JP2003183760A - Tungsten carbide-based hard metal - Google Patents

Tungsten carbide-based hard metal

Info

Publication number
JP2003183760A
JP2003183760A JP2001387614A JP2001387614A JP2003183760A JP 2003183760 A JP2003183760 A JP 2003183760A JP 2001387614 A JP2001387614 A JP 2001387614A JP 2001387614 A JP2001387614 A JP 2001387614A JP 2003183760 A JP2003183760 A JP 2003183760A
Authority
JP
Japan
Prior art keywords
tungsten carbide
less
phase
toughness
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001387614A
Other languages
Japanese (ja)
Other versions
JP3962818B2 (en
Inventor
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2001387614A priority Critical patent/JP3962818B2/en
Publication of JP2003183760A publication Critical patent/JP2003183760A/en
Application granted granted Critical
Publication of JP3962818B2 publication Critical patent/JP3962818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultra-fine particulate hard metal having a high toughness and an extremely small WC particle size, by solving the problem associated with the addition of Ta to ultra-fine particulate hard metals, which, as in the case of combining V and Ta, results in decreased toughness. <P>SOLUTION: The tungsten carbide-based hard metal comprises 2-30% Co and/or Ni, 0.1-2.0% V, 0.1-2.0% Cr, 0.01%≤Ta<0.4% and the balance being tungsten carbide and unavoidable impurities. Here, the average particle size of tungsten carbide is ≤0.6 μm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明に属する技術分野】本願発明は、超硬合金に関
し、特に、平均粒径が0.6μm以下の炭化タングステ
ン粒子を有する、いわゆる超微粒超硬合金に関する。
TECHNICAL FIELD The present invention relates to a cemented carbide, and more particularly to a so-called ultrafine cemented carbide having tungsten carbide particles having an average particle size of 0.6 μm or less.

【0002】[0002]

【従来の技術】平均粒径が1μm以下のWC粒子を含有
する超微粒超硬合金は、硬さとともに靭性も高いのでエ
ンドミル、プリント基板用ドリル、各種せん断刃などに
広範囲に用いられている。近年微細加工の傾向とともに
超微粒合金の平均粒径も益々小さいものの要求が大とな
ってきている。そのため、従来から周知のV、Ta、C
rなどの金属ましくはそれらの金属の化合物(炭化物、
窒化物、炭窒化物など)をWCに対する粒成長抑制材と
して、単独に用いられていたものが、0.6μm以下の
平均粒径をめざし2種以上を添加するようになってき
た。例えば、特公昭62−56224号公報(特許第1
539991号)では、VとCrの2種を添加し、且
つ、合金内に第3相が出現しないようにして靭性を劣化
させない工夫が開示されている。また、特許番号300
8532号公報では、やはりVとCrを複合添加し、且
つ、VとWを含む複合炭化物を第3相として金属結合相
とWCの粒界に存在させることにより抗折力の向上が図
れることが開示されている。特許番号3010859号
も、VとCrの複合添加の特許であるが、Cr炭化物や
(W、V)Cを析出させることなく、CrとVの複合炭
化物、より正確に記すれば(Cr、V)Cのみを素地
中に分散させて、硬さと靭性の双方の向上を図ることが
開示されている。
2. Description of the Related Art Ultrafine cemented carbide containing WC particles having an average particle diameter of 1 .mu.m or less is widely used for end mills, drills for printed circuit boards, various shear blades, etc. because of its high hardness and toughness. In recent years, along with the tendency of fine processing, the demand for ultrafine grained alloys having smaller and smaller average grain sizes has been increasing. Therefore, conventionally known V, Ta, C
Metals such as r, or compounds of those metals (carbides,
(Nitrides, carbonitrides, etc.) have been used alone as grain growth inhibitors for WC, but two or more species have been added aiming at an average grain size of 0.6 μm or less. For example, Japanese Patent Publication No. 62-56224 (Patent No. 1)
No. 5,399,991) discloses a device in which two kinds of V and Cr are added and the third phase does not appear in the alloy so as not to deteriorate the toughness. Also, the patent number 300
According to Japanese Patent Publication No. 8532, the addition of V and Cr together and the presence of the composite carbide containing V and W as the third phase at the grain boundary between the metal binder phase and WC can improve the transverse rupture strength. It is disclosed. Japanese Patent No. 3010859 is also a patent for the composite addition of V and Cr, but it does not precipitate Cr carbide and (W, V) C, but it is a composite carbide of Cr and V, more accurately (Cr, V ) It is disclosed that only 2 C is dispersed in the matrix to improve both hardness and toughness.

