JP2003185790A - Method and apparatus for recovering nitric acid component from aqueous solution of nitric acid - Google Patents

Method and apparatus for recovering nitric acid component from aqueous solution of nitric acid

Info

Publication number
JP2003185790A
JP2003185790A JP2001385588A JP2001385588A JP2003185790A JP 2003185790 A JP2003185790 A JP 2003185790A JP 2001385588 A JP2001385588 A JP 2001385588A JP 2001385588 A JP2001385588 A JP 2001385588A JP 2003185790 A JP2003185790 A JP 2003185790A
Authority
JP
Japan
Prior art keywords
nitric acid
electrolysis chamber
cathode
anode
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001385588A
Other languages
Japanese (ja)
Other versions
JP3845578B2 (en
Inventor
Hiroshi Takazawa
寛 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP2001385588A priority Critical patent/JP3845578B2/en
Publication of JP2003185790A publication Critical patent/JP2003185790A/en
Application granted granted Critical
Publication of JP3845578B2 publication Critical patent/JP3845578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover nitric acid components from an aqueous solution of nitric acid with good energy efficiency by enabling an apparatus to be operated at room temperature under normal pressure, and thus preventing an increase in facility costs. <P>SOLUTION: An aqueous solution 54 of nitric acid is supplied into an anode electrolysis chamber 24 and a cathode electrolysis chamber 26 which are divided by an electrolytic diaphragm 22, and is electrolyzed by feeding electricity from a DC power supply 30 while using an electrode (platinum electrode 28) installed in the anode electrolysis chamber as an anode and using a cathode electrolysis chamber component material (solution retaining container 20 made of glassy carbon) or another electrode installed in the cathode electrolysis chamber as a cathode. A NOx gas generated from the cathode electrolysis chamber is collected by scrubbers 50a, 50b and 50c loaded with distilled water 52 to recover the nitric acid components. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蒸留操作によらず
に硝酸水溶液から硝酸成分を回収する方法及びその装置
に関し、更に詳しく述べると、電気分解を利用して常温
・常圧の下で運転可能な硝酸水溶液からの硝酸成分回収
方法及びその装置に関するものである。この技術は、特
に限定されるものではないが、例えば使用済核燃料の再
処理工程で使用した硝酸水溶液から硝酸成分を回収する
処理に有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for recovering nitric acid components from a nitric acid aqueous solution without performing a distillation operation. More specifically, it is operated at room temperature and atmospheric pressure by utilizing electrolysis. The present invention relates to a method and an apparatus for recovering nitric acid components from a nitric acid aqueous solution. This technique is not particularly limited, but is effective for the treatment of recovering the nitric acid component from the nitric acid aqueous solution used in the spent nuclear fuel reprocessing step, for example.

【0002】[0002]

【従来の技術】硝酸は蒸発し易い性質を有するために、
単に硝酸水溶液を加熱しても、水のみを蒸発させて濃縮
することは不可能である。そこで一般に、蒸発缶と精留
塔を組み合わせた蒸発濃縮装置を用いて蒸留し、蒸発缶
から高濃度に濃縮された硝酸を回収し、精留塔の頂部か
ら硝酸濃度が低下した水蒸気を回収している。
2. Description of the Related Art Nitric acid has the property of being easily evaporated,
Even if the nitric acid aqueous solution is simply heated, it is impossible to evaporate and concentrate only water. Therefore, in general, distilling is carried out using an evaporative concentrator that combines an evaporator and a rectification tower, nitric acid concentrated to a high concentration is recovered from the evaporator, and steam with a reduced nitric acid concentration is recovered from the top of the rectification tower. ing.

【0003】しかし硝酸の蒸留濃縮に関しては、装置材
料の腐食の問題がある。常温では耐食性を有するステン
レス鋼でも、硝酸の沸点である120℃程度においては
材料の粒界腐食が問題となり、装置材料の減肉が観察さ
れている。
However, there is a problem of corrosion of equipment materials in the distillative concentration of nitric acid. Even with stainless steel that is corrosion resistant at room temperature, grain boundary corrosion of the material becomes a problem at about 120 ° C., which is the boiling point of nitric acid, and it has been observed that the material of the apparatus is thinned.

【0004】ステンレス鋼は、通常、硝酸溶液中では不
働態を形成し、化学的に安定な酸化被膜を材料表面に形
成することで優れた耐食性を発揮する。しかし、温度、
硝酸濃度、共存イオンの影響等が複雑に関与した強酸化
環境では、ステンレス鋼の腐食電位が過不働態又はその
近傍まで高められるため、粒界腐食型の局部腐食が生じ
る。特に、酸回収蒸発缶の場合には、伝熱面表面では金
属材料の温度が沸騰硝酸の温度よりも高くなるので、腐
食環境は更に過酷となる。
Stainless steel normally exhibits an excellent corrosion resistance by forming a passive state in a nitric acid solution and forming a chemically stable oxide film on the material surface. But the temperature,
In a strong oxidizing environment in which the effects of nitric acid concentration, coexisting ions, etc. are involved in a complicated manner, the corrosion potential of stainless steel is increased to or near the passivation state, so that intergranular corrosion type local corrosion occurs. In particular, in the case of an acid recovery evaporator, the temperature of the metal material on the surface of the heat transfer surface becomes higher than the temperature of boiling nitric acid, so the corrosive environment becomes more severe.

【0005】そこで、減圧下において硝酸を沸騰させる
ことにより、硝酸の沸点を下げて蒸留操作を行う技術が
ある。あるいは高温硝酸に耐食性を有する合金(25C
r−20Ni−Nb鋼、Ti−5%Ta)等で装置を構
成することも可能であるとされている。
Therefore, there is a technique of boiling nitric acid under reduced pressure to lower the boiling point of nitric acid and performing distillation operation. Alternatively, an alloy with corrosion resistance to high temperature nitric acid (25C
It is said that the device can be made of r-20Ni-Nb steel, Ti-5% Ta) or the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、減圧下
での沸騰処理は、気体の体積が増加するために大型の精
留塔が必要になり、経済性が悪くなる。また高温硝酸に
対して耐食性を有する合金による設備は、通常のステン
レス鋼を使用した場合と比較して著しく高価となる欠点
が生じる。
However, the boiling treatment under reduced pressure requires a large-scale rectification column due to an increase in the volume of gas, resulting in poor economic efficiency. Further, the equipment using an alloy having corrosion resistance to high-temperature nitric acid has a drawback that it is extremely expensive as compared with the case of using ordinary stainless steel.

【0007】本発明の目的は、常温・常圧下で運転でき
るために設備コストが増加することがなく、エネルギー
的にも効率よく硝酸水溶液から硝酸成分を回収できる方
法及び装置を提供することである。
An object of the present invention is to provide a method and an apparatus capable of recovering nitric acid components from an aqueous nitric acid solution efficiently in terms of energy without increasing equipment cost because it can be operated at room temperature and atmospheric pressure. .

【0008】[0008]

【課題を解決するための手段】本発明は、電解隔膜で区
画された陽極電解室と陰極電解室のそれぞれに硝酸水溶
液を供給し、陽極電解室に設置した電極を陽極、陰極電
解室構成材料又は陰極電解室に設置した電極を陰極とし
て直流電流を流して硝酸水溶液を電気分解し、陰極電解
室から発生するNOxガスを回収することを特徴とする
硝酸水溶液からの硝酸成分回収方法である。
According to the present invention, an aqueous nitric acid solution is supplied to each of an anode electrolysis chamber and a cathode electrolysis chamber divided by an electrolytic diaphragm, and an electrode installed in the anode electrolysis chamber is used as an anode and a cathode electrolysis chamber constituent material. Alternatively, the present invention is a method for recovering nitric acid components from a nitric acid aqueous solution, characterized in that a nitric acid aqueous solution is electrolyzed by passing a direct current through an electrode installed in the cathodic electrolysis chamber as a cathode to recover NOx gas generated from the cathodic electrolytic room.

【0009】より具体的には、本発明は、アルミナ質電
解隔膜で区画された陽極電解室と陰極電解室のそれぞれ
に硝酸水溶液を供給し、陽極電解室に設置した白金電極
を陽極、陰極電解室を構成するグラッシーカーボンを陰
極として直流電流を流し硝酸水溶液を電気分解し、陰極
電解室から発生するNOxガスを、蒸留水が装荷されて
いるスクラバーで回収することを特徴とする硝酸水溶液
からの硝酸成分回収方法である。
More specifically, according to the present invention, a nitric acid aqueous solution is supplied to each of an anode electrolysis chamber and a cathode electrolysis chamber which are partitioned by an alumina-based electrolytic diaphragm, and a platinum electrode installed in the anode electrolysis chamber is used as an anode and a cathode electrolyzer. A DC current is made to flow through the glassy carbon constituting the chamber as a cathode to electrolyze the nitric acid aqueous solution, and NOx gas generated from the cathode electrolysis chamber is recovered by a scrubber loaded with distilled water. This is a method for recovering nitric acid components.

【0010】本発明は、電解隔膜によって陽極電解室と
陰極電解室とに区画され、それらに収容された硝酸水溶
液を電気分解する電解部と、該電解部の陰極電解室から
発生するNOxガスを回収する1段もしくは複数段のス
クラバーからなるNOxガス回収部を有することを特徴
とする硝酸水溶液からの硝酸成分回収装置である。
The present invention divides an anode electrolysis chamber and a cathodic electrolysis chamber by an electrolysis diaphragm and electrolyzes the nitric acid aqueous solution contained therein, and an NOx gas generated from the cathodic electrolysis chamber of the electrolysis unit. An apparatus for recovering nitric acid components from an aqueous solution of nitric acid, which has a NOx gas recovery section composed of one or more stages of scrubber for recovery.

【0011】ここで、電解部の陰極電解室から発生する
NOxガスと陽極電解室から発生する酸素ガスを混合し
てスクラバーに供給するようにガス排出管で接続するの
が好ましい。その際、陰極電解室からのNOxガス排出
管に加温ヒータを装着しガス状態を保つようにする。ま
た、電解部の陰極電解室と陽極電解室とにパージ用の空
気を供給する空気導入配管を接続するのがよい。電解部
は、グラッシーカーボン製溶液保持容器内に有底筒状の
アルミナ質電解隔膜を設置して、該電解隔膜により内側
の陽極電解室と外側の陰極電解室とに区画し、陽極電解
室内に板状白金電極を設置し、該白金電極を陽極、前記
グラッシーカーボン製溶液保持容器を陰極とするように
通電する直流電源を設ける。
Here, it is preferable to connect the NOx gas generated from the cathode electrolysis chamber of the electrolysis section and the oxygen gas generated from the anode electrolysis chamber by a gas exhaust pipe so as to supply them to the scrubber. At that time, a heating heater is attached to the NOx gas exhaust pipe from the cathode electrolysis chamber to keep the gas state. Further, it is preferable to connect an air introduction pipe for supplying purge air to the cathode electrolysis chamber and the anode electrolysis chamber of the electrolysis section. The electrolysis section is provided with a bottomed tubular alumina-based electrolytic diaphragm in a glassy carbon solution holding container, and is divided into an inner anode electrolytic chamber and an outer cathode electrolytic chamber by the electrolytic diaphragm. A plate-like platinum electrode is installed, and a direct current power source is energized so that the platinum electrode serves as an anode and the glassy carbon solution holding container serves as a cathode.

【0012】[0012]

【発明の実施の形態】本発明では、電解隔膜で区画され
た陽極電解室と陰極電解室のそれぞれに硝酸水溶液を供
給し、陽極電解室に設置した電極を陽極、陰極電解室構
成材料を陰極として直流電流を流して硝酸水溶液を電気
分解する。この硝酸水溶液の電気分解によって、陰極電
解室からはNOxガスが発生する。他方、陽極電解室か
らは水の電気分解により酸素ガスが発生する。これらN
Oxガスを酸素ガスと共にスクラバーで回収することに
より、硝酸成分を効率的に回収することができる。この
ような処理を行うと、陰極電解室の硝酸水溶液の硝酸濃
度は低下し、陽極電解室内の硝酸成分の量は変化しない
ものの、陽極電解室内の水成分が減少するために硝酸の
濃度は上昇する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an aqueous nitric acid solution is supplied to each of an anode electrolysis chamber and a cathode electrolysis chamber partitioned by an electrolytic diaphragm, an electrode installed in the anode electrolysis chamber is an anode, and a material constituting the cathode electrolysis chamber is a cathode. As a direct current, a nitric acid aqueous solution is electrolyzed by passing a direct current. Due to the electrolysis of this nitric acid aqueous solution, NOx gas is generated from the cathode electrolysis chamber. On the other hand, oxygen gas is generated from the anode electrolysis chamber by electrolysis of water. These N
By recovering the Ox gas together with the oxygen gas with the scrubber, the nitric acid component can be efficiently recovered. When such treatment is performed, the nitric acid concentration of the nitric acid aqueous solution in the cathode electrolysis chamber decreases, and the amount of nitric acid component in the anode electrolysis chamber does not change, but the water component in the anode electrolysis chamber decreases, so the concentration of nitric acid increases. To do.

【0013】各電極における電極反応を以下に示す。陰
極における最初の反応は、 H+ +e- →(H) である。ここで(H)は、陰極に吸着された水素原子を
示している。この反応に引き続き、 HNO3 +2(H)→HNO2 +H2 O あるいは 2(H)→H2 の反応が起こる。
The electrode reaction at each electrode is shown below. The first reaction at the cathode is H + + e → (H). Here, (H) indicates a hydrogen atom adsorbed on the cathode. Following this reaction, a reaction of HNO 3 +2 (H) → HNO 2 + H 2 O or 2 (H) → H 2 occurs.

【0014】陰極近傍にHNO2 が生成した場合には、
以下の一連の反応によりNOxガスが発生する。 3HNO2 →HNO3 +2NO↑+H2 O HNO2 +HNO3 →N2 4 +H2 O N2 4 →2NO2
When HNO 2 is produced near the cathode,
NOx gas is generated by the following series of reactions. 3HNO 2 → HNO 3 + 2NO ↑ + H 2 O HNO 2 + HNO 3 → N 2 O 4 + H 2 O N 2 O 4 → 2NO 2

【0015】なお、陽極反応は、以下に示すような酸素
発生反応である。 4OH- →2H2 O+O2 ↑+4e-
The anodic reaction is an oxygen generation reaction as shown below. 4OH - → 2H 2 O + O 2 ↑ + 4e -

【0016】上記の反応式に示すように、陰極発生ガス
の主成分は、NO及びNO2 ガスであり、これらのガス
はNOxガスの回収系に導かれ回収される。NO2 ガス
は、以下の反応にて硝酸を生成する。 3NO2 +H2 O→NO+2HNO3
As shown in the above reaction formula, the main components of the gas generated at the cathode are NO and NO 2 gas, and these gases are introduced to the NOx gas recovery system and recovered. NO 2 gas produces nitric acid in the following reaction. 3NO 2 + H 2 O → NO + 2HNO 3

【0017】電気分解により発生したNOガス及び上記
の反応式で生成したNOガスは、NOガスの水への溶解
度が小さいために、蒸留水を装荷したスクラバーをその
まま通過してしまう。そこで、陽極で発生した酸素また
はパージ用空気により酸化させてNO2 とする。する
と、上記に示す反応によりスクラバーで回収することが
できる。
The NO gas generated by electrolysis and the NO gas generated by the above reaction formula pass through the scrubber loaded with distilled water as they are because the solubility of NO gas in water is small. Therefore, it is oxidized by oxygen generated at the anode or by purging air to form NO 2 . Then, it can be recovered by the scrubber by the reaction shown above.

【0018】[0018]

【実施例】図1は、本発明に係る硝酸水溶液からの硝酸
成分回収装置の一実施例を示す説明図である。本装置
は、電解部10とNOxガス回収部12とから構成され
る。
EXAMPLE FIG. 1 is an explanatory view showing an example of a device for recovering nitric acid components from an aqueous nitric acid solution according to the present invention. The present apparatus includes an electrolysis unit 10 and a NOx gas recovery unit 12.

【0019】電解部10は、グラッシーカーボン製溶液
保持容器20内に有底円筒状のアルミナ質電解隔膜22
を設置して、該電解隔膜22によって内側の陽極電解室
24と外側の陰極電解室26とに区画し、陽極電解室2
4内にフラッグ状白金電極28を設置し、該白金電極2
8を陽極、前記グラッシーカーボン製溶液保持容器20
自体を陰極とするように通電する直流電源30を具備し
ている。
The electrolytic section 10 includes a cylindrical electrolytic alumina membrane 22 with a bottom in a glassy carbon solution holding container 20.
Is installed, and is divided into an inner anode electrolysis chamber 24 and an outer cathode electrolysis chamber 26 by the electrolysis diaphragm 22.
A flag-shaped platinum electrode 28 is installed in the
8 is an anode, the glassy carbon solution holding container 20
The DC power supply 30 is provided so as to energize itself so as to serve as a cathode.

【0020】有底円筒形状をなすアルミナ製電解隔膜2
2は、外径50mm、高さ75mmであり、その厚みは3mm
である。この電解隔膜22は、化学組成がAl2 3
3Al2 3 ・2SiO2 の多孔質体であり、電気抵抗
は比較的小さいものの、溶液の浸透量は極めて小さい材
料である。因みに、電気抵抗は0.1NのHCl中で5
00Ω・cm程度、厚さ2mmの電解隔膜に9800Paの
圧力をかけて測定した浸透量は2.7cm3 /cm2 hであ
る。
Alumina electrolytic diaphragm 2 having a bottomed cylindrical shape
2 has an outer diameter of 50 mm and a height of 75 mm, and its thickness is 3 mm
Is. This electrolytic diaphragm 22 has a chemical composition of Al 2 O 3 +.
It is a porous body of 3Al 2 O 3 .2SiO 2 and has a relatively low electric resistance, but an extremely small amount of solution permeation. By the way, the electric resistance is 5 in 0.1N HCl.
The permeation amount measured by applying a pressure of 9800 Pa to an electrolytic diaphragm having a thickness of about 00 Ω · cm and a thickness of 2 mm is 2.7 cm 3 / cm 2 h.

【0021】陽極であるフラッグ状白金電極28は、縦
横14cm×4cm、厚さ0.1cmの板状体(面積は両面で
112cm2 )に、直径2mm、長さ60mmの白金製支持棒
を溶着した構造である。陰極電解室26を形成する溶液
保持容器20は、グラッシーカーボン製であり、硝酸水
溶液と接触する内面が陰極を兼ねている。なお、グラッ
シーカーボン(glassy carbon )は、黒色ガラス状のガ
ス不透過性炭素製品であり、高純度で耐薬品性に優れて
いるなどの特徴を有するもので、例えば坩堝などに用い
られている材料である。
The flag-shaped platinum electrode 28 serving as an anode is formed by welding a platinum support rod having a diameter of 2 mm and a length of 60 mm to a plate-like body (area: 112 cm 2 on both sides) having a length and width of 14 cm × 4 cm and a thickness of 0.1 cm. It is a structure. The solution holding container 20 forming the cathode electrolysis chamber 26 is made of glassy carbon, and the inner surface in contact with the nitric acid aqueous solution also serves as the cathode. Glassy carbon is a black glass-like gas impermeable carbon product, which has characteristics such as high purity and excellent chemical resistance, and is used as a material for crucibles, for example. Is.

【0022】溶液保持容器20の材質としては、硝酸水
溶液を保持するという目的では高密度黒鉛でも可能であ
るが、電気分解中に硝酸水溶液をカーボンで汚染しない
という点を勘案すると、グラッシーカーボンは黒鉛の微
粉末の溶液中への拡散を抑えることができるため最適で
ある。なお陰極材料として、陽極と同じ材料の白金を使
用することも可能であるが、白金は高価であること、ま
た溶液中の硝酸濃度が比較的低い1〜3mol /L(リッ
トル)の場合にカーボン電極を使用した方が効率的に硝
酸成分を分解できること等の理由により、陰極構成材料
としてはカーボンの使用が望ましい。
As the material of the solution holding container 20, high density graphite can be used for the purpose of holding the nitric acid aqueous solution, but considering that the nitric acid aqueous solution is not contaminated with carbon during electrolysis, the glassy carbon is graphite. It is optimal because it can suppress the diffusion of the fine powder of (3) into the solution. It is possible to use platinum, which is the same material as the anode, as the cathode material, but platinum is expensive, and carbon is used when the nitric acid concentration in the solution is relatively low at 1 to 3 mol / L (liter). It is preferable to use carbon as the cathode constituent material because it is possible to decompose the nitric acid component more efficiently by using the electrode.

【0023】電気化学的測定及び電気分解は、陽極であ
る白金電極28及び陰極であるグラッシーカーボン製溶
液保持容器20に加え、参照電極32を使用する3電極
系で実施した。参照電極とは、電位の基準となる電極で
あり、対象となる陰極電位の測定及び電位規制に使用さ
れる。本実施例では、水溶液系の実験で最も一般に使用
される飽和カロメル参照電極32を使用している。
The electrochemical measurement and the electrolysis were carried out in a three-electrode system using a reference electrode 32 in addition to the platinum electrode 28 as the anode and the solution holding container 20 made of glassy carbon as the cathode. The reference electrode is an electrode serving as a reference of electric potential, and is used for measuring a target cathode electric potential and regulating the electric potential. In this example, a saturated calomel reference electrode 32 that is most commonly used in an aqueous system experiment is used.

【0024】電解部10の陽極電解室24及び陰極電解
室26には、外部からの空気導入配管34が接続され
る。更に、陽極電解室24からは酸素ガス排出管36が
引き出され、陰極電解室26からはNOxガス排出管3
8が引き出されて、それらのガスは合流してガス排出管
40によってNOxガス回収部12に送られる。なお、
NOxガス排出管38には加温ヒータ42を装着して、
60〜80℃程度に加温する。NOxガス回収部12
は、3段に縦続接続されたスクラバー50a,50b,
50cからなり、各スクラバー50a,50b,50c
には蒸留水52を装荷する。
An air introduction pipe 34 from the outside is connected to the anode electrolysis chamber 24 and the cathode electrolysis chamber 26 of the electrolysis section 10. Further, an oxygen gas exhaust pipe 36 is drawn from the anode electrolysis chamber 24, and a NOx gas exhaust pipe 3 is drawn from the cathode electrolysis chamber 26.
8 are extracted, and those gases are combined and sent to the NOx gas recovery unit 12 by the gas discharge pipe 40. In addition,
A heating heater 42 is attached to the NOx gas exhaust pipe 38,
Heat to about 60 to 80 ° C. NOx gas recovery unit 12
Are scrubbers 50a, 50b, which are cascade-connected in three stages.
50c, each scrubber 50a, 50b, 50c
Is loaded with distilled water 52.

【0025】上記のように構成した電解部10の陽極電
解室24及び陰極電解室26のそれぞれに濃度6Nの硝
酸水溶液54を60mL供給し、電解電流3Aにて定電
流電解を実施し、陽極電解室24及び陰極電解室26の
硝酸水溶液の濃度の変化を調べた。硝酸水溶液の濃度の
定量は、1mol NaOHで中和滴定することで実施し
た。表1に陽極電解室及び陰極電解室の硝酸水溶液の濃
度の変化を示す。電解の進行に伴い、硝酸成分の分解に
より陰極電解室の硝酸濃度は減少し、陽極電解の硝酸濃
度は水の分解により増加した。
60 mL of a nitric acid aqueous solution 54 having a concentration of 6 N was supplied to each of the anode electrolysis chamber 24 and the cathode electrolysis chamber 26 of the electrolysis section 10 constructed as described above, and constant current electrolysis was carried out at an electrolysis current of 3 A to perform anodic electrolysis. The changes in the concentration of the nitric acid aqueous solution in the chamber 24 and the cathode electrolysis chamber 26 were examined. The concentration of the nitric acid aqueous solution was determined by neutralization titration with 1 mol NaOH. Table 1 shows changes in the concentration of the nitric acid aqueous solution in the anode electrolysis chamber and the cathode electrolysis chamber. As the electrolysis progressed, the concentration of nitric acid in the cathode electrolysis chamber decreased due to the decomposition of nitric acid components, and the concentration of nitric acid in the anode electrolysis increased due to the decomposition of water.

【0026】[0026]

【表1】 [Table 1]

【0027】また、電解開始前及び電解終了後の陽極電
解室及び陰極電解室中の硝酸水溶液中の硝酸量、電解に
より減少した硝酸の量及び消費した電気量を表2に示
す。表2から分かるように、陰極電解室の硝酸は消費さ
れて酸濃度が減少しており、陽極電解室では硝酸成分は
電解されずに水成分が分解され酸濃度が上昇している。
Table 2 shows the amount of nitric acid in the nitric acid aqueous solution in the anode electrolysis chamber and the cathode electrolysis chamber before and after the electrolysis, the amount of nitric acid reduced by electrolysis, and the amount of electricity consumed. As can be seen from Table 2, nitric acid in the cathode electrolysis chamber is consumed and the acid concentration is decreasing, and in the anode electrolysis chamber, the nitric acid component is not electrolyzed and the water component is decomposed to increase the acid concentration.

【0028】[0028]

【表2】 [Table 2]

【0029】陰極反応が HNO3 +2H+ +2e- →HNO2 +H2 O 3HNO2 →HNO3 +2NO↑+H2 O HNO2 +HNO3 →N2 4 +H2 O N2 4 →2NO2 ↑ の一連の反応で起こっているとすると、上記の式に適当
な係数を掛けて足し合わせて、 4HNO3 +8H+ +8e- →2NO↑+2NO2 ↑+
6H2 O となる。従って、理論的には1F(=96485C)の
電気量で0.5mol のHNO3 が分解し、0.25mol
のNOと0.25mol のNO2 が発生することになる。
本実施例では、硝酸の消費量は0.211mol であり、
電流効率は、 電流効率(%)=0.211/(42120/9648
5×0.5)×100=96.7% となる。この結果から、エネルギー的に見ても、効率よ
く硝酸成分が電気分解されていることが分かる。
The cathodic reaction is HNO 3 + 2H + + 2e → HNO 2 + H 2 O 3HNO 2 → HNO 3 + 2NO ↑ + H 2 O HNO 2 + HNO 3 → N 2 O 4 + H 2 O N 2 O 4 → 2NO 2 ↑ If it occurs in the reaction of 4HNO 3 + 8H + + 8e → 2NO ↑ + 2NO 2 ↑ +
It becomes 6H 2 O. Therefore, theoretically, 0.5 mol of HNO 3 is decomposed by an electric quantity of 1 F (= 96485 C), and 0.25 mol
Of NO and 0.25 mol of NO 2 are generated.
In this example, the consumption of nitric acid is 0.211 mol,
The current efficiency is the current efficiency (%) = 0.211 / (42120/9648).
5 × 0.5) × 100 = 96.7%. From this result, it can be seen that the nitric acid component is efficiently electrolyzed even in terms of energy.

【0030】電解部10の陰極電解室26で発生したN
Oxガス及び陽極電解室24で発生した酸素は、NOx
ガス回収系12に導かれ、NOxガスがスクラバー50
a,50b,50c中の蒸留水52と接触して回収され
る。電解発生ガスのパージには空気が使用され、電解発
生ガスを速やかにNOxガス回収系に導いている。ま
た、陽極電解室24から発生した酸素も、パージ用空気
によりNOxガス回収系12に導かれ、陰極電解室26
から発生したNOxガスと混合される。陽極電解室24
で発生した酸素及びパージ用空気中の酸素は、水に吸収
され難いNOをNO2 に酸化するために使用される。従
って、陰極電解室26からのNOxガスはNO2 の状態
でスクラバー50a,50b,50cにて回収されるこ
とになる。各スクラバー50a,50b,50cにはそ
れぞれ5L(リットル)の蒸留水52が装荷されてお
り、各スクラバー50a,50b,50cにてNOxガ
スを回収した結果としてのスクラバー溶液の硝酸濃度の
変化量を表3に示す。
N generated in the cathode electrolysis chamber 26 of the electrolysis section 10
Ox gas and oxygen generated in the anode electrolysis chamber 24 are NOx.
The NOx gas is guided to the gas recovery system 12 and scrubber 50
It is recovered by contacting with distilled water 52 in a, 50b and 50c. Air is used for purging the electrolysis generated gas, and promptly guides the electrolysis generated gas to the NOx gas recovery system. Oxygen generated from the anode electrolysis chamber 24 is also introduced into the NOx gas recovery system 12 by the purging air, and the cathode electrolysis chamber 26
It is mixed with NOx gas generated from. Anode electrolysis chamber 24
The oxygen generated in the above step and the oxygen in the purge air are used to oxidize NO, which is difficult to be absorbed by water, into NO 2 . Therefore, the NOx gas from the cathode electrolysis chamber 26 is collected in the scrubber 50a, 50b, 50c in the NO 2 state. Each scrubber 50a, 50b, 50c is loaded with 5 L (liter) of distilled water 52, and the amount of change in nitric acid concentration of the scrubber solution as a result of recovering NOx gas by each scrubber 50a, 50b, 50c is shown. It shows in Table 3.

【0031】ガス中のNOx成分は、2段目までのスク
ラバー50a,50bで回収され、3段目のスクラバー
50cでは電解終了後も硝酸成分は回収されなかった。
表3に示すように、全てのスクラバーで回収されたNO
xガスは、硝酸量に換算して0.169mol (=0.1
35+0.034)であり、陰極電解室から減少した硝
酸成分の80%がNOx回収系で回収されたことが分か
る。
The NOx component in the gas was recovered by the scrubbers 50a, 50b up to the second stage, and the nitric acid component was not recovered by the scrubber 50c in the third stage even after the electrolysis was completed.
As shown in Table 3, NO recovered in all scrubbers
x gas is 0.169 mol (= 0.1
35 + 0.034), which shows that 80% of the nitric acid component reduced from the cathode electrolysis chamber was recovered by the NOx recovery system.

【0032】[0032]

【表3】 [Table 3]

【0033】なお、陰極電解室26からのNOxガス排
出管38に加温ヒータ42を装着しているのは、NOx
ガスが、ガス状態のままNOxガス回収部12へ向かう
ようにするためである。もし加温しないと、NOxガス
が配管内で凝縮して硝酸に戻り、重力で陰極電解室に戻
ってしまい、処理効率(電流効率)が低下するためであ
る。但し、あまり高温にすると配管腐食が生じる恐れが
あるため、前記のようにヒータ温度は60〜80℃程度
が好ましい。
The NOx gas exhaust pipe 38 from the cathode electrolysis chamber 26 is equipped with a heater 42 for heating NOx.
This is because the gas is directed to the NOx gas recovery unit 12 in the gas state. This is because, if not heated, NOx gas condenses in the pipe and returns to nitric acid, and returns to the cathode electrolysis chamber by gravity, which lowers the processing efficiency (current efficiency). However, if the temperature is too high, pipe corrosion may occur, so that the heater temperature is preferably about 60 to 80 ° C. as described above.

【0034】[0034]

【発明の効果】本発明は上記のように、電解隔膜で区画
された陽極電解室と陰極電解室のそれぞれに硝酸水溶液
を供給し、直流電流を流して硝酸水溶液を電気分解し、
陰極電解室から発生するNOxガスを回収する方法及び
装置であるから、常温及び常圧下の運転条件で、比較的
安価な小型の設備によって、エネルギー的に見ても効率
よく硝酸水溶液から硝酸成分を回収することができる。
INDUSTRIAL APPLICABILITY As described above, the present invention supplies an aqueous nitric acid solution to each of the anode electrolysis chamber and the cathode electrolysis chamber divided by the electrolytic diaphragm, and applies a direct current to electrolyze the nitric acid aqueous solution.
Since it is a method and an apparatus for recovering NOx gas generated from the cathode electrolysis chamber, it is possible to efficiently extract nitric acid components from a nitric acid aqueous solution under operating conditions at room temperature and atmospheric pressure with a relatively inexpensive small facility. Can be collected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る硝酸水溶液からの硝酸成分回収装
置の一実施例を示す説明図。
FIG. 1 is an explanatory diagram showing an embodiment of a nitric acid component recovery device from a nitric acid aqueous solution according to the present invention.

【符号の説明】[Explanation of symbols]

10 電解部 12 NOxガス回収部 20 グラッシーカーボン製溶液保持容器 22 アルミナ製電解隔膜 24 陽極電解室 26 陰極電解室 28 フラッグ状白金電極 30 直流電源 32 参照電極 34 空気導入配管 36 酸素ガス排出管 38 NOxガス排出管 40 ガス排出管 42 加温ヒータ 50a,50b,50c スクラバー 52 蒸留水 54 硝酸水溶液 10 Electrolysis Department 12 NOx gas recovery unit 20 Glassy carbon solution holding container 22 Alumina electrolytic diaphragm 24 Anode electrolysis chamber 26 Cathode electrolysis chamber 28 Flag-shaped platinum electrode 30 DC power supply 32 reference electrode 34 Air introduction piping 36 Oxygen gas exhaust pipe 38 NOx gas exhaust pipe 40 gas exhaust pipe 42 Heater 50a, 50b, 50c scrubber 52 distilled water 54 Nitric acid aqueous solution

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解隔膜で区画された陽極電解室と陰極
電解室のそれぞれに硝酸水溶液を供給し、陽極電解室に
設置した電極を陽極、陰極電解室構成材料又は陰極電解
室に設置した電極を陰極として直流電流を流して硝酸水
溶液を電気分解し、陰極電解室から発生するNOxガス
を回収することを特徴とする硝酸水溶液からの硝酸成分
回収方法。
1. A nitric acid aqueous solution is supplied to each of an anode electrolysis chamber and a cathode electrolysis chamber partitioned by an electrolysis diaphragm, and an electrode installed in the anode electrolysis chamber is an anode, a cathode electrolysis chamber constituent material or an electrode installed in the cathode electrolysis chamber. A method for recovering nitric acid components from an aqueous nitric acid solution, characterized in that a nitric acid aqueous solution is electrolyzed by flowing a direct current as a cathode to recover NOx gas generated from the cathodic electrolysis chamber.
【請求項2】 アルミナ質電解隔膜で区画された陽極電
解室と陰極電解室のそれぞれに硝酸水溶液を供給し、陽
極電解室に設置した白金電極を陽極、陰極電解室を構成
するグラッシーカーボンを陰極として直流電流を流し硝
酸水溶液を電気分解し、陰極電解室から発生するNOx
ガスを、蒸留水が装荷されているスクラバーで回収する
ことを特徴とする硝酸水溶液からの硝酸成分回収方法。
2. A nitric acid aqueous solution is supplied to each of an anode electrolysis chamber and a cathode electrolysis chamber partitioned by an alumina-based electrolytic diaphragm, a platinum electrode installed in the anode electrolysis chamber serves as an anode, and glassy carbon constituting the cathode electrolysis chamber serves as a cathode. NOx generated from the cathodic electrolysis chamber by electrolysis of nitric acid aqueous solution by passing direct current as
A method for recovering nitric acid components from a nitric acid aqueous solution, characterized in that the gas is recovered by a scrubber loaded with distilled water.
【請求項3】 電解隔膜によって陽極電解室と陰極電解
室とに区画され、それらに収容された硝酸水溶液を電気
分解する電解部と、該電解部の陰極電解室から発生する
NOxガスを回収する1段もしくは複数段のスクラバー
からなるNOxガス回収部を有することを特徴とする硝
酸水溶液からの硝酸成分回収装置。
3. An electrolysis section partitioned by an electrolytic diaphragm into an anode electrolysis chamber and a cathode electrolysis chamber, which electrolyzes a nitric acid aqueous solution contained therein, and recovers NOx gas generated from the cathode electrolysis chamber of the electrolysis section. An apparatus for recovering nitric acid components from a nitric acid aqueous solution, which has a NOx gas recovery section composed of one or more stages of scrubbers.
【請求項4】 電解部の陰極電解室から発生するNOx
ガスと陽極電解室から発生する酸素ガスを混合してスク
ラバーに供給するようにガス排出管で接続し、その陰極
電解室からのNOxガス排出管に加温ヒータを装着した
請求項3記載の硝酸水溶液からの硝酸成分回収装置。
4. NOx generated from the cathode electrolysis chamber of the electrolysis section
The nitric acid according to claim 3, wherein a gas exhaust pipe is connected so that the gas and oxygen gas generated from the anode electrolysis chamber are mixed and supplied to the scrubber, and a NOx gas exhaust pipe from the cathode electrolysis chamber is equipped with a heating heater. Nitric acid component recovery device from aqueous solution.
【請求項5】 電解部の陰極電解室と陽極電解室とにパ
ージ用の空気を供給する空気導入配管を接続した請求項
3又は4記載の硝酸水溶液からの硝酸成分回収装置。
5. An apparatus for recovering nitric acid components from an aqueous nitric acid solution according to claim 3, wherein an air introduction pipe for supplying purging air is connected to the cathode electrolysis chamber and the anode electrolysis chamber of the electrolysis section.
【請求項6】 電解部は、グラッシーカーボン製溶液保
持容器内に有底筒状のアルミナ質電解隔膜を設置して、
該電解隔膜により内側の陽極電解室と外側の陰極電解室
とに区画し、陽極電解室内に板状白金電極を設置し、該
白金電極を陽極、前記グラッシーカーボン製溶液保持容
器自体を陰極とするように通電する直流電源を具備して
いる請求項3乃至5のいずれかに記載の硝酸水溶液から
の硝酸成分回収装置。
6. The electrolytic part comprises a bottomed cylindrical alumina-based electrolytic diaphragm placed in a glassy carbon solution holding container,
It is divided into an inner anode electrolysis chamber and an outer cathode electrolysis chamber by the electrolytic diaphragm, and a plate-like platinum electrode is installed in the anode electrolysis chamber, the platinum electrode serves as an anode, and the glassy carbon solution holding container itself serves as a cathode. 6. A device for recovering nitric acid components from an aqueous nitric acid solution according to claim 3, further comprising a direct current power source for energizing the device.
JP2001385588A 2001-12-19 2001-12-19 Method and apparatus for recovering nitric acid component from aqueous nitric acid solution Expired - Fee Related JP3845578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385588A JP3845578B2 (en) 2001-12-19 2001-12-19 Method and apparatus for recovering nitric acid component from aqueous nitric acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385588A JP3845578B2 (en) 2001-12-19 2001-12-19 Method and apparatus for recovering nitric acid component from aqueous nitric acid solution

Publications (2)

Publication Number Publication Date
JP2003185790A true JP2003185790A (en) 2003-07-03
JP3845578B2 JP3845578B2 (en) 2006-11-15

Family

ID=27594961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385588A Expired - Fee Related JP3845578B2 (en) 2001-12-19 2001-12-19 Method and apparatus for recovering nitric acid component from aqueous nitric acid solution

Country Status (1)

Country Link
JP (1) JP3845578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339654A (en) * 2011-04-19 2012-02-01 中国原子能科学研究院 Ag in nitric acid system+Method for destroying acetic acid by catalytic electrolytic oxidation
CN113929185A (en) * 2021-09-26 2022-01-14 中国原子能科学研究院 Method for treating radioactive waste liquid containing nitric acid through electrolytic cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866344B (en) * 2014-03-11 2016-05-18 中国环境科学研究院 A kind of method of electrolytic preparation nitric acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339654A (en) * 2011-04-19 2012-02-01 中国原子能科学研究院 Ag in nitric acid system+Method for destroying acetic acid by catalytic electrolytic oxidation
CN113929185A (en) * 2021-09-26 2022-01-14 中国原子能科学研究院 Method for treating radioactive waste liquid containing nitric acid through electrolytic cell

Also Published As

Publication number Publication date
JP3845578B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
KR102058511B1 (en) Exhaust gas purifying apparatus
US10988847B2 (en) Apparatus and method of preparing carbonate and/or formate from carbon dioxide
Ding et al. Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration
Farmer et al. Destruction of Chlorinated Organics by Cobalt (III)‐Mediated Electrochemical Oxidation
US7211177B2 (en) Electrode for electrolysis in acidic media
US9206516B2 (en) Liquid anodes and fuels for production of metals from their oxides by molten salt electrolysis with a solid electrolyte
JP2006346624A (en) NOx REACTOR AND METHOD FOR CLARIFYING NOx
JP4838952B2 (en) Hydrogen gas generator and generator
JP3845578B2 (en) Method and apparatus for recovering nitric acid component from aqueous nitric acid solution
JP5842080B2 (en) Gas production apparatus and method
JP2002193601A (en) Method and device for water decomposition
JP2007054767A (en) Recovery method of ammonia, and using method of ammonia
JPH032236B2 (en)
JP3506475B2 (en) Method and apparatus for producing hydrogen peroxide
JP6419470B2 (en) Electrolytic treatment method and electrolytic treatment apparatus
JP3615814B2 (en) Method and apparatus for removing nitrate and / or nitrite nitrogen
JPH0545157B2 (en)
JP4677614B2 (en) Sulfuric acid electrolysis hydrogen production method and apparatus
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP2006035158A5 (en)
JP2004237207A (en) Method and apparatus for treating organic compound-containing water
TW200914377A (en) Process &amp; apparatus
JP4026464B2 (en) Treatment method for wastewater containing organic compounds
JP2000229218A (en) Treatment of gas by hydrothermal electrolysis and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees