JPH08134676A - Production of sodium hypochlorite solution and production of chlorate solution - Google Patents

Production of sodium hypochlorite solution and production of chlorate solution

Info

Publication number
JPH08134676A
JPH08134676A JP6293953A JP29395394A JPH08134676A JP H08134676 A JPH08134676 A JP H08134676A JP 6293953 A JP6293953 A JP 6293953A JP 29395394 A JP29395394 A JP 29395394A JP H08134676 A JPH08134676 A JP H08134676A
Authority
JP
Japan
Prior art keywords
solution
chlorate
gas
sodium hypochlorite
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6293953A
Other languages
Japanese (ja)
Inventor
Toshiro Yoshikawa
俊郎 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP6293953A priority Critical patent/JPH08134676A/en
Publication of JPH08134676A publication Critical patent/JPH08134676A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To produce a sodium hypochlorite soln. and a chlorate soln. at a low cost. CONSTITUTION: A gas diffusion electrode is used as a cathode 3 in an electrolytic cell 1 provided with a gas chamber 4. Gaseous oxygen is supplied to the gas diffusion electrode 3 from the chamber 4, an aq. sodium chloride soln. is electrolyzed, and a chlorate soln. is obtained by way of a sodium hypochlorite soln. Since the H<+> ion generated in the cathode 3 reacts with gaseous oxygen to form water, the generation of gaseous hydrogen is suppressed in the cathode 3. Accordingly, an increase in the overvoltage due to the generation of gaseous hydrogen in the electrolyte is suppressed, an electrolyzing power is not wasted, and hence sodium hypochlorite and chlorate are produced at a lower cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩化ナトリウム水溶液
を電気分解して、次亜塩素酸ナトリウム溶液の製造及び
クロレート溶液の製造を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sodium hypochlorite solution and a chlorate solution by electrolyzing an aqueous sodium chloride solution.

【0002】[0002]

【従来の技術】次亜塩素酸ナトリウム(NaClO)は
殺菌剤や漂白剤等、またクロレート(NaClO3
は、過塩素酸塩の製造やマッチ、爆薬等の原料、染色
剤、漂白剤等に用いられている。これらの製造方法とし
ては、次亜塩素酸ナトリウムにあっては、30〜35%
の水酸化ナトリウム(NaOH)水溶液に塩素ガスを吸
収させる方法、クロレートにあっては、炭酸ナトリウム
(Na2 CO3 )あるいは水酸化ナトリウムの水溶液に
塩素ガスを吹き込む方法が一般的な方法として知られて
いるが、これらの方法以外にも例えば塩化ナトリウム
(NaCl)水溶液の電気分解による方法によっても次
亜塩素酸ナトリウムやクロレートを製造することができ
る。
2. Description of the Related Art Sodium hypochlorite (NaClO) is a bactericidal agent, a bleaching agent, and chlorate (NaClO 3 ).
Is used for the production of perchlorate, raw materials for matches and explosives, dyes, bleaches, etc. As a manufacturing method of these, in the case of sodium hypochlorite, 30 to 35%
As a general method, a method of absorbing chlorine gas in an aqueous solution of sodium hydroxide (NaOH), and for chlorate, a method of blowing chlorine gas into an aqueous solution of sodium carbonate (Na 2 CO 3 ) or sodium hydroxide is known as a general method. However, in addition to these methods, sodium hypochlorite and chlorate can also be produced by, for example, a method by electrolysis of a sodium chloride (NaCl) aqueous solution.

【0003】この方法は、電解槽内にて、陽極としてチ
タンの上に貴金属をコ−ティングした不溶性電極、陰極
として鉄板を用い、無隔膜で塩化ナトリウム水溶液を電
気分解することにより、次亜塩素酸ナトリウム溶液を製
造し、更にこの次亜塩素酸ナトリウムを電解酸化するこ
とによりクロレート溶液を製造するものであり、この反
応は以下の(1)式及び(2)式に示す反応式に従って
進行する。 NaCl+ H2 O=NaClO + H2 …(1) NaCl+3H2 O=NaClO3 +3H2 …(2)
This method uses hypochlorous acid by electrolyzing an aqueous sodium chloride solution without a diaphragm using an insoluble electrode in which a noble metal is coated on titanium as an anode and an iron plate as a cathode in an electrolytic cell. A sodium chlorate solution is produced, and a sodium chloride solution is further electrolytically oxidized to produce a chlorate solution. This reaction proceeds according to the reaction formulas shown in the following formulas (1) and (2). . NaCl + H 2 O = NaClO + H 2 (1) NaCl + 3H 2 O = NaClO 3 + 3H 2 (2)

【0004】[0004]

【発明が解決しようとしている課題】しかしながら上述
の方法では、(1)、(2)式より明らかなように、次
亜塩素酸ナトリウム、クロレート生成と同時にその副生
成物として水素(H2 )が生成するが、この水素は次亜
塩素酸ナトリウム、クロレート生成においては不必要な
物質である。また塩化ナトリウム水溶液の電気分解にお
いて、水素ガス発生分の過電圧は不要であり次亜塩素酸
ナトリウム、クロレート生成に用いられる電解電力の浪
費である。従って水素ガスの発生により電力が浪費さ
れ、この浪費分次亜塩素酸ナトリウム溶液やクロレート
溶液の製造コストを押し上げることになるという問題が
あった。
However, in the above-mentioned method, as is clear from the equations (1) and (2), sodium hypochlorite and chlorate are produced, and at the same time hydrogen (H 2 ) is produced as a by-product. Although produced, this hydrogen is an unnecessary substance in the production of sodium hypochlorite and chlorate. Further, in the electrolysis of an aqueous solution of sodium chloride, an overvoltage for hydrogen gas generation is unnecessary, which is a waste of electrolysis power used to generate sodium hypochlorite and chlorate. Therefore, there is a problem in that electric power is wasted due to the generation of hydrogen gas, which increases the production cost of the sodium hypochlorite solution and the chlorate solution.

【0005】本発明は、このような事情の下になされた
ものであり、その目的は、塩化ナトリウム溶液の電気分
解において、水素ガスの発生を抑制することにより、過
電圧を低くし、安価に次亜塩素酸ナトリウム溶液の製造
及びクロレート溶液の製造を行う方法を提供することに
ある。
The present invention has been made under such circumstances, and an object thereof is to suppress the generation of hydrogen gas in the electrolysis of a sodium chloride solution, thereby lowering the overvoltage, and at a low cost. It is intended to provide a method for producing a sodium chlorite solution and a chlorate solution.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、ガス
拡散電極を陰極として用いると共に、当該ガス拡散電極
に酸素成分を含むガスを供給しながら、塩化ナトリウム
水溶液を電気分解することにより次亜塩素酸ナトリウム
溶液を製造することを特徴とする。
The invention according to claim 1 uses a gas diffusion electrode as a cathode and electrolyzes an aqueous sodium chloride solution while supplying a gas containing an oxygen component to the gas diffusion electrode. It is characterized by producing a sodium chlorite solution.

【0007】請求項2の発明は、ガス拡散電極を陰極と
して用いると共に、当該ガス拡散電極に酸素成分を含む
ガスを供給しながら、塩化ナトリウム水溶液を電気分解
することによりクロレート溶液を製造することを特徴と
する。
According to a second aspect of the present invention, the gas diffusion electrode is used as a cathode, and a chlorate solution is produced by electrolyzing an aqueous sodium chloride solution while supplying a gas containing an oxygen component to the gas diffusion electrode. Characterize.

【0008】[0008]

【作用】電解槽内にて陰極としてガス拡散電極を用いて
塩化ナトリウム水溶液の電気分解を行うと、次亜塩素酸
ナトリウム溶液が生成され、この次亜塩素酸ナトリウム
溶液に対して更に電解酸化を行うことにより、クロレー
ト溶液が生成する。
[Function] When the sodium chloride aqueous solution is electrolyzed in the electrolytic cell using the gas diffusion electrode as the cathode, a sodium hypochlorite solution is generated, and this sodium hypochlorite solution is further electrolytically oxidized. By doing so, a chlorate solution is produced.

【0009】ここで陰極では水の分解反応が起こるが、
ここに酸素成分を含むガスが供給されると、水の分解反
応により生じたH+ イオンが酸化され、水が生成する。
従って陰極での水素ガス発生反応が抑えられ、水素ガス
発生に伴う過電圧の上昇も抑えられる。これにより過電
圧による電解電力の浪費が抑えられ、電解電力を効率よ
く次亜塩素酸ナトリウムやクロレートの生成に使用でき
るので、このため次亜塩素酸ナトリウム溶液の製造コス
ト及びクロレート溶液の製造コストも低くなる。
Here, the decomposition reaction of water occurs at the cathode,
When a gas containing an oxygen component is supplied to this, H + ions generated by the decomposition reaction of water are oxidized to generate water.
Therefore, the hydrogen gas generation reaction at the cathode is suppressed, and the increase in overvoltage accompanying the hydrogen gas generation is also suppressed. As a result, waste of electrolysis power due to overvoltage can be suppressed, and electrolysis power can be used efficiently for the production of sodium hypochlorite and chlorate.Therefore, the production cost of sodium hypochlorite solution and the production cost of chlorate solution are also low. Become.

【0010】[0010]

【実施例】本発明は、ガス拡散電極を陰極に用いて塩化
ナトリウム水溶液を電解することにより次亜塩素酸ナト
リウム溶液及びクロレート溶液を製造する方法に関する
ものであるが、以下図により本発明方法を説明する。図
1は本発明方法を実施するための電解槽の一例を示す概
略図である。
The present invention relates to a method for producing a sodium hypochlorite solution and a chlorate solution by electrolyzing an aqueous sodium chloride solution using a gas diffusion electrode as a cathode. explain. FIG. 1 is a schematic view showing an example of an electrolytic cell for carrying out the method of the present invention.

【0011】図中1は電解液である塩化ナトリウム水溶
液を満たした電解槽であり、この電解槽1内には、例え
ばチタンの上に貴金属をコ−ティングした不溶性電極か
らなる陽極2と、後述するガス拡散電極からなる陰極3
が設けられ、この電解槽1には陰極3を介してガス室4
が配設されている。即ち電解槽1とガス室4とは陰極3
により仕切られており、陰極3はその背面側即ち陽極2
と対向する面の反対面側がガス室4の内部空間と接触す
るように構成されている。またガス室4には、当該ガス
室4内に酸素成分を含むガス例えば酸素(O2 )ガスを
供給するためのガス供給管41及びガス室4から残ガス
を排出するためのガス排出管42が設けられている。な
お酸素ガス以外に空気を供給してもよいが、水酸化カリ
ウム水溶液などに空気を通じ二酸化炭素分の除去を行っ
た方が電極に対するダメージが少なく好適である。
In the figure, reference numeral 1 denotes an electrolytic cell filled with an aqueous solution of sodium chloride which is an electrolytic solution. In the electrolytic cell 1, for example, an anode 2 composed of an insoluble electrode in which a precious metal is coated on titanium, and an after-mentioned Cathode 3 consisting of a gas diffusion electrode
A gas chamber 4 is provided in the electrolytic cell 1 via the cathode 3.
Is provided. That is, the electrolytic cell 1 and the gas chamber 4 are the cathode 3
The cathode 3 is divided by the back side, that is, the anode 2
The surface opposite to the surface opposite to is in contact with the internal space of the gas chamber 4. Further, in the gas chamber 4, a gas supply pipe 41 for supplying a gas containing an oxygen component, for example, oxygen (O 2 ) gas into the gas chamber 4, and a gas discharge pipe 42 for discharging residual gas from the gas chamber 4. Is provided. Although air may be supplied in addition to oxygen gas, it is preferable to pass air through an aqueous solution of potassium hydroxide or the like to remove the carbon dioxide content, because the electrode is less damaged.

【0012】ここで陰極3に用いるガス拡散電極は、ガ
ス拡散電極体31の内部に給電部32を設けると共に、
ガス室4と接触する側のガス拡散電極体31の外表面に
ガス透過性を有する疎水性膜3を配設して構成されるも
のであり、具体的には、例えばカ−ボンとテフロンディ
スパ−ジョンとを混練したものを、例えば鉄、ニッケル
等のメッシュ板からなる給電部32に塗布した後焼成す
ることにより、給電部32と一体となったガス拡散電極
体31を成型し、これに疎水性膜33を貼設して構成さ
れる。なお給電部32及び陽極2は電力供給部5に接続
されている。
The gas diffusion electrode used for the cathode 3 is provided with a power feeding portion 32 inside the gas diffusion electrode body 31, and
The gas diffusion electrode body 31 on the side in contact with the gas chamber 4 is provided with a hydrophobic membrane 3 having gas permeability on the outer surface thereof. Specifically, for example, carbon and Teflon disperser are used. The gas diffusion electrode body 31 integrated with the power feeding part 32 is molded by applying the mixture of the kneading material and the John to the power feeding part 32 made of, for example, a mesh plate of iron, nickel or the like, and firing it. A hydrophobic film 33 is attached and configured. The power supply unit 32 and the anode 2 are connected to the power supply unit 5.

【0013】また電解槽1には、当該電解槽1に電解液
を供給するための供給管11及び電解槽1から電気分解
後の電解液を排出するための排出管12が設けられ、こ
れらの供給管11及び排出管12は共に電解液貯留槽6
に接続されている。さらに電解槽1には電解液の温度を
調整するための温度調整手段を配設してもよい。
Further, the electrolytic cell 1 is provided with a supply pipe 11 for supplying an electrolytic solution to the electrolytic cell 1 and a discharge pipe 12 for discharging the electrolytic solution after electrolysis from the electrolytic cell 1. Both the supply pipe 11 and the discharge pipe 12 are the electrolytic solution storage tank 6
It is connected to the. Further, the electrolytic cell 1 may be provided with temperature adjusting means for adjusting the temperature of the electrolytic solution.

【0014】次に上述の電解槽1を用いた本発明のクロ
レ−トの製造方法について説明する。電解槽1内に、供
給管11を介して例えば塩化ナトリウム濃度28%の塩
化ナトリウム水溶液310g/lを電解液として電解槽
1内に供給し、例えば液温25℃の下で、無隔膜電解で
攪拌をしながら電気分解を行うと、陽極2では塩素ガス
発生反応反応、陰極3では水(H2 O)の分解によるO
- イオンの生成反応が夫々起こり、陽極2で発生した
塩素ガスと陰極3で生成したOH- イオンとが結合し、
次亜塩素酸ナトリウムが生成する。
Next, a method of manufacturing the chlorate of the present invention using the above-mentioned electrolytic cell 1 will be described. For example, 310 g / l of a sodium chloride aqueous solution having a sodium chloride concentration of 28% is supplied as an electrolytic solution into the electrolytic cell 1 through the supply pipe 11, and the non-diaphragm electrolysis is performed at a liquid temperature of 25 ° C., for example. When electrolysis is carried out while stirring, chlorine gas generation reaction is carried out at the anode 2 and O (catalyst 3) is generated by decomposition of water (H 2 O).
Each of the H ion generation reactions occurs, the chlorine gas generated at the anode 2 and the OH ions generated at the cathode 3 are combined,
Sodium hypochlorite is produced.

【0015】ここで電気分解後の電解液を排出管12を
介して電解液貯留槽6へ排出し、さらに電解液貯留槽6
から、ポンプにより供給管11を介して電解槽1内に電
解液を供給することにより、電解槽1内の電解液は攪拌
される。またこのように電解液を循環させながら電気分
解を繰り返して行うと、電解液中の次亜塩素酸ナトリウ
ム濃度が次第に高くなってくるが、この電解液にさらに
電気分解を行うことにより、次亜塩素酸ナトリウムが陽
極表面上で電解酸化されてクロレートが生成される。そ
してさらに電解液を循環させながら電気分解を繰り返し
て行うと、電解液中のクロレート濃度が次第に高くな
り、所望のクロレート濃度例えばクロレート濃度10%
のクロレート溶液が得られる。なお電解液である塩化ナ
トリウム水溶液の濃度は、数%から飽和濃度までいずれ
の濃度であってもよい。
The electrolytic solution after electrolysis is discharged to the electrolytic solution storage tank 6 through the discharge pipe 12, and the electrolytic solution storage tank 6 is further discharged.
Then, the electrolytic solution in the electrolytic cell 1 is agitated by supplying the electrolytic solution into the electrolytic cell 1 via the supply pipe 11 from the pump. When electrolysis is repeated while circulating the electrolytic solution in this way, the sodium hypochlorite concentration in the electrolytic solution gradually increases, but by further electrolyzing this electrolytic solution, Sodium chlorate is electrolytically oxidized on the surface of the anode to produce chlorate. When electrolysis is repeatedly performed while circulating the electrolytic solution, the chlorate concentration in the electrolytic solution gradually increases, and a desired chlorate concentration, for example, 10% chlorate concentration is obtained.
A chlorate solution of The concentration of the aqueous sodium chloride solution, which is the electrolytic solution, may be any concentration from a few% to a saturated concentration.

【0016】ここで陰極3のガス拡散電極では、給電体
より電気を通じたカ−ボンが存在すると共に、ガス拡散
電極体31の表面層に電解液が浸透する。一方ガス室4
では酸素ガス供給管41よりガス室4内へ酸素ガスが供
給され、この酸素ガスが、疎水性膜33を透過して、ガ
ス拡散電極体31内へ加圧浸透する。
Here, in the gas diffusion electrode of the cathode 3, there is a carbon that conducts electricity from the power supply body, and the electrolytic solution penetrates into the surface layer of the gas diffusion electrode body 31. On the other hand, gas chamber 4
Then, oxygen gas is supplied from the oxygen gas supply pipe 41 into the gas chamber 4, and this oxygen gas permeates the hydrophobic film 33 and permeates into the gas diffusion electrode body 31 under pressure.

【0017】このときガス拡散電極3では、上述の通り
水の分解反応が進行するが、ここにガス室4から酸素ガ
スが供給されることにより、水の分解により生じたH+
イオンがこの酸素ガスにより酸化されて水が生成される
と推察される。なお未反応の酸素ガスはガス排出管42
よりガス室4の外部へ排出される。従ってガス拡散電極
3では、水素ガスを発生させる前にH+ イオンが直接酸
素ガスと反応するために、水素ガスの発生が抑えられ、
このため水素ガス発生のための過電圧が不要となり、過
電圧による電解電力の浪費を抑えた状態で電気分解を行
うことができる。
At this time, in the gas diffusion electrode 3, the decomposition reaction of water proceeds as described above, but when oxygen gas is supplied from the gas chamber 4 to this, H + generated by the decomposition of water is generated.
It is presumed that the ions are oxidized by this oxygen gas to generate water. The unreacted oxygen gas is discharged from the gas exhaust pipe 42.
Is discharged to the outside of the gas chamber 4. Therefore, in the gas diffusion electrode 3, since H + ions directly react with oxygen gas before generating hydrogen gas, generation of hydrogen gas is suppressed,
For this reason, overvoltage for generating hydrogen gas is not required, and electrolysis can be performed in a state in which waste of electrolysis power due to overvoltage is suppressed.

【0018】なお以上の方法において、電解液中の次亜
塩素酸ナトリウム濃度が所望の濃度なった時点で電気分
解を終了させることにより、所望の濃度の次亜塩素酸ナ
トリウム溶液を製造することができる。
In the above method, the sodium hypochlorite solution having a desired concentration can be produced by terminating the electrolysis when the concentration of sodium hypochlorite in the electrolytic solution reaches the desired concentration. it can.

【0019】次に本発明方法の効果を確認するために行
った実験例について説明する。上述のガス室を備えた電
解槽内において、次亜塩素酸濃度4.3%の次亜塩素酸
溶液に対して、陽極として白金を用いて、液温24℃の
下で電気分解を行い、陰極の材質の違いによる電解槽電
圧の変化を測定した。陰極にはカーボン、テフロンディ
スパージョンを混練して加熱プレス成型したガス拡散電
極体にニッケルまたは鉄等のメッシュ板からなる給電体
を取り付けてなるガス拡散電極と、比較のためにステン
レス(SUS410)製の板状電極を用いた。
Next, an example of an experiment conducted to confirm the effect of the method of the present invention will be described. In the electrolytic cell equipped with the gas chamber, a hypochlorous acid solution having a hypochlorous acid concentration of 4.3% was electrolyzed at a liquid temperature of 24 ° C. using platinum as an anode. The change in electrolytic cell voltage due to the difference in cathode material was measured. The cathode is made of stainless steel (SUS410) for comparison with a gas diffusion electrode in which a carbon or Teflon dispersion is kneaded and heated and press-molded, and a power supply body made of a mesh plate such as nickel or iron is attached to the gas diffusion electrode body. The plate-shaped electrode of was used.

【0020】この結果を図2に示す。図中□はガス拡散
電極、○はステンレス性の板状電極のデ−タを夫々示
す。図より明らかなように、同一条件下で次亜塩素酸溶
液を電気分解した場合、陰極としてガス拡散電極を用い
ると、ステンレス製の板状電極を用いたときより、約5
00mV電解槽電圧が低くなっており、これより陰極と
してガス拡散電極を用いると、水素ガスの発生が抑制さ
れ、このため水素ガス発生に伴う過電圧の上昇を抑える
ことができることが確認された。
The results are shown in FIG. In the figure, □ indicates the data of the gas diffusion electrode, and ○ indicates the data of the stainless plate electrode. As is clear from the figure, when the hypochlorous acid solution was electrolyzed under the same conditions, when the gas diffusion electrode was used as the cathode, it was about 5 times smaller than when the stainless plate electrode was used.
It was confirmed that the voltage of the electrolysis cell was 00 mV and that the gas diffusion electrode was used as the cathode to suppress the generation of hydrogen gas, and thus the increase in overvoltage due to the generation of hydrogen gas could be suppressed.

【0021】ここで水素ガス発生により塩化ナトリウム
水溶液の電気分解に必要とされる過電圧の量は、通電電
流及び溶液の濃度、種類、温度により異なるが、理論的
には約1.2Vを要する。従って本発明方法を用いて次
亜塩素酸ナトリウム溶液或いはクロレート溶液の製造を
行えば、かかる過電圧を極めて低くすることができるた
め、過電圧による電解電力の浪費が抑えられる。このた
め電解電力を効率よく次亜塩素酸ナトリウムやクロレー
ト生成に用いることができるので、次亜塩素酸ナトリウ
ムやクロレート生成に要する製造コストを低くすること
ができ、安価に次亜塩素酸ナトリウム溶液の製造及びク
ロレート溶液の製造を行うことができる。
The amount of overvoltage required for the electrolysis of the aqueous sodium chloride solution due to the generation of hydrogen gas depends on the applied current and the concentration, type and temperature of the solution, but theoretically requires about 1.2V. Therefore, when the sodium hypochlorite solution or the chlorate solution is produced by using the method of the present invention, such an overvoltage can be made extremely low, so that waste of electrolysis power due to the overvoltage can be suppressed. Therefore, the electrolysis power can be efficiently used to generate sodium hypochlorite or chlorate, so that the manufacturing cost required for sodium hypochlorite or chlorate generation can be reduced, and the sodium hypochlorite solution can be produced inexpensively. The production and the production of the chlorate solution can be carried out.

【0022】[0022]

【発明の効果】本発明によれば、陰極にガス拡散電極を
用いて塩化ナトリウム水溶液を電気分解することによ
り、次亜塩素酸ナトリウム溶液の製造及びクロレート溶
液の製造行なっているので、陰極での水素ガスの発生が
抑えられ、これにより水素ガス発生に伴う過電圧の上昇
が抑えられるため、過電圧による電解電力の浪費を抑え
て次亜塩素酸ナトリウム溶液の製造及びクロレート溶液
の製造を安価に行うことができる。
According to the present invention, a sodium hypochlorite solution and a chlorate solution are produced by electrolyzing an aqueous sodium chloride solution using a gas diffusion electrode as the cathode. Generation of hydrogen gas is suppressed, and as a result, the rise in overvoltage due to hydrogen gas generation is suppressed, so waste of electrolysis power due to overvoltage can be suppressed and sodium hypochlorite solution and chlorate solution can be manufactured inexpensively. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための電解槽の一例を示
す概略図である。
FIG. 1 is a schematic view showing an example of an electrolytic cell for carrying out the method of the present invention.

【図2】実験結果を示す電解槽電圧の変化を表す特性図
である。
FIG. 2 is a characteristic diagram showing changes in electrolytic cell voltage showing experimental results.

【符号の説明】[Explanation of symbols]

1 電解槽 2 陽極 3 陰極(ガス拡散電極) 31 ガス拡散電極体 32 給電部 4 ガス室 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Anode 3 Cathode (gas diffusion electrode) 31 Gas diffusion electrode body 32 Power supply section 4 Gas chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス拡散電極を陰極として用いると共
に、当該ガス拡散電極に酸素成分を含むガスを供給しな
がら、塩化ナトリウム水溶液を電気分解することによ
り、次亜塩素酸ナトリウム溶液を製造することを特徴と
する次亜塩素酸ナトリウム溶液の製造方法。
1. A sodium hypochlorite solution is produced by electrolyzing an aqueous sodium chloride solution while using a gas diffusion electrode as a cathode and supplying a gas containing an oxygen component to the gas diffusion electrode. A method for producing a sodium hypochlorite solution.
【請求項2】 ガス拡散電極を陰極として用いると共
に、当該ガス拡散電極に酸素成分を含むガスを供給しな
がら、塩化ナトリウム水溶液を電気分解することによ
り、クロレート溶液を製造することを特徴とするクロレ
ート溶液の製造方法。
2. A chlorate solution is produced by using a gas diffusion electrode as a cathode and electrolyzing an aqueous sodium chloride solution while supplying a gas containing an oxygen component to the gas diffusion electrode. Solution manufacturing method.
JP6293953A 1994-11-02 1994-11-02 Production of sodium hypochlorite solution and production of chlorate solution Pending JPH08134676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6293953A JPH08134676A (en) 1994-11-02 1994-11-02 Production of sodium hypochlorite solution and production of chlorate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6293953A JPH08134676A (en) 1994-11-02 1994-11-02 Production of sodium hypochlorite solution and production of chlorate solution

Publications (1)

Publication Number Publication Date
JPH08134676A true JPH08134676A (en) 1996-05-28

Family

ID=17801325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6293953A Pending JPH08134676A (en) 1994-11-02 1994-11-02 Production of sodium hypochlorite solution and production of chlorate solution

Country Status (1)

Country Link
JP (1) JPH08134676A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026636A1 (en) * 2000-09-29 2002-04-04 Aqua Butzke Gmbh Device for electrolytic water disinfection without cathodic hydrogen evolution
WO2007086517A1 (en) * 2006-01-30 2007-08-02 Osaka Titanium Technologies Co., Ltd. Method and apparatus for synthesizing hypochlorous acid
JP2010082618A (en) * 2008-10-01 2010-04-15 Gojo Ind Inc ELECTROLYTIC DEVICE FOR GENERATION OF pH-CONTROLLED HYPOHALOUS ACID AQUEOUS SOLUTIONS FOR DISINFECTANT APPLICATIONS
WO2012147953A1 (en) * 2011-04-28 2012-11-01 大塚化学株式会社 Novel method for producing azodicarbonamide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026636A1 (en) * 2000-09-29 2002-04-04 Aqua Butzke Gmbh Device for electrolytic water disinfection without cathodic hydrogen evolution
WO2007086517A1 (en) * 2006-01-30 2007-08-02 Osaka Titanium Technologies Co., Ltd. Method and apparatus for synthesizing hypochlorous acid
JP2010082618A (en) * 2008-10-01 2010-04-15 Gojo Ind Inc ELECTROLYTIC DEVICE FOR GENERATION OF pH-CONTROLLED HYPOHALOUS ACID AQUEOUS SOLUTIONS FOR DISINFECTANT APPLICATIONS
WO2012147953A1 (en) * 2011-04-28 2012-11-01 大塚化学株式会社 Novel method for producing azodicarbonamide
JP6025713B2 (en) * 2011-04-28 2016-11-16 大塚化学株式会社 New production method of azodicarbonamide

Similar Documents

Publication Publication Date Title
JP2525553B2 (en) Electrodialysis tank and electrodialysis method
US5041196A (en) Electrochemical method for producing chlorine dioxide solutions
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US5938916A (en) Electrolytic treatment of aqueous salt solutions
TWI564434B (en) An apparatus and method for electrochemical production of oxidant related compounds
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
US5158658A (en) Electrochemical chlorine dioxide generator
JP2007197740A (en) Electrolytic cell for synthesizing perchloric acid compound and electrolytic synthesis method
JPH11104648A (en) Seawater electrolyzing apparatus
JPH01142093A (en) Electrolysis method
US5089095A (en) Electrochemical process for producing chlorine dioxide from chloric acid
Girenko et al. Selection of the optimal cathode material to synthesize medical sodium hypochlorite solutions in a membraneless electrolyzer
US4853096A (en) Production of chlorine dioxide in an electrolytic cell
EP0443230B1 (en) Electrochemical cell and process
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JPH08134676A (en) Production of sodium hypochlorite solution and production of chlorate solution
JP2004010904A (en) Electrolytic cell for manufacturing hydrogen peroxide
JPH04249866A (en) Fuel electrode activation for methanole fuel battery
JP3955085B2 (en) Alkaline hydrogen peroxide solution and method for producing chlorine dioxide
RU2317351C2 (en) Alkaline metal chlorate producing process
GB1430294A (en) Electrolytic apparatus and methods
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JPH08296076A (en) Production of aqueous solution of hydrogen peroxide and device therefor
KR100523982B1 (en) Electrolytic disinfectants generator