained by detecting the position of a rotating optical fiber preform and performing sine curve fitting of the obtained detection data two or more times. The method for inspecting an optical fiber preform is characterized in that the uneven shape of the optical fiber preform is obtained from the above.
を検査基準における合格とする請求項1に記載の光ファ
イバ用プリフォームの検査方法。2. The method of inspecting an optical fiber preform according to claim 1, wherein the concave-convex shape value of 7.0 × 10 −2 or less is determined to pass the inspection standard.
前記凹凸形状値が7.0×10-2以下で検査基準に合格した
ものであることを特徴とする光ファイバ用プリフォー
ム。3. Inspected by the inspection method according to claim 1,
A preform for an optical fiber, characterized in that the concavo-convex shape value is 7.0 × 10 -2 or less and has passed an inspection standard.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001399415A JP2003194537A (en) | 2001-12-28 | 2001-12-28 | Method for inspecting preform for optical fiber and preform for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001399415A JP2003194537A (en) | 2001-12-28 | 2001-12-28 | Method for inspecting preform for optical fiber and preform for optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003194537A true JP2003194537A (en) | 2003-07-09 |
Family
ID=27604452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001399415A Pending JP2003194537A (en) | 2001-12-28 | 2001-12-28 | Method for inspecting preform for optical fiber and preform for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003194537A (en) |
-
2001
- 2001-12-28 JP JP2001399415A patent/JP2003194537A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5922649B2 (en) | High purity synthetic silica and products such as jigs made from the high purity synthetic silica | |
JP2612949B2 (en) | Manufacturing method of optical fiber preform base material | |
JPH10158025A (en) | Production of optical fiber preform | |
KR102539239B1 (en) | Method for producing a substrate tube of quartz glass | |
JPH04228439A (en) | Manufacture of preform for optical fiber with regular properties | |
JP7555208B2 (en) | Large hollow porous quartz glass base material and its manufacturing method | |
TW555707B (en) | Glass base material polishing device and the manufacturing method thereof | |
EP1487750B1 (en) | Method for producing an optical fiber and optical fiber | |
CN106082632A (en) | A kind of interior chemical vapor deposition method of pipe that automatically eliminates prepares glass tubing bow degree method during preform | |
CN1197798C (en) | Method for producing fibre-optical precast stick | |
JP2003194537A (en) | Method for inspecting preform for optical fiber and preform for optical fiber | |
JPH07109141A (en) | Large-sized quartz glass pipe, optical fiber preform and their preparation | |
JP2014012625A (en) | Optical fiber production method and optical fiber workpiece processing apparatus used for the same | |
JP3198290B2 (en) | Processing method and processing apparatus for optical fiber preform | |
JP6288056B2 (en) | Glass base material manufacturing apparatus and manufacturing method | |
JP6979000B2 (en) | Manufacturing method of glass base material for optical fiber | |
JP4057304B2 (en) | Manufacturing method of optical fiber preform | |
JP3678294B2 (en) | Flame polishing method for glass base material | |
JP2793617B2 (en) | Manufacturing method of optical fiber preform | |
JP2015006971A (en) | Method for manufacturing glass preform for optical fiber, and glass preform for optical fiber | |
JPH1059739A (en) | Production of optical fiber preform | |
JP2604454B2 (en) | Manufacturing method of single mode optical fiber preform | |
JP2002356341A (en) | Method for producing optical fiber preform ingot | |
JP3854843B2 (en) | Glass base material grinding apparatus and glass base material manufacturing method | |
JP7211369B2 (en) | Optical fiber preform, method for manufacturing optical fiber preform, and method for setting striae pitch of optical fiber preform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050801 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051205 |