【0003】更に、3種の複合添加では、特公昭62−
56493号公報(特許番号1467291)におい
て、VとCrとMoの3種添加が開示されている。ま
た、特公昭62−56494号公報(特許番号1487
479)では、VとCrと0.5〜8.0重量%のTa
C又は(Ta、Nb)Cの3種の添加し、より微細な超
硬合金が得られることを開示している。この場合TaC
又は(Ta、Nb)Cを主体とする固溶体炭化物相の析
出相が一定量以下であれば、靭性の低下を招聘しないと
されている。特公平03−46538号公報において
も、VとCrと0.4〜0.5%のTaNbCの3種添
加が開示されている。特許3206375号公報におい
てもVとCrと0.05〜2.5%のTaCの複合添加
によるWC粒径0.7〜1.0μmの超微粒合金が開示
されている。
Further, in the case of adding three kinds of composites, Japanese Patent Publication No.
Japanese Patent No. 56493 (Patent No. 1467291) discloses addition of three kinds of V, Cr and Mo. Also, Japanese Patent Publication No. 62-56494 (Patent No. 1487)
479), V and Cr, and Ta of 0.5 to 8.0% by weight.
It is disclosed that a finer cemented carbide can be obtained by adding three kinds of C or (Ta, Nb) C. In this case TaC
Alternatively, it is said that if the precipitation phase of the solid solution carbide phase mainly composed of (Ta, Nb) C is not more than a certain amount, the toughness is not deteriorated. Japanese Patent Publication No. 03-46538 discloses the addition of three kinds of V, Cr and 0.4 to 0.5% TaNbC. Japanese Patent No. 3206375 also discloses an ultrafine grained alloy having a WC grain size of 0.7 to 1.0 μm by the combined addition of V, Cr and 0.05 to 2.5% TaC.

【0004】[0004]

【発明が解決しようとする課題】WC粒子は焼結中に粒
成長を起こすので、合金中のWC粒子の粒径は焼結前よ
りも大きい。そのため粒成長抑制材を添加してWCの粒
成長を抑制する方法の研究が進められ、Vが最も有効
で、Cr、Ta、Moも効果のあることが分かってい
る。平均粒径が0.6μm以下、願わくば0.5μm以
下としたいならば、多量の粒成長抑制材、特にVを添加
すればよいが、Vを多量に添加すると合金の靭性が急激
に低下する。そのためVの添加量を減らして、その結果
生じる粒成長抑制効果の減少分をCrやTaで補填する
試み、すなわち粒成長抑制材の複合添加が行われてきた
のである。しかしながら上記の先行技術を含め発明者ら
が鋭意検討したところではVとCrの組合せでは、焼結
後の冷却中に結合相やWC相とは別の第3相が析出し、
それが靭性を低下させることが明らかとなった。そのた
め第3相が析出しない程度に添加量を少なくすると、粒
成長抑制効果が希薄になる。VとTaの組合せは第3相
の出現がより易くなり、靭性の低下が激しい。そこで平
均粒径が0.6μm以下、願わくば0.5μmとした高
靭性の超硬合金を得ようとするならば、VとCrとTa
の3種の添加に頼らざるを得ない。しかしながら、上述
の先行技術を追試した結果、Taの添加はVとTaの組
合せ同様、靭性の低下が大きな障害となることが分っ
た。
Since the WC particles undergo grain growth during sintering, the particle size of the WC particles in the alloy is larger than that before sintering. Therefore, research on a method for suppressing the grain growth of WC by adding a grain growth inhibitor has been advanced, and it is known that V is the most effective and Cr, Ta, and Mo are also effective. If it is desired to have an average grain size of 0.6 μm or less, and preferably 0.5 μm or less, a large amount of grain growth suppressing material, especially V, may be added, but if a large amount of V is added, the toughness of the alloy is rapidly lowered. . For this reason, attempts have been made to reduce the amount of V added and to supplement the resulting decrease in grain growth suppressing effect with Cr or Ta, that is, to add a grain growth suppressing material in combination. However, the inventors of the present invention, including the above-mentioned prior art, have studied earnestly, and in the combination of V and Cr, a third phase other than the binder phase and the WC phase is precipitated during cooling after sintering,
It has become clear that it reduces toughness. Therefore, if the addition amount is reduced to such an extent that the third phase does not precipitate, the grain growth suppressing effect becomes weak. With the combination of V and Ta, the appearance of the third phase becomes easier and the toughness is severely reduced. Therefore, in order to obtain a high toughness cemented carbide with an average grain size of 0.6 μm or less, and preferably 0.5 μm, V, Cr, and Ta are required.
There is no choice but to rely on the addition of 3 kinds of. However, as a result of additional testing of the above-mentioned prior art, it was found that addition of Ta is a major obstacle to reduction in toughness, as in the combination of V and Ta.

【0005】[0005]

【課題を解決するための手段】本発明者等は、なぜVと
CrとTaの3種添加が粒成長抑制効果は評価できるも
のの靭性の著しい低下がなぜ起きるかの観点から種々検
討した結果、結合相やWC相とは明らかに異なる別の相
とおぼしきものが合金全体に広がっていることが観察さ
れた。この別相とおぼしきもの(以後、出現相と記
す。)はTa添加量とともに増加すること、同じTa量
では低カーボン合金ほど少なく、また焼結終了後から液
相消失温度までの冷却速度が速いほど減少し、場合によ
っては出現しなくなることが分った。また、この出現相
は量の増加に伴って抗折力値で評価される靭性が急激に
低下することなどが明らかとなった。そこで、Ta(T
a化合物の場合はTa分)の適正量について厳密な調査
を行ったところ、0.4%を超えると出現相が過多とな
り、V添加量が0.1〜2.0の範囲において充分な靭
性が保てないことが明らかとなった。さらに記すればV
が0.1〜2.0%、且つ、Crが0.1〜2.0%の
範囲において、いかに合金カーボン量を調整しようが、
また実用範囲で冷却速度を大きくしようが、出現相の望
ましい上限値を超えてしまい、充分に靭性のあるWCの
平均粒径が0.6μm以下の合金が得られない。
Means for Solving the Problems The inventors of the present invention have conducted various studies from the viewpoint of why the addition of V, Cr, and Ta can evaluate the grain growth suppressing effect but cause a significant decrease in toughness. It was observed that a distinct phase distinct from the binder phase and the WC phase, and possibly other phases, were spread throughout the alloy. This different phase and the one that is likely to be present (hereinafter referred to as the appearance phase) increases with the amount of Ta added, and with the same amount of Ta, the lower the carbon alloy is, the less it is, and the cooling rate from the completion of sintering to the liquid phase disappearance temperature is fast. It has been found that the amount decreases, and in some cases it does not appear. Moreover, it became clear that the toughness evaluated by the transverse rupture strength value drastically decreased with the increase of this appearance phase. Therefore, Ta (T
In the case of the compound a, a strict investigation was conducted on the appropriate amount of Ta). When it exceeds 0.4%, the appearance phase becomes excessive, and sufficient toughness is obtained in the range of V addition amount of 0.1 to 2.0. It became clear that could not be maintained. If you write further, V
Is 0.1 to 2.0% and Cr is 0.1 to 2.0%, no matter how the alloy carbon amount is adjusted,
Even if the cooling rate is increased in the practical range, the desired upper limit of the appearance phase is exceeded, and a sufficiently tough alloy having an average grain size of WC of 0.6 μm or less cannot be obtained.

【0006】すなわち、本願の第1の発明は、Co及び
Niのうちの1種又は2種:2〜30%、V:0.1〜
2.0%、Cr:0.1〜2.0%、Ta:0.01%
以上0.4%未満、を含有し、残り:炭化タングステン
及び不可避不純物、からなる組成を有し、炭化タングス
テンの平均粒径が0.6μm以下であることを特徴とす
る炭化タングステン基超硬合金であり、第2の発明は、
Co及びNiのうちの1種又は2種:2〜30%、V:
0.1〜2.0%、Cr:0.1〜2.0%、TaC:
0.01%以上0.4%未満、を含有し、残り:炭化タ
ングステン及び不可避不純物からなる組成を有し、且
つ、Co及び/又はNiを主体とする結合相と、平均粒
径が0.6μm以下の炭化タングステンと、Cr、T
a、V及びWから選ばれた1種又は2種以上の金属元素
を主体とする化合物との、3相又は3相以上の組織を有
することを特徴とする超硬合金、である。
That is, the first invention of the present application is one or two of Co and Ni: 2 to 30%, V: 0.1 to
2.0%, Cr: 0.1 to 2.0%, Ta: 0.01%
A tungsten carbide-based cemented carbide having a composition of 0.4% or more and less than 0.4%, and a balance of tungsten carbide and unavoidable impurities, wherein the average grain size of tungsten carbide is 0.6 μm or less. And the second invention is
One or two of Co and Ni: 2 to 30%, V:
0.1-2.0%, Cr: 0.1-2.0%, TaC:
0.01% or more and less than 0.4%, the remainder: a composition having a composition of tungsten carbide and unavoidable impurities, and a binder phase mainly composed of Co and / or Ni, and an average particle size of 0. Tungsten carbide of 6 μm or less, Cr, T
A cemented carbide characterized by having a structure of three phases or three phases or more with a compound mainly composed of one or more kinds of metal elements selected from a, V and W.

【0007】本願発明においてV(V化合物の場合はそ
のV分)は0.1〜2.0%とする。0.1%未満では
充分な粒成長抑制効果が得られず、本願発明の趣旨に反
する。0.2%を超えると充分な靭性が得られず、抗折
力が実用範囲以下に低下する。ここで抗折力の実用範囲
は3000MPa以上としたが、用途によりそれ未満で
も使用可能な場合もあり、厳格に規定するものではな
い。Cr(Cr化合物の場合はそのCr分)は0.1〜
2.0%とする。0.1%未満では充分な粒成長抑制効
果が得られず、本願発明の趣旨に反する。0.2%を超
えると充分な靭性が得られず、抗折力が実用範囲以下に
低下する。Ta(Ta化合物の場合はそのTa分)は
0.01%以上0.4%未満に規定する。0.01%未
満では充分なV+Cr+Taの粒成長抑制に対する相乗
効果とが得られず、本願発明の趣旨に反する。0.4%
以上では充分な靭性が得られず、抗折力が実用範囲以下
に低下する。Co及び/又はNiは2〜30%の範囲と
する。2%未満では充分な靭性が得られない。30%を
超えると超硬合金の本質的な性質の一つである硬さの低
下が著しく、一部の用途を除いて実用的でない。
In the present invention, V (V component in the case of V compound) is 0.1 to 2.0%. If it is less than 0.1%, a sufficient grain growth suppressing effect cannot be obtained, which is contrary to the gist of the present invention. If it exceeds 0.2%, sufficient toughness cannot be obtained, and the transverse rupture strength falls below the practical range. Here, the practical range of the transverse rupture strength is set to 3000 MPa or more, but even if it is less than that, it can be used depending on the application, and is not strictly defined. Cr (in the case of a Cr compound, the Cr content) is 0.1 to
2.0%. If it is less than 0.1%, a sufficient grain growth suppressing effect cannot be obtained, which is contrary to the gist of the present invention. If it exceeds 0.2%, sufficient toughness cannot be obtained, and the transverse rupture strength falls below the practical range. Ta (Ta content in the case of Ta compound) is specified to be 0.01% or more and less than 0.4%. If it is less than 0.01%, a sufficient synergistic effect of suppressing the grain growth of V + Cr + Ta cannot be obtained, which is contrary to the gist of the present invention. 0.4%
With the above, sufficient toughness cannot be obtained and the transverse rupture strength falls below the practical range. Co and / or Ni is in the range of 2 to 30%. If it is less than 2%, sufficient toughness cannot be obtained. If it exceeds 30%, the hardness, which is one of the essential properties of the cemented carbide, is markedly reduced, which is not practical except for some applications.

【0008】本願発明の超硬合金のミクロ組織は、金属
相とWC相の2相が基本であるが、製造条件によりその
他の相が出現する場合がある。しかもその出現相は一つ
の場合も複数の場合も条件により観察される。出現相は
CrやTaやVのうちの一つ又は二つ以上の金属とCを
主体とするもので、その他、時によりCoやWをその構
成要素とする。該出現相は製造条件により構成元素も組
成比も種々変化するものなので厳密に化学組成を規定す
るものではない。本発明者らが鋭意検討をしたところ、
該出現相がある量以上に増加すると靭性が著しく低下す
る。従って、本願発明のもうひとつの特徴は、Taの量
を規定することで該出現相の量に制限を与え、結果とし
て靭性のあるWCの平均粒度が0.6μm以下好ましく
は0.4μm以下の超微粒合金を得るところにある。以
下、本願発明を実施例によって詳細に説明する。
The microstructure of the cemented carbide of the present invention is basically composed of two phases, a metal phase and a WC phase, but other phases may appear depending on manufacturing conditions. Moreover, the appearance phase is observed depending on the condition in one case or in plural cases. The appearance phase is mainly composed of one or more metals of Cr, Ta, and V and C, and sometimes Co and W as its constituent elements. The appearance phase has various constituent elements and composition ratios which vary depending on the production conditions, and therefore does not strictly define the chemical composition. As a result of intensive investigations by the present inventors,
If the appearance phase is increased above a certain amount, the toughness is significantly reduced. Therefore, another feature of the present invention is that the amount of the appearance phase is limited by defining the amount of Ta, and as a result, the toughness WC has an average grain size of 0.6 μm or less, preferably 0.4 μm or less. This is where ultra-fine grained alloys are obtained. Hereinafter, the present invention will be described in detail with reference to Examples.

【0009】[0009]

【実施例】原料粉末として、平均粒径0.6μmのWC
粉末、同約1μmのCo、VC、Cr、TaC各
原料粉末を表1に示される最終組成が得られるように配
合し、(VC、Cr3C2、TaCはそれぞれV、C
r、Ta量に換算して示す)成形バインダーを含んだア
ルコール中アトライターで12時間混合した後、スプレ
ードライで造粒乾燥した。
Example: As a raw material powder, WC having an average particle size of 0.6 μm
The powder, about 1 μm of Co, VC, Cr 3 C 2 , and TaC raw material powders were blended so as to obtain the final composition shown in Table 1, (VC, Cr3C2, and TaC are V and C, respectively).
After being mixed for 12 hours in an alcohol containing a molding binder with an attritor, the mixture was granulated and dried by spray drying.

【0010】[0010]

【表1】 [Table 1]

【0011】得られた造粒粉末を100MPaの圧力で
プレス成形して圧粉体とし、この圧粉体を10Paの真
空雰囲気中で焼結し、焼結体を得た。次に、これらの各
焼結体を研削して4mm×8mm×24mmのJIS抗
折試験片を作成し、スパン20mmで3点曲げによる抗
折力を測定するとともに、ロックウェルAスケール硬さ
(HRA)も測定し、更に、走査型電子顕微鏡(SE
M)で組織観察してWCの平均粒径を求めた。また、抗
折力測定後の破面をX線マイクロアナライザー(XM
A)で元素マッピングを行い出現相の有無を調査した。
これらの結果をまとめて表1に示す。焼結においては検
討結果から最適と思われる温度を選定した。出現相は焼
結後の冷却速度が速いとその量が減じるので、一部冷却
過程で窒素ガスによる急怜を実施した。
The obtained granulated powder was press-molded at a pressure of 100 MPa to obtain a green compact, and the green compact was sintered in a vacuum atmosphere of 10 Pa to obtain a sintered body. Next, each of these sintered bodies was ground to prepare a JIS bending test piece of 4 mm x 8 mm x 24 mm, and the bending strength by 3-point bending was measured at a span of 20 mm, and the Rockwell A scale hardness ( HRA is also measured, and scanning electron microscope (SE
The average grain size of WC was determined by observing the structure in (M). In addition, the fracture surface after measuring the transverse rupture strength was measured with an X-ray micro analyzer (XM
Elemental mapping was performed in A) to investigate the presence or absence of appearance phases.
The results are summarized in Table 1. For sintering, we selected the temperature that seems to be optimal from the study results. Since the amount of the appearance phase decreases when the cooling rate after sintering is fast, the rapid quenching with nitrogen gas was performed in the partial cooling process.

【0012】表1より、VとCrとTaの複合添加はそ
れぞれの量を規制することで、その相乗効果が顕著に現
れることが実施例から分かる。比較例1は、Ta添加量
が0であるため3種混合の相乗効果が無く、抗折力が3
000MPa以下と低い値を示す。靭性を落とす性質が
顕著な出現相が内在するためと推測される。本発明例2
〜5は、WCの平均粒径は0.6μm以下で、且つ、抗
折力3000MPa以上を保って高靭性の合金となって
いる。比較例6は、Ta量が0.4%を超えたため出現
相の量が増加し、抗折力が3000MPaを下回ってい
る。
From Table 1, it can be seen from the examples that the combined addition of V, Cr, and Ta makes the synergistic effect remarkable by controlling the respective amounts. In Comparative Example 1, since the Ta addition amount is 0, there is no synergistic effect of mixing the three types, and the transverse rupture strength is 3
It shows a low value of 000 MPa or less. It is speculated that there is an internal appearance phase that has a remarkable toughness-reducing property. Invention Example 2
Nos. 5 to 5 are high toughness alloys with an average grain size of WC of 0.6 μm or less and a bending strength of 3000 MPa or more. In Comparative Example 6, the Ta content exceeds 0.4%, so that the amount of the appearance phase increases and the transverse rupture strength is less than 3000 MPa.

【0013】比較例7は、V添加量が0のためWCの平
均粒径が0.65μmと粗大化し、粒抑制効果が希薄で
ある。本発明例8〜10は、V量が本発明の範囲内、す
なわち0.1〜2.0%の範囲内にあるため、粒成長と
靭性の低下の双方を抑制し、超微粒で高靭性の合金とな
っている。比較例11は、Vが過多のため抗折力が30
00MPa以下と靭性の急激な低下が認められる。比較
例12は、Crの添加量が0のため粒成長抑制効果が希
薄なものとなっている。比較例14は、Cr量が過多で
粒成長抑制効果は有るものの抗折力が3000MPa以
下で低靭性なものとなっている。比較例15は、Coが
過少で充分な靭性が得られていない。比較例18は、C
oが過多で剛性不足となり、充分な抗折強度が得られて
いない。その他の本発明例は、WCの平均粒度が0.6
μm、最小で0.36μmを達成し、また抗折力は30
00MPa以上を維持している。
In Comparative Example 7, since the amount of V added was 0, the average grain size of WC was coarsened to 0.65 μm, and the grain suppressing effect was weak. Inventive Examples 8 to 10 have V content within the range of the present invention, that is, within the range of 0.1 to 2.0%, so that both grain growth and reduction in toughness are suppressed, and ultrafine grains have high toughness. It is an alloy of. In Comparative Example 11, the bending strength is 30 because V is excessive.
A sharp decrease in toughness is recognized when it is 00 MPa or less. In Comparative Example 12, since the added amount of Cr is 0, the grain growth suppressing effect is weak. Comparative Example 14 has an excessive amount of Cr and has a grain growth suppressing effect, but has a transverse rupture strength of 3000 MPa or less and low toughness. In Comparative Example 15, Co is too small and sufficient toughness is not obtained. Comparative Example 18 is C
O is excessive and rigidity becomes insufficient, and sufficient bending strength is not obtained. In other examples of the present invention, the average particle size of WC is 0.6.
Achieving a minimum of 0.36 μm and a bending strength of 30
It is maintained at 00 MPa or more.

【0014】[0014]

【発明の効果】以上述べたことから、本願発明の超硬合
金はWCの粒径が極めて小さく、且つ、高い靭性を有す
るもので、各種切削工具、せん断工具、小径エンドミ
ル、プリント基板用ドリルなどに用いた場合に優れた性
能を発揮する。
From the above, the cemented carbide of the present invention has a very small WC grain size and high toughness, and is used for various cutting tools, shearing tools, small diameter end mills, printed circuit board drills, etc. Excellent performance when used for.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Co及びNiのうちの1種又は2種:2〜
30%、V:0.1〜2.0%、Cr:0.1〜2.0
%、Ta:0.01%以上0.4%未満、を含有し、残
り:炭化タングステン及び不可避不純物、からなる組成
を有し、炭化タングステンの平均粒径が0.6μm以下
であることを特徴とする炭化タングステン基超硬合金。
1. One or two of Co and Ni: 2 to
30%, V: 0.1-2.0%, Cr: 0.1-2.0
%, Ta: 0.01% or more and less than 0.4%, and the balance: tungsten carbide and inevitable impurities, and the average particle size of tungsten carbide is 0.6 μm or less. And tungsten carbide based cemented carbide.
【請求項2】Co及びNiのうちの1種又は2種:2〜
30%、V:0.1〜2.0%、Cr:0.1〜2.0
%、TaC:0.01%以上0.4%未満、を含有し、
残り:炭化タングステン及び不可避不純物からなる組成
を有し、且つ、Co及び/又はNiを主体とする結合相
と、平均粒径が0.6μm以下の炭化タングステンと、
Cr、Ta、V及びWから選ばれた1種又は2種以上の
金属元素を主体とする化合物との、3相又は3相以上の
組織を有することを特徴とする超硬合金。
2. One or two of Co and Ni: 2 to
30%, V: 0.1-2.0%, Cr: 0.1-2.0
%, TaC: 0.01% or more and less than 0.4%,
The rest: a binder phase having a composition of tungsten carbide and unavoidable impurities, and containing Co and / or Ni as a main component, and tungsten carbide having an average particle size of 0.6 μm or less,
A cemented carbide having a three-phase or three-phase structure with a compound mainly containing one or more metal elements selected from Cr, Ta, V and W.
JP2001387614A 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide Expired - Fee Related JP3962818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387614A JP3962818B2 (en) 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387614A JP3962818B2 (en) 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide

Publications (2)

Publication Number Publication Date
JP2003183760A true JP2003183760A (en) 2003-07-03
JP3962818B2 JP3962818B2 (en) 2007-08-22

Family

ID=27596386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387614A Expired - Fee Related JP3962818B2 (en) 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide

Country Status (1)

Country Link
JP (1) JP3962818B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741001A (en) * 2014-01-16 2014-04-23 河源普益硬质合金厂有限公司 High-hardness and high-strength PY30T hard alloy and preparation method of high-hardness and high-strength PY30T hard alloy product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741001A (en) * 2014-01-16 2014-04-23 河源普益硬质合金厂有限公司 High-hardness and high-strength PY30T hard alloy and preparation method of high-hardness and high-strength PY30T hard alloy product

Also Published As

Publication number Publication date
JP3962818B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
KR101411049B1 (en) Cemented carbide with refined structure
TWI479027B (en) Hard alloy
KR101545346B1 (en) Fine grained cemented carbide with refined structure
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP2004059946A (en) Ultra-fine grain hard metal
JP4282298B2 (en) Super fine cemented carbide
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JP3954845B2 (en) Tungsten carbide-based cemented carbide and method for producing the same
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JPS6256943B2 (en)
JP2003193171A (en) Cemented carbide and production method therefor
JP3954843B2 (en) Tungsten carbide based cemented carbide
JP2003183760A (en) Tungsten carbide-based hard metal
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS6256944B2 (en)
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JP4126280B2 (en) Fine cemented carbide
JP3954857B2 (en) Tungsten carbide based cemented carbide
JP3063310B2 (en) Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness
JPH09227981A (en) Cemented carbide
JP3008532B2 (en) High hardness, high toughness cemented carbide
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JP2005054258A (en) Fine-grained cemented carbide
JP2003306738A (en) Tough cemented carbide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Ref document number: 3962818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees