JP3506475B2 - Method and apparatus for producing hydrogen peroxide - Google Patents

Method and apparatus for producing hydrogen peroxide

Info

Publication number
JP3506475B2
JP3506475B2 JP01090394A JP1090394A JP3506475B2 JP 3506475 B2 JP3506475 B2 JP 3506475B2 JP 01090394 A JP01090394 A JP 01090394A JP 1090394 A JP1090394 A JP 1090394A JP 3506475 B2 JP3506475 B2 JP 3506475B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
aqueous solution
tank
storage metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01090394A
Other languages
Japanese (ja)
Other versions
JPH07118002A (en
Inventor
宏二 山川
克人 松本
徹 泰永
国男 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Works Co Ltd
Original Assignee
Katayama Chemical Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Works Co Ltd filed Critical Katayama Chemical Works Co Ltd
Priority to JP01090394A priority Critical patent/JP3506475B2/en
Publication of JPH07118002A publication Critical patent/JPH07118002A/en
Application granted granted Critical
Publication of JP3506475B2 publication Critical patent/JP3506475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は過酸化水素の製造方法及
び製造装置に関し、より詳細には、過酸化水素を電気分
解法により製造する方法及び過酸化水素の製造装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing hydrogen peroxide, and more particularly to a method for producing hydrogen peroxide by an electrolysis method and an apparatus for producing hydrogen peroxide.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
ら、過酸化水素の工業的な製造方法として、有機法と電
解法とが用いられており、国内での過酸化水素は殆どが
有機法で製造されている。有機法とは、例えば、α−エ
チルアンスラキノンを、ベンゼン等のような水に不溶性
の溶剤に溶解し、これを還元してハイドロアンスラキノ
ンとし、さらに酸化した後、水で抽出を行って過酸化水
素を循環的に得るという方法である。また、電気分解法
の一例として、以下の方法がある。まず、化学槽に硫酸
を仕込み、これにアンモニアガスを吹き込み、酸性硫酸
アンモニウムを作り、さらに上記酸性硫酸アンモニウム
に電解促進剤を加え、白金を電極として電解を行って、
過硫酸アンモニウムを生成させる。電解後、溶液を電解
蒸留装置に送り、40〜50mmHg、150℃に加熱
して加水分解と共に真空蒸留によって、過酸化水素を取
り出し水に吸収させて過酸化水素を得る方法を挙げるこ
とができる。
2. Description of the Related Art Conventionally, an organic method and an electrolytic method have been used as industrial methods for producing hydrogen peroxide, and most of hydrogen peroxide in Japan is the organic method. Is manufactured in. The organic method is, for example, dissolving α-ethylanthraquinone in a water-insoluble solvent such as benzene, reducing this to hydroanthraquinone, further oxidizing it, and then extracting with water to obtain a solvent. It is a method of obtaining hydrogen oxide in a circulating manner. Further, the following method is an example of the electrolysis method. First, sulfuric acid was charged into a chemical tank, and ammonia gas was blown into the chemical tank to make acidic ammonium sulfate. Further, an electrolytic accelerator was added to the acidic ammonium sulfate, and platinum was used as an electrode for electrolysis.
This produces ammonium persulfate. After electrolysis, the solution may be sent to an electrolytic distillation apparatus, heated to 40 to 50 mmHg and 150 ° C., hydrolyzed and vacuum distilled to take out hydrogen peroxide and absorb it in water to obtain hydrogen peroxide.

【0003】上記有機法や電解法においては、製造され
た過酸化水素が、通常35〜60wt%の濃度の水溶液
として取り扱われているが、濃度が6wt%以上になる
と、毒物・劇物取締法による劇物指定を受けなければな
らず、使用量の多いところでは取扱や運送において様々
な規制を伴うという課題があった。そこで、近年、取扱
や運送の規制をうけることなく、使用する場所で過酸化
水素を簡単に製造する方法として、特開平4−1388
2号公報が提案されている。この方法においては、電解
槽に電解質水溶液を入れ、陽極側に白金あるいはカーボ
ン等を使用し、陰極側にパラジウム又はパラジウム合金
を使用して、その両電極間をリード線でつなぎ、直流電
流を流すことにより、陰極側のパラジウム又はパラジウ
ム合金に水素を吸蔵させた後、電源をOFFとして電解
を停止する。そして、電解質水溶液中に空気を封入する
ことにより、過酸化水素を発生させる。
In the above-mentioned organic method and electrolysis method, the produced hydrogen peroxide is usually handled as an aqueous solution having a concentration of 35 to 60 wt%, but when the concentration exceeds 6 wt%, the poisonous and deleterious substance control method is applied. However, there was a problem that various restrictions were imposed on handling and transportation in places where the amount of use was large. Therefore, in recent years, as a method for easily producing hydrogen peroxide at a place of use without being restricted by handling or transportation, JP-A-4-1388 has been proposed.
No. 2 publication is proposed. In this method, an electrolytic aqueous solution is put in an electrolytic cell, platinum or carbon or the like is used on the anode side, palladium or palladium alloy is used on the cathode side, and a lead wire is connected between both electrodes to flow a direct current. As a result, hydrogen is stored in the palladium or palladium alloy on the cathode side, and then the power is turned off to stop electrolysis. Then, hydrogen is generated by enclosing air in the electrolyte aqueous solution.

【0004】しかし、このような方法では、連続的に過
酸化水素を生成させることができず、また、過酸化水素
が生成した際の溶液中に電解質が混合されており、純粋
な過酸化水素溶液が得られないという課題があった。
However, in such a method, hydrogen peroxide cannot be continuously produced, and the electrolyte is mixed in the solution when hydrogen peroxide is produced, so that pure hydrogen peroxide is obtained. There was a problem that a solution could not be obtained.

【0005】[0005]

【課題を解決するための手段】本発明によれば、水不溶
性材料からなる導体を陽極とし、水素吸蔵金属を陰極と
して電解質水溶液中で電気分解し、発生する水素原子を
水素吸蔵金属に吸蔵させ、かつ該水素吸蔵金属を隔壁と
して前記電解質水溶液と分隔した隣接する水溶液中にお
いて、前記水素吸蔵金属に吸蔵された水素原子と溶存酸
素とを接触反応させる過酸化水素の製造方法が提供され
る。
According to the present invention, a conductor made of a water-insoluble material is used as an anode, a hydrogen storage metal is used as a cathode, and the hydrogen storage metal is electrolyzed in an aqueous electrolyte solution so that the generated hydrogen atoms are stored in the hydrogen storage metal. Further, there is provided a method for producing hydrogen peroxide, wherein a hydrogen atom occluded in the hydrogen occluding metal and a dissolved oxygen are contact-reacted in an adjacent aqueous solution which is separated from the electrolyte aqueous solution by using the hydrogen occluding metal as a partition.

【0006】また、電解質水溶液を収容し、陽極と水素
吸蔵金属からなる陰極とが電気的に接続されて構成され
る少なくとも1つの電気分解槽と、水溶液を収容し、水
溶液中に溶存酸素供給手段を備えた過酸化水素生成槽と
からなり、前記電気分解槽の側壁の一部が前記陰極で形
成され、前記側壁と前記過酸化水素生成槽内の水溶液と
が接触するよう構成されている過酸化水素の製造装置が
提供される。
[0006] Further, at least one electrolysis cell that contains an aqueous electrolyte solution and is configured by electrically connecting an anode and a cathode made of a hydrogen storage metal, and an aqueous solution, and means for supplying dissolved oxygen to the aqueous solution. A part of a side wall of the electrolysis tank is formed of the cathode, and the side wall and the aqueous solution in the hydrogen peroxide generation tank are in contact with each other. An apparatus for producing hydrogen oxide is provided.

【0007】本発明の過酸化水素の製造方法において
は、陰極として、パラジウム又はパラジウム合金等のよ
うな水素吸蔵金属を用いるが、パラジウム又はパラジウ
ム合金を単に陰極として用いるのではなく、その分子レ
ベルにおける水素吸蔵性と透過性を利用することを特徴
としている。そのため、電気分解槽で発生した水素原子
は、陰極に吸蔵され、飽和状態になるにつれ、透過し
て、過酸化水素生成槽に移動させることができる。従っ
て、連続的な過酸化水素の生成が可能となる。このよう
な方法は、従来例に見られない新しい方法を形成するも
のと考えられる。
In the method for producing hydrogen peroxide of the present invention, a hydrogen storage metal such as palladium or a palladium alloy is used as the cathode, but palladium or palladium alloy is not simply used as the cathode, but at the molecular level. It is characterized by utilizing hydrogen storage and permeability. Therefore, the hydrogen atoms generated in the electrolysis tank can be occluded by the cathode and permeate to reach the saturated state, and can be moved to the hydrogen peroxide production tank. Therefore, it is possible to continuously generate hydrogen peroxide. Such a method is considered to form a new method not found in conventional examples.

【0008】また、本発明において、水素吸蔵金属に吸
蔵された水素原子と反応する溶存酸素は、水溶液中に存
在する酸素のことをいうが、水溶液中に溶存酸素の量が
多いほど、多量の過酸化水素が生成されるので、例え
ば、外部から酸素ガス、酸素ガスを含有するガス、オゾ
ンガス又はオゾンを含有するガスを導入することによっ
て水溶液中の溶存酸素の量を増大させることが好まし
い。この際の導入するガス流量は、特に限定されるもの
ではないが、増加させる程溶存酸素が過飽和となり易い
ので、ガス流に圧力をかけながら流量を増加させること
が好ましい。また、導入ガスの水溶液又は陰極等への接
触面積を大きくすることにより過酸化水素を多量に生成
することができる。
Further, in the present invention, the dissolved oxygen that reacts with the hydrogen atoms occluded in the hydrogen occluding metal means the oxygen existing in the aqueous solution. Since hydrogen peroxide is produced, it is preferable to increase the amount of dissolved oxygen in the aqueous solution by, for example, introducing oxygen gas, a gas containing oxygen gas, ozone gas or a gas containing ozone from the outside. The gas flow rate to be introduced at this time is not particularly limited, but dissolved oxygen tends to be oversaturated as the gas flow rate is increased. Therefore, it is preferable to increase the flow rate while applying pressure to the gas flow. Further, a large amount of hydrogen peroxide can be produced by increasing the contact area of the introduced gas with the aqueous solution or the cathode.

【0009】本発明において用いる過酸化水素製造装置
は、少なくとも1つの電気分解槽と過酸化水素生成槽と
を有するものであれば、特に限定されるものではない。
そして、電気分解槽の側壁の一部又は全部が陰極である
パラジウム又はパラジウム合金等からなる水素吸蔵金属
で形成されている。また、この陰極は、電気分解槽に収
容される電解質水溶液と、過酸化水素生成槽に収容され
る水溶液との隔壁として構成され、両水溶液に接触して
いる。陽極は、白金又はカーボン等の水不溶性材料から
なる導体が電極として配設されている。さらに、過酸化
水素生成槽中であって陰極の近傍には、水溶液中に溶存
酸素供給手段、例えば、空気、酸素又はオゾンを含有す
るガスを導入するための吹込管又は攪拌装置等が配設さ
れている。また、陽極と陰極とは導通しうるように電源
を介して接続されている。
The hydrogen peroxide production apparatus used in the present invention is not particularly limited as long as it has at least one electrolysis tank and hydrogen peroxide production tank.
Then, a part or all of the side wall of the electrolysis tank is formed of a hydrogen storage metal such as palladium or a palladium alloy which is a cathode. Further, this cathode is configured as a partition wall between the electrolyte aqueous solution contained in the electrolysis tank and the aqueous solution contained in the hydrogen peroxide producing tank, and is in contact with both the aqueous solutions. The anode is provided with a conductor made of a water-insoluble material such as platinum or carbon as an electrode. Further, in the hydrogen peroxide production tank and in the vicinity of the cathode, a dissolved oxygen supply means such as a blowing pipe or a stirring device for introducing a gas containing air, oxygen or ozone into the aqueous solution is provided. Has been done. Further, the anode and the cathode are connected via a power source so that they can be electrically connected.

【0010】例えば、図1に示した過酸化水素製造装置
10を使用することができる。この過酸化水素製造装置
10は、1つの容器内に、電気分解槽1と過酸化水素生
成槽2とが各1つづつ配設されている。そして、これら
電気分解槽1と過酸化水素生成槽2とを仕切るように、
パラジウム又はパラジウム合金からなる陰極3が配設さ
れている。電気分解槽1には、白金又はカーボンからな
る陽極9が配設されている。これら陰極3及び陽極9
は、定電流直流電源7に接続されており、電流が流され
ている。過酸化水素生成槽中5には、陰極3の近傍に空
気、酸素又はオゾンを導入するための吹込管6が配設さ
れている。そして、電気分解槽1には電解質水溶液4、
過酸化水素生成槽2には水5が入れられている。また、
過酸化水素生成槽中2には入水管8a及び放水管8bが
配設されている。さらに、吹込管6を配設せず、入水管
8aに空気、酸素又はオゾンを含有するガスを導入する
ことも可能である。
For example, the hydrogen peroxide production apparatus 10 shown in FIG. 1 can be used. In this hydrogen peroxide production apparatus 10, one electrolysis tank 1 and one hydrogen peroxide production tank 2 are arranged in one container. Then, to partition the electrolysis tank 1 and the hydrogen peroxide production tank 2,
A cathode 3 made of palladium or a palladium alloy is provided. The electrolysis tank 1 is provided with an anode 9 made of platinum or carbon. These cathode 3 and anode 9
Is connected to a constant-current DC power supply 7 and is supplied with current. In the hydrogen peroxide production tank 5, a blowing pipe 6 for introducing air, oxygen or ozone is arranged near the cathode 3. Then, in the electrolysis tank 1, an aqueous electrolyte solution 4,
Water 5 is put in the hydrogen peroxide production tank 2. Also,
A water inlet pipe 8a and a water discharge pipe 8b are arranged in the hydrogen peroxide production tank 2. Furthermore, it is also possible to introduce a gas containing air, oxygen or ozone into the water inlet pipe 8a without disposing the blow-in pipe 6.

【0011】さらに、図2に示した過酸化水素製造装置
20も使用することができる。この過酸化水素製造装置
20は、1つの過酸化水素生成槽12内に、電気分解槽
11が複数個配設されている。電気分解槽11は、筒状
または容器状に形成されており、その側壁はパラジウム
又はパラジウム合金からなる陰極13として形成されて
いる。そして、この電気分解槽11内に、白金又はカー
ボンからなる陽極19が配設されている。これら陰極1
3及び陽極19は、定電流直流電源17に接続されてお
り、電流が流されている。過酸化水素生成槽中12に
は、例えば、筒状の陰極13の近傍に空気、酸素又はオ
ゾンを導入するための吹込管16が配設されている。そ
して、電気分解槽11には電解質水溶液14、過酸化水
素生成槽12には水15が入れられている。また、過酸
化水素生成槽中12には入水管18a及び放水管18b
が配設されている。
Further, the hydrogen peroxide production apparatus 20 shown in FIG. 2 can also be used. In this hydrogen peroxide production apparatus 20, a plurality of electrolysis tanks 11 are arranged in one hydrogen peroxide production tank 12. The electrolysis tank 11 is formed in a cylindrical shape or a container shape, and its side wall is formed as a cathode 13 made of palladium or a palladium alloy. An anode 19 made of platinum or carbon is arranged in the electrolysis tank 11. These cathodes 1
The 3 and the anode 19 are connected to a constant current DC power supply 17, and an electric current is supplied. In the hydrogen peroxide production tank 12, for example, a blowing pipe 16 for introducing air, oxygen, or ozone is provided near the cylindrical cathode 13. An electrolytic aqueous solution 14 is placed in the electrolysis tank 11, and water 15 is placed in the hydrogen peroxide production tank 12. Further, in the hydrogen peroxide production tank 12, there are a water inlet pipe 18a and a water outlet pipe 18b.
Is provided.

【0012】なお、本発明において用いることができる
過酸化水素製造装置は、上記の例に限定されることな
く、例えば、図3に示したような陰極の形状を変更した
装置、図4に示したような空気、酸素又はオゾンを導入
するための吹込管の先端がガラス管等の円柱形状をした
もの又は多孔質な材料で形成されるもの、さらに、1つ
の過酸化水素生成槽に複数の電気分解槽が隣接するよう
に構成され、過酸化水素生成槽内全体にわたり酸素、空
気又はオゾンを導入して過酸化水素を発生させる等の過
酸化水素製造装置を用いることもできる。
The apparatus for producing hydrogen peroxide that can be used in the present invention is not limited to the above-mentioned example, and for example, an apparatus in which the shape of the cathode as shown in FIG. 3 is changed, and shown in FIG. Such a blow-in tube for introducing air, oxygen or ozone has a cylindrical end such as a glass tube or is formed of a porous material, and a plurality of hydrogen peroxide producing tanks can be provided in one hydrogen peroxide producing tank. It is also possible to use a hydrogen peroxide production apparatus in which the electrolysis tanks are arranged adjacent to each other and oxygen, air or ozone is introduced into the entire hydrogen peroxide production tank to generate hydrogen peroxide.

【0013】上記のような過酸化水素製造装置を用い
て、過酸化水素生成槽内に酸素ガス、空気又はオゾンを
吹き込みながら、あるいは過酸化水素生成槽内の水溶液
を攪拌しながら陰極と陽極とに直流電流を流すことによ
り、過酸化水素を連続的に製造することができる。そし
て、過酸化水素生成槽へ、連続的に入水と放水を同時に
行えば、過酸化水素を連続的に製造するとともに、過酸
化水素が溶解した水を取り出すことができる。なお、溶
存酸素が多く含有された水溶液の入水を連続的に行う場
合には、溶存酸素供給手段を使用する必要がなく、生成
する水素と、過酸化水素の発生量により、溶存酸素の量
を適宜調製することができる。
Using the hydrogen peroxide production apparatus as described above, while blowing oxygen gas, air or ozone into the hydrogen peroxide producing tank or stirring the aqueous solution in the hydrogen peroxide producing tank, a cathode and an anode are formed. Hydrogen peroxide can be continuously produced by applying a direct current to the substrate. Then, if the water is continuously supplied to and discharged from the hydrogen peroxide production tank at the same time, hydrogen peroxide can be continuously produced and the water in which the hydrogen peroxide is dissolved can be taken out. In addition, when continuously injecting an aqueous solution containing a large amount of dissolved oxygen, it is not necessary to use a dissolved oxygen supply means, and the amount of dissolved oxygen can be controlled by the generated hydrogen and the generated amount of hydrogen peroxide. It can be appropriately prepared.

【0014】本発明において、過酸化水素生成槽に収容
されている水溶液として、水が包含されているものであ
り、水としては純水の他に水道水又は海水等を使用する
ことができる。過酸化水素生成槽の水温は、特に限定さ
れるものではないが、加温すると過酸化水素の生成効率
が上がるため、通常10〜100℃が好ましい。また、
加圧下においては、100℃以上にすることも可能であ
る。
In the present invention, water is included as the aqueous solution contained in the hydrogen peroxide producing tank, and as the water, tap water or seawater can be used in addition to pure water. The water temperature in the hydrogen peroxide production tank is not particularly limited, but is preferably 10 to 100 ° C. because heating efficiency increases the production efficiency of hydrogen peroxide. Also,
It is possible to set the temperature to 100 ° C. or higher under pressure.

【0015】本発明における過酸化水素の製造方法にお
いては、陰極として、パラジウム又はパラジウム合金を
使用することが好ましい。パラジウム合金としては、A
g−Pd合金、Au−Ag−Pd合金、Pd−Pt合
金、Pd−Rh合金、Pd−Ru合金、Pd−Sn合
金、Pd−Se合金、Pd−Te合金、Pd−Si合
金、Pd−Zn合金、Pd−S合金等が挙げられる。こ
れらパラジウム又はパラジウム合金は電気分解槽の少な
くとも一部の側壁部分に、シート形状で用いることが好
ましい。その際、側壁部分全面にパラジウム又はパラジ
ウム合金を配置する必要はなく、過酸化水素を発生させ
るための水素を供給する量に対応して、種々の面積を選
択することができる。側壁部分のパラジウム又はパラジ
ウム合金の厚さは、水素の吸蔵・輸送及びパラジウム又
はパラジウム合金の強度を考慮して、種々選択できる
が、0.01〜2.0mm程度が好ましい。
In the method for producing hydrogen peroxide according to the present invention, it is preferable to use palladium or palladium alloy as the cathode. As a palladium alloy, A
g-Pd alloy, Au-Ag-Pd alloy, Pd-Pt alloy, Pd-Rh alloy, Pd-Ru alloy, Pd-Sn alloy, Pd-Se alloy, Pd-Te alloy, Pd-Si alloy, Pd-Zn An alloy, a Pd-S alloy, etc. are mentioned. These palladium or palladium alloys are preferably used in the form of a sheet on at least a part of the side wall of the electrolytic cell. At that time, it is not necessary to dispose palladium or palladium alloy on the entire side wall portion, and various areas can be selected according to the amount of hydrogen supplied for generating hydrogen peroxide. The thickness of the palladium or palladium alloy on the side wall portion can be variously selected in consideration of hydrogen storage / transport and the strength of the palladium or palladium alloy, but is preferably about 0.01 to 2.0 mm.

【0016】また、溶存酸素供給手段として空気、酸素
ガス又はオゾンを吹き込むために、長細い円柱形の管や
多孔質の材料で形成された散気管を使用することができ
る。散気管を用いる場合には、その目合は細かい程よ
い。吹き込み量としては、溶存酸素を過飽和に保つ程度
で十分であり、必要以上に吹き込む必要はない。なお、
空気、酸素ガス又はオゾンを吹き込むために、溶存酸素
供給手段にボンベやコンプレッサ等を接続させて、所望
の気体を吹き込むことが可能であるが、電気分解槽の陽
極付近から発生する酸素ガスを集気し、過酸化水素発生
槽中の水溶液に導入してもよい。
In order to blow air, oxygen gas or ozone as a dissolved oxygen supply means, a long and thin cylindrical tube or an air diffusing tube made of a porous material can be used. When using an air diffuser, the finer the mesh, the better. It is sufficient to blow dissolved oxygen so as to keep the dissolved oxygen supersaturated, and it is not necessary to blow more than necessary. In addition,
In order to blow air, oxygen gas or ozone, it is possible to blow a desired gas by connecting a cylinder or compressor to the dissolved oxygen supply means, but the oxygen gas generated near the anode of the electrolysis tank is collected. Alternatively, it may be introduced into the aqueous solution in the hydrogen peroxide generating tank.

【0017】さらに、電気分解を行う場合の直流電流に
ついては、電流密度で0.001〜1A/cm2 程度が
好ましい。電気分解槽内に収容される電解質水溶液の電
解質液は、電気分解するために、電流が流れるものであ
れば特に限定されるものではなく、硫酸ナトリウム、硫
酸カリウム、硫酸アンモニウム、過硫酸ナトリウム、過
硫酸カリ、過硫酸アンモニウム、苛性ソーダ、苛性カ
リ、水酸化リチウム、硫酸、塩化ナトリウム、塩化カリ
ウム等を純水や水道水等に溶解して使用することができ
る。その際の塩類の溶解濃度については、0.01〜2
mol/リットル程度の濃度が好ましい。また、電解質
水溶液として海水を使用することもできる。
Further, the direct current for electrolysis is preferably about 0.001 to 1 A / cm 2 in terms of current density. The electrolytic solution of the electrolytic aqueous solution contained in the electrolytic cell is not particularly limited as long as an electric current flows in order to electrolyze, and sodium sulfate, potassium sulfate, ammonium sulfate, sodium persulfate, persulfate is used. Potassium, ammonium persulfate, caustic soda, caustic potash, lithium hydroxide, sulfuric acid, sodium chloride, potassium chloride and the like can be used by dissolving them in pure water, tap water or the like. Regarding the dissolved concentration of salts at that time, 0.01 to 2
A concentration of about mol / liter is preferable. Also, seawater can be used as the electrolyte aqueous solution.

【0018】さらに、電解質水溶液に尿素、チオ尿素等
の放電反応を抑制する薬剤を添加してもよい。この場合
には、パラジウム又はパラジウム合金に吸蔵される水素
量が増加するため好ましい。
Further, a chemical which suppresses a discharge reaction such as urea or thiourea may be added to the electrolyte aqueous solution. In this case, the amount of hydrogen stored in the palladium or palladium alloy increases, which is preferable.

【0019】[0019]

【作用】本発明の過酸化水素の製造方法によれば、水不
溶性材料からなる導体を陽極とし、水素吸蔵金属を陰極
として電解質水溶液中で電気分解し、発生する水素を水
素吸蔵金属に吸蔵させ、かつ該水素吸蔵金属を隔壁とし
て前記電解質水溶液と分隔し、隣接する水溶液中におい
て、前記水素吸蔵金属に吸蔵された水素と溶存酸素とを
接触反応させるので、連続的に過酸化水素を発生させる
ことができる。つまり、陰極として用いられる水素吸蔵
金属は、同時に、電気分解槽中で、電気分解により発生
する水素を効率よく吸蔵し、かつ水素を原子状態で透過
し、過酸化水素生成槽に輸送する隔膜としても機能する
ものであり、よって、純粋な水素原子を、過酸化水素生
成槽に輸送して、酸素と反応させることによって、純度
の高い過酸化水素を得ることができる。また、発生した
過酸化水素は水に溶解した状態で、容易に取り出すこと
ができる。
According to the method for producing hydrogen peroxide of the present invention, a conductor made of a water-insoluble material is used as an anode, a hydrogen storage metal is used as a cathode, and is electrolyzed in an aqueous electrolyte solution to cause the generated hydrogen to be stored in the hydrogen storage metal. And, the hydrogen storage metal is separated from the electrolyte aqueous solution as a partition wall, and the hydrogen stored in the hydrogen storage metal and the dissolved oxygen are contact-reacted in an adjacent aqueous solution, so that hydrogen peroxide is continuously generated. be able to. That is, at the same time, the hydrogen storage metal used as the cathode serves as a diaphragm that efficiently stores hydrogen generated by electrolysis in the electrolysis tank, transmits hydrogen in an atomic state, and transports it to the hydrogen peroxide production tank. It also functions, so that pure hydrogen atoms can be transported to a hydrogen peroxide production tank and reacted with oxygen to obtain highly pure hydrogen peroxide. Further, the generated hydrogen peroxide can be easily taken out in a state of being dissolved in water.

【0020】また、本発明の過酸化水素の製造装置によ
れば、電解質水溶液を収容し、陽極と水素吸蔵金属から
なる陰極とが電気的に接続されて構成される少なくとも
1つの電気分解槽と、水溶液を収容し、水溶液中に溶存
酸素供給手段を備えた過酸化水素生成槽とからなり、前
記電気分解槽の側壁の一部が前記陰極で形成され、前記
側壁と前記過酸化水素生成槽内の水溶液とが接触するよ
う構成されているので、比較的簡単な装置を用いること
により、純度の高い過酸化水素を得ることができ、発生
した過酸化水素を、水に溶解した状態で容易に取り出す
ことができる。
Further, according to the apparatus for producing hydrogen peroxide of the present invention, there is provided at least one electrolysis tank containing an aqueous electrolyte solution and electrically connected to the anode and the cathode made of a hydrogen storage metal. A hydrogen peroxide production tank containing an aqueous solution and provided with dissolved oxygen supply means in the aqueous solution, wherein a part of a side wall of the electrolysis tank is formed by the cathode, the side wall and the hydrogen peroxide production tank Since it is configured to come into contact with the aqueous solution inside, hydrogen peroxide with high purity can be obtained by using a relatively simple device, and the generated hydrogen peroxide can be easily dissolved in water. Can be taken out.

【0021】[0021]

【実施例】本発明に係る過酸化水素の製造方法の実施例
について説明する。 実施例1 図3に示した過酸化水素製造装置の電気分解槽へ0.2
5mol/リットルの硫酸ナトリウム溶液を入れ、陽極
として白金電極を使用し、陰極にパラジウム板(面積
7.07cm2 、厚さ1mm)を使用して、過酸化水素
生成槽には、120mlの純水を入れて、エアレーショ
ンを行いながら、直流電流を陰極側の電流密度で0.0
07A/cm2 流し、過酸化水素生成槽の水温25℃に
保ちながら実験を行った。その結果、7時間後に過酸化
水素生成槽の過酸化水素濃度は3ppmに達した。 実施例2 過酸化水素生成槽の水温を50℃に保つ以外は実施例1
と同様の条件で実験を行った。その結果、7時間後に過
酸化水素濃度は10.3ppmに達した。 実施例3 図3に示した過酸化水素製造装置の電気分解槽へ0.0
25mol/リットルの硫酸ナトリウム溶液を入れ、陽
極として白金電極を使用し、陰極にパラジウム板(面積
7.07cm2 、厚さ1mm)を使用して、過酸化水素
生成槽には120mlの水道水を入れて、エアレーショ
ンを行いながら、直流電流を陰極側の電流密度で0.0
07A/cm2 流し、過酸化水素生成槽の水温25℃に
保ちながら実験を行った。その結果、48時間後に過酸
化水素生成槽の過酸化水素濃度は30ppmに達した。 実施例4 図3に示した過酸化水素製造装置の電気分解槽へ0.0
25mol/リットルの硫酸ナトリウム溶液を入れ、陽
極として白金電極を使用し、陰極にパラジウム板(面積
7.07cm2 、厚さ1mm)を使用して、過酸化水素
生成槽には120mlの海水を入れて、エアレーション
を行いながら、直流電流を陰極側の電流密度で0.00
7A/cm2 流し、過酸化水素生成槽の水温25℃に保
ちながら実験を行った。その結果、24時間後に過酸化
水素生成槽の過酸化水素濃度は11.4ppmに達し
た。 実施例5 図4に示した過酸化水素製造装置の電気分解槽へ0.2
5mol/リットルの硫酸ナトリウム溶液を入れ、陽極
として白金電極を使用し、陰極に銀−パラジウム合金板
(面積7.07cm2 、厚さ0.25mm)を使用し
て、過酸化水素生成槽には150mlの純水を入れて、
エアレーションを行いながら、直流電流を陰極側の電流
密度で0.007A/cm2 流し、過酸化水素生成槽の
水温18℃に保ちながら実験を行った。その結果、6時
間後に過酸化水素生成槽の過酸化水素濃度は34ppm
に達した。 実施例6 図4に示した過酸化水素製造装置の電気分解槽へ0.2
5mol/リットルの硫酸ナトリウム溶液を入れ、陽極
として白金電極を使用し、陰極に銀−パラジウム合金板
(面積7.07cm2 、厚さ0.25mm)を使用し
て、過酸化水素生成槽には150mlの純水を入れて、
酸素ボンベから酸素ガスを吹き込みながら、直流電流を
陰極側の電流密度で0.007A/cm2 流し、過酸化
水素生成槽の水温18℃に保ちながら実験を行った。そ
の結果、6時間後に過酸化水素生成槽の過酸化水素濃度
は40ppmに達した。
EXAMPLES Examples of the method for producing hydrogen peroxide according to the present invention will be described. Example 1 To the electrolysis tank of the hydrogen peroxide production apparatus shown in FIG.
A 5 mol / liter sodium sulfate solution was added, a platinum electrode was used as the anode, a palladium plate (area 7.07 cm 2 , thickness 1 mm) was used as the cathode, and 120 ml of pure water was used in the hydrogen peroxide production tank. And aeration, while directing a direct current of 0.0 at the cathode side current density.
The experiment was carried out while keeping the flow rate of 07 A / cm 2 and maintaining the water temperature of the hydrogen peroxide production tank at 25 ° C. As a result, the hydrogen peroxide concentration in the hydrogen peroxide production tank reached 3 ppm after 7 hours. Example 2 Example 1 except that the water temperature in the hydrogen peroxide production tank was kept at 50 ° C.
An experiment was performed under the same conditions as. As a result, the hydrogen peroxide concentration reached 10.3 ppm after 7 hours. Example 3 0.03 to the electrolysis tank of the hydrogen peroxide production apparatus shown in FIG.
A 25 mol / liter sodium sulfate solution was added, a platinum electrode was used as an anode, a palladium plate (area 7.07 cm 2 , thickness 1 mm) was used as a cathode, and 120 ml of tap water was supplied to a hydrogen peroxide production tank. Insert and aerate while direct current is 0.0 at the cathode side current density.
The experiment was carried out while keeping the flow rate of 07 A / cm 2 and maintaining the water temperature of the hydrogen peroxide production tank at 25 ° C. As a result, the hydrogen peroxide concentration in the hydrogen peroxide production tank reached 30 ppm after 48 hours. Example 4 0.0 to the electrolysis tank of the hydrogen peroxide production apparatus shown in FIG.
A 25 mol / liter sodium sulfate solution was added, a platinum electrode was used as the anode, a palladium plate (area 7.07 cm 2 , thickness 1 mm) was used as the cathode, and 120 ml of seawater was added to the hydrogen peroxide production tank. Then, while performing aeration, the direct current is 0.00
The experiment was conducted while keeping the flow rate of 7 A / cm 2 and maintaining the water temperature of the hydrogen peroxide production tank at 25 ° C. As a result, the hydrogen peroxide concentration in the hydrogen peroxide production tank reached 11.4 ppm after 24 hours. Example 5 To the electrolysis tank of the hydrogen peroxide production apparatus shown in FIG.
A 5 mol / liter sodium sulfate solution was added, a platinum electrode was used as an anode, a silver-palladium alloy plate (area 7.07 cm 2 , thickness 0.25 mm) was used as a cathode, and a hydrogen peroxide production tank was used. Add 150 ml of pure water,
While performing aeration, a direct current was caused to flow at a current density of 0.007 A / cm 2 on the cathode side, and an experiment was conducted while maintaining the water temperature of the hydrogen peroxide producing tank at 18 ° C. As a result, the hydrogen peroxide concentration in the hydrogen peroxide production tank was 34 ppm after 6 hours.
Reached Example 6 To the electrolysis tank of the hydrogen peroxide production apparatus shown in FIG.
A 5 mol / liter sodium sulfate solution was added, a platinum electrode was used as an anode, a silver-palladium alloy plate (area 7.07 cm 2 , thickness 0.25 mm) was used as a cathode, and a hydrogen peroxide production tank was used. Add 150 ml of pure water,
While blowing oxygen gas from the oxygen cylinder, a direct current was made to flow at a current density of 0.007 A / cm 2 on the cathode side, and the experiment was conducted while maintaining the water temperature of the hydrogen peroxide producing tank at 18 ° C. As a result, the hydrogen peroxide concentration in the hydrogen peroxide production tank reached 40 ppm after 6 hours.

【0022】[0022]

【発明の効果】本発明の過酸化水素の製造方法及び製造
装置によれば、使用場所で純粋な過酸化水素を連続的に
製造することができる。従って、劇物を輸送することな
く、自由に使用することができる。
According to the method and apparatus for producing hydrogen peroxide of the present invention, pure hydrogen peroxide can be continuously produced at the place of use. Therefore, the deleterious substance can be used freely without being transported.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る過酸化水素の製造方法で使用する
過酸化水素製造装置の一実施例を示す要部の概略断面図
である。
FIG. 1 is a schematic cross-sectional view of a main part showing an embodiment of a hydrogen peroxide production apparatus used in the method for producing hydrogen peroxide according to the present invention.

【図2】過酸化水素製造装置の別の実施例を示す要部の
概略断面図である。
FIG. 2 is a schematic cross-sectional view of a main part showing another embodiment of the hydrogen peroxide production apparatus.

【図3】過酸化水素製造装置の別の実施例を示す要部の
概略断面図である。
FIG. 3 is a schematic cross-sectional view of a main part showing another embodiment of the hydrogen peroxide production apparatus.

【図4】過酸化水素製造装置の別の実施例を示す要部の
概略断面図である。
FIG. 4 is a schematic cross-sectional view of a main part showing another embodiment of the hydrogen peroxide production apparatus.

【符号の説明】 1、11、21、31 電気分解槽 2、12、22、32 過酸化水素生成槽 3、13、23、33 陰極 4、14、24、34 電解質水溶液 5、15、25、35 水 6、16、26、36 溶存酸素供給手段(ガス吹込
管) 7、17、27、37 定電流直流電源 8a、18a 入水管 8b、18b 放水管 28、38 恒温水管 9、19、29、39 陽極 10、20、30、40 過酸化水素製造装置
[Explanation of reference numerals] 1, 11, 21, 31 Electrolysis tanks 2, 12, 22, 32 Hydrogen peroxide production tanks 3, 13, 23, 33 Cathodes 4, 14, 24, 34 Electrolyte aqueous solutions 5, 15, 25, 35 Water 6, 16, 26, 36 Dissolved oxygen supply means (gas blowing pipe) 7, 17, 27, 37 Constant current DC power supplies 8a, 18a Water inlet pipes 8b, 18b Water discharge pipes 28, 38 Constant temperature water pipes 9, 19, 29, 39 Anode 10, 20, 30, 40 Hydrogen peroxide production equipment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 国男 大阪市東淀川区東淡路2丁目10番15号 株式会社片山化学工業研究所内 (56)参考文献 特開 平4−16501(JP,A) 特開 昭52−71000(JP,A) 特開 平2−301582(JP,A) 特開 平6−306668(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 C01B 15/029 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kunio Nishimura Inventor Kunio Nishimura 2-10-15 Higashi-Awaji, Higashiyodogawa-ku, Osaka Inside Katayama Chemical Research Institute Co., Ltd. (56) Reference JP-A-4-16501 (JP, A) Kai 52-71000 (JP, A) JP-A-2-301582 (JP, A) JP-A-6-306668 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C25B 1 / 00-15/08 C01B 15/029

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水不溶性材料からなる導体を陽極とし、
水素吸蔵金属を陰極として電解質水溶液中で電気分解
し、発生する水素原子を水素吸蔵金属に吸蔵させ、かつ
該水素吸蔵金属を隔壁として前記電解質水溶液と分隔し
た隣接する水溶液中において、前記水素吸蔵金属に吸蔵
された水素原子と溶存酸素とを接触反応させることを特
徴とする過酸化水素の製造方法。
1. A conductor made of a water-insoluble material is used as an anode,
The hydrogen storage metal is electrolyzed in an aqueous electrolyte solution using the hydrogen storage metal as a cathode to cause the generated hydrogen atoms to be stored in the hydrogen storage metal, and the hydrogen storage metal is stored in an adjacent aqueous solution separated from the electrolyte aqueous solution by using the hydrogen storage metal as a partition wall. A method for producing hydrogen peroxide, which comprises reacting a hydrogen atom occluded in hydrogen peroxide with dissolved oxygen.
【請求項2】 水素吸蔵金属が、パラジウム又はパラジ
ウム合金である請求項1記載の過酸化水素の製造方法。
2. The method for producing hydrogen peroxide according to claim 1, wherein the hydrogen storage metal is palladium or a palladium alloy.
【請求項3】 水溶液中に酸素含有ガス又はオゾン含有
ガスを吹き込んで、前記水溶液中に溶存酸素を供給する
請求項1記載の過酸化水素の製造方法。
3. The method for producing hydrogen peroxide according to claim 1, wherein oxygen-containing gas or ozone-containing gas is blown into the aqueous solution to supply dissolved oxygen to the aqueous solution.
【請求項4】 水溶液が純水、水道水又は海水である請
求項1記載の過酸化水素の製造方法。
4. The method for producing hydrogen peroxide according to claim 1, wherein the aqueous solution is pure water, tap water or seawater.
【請求項5】 電解質水溶液を収容し、陽極と水素吸蔵
金属からなる陰極とが電気的に接続されて構成される少
なくとも1つの電気分解槽と、水溶液を収容し、水溶液
中への溶存酸素供給手段を備えた過酸化水素生成槽とか
らなり、前記電気分解槽の側壁の一部又は全部が前記陰
極で形成され、前記側壁と前記過酸化水素生成槽内の水
溶液とが接触するよう構成されていることを特徴とする
過酸化水素の製造装置。
5. An at least one electrolysis tank that contains an aqueous electrolyte solution and is electrically connected to an anode and a cathode made of a hydrogen storage metal, and an aqueous solution that contains and supplies dissolved oxygen to the aqueous solution. And a part of the side wall of the electrolysis tank is formed of the cathode, and the side wall and the aqueous solution in the hydrogen peroxide generation tank are in contact with each other. An apparatus for producing hydrogen peroxide, characterized in that
【請求項6】 水素吸蔵金属が、パラジウム又はパラジ
ウム合金である請求項5記載の過酸化水素の製造装置。
6. The apparatus for producing hydrogen peroxide according to claim 5, wherein the hydrogen storage metal is palladium or a palladium alloy.
【請求項7】 電気分解槽が、水素吸蔵金属により筒状
に形成され、過酸化水素生成槽内に少なくとも1つ配設
されている請求項5記載の過酸化水素の製造装置。
7. The apparatus for producing hydrogen peroxide according to claim 5, wherein the electrolysis tank is formed of a hydrogen storage metal in a tubular shape, and at least one electrolysis tank is provided in the hydrogen peroxide production tank.
【請求項8】 溶存酸素供給手段が、酸素含有ガス又は
オゾン含有ガスの吹込管である請求項5記載の過酸化水
素の製造装置。
8. The apparatus for producing hydrogen peroxide according to claim 5, wherein the dissolved oxygen supply means is a blowing pipe for oxygen-containing gas or ozone-containing gas.
【請求項9】 さらに、過酸化水素生成槽に入水管及び
放水管が配設されている請求項5記載の過酸化水素の製
造装置。
9. The apparatus for producing hydrogen peroxide according to claim 5, further comprising a water inlet pipe and a water discharge pipe provided in the hydrogen peroxide production tank.
JP01090394A 1993-08-30 1994-02-02 Method and apparatus for producing hydrogen peroxide Expired - Fee Related JP3506475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01090394A JP3506475B2 (en) 1993-08-30 1994-02-02 Method and apparatus for producing hydrogen peroxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21437393 1993-08-30
JP5-214373 1993-08-30
JP01090394A JP3506475B2 (en) 1993-08-30 1994-02-02 Method and apparatus for producing hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPH07118002A JPH07118002A (en) 1995-05-09
JP3506475B2 true JP3506475B2 (en) 2004-03-15

Family

ID=26346268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01090394A Expired - Fee Related JP3506475B2 (en) 1993-08-30 1994-02-02 Method and apparatus for producing hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP3506475B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604719B2 (en) * 2006-05-25 2009-10-20 Uop Llc In situ generation of hydrogen peroxide
JP5418001B2 (en) * 2009-06-09 2014-02-19 株式会社Ihi Hydrogen peroxide water production system
JP2013253270A (en) * 2012-06-05 2013-12-19 Sharp Corp Carbon dioxide reduction device
JP2013253269A (en) * 2012-06-05 2013-12-19 Sharp Corp Carbon dioxide reduction device
CN114606517A (en) * 2022-03-18 2022-06-10 化学与精细化工广东省实验室 High-quality raw material for producing ultra-pure electronic grade hydrogen peroxide and preparation method thereof

Also Published As

Publication number Publication date
JPH07118002A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
JPS5915990B2 (en) Improved operation method for liquid-gas electrochemical tanks
JPH0813356B2 (en) Water treatment method and apparatus using electrolytic ozone
US7658835B2 (en) Method for the electrolysis of an aqueous solution of hydrogen chloride or alkali metal chloride
JP3506475B2 (en) Method and apparatus for producing hydrogen peroxide
Girenko et al. Selection of the optimal cathode material to synthesize medical sodium hypochlorite solutions in a membraneless electrolyzer
US4726887A (en) Process for preparing olefin oxides in an electrochemical cell
US20150122666A1 (en) Gas Production Device and Method
JPH0720532B2 (en) Oxygen electrochemical separation method and electrochemical oxygen enrichment cell
CN114921799A (en) Method and device for simultaneously synthesizing high-purity chlorine dioxide gas by using single-atom cathode and anode
CN211394645U (en) Water electrolysis oxygen production equipment
KR102385107B1 (en) Hydrogen production apparatus using plasma discharge
EP0771759B1 (en) Process for the electrolytic separation of oxygen from its mixtures and equipment for implementing such process
JP2008308764A (en) Hydrogen generator and electrolyte solution therefor
RU2505625C2 (en) Method of producing graphite electrodes with coating, preferably of noble metals, for electrolytic processes, especially for hydrochloric acid electrolytes
JP3615814B2 (en) Method and apparatus for removing nitrate and / or nitrite nitrogen
JP2005506454A (en) Method for electrolysis of aqueous solution of hydrogen chloride
JPH11267652A (en) Method of generating ozone water and hydrogen water, and device therefor
US3481847A (en) Electrolytic process of making chlorine
JPH05255882A (en) Method for protecting oxygen cathode
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JP2003328198A (en) Method of generating copper ion and apparatus therefor, method of producing copper sulfate and apparatus therefor, method of generating metallic ion and apparatus therefor, and method of producing acid water and apparatus therefor
JPH0627654Y2 (en) Water electrolysis device for ozone gas generation
CN115094462A (en) Chlorine dioxide gas generating device based on foamed titanium monatomic integral electrode
JPH08134676A (en) Production of sodium hypochlorite solution and production of chlorate solution

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees