JP3962818B2 - Tungsten carbide based cemented carbide - Google Patents

Tungsten carbide based cemented carbide Download PDF

Info

Publication number
JP3962818B2
JP3962818B2 JP2001387614A JP2001387614A JP3962818B2 JP 3962818 B2 JP3962818 B2 JP 3962818B2 JP 2001387614 A JP2001387614 A JP 2001387614A JP 2001387614 A JP2001387614 A JP 2001387614A JP 3962818 B2 JP3962818 B2 JP 3962818B2
Authority
JP
Japan
Prior art keywords
phase
carbide
less
toughness
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001387614A
Other languages
Japanese (ja)
Other versions
JP2003183760A (en
Inventor
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2001387614A priority Critical patent/JP3962818B2/en
Publication of JP2003183760A publication Critical patent/JP2003183760A/en
Application granted granted Critical
Publication of JP3962818B2 publication Critical patent/JP3962818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明に属する技術分野】
本願発明は、超硬合金に関し、特に、平均粒径が0.6μm以下の炭化タングステン粒子を有する、いわゆる超微粒超硬合金に関する。
【0002】
【従来の技術】
平均粒径が1μm以下のWC粒子を含有する超微粒超硬合金は、硬さとともに靭性も高いのでエンドミル、プリント基板用ドリル、各種せん断刃などに広範囲に用いられている。近年微細加工の傾向とともに超微粒合金の平均粒径も益々小さいものの要求が大となってきている。そのため、従来から周知のV、Ta、Crなどの金属ましくはそれらの金属の化合物(炭化物、窒化物、炭窒化物など)をWCに対する粒成長抑制材として、単独に用いられていたものが、0.6μm以下の平均粒径をめざし2種以上を添加するようになってきた。例えば、特公昭62−56224号公報(特許第1539991号)では、VとCrの2種を添加し、且つ、合金内に第3相が出現しないようにして靭性を劣化させない工夫が開示されている。また、特許番号3008532号公報では、やはりVとCrを複合添加し、且つ、VとWを含む複合炭化物を第3相として金属結合相とWCの粒界に存在させることにより抗折力の向上が図れることが開示されている。特許番号3010859号も、VとCrの複合添加の特許であるが、Cr炭化物や(W、V)Cを析出させることなく、CrとVの複合炭化物、より正確に記すれば(Cr、V)Cのみを素地中に分散させて、硬さと靭性の双方の向上を図ることが開示されている。
【0003】
更に、3種の複合添加では、特公昭62−56493号公報(特許番号1467291)において、VとCrとMoの3種添加が開示されている。また、特公昭62−56494号公報(特許番号1487479)では、VとCrと0.5〜8.0重量%のTaC又は(Ta、Nb)Cの3種の添加し、より微細な超硬合金が得られることを開示している。この場合TaC又は(Ta、Nb)Cを主体とする固溶体炭化物相の析出相が一定量以下であれば、靭性の低下を招聘しないとされている。特公平03−46538号公報においても、VとCrと0.4〜0.5%のTaNbCの3種添加が開示されている。特許3206375号公報においてもVとCrと0.05〜2.5%のTaCの複合添加によるWC粒径0.7〜1.0μmの超微粒合金が開示されている。
【0004】
【発明が解決しようとする課題】
WC粒子は焼結中に粒成長を起こすので、合金中のWC粒子の粒径は焼結前よりも大きい。そのため粒成長抑制材を添加してWCの粒成長を抑制する方法の研究が進められ、Vが最も有効で、Cr、Ta、Moも効果のあることが分かっている。平均粒径が0.6μm以下、願わくば0.5μm以下としたいならば、多量の粒成長抑制材、特にVを添加すればよいが、Vを多量に添加すると合金の靭性が急激に低下する。そのためVの添加量を減らして、その結果生じる粒成長抑制効果の減少分をCrやTaで補填する試み、すなわち粒成長抑制材の複合添加が行われてきたのである。しかしながら上記の先行技術を含め発明者らが鋭意検討したところではVとCrの組合せでは、焼結後の冷却中に結合相やWC相とは別の第3相が析出し、それが靭性を低下させることが明らかとなった。そのため第3相が析出しない程度に添加量を少なくすると、粒成長抑制効果が希薄になる。VとTaの組合せは第3相の出現がより易くなり、靭性の低下が激しい。そこで平均粒径が0.6μm以下、願わくば0.5μmとした高靭性の超硬合金を得ようとするならば、VとCrとTaの3種の添加に頼らざるを得ない。しかしながら、上述の先行技術を追試した結果、Taの添加はVとTaの組合せ同様、靭性の低下が大きな障害となることが分った。
【0005】
【課題を解決するための手段】
本発明者等は、なぜVとCrとTaの3種添加が粒成長抑制効果は評価できるものの靭性の著しい低下がなぜ起きるかの観点から種々検討した結果、結合相やWC相とは明らかに異なる別の相とおぼしきものが合金全体に広がっていることが観察された。この別相とおぼしきもの(以後、出現相と記す。)はTa添加量とともに増加すること、同じTa量では低カーボン合金ほど少なく、また焼結終了後から液相消失温度までの冷却速度が速いほど減少し、場合によっては出現しなくなることが分った。また、この出現相は量の増加に伴って抗折力値で評価される靭性が急激に低下することなどが明らかとなった。そこで、Ta(Ta化合物の場合はTa分)の適正量について厳密な調査を行ったところ、0.4%を超えると出現相が過多となり、V添加量が0.1〜2.0の範囲において充分な靭性が保てないことが明らかとなった。さらに記すればVが0.1〜2.0%、且つ、Crが0.1〜2.0%の範囲において、いかに合金カーボン量を調整しようが、また実用範囲で冷却速度を大きくしようが、出現相の望ましい上限値を超えてしまい、充分に靭性のあるWCの平均粒径が0.6μm以下の合金が得られない。
【0006】
すなわち、本願発明は、Co及びNiのうちの1種又は2種:2〜30%、V:0.1〜2.0%、Cr:0.1〜2.0%、Ta:0.01%以上0.4%未満、を含有し、残り:炭化タングステン及び不可避不純物、からなる組成を有し、該超硬合金のミクロ組織は、Co及び/又はNiを主体とする結合相と、平均粒径が0.6μm以下の炭化タングステンと、Cr、Ta、V及びWから選ばれた1種又は2種以上の金属元素を主体とする化合物との、3相又は3相以上有することを特徴とする超硬合金、である。
【0007】
本願発明においてV(V化合物の場合はそのV分)は0.1〜2.0%とする。0.1%未満では充分な粒成長抑制効果が得られず、本願発明の趣旨に反する。0.2%を超えると充分な靭性が得られず、抗折力が実用範囲以下に低下する。ここで抗折力の実用範囲は3000MPa以上としたが、用途によりそれ未満でも使用可能な場合もあり、厳格に規定するものではない。Cr(Cr化合物の場合はそのCr分)は0.1〜2.0%とする。0.1%未満では充分な粒成長抑制効果が得られず、本願発明の趣旨に反する。0.2%を超えると充分な靭性が得られず、抗折力が実用範囲以下に低下する。Ta(Ta化合物の場合はそのTa分)は0.01%以上0.4%未満に規定する。0.01%未満では充分なV+Cr+Taの粒成長抑制に対する相乗効果とが得られず、本願発明の趣旨に反する。0.4%以上では充分な靭性が得られず、抗折力が実用範囲以下に低下する。Co及び/又はNiは2〜30%の範囲とする。2%未満では充分な靭性が得られない。30%を超えると超硬合金の本質的な性質の一つである硬さの低下が著しく、一部の用途を除いて実用的でない。
【0008】
本願発明の超硬合金のミクロ組織は、金属相とWC相の2相が基本であるが、製造条件によりその他の相が出現する場合がある。しかもその出現相は一つの場合も複数の場合も条件により観察される。出現相はCrやTaやVのうちの一つ又は二つ以上の金属とCを主体とするもので、その他、時によりCoやWをその構成要素とする。該出現相は製造条件により構成元素も組成比も種々変化するものなので厳密に化学組成を規定するものではない。本発明者らが鋭意検討をしたところ、該出現相がある量以上に増加すると靭性が著しく低下する。従って、本願発明のもうひとつの特徴は、Taの量を規定することで該出現相の量に制限を与え、結果として靭性のあるWCの平均粒度が0.6μm以下好ましくは0.4μm以下の超微粒合金を得るところにある。以下、本願発明を実施例によって詳細に説明する。
【0009】
【実施例】
原料粉末として、平均粒径0.6μmのWC粉末、同約1μmのCo、VC、Cr、TaC各原料粉末を表1に示される最終組成が得られるように配合し、(VC、Cr3C2、TaCはそれぞれV、Cr、Ta量に換算して示す)成形バインダーを含んだアルコール中アトライターで12時間混合した後、スプレードライで造粒乾燥した。
【0010】
【表1】

Figure 0003962818
【0011】
得られた造粒粉末を100MPaの圧力でプレス成形して圧粉体とし、この圧粉体を10Paの真空雰囲気中で焼結し、焼結体を得た。次に、これらの各焼結体を研削して4mm×8mm×24mmのJIS抗折試験片を作成し、スパン20mmで3点曲げによる抗折力を測定するとともに、ロックウェルAスケール硬さ(HRA)も測定し、更に、走査型電子顕微鏡(SEM)で組織観察してWCの平均粒径を求めた。また、抗折力測定後の破面をX線マイクロアナライザー(XMA)で元素マッピングを行い出現相の有無を調査した。これらの結果をまとめて表1に示す。焼結においては検討結果から最適と思われる温度を選定した。出現相は焼結後の冷却速度が速いとその量が減じるので、一部冷却過程で窒素ガスによる急怜を実施した。
【0012】
表1より、VとCrとTaの複合添加はそれぞれの量を規制することで、その相乗効果が顕著に現れることが実施例から分かる。比較例1は、Ta添加量が0であるため3種混合の相乗効果が無く、抗折力が3000MPa以下と低い値を示す。靭性を落とす性質が顕著な出現相が内在するためと推測される。本発明例2〜5は、WCの平均粒径は0.6μm以下で、且つ、抗折力3000MPa以上を保って高靭性の合金となっている。比較例6は、Ta量が0.4%を超えたため出現相の量が増加し、抗折力が3000MPaを下回っている。
【0013】
比較例7は、V添加量が0のためWCの平均粒径が0.65μmと粗大化し、粒抑制効果が希薄である。本発明例8〜10は、V量が本発明の範囲内、すなわち0.1〜2.0%の範囲内にあるため、粒成長と靭性の低下の双方を抑制し、超微粒で高靭性の合金となっている。比較例11は、Vが過多のため抗折力が3000MPa以下と靭性の急激な低下が認められる。比較例12は、Crの添加量が0のため粒成長抑制効果が希薄なものとなっている。比較例14は、Cr量が過多で粒成長抑制効果は有るものの抗折力が3000MPa以下で低靭性なものとなっている。比較例15は、Coが過少で充分な靭性が得られていない。比較例18は、Coが過多で剛性不足となり、充分な抗折強度が得られていない。その他の本発明例は、WCの平均粒度が0.6μm、最小で0.36μmを達成し、また抗折力は3000MPa以上を維持している。
【0014】
【発明の効果】
以上述べたことから、本願発明の超硬合金はWCの粒径が極めて小さく、且つ、高い靭性を有するもので、各種切削工具、せん断工具、小径エンドミル、プリント基板用ドリルなどに用いた場合に優れた性能を発揮する。[0001]
[Technical field belonging to the invention]
The present invention relates to a cemented carbide, and particularly to a so-called ultrafine cemented carbide having tungsten carbide particles having an average particle size of 0.6 μm or less.
[0002]
[Prior art]
Ultrafine cemented carbide containing WC particles having an average particle size of 1 μm or less has high toughness as well as hardness, and is therefore widely used in end mills, printed circuit board drills, various shearing blades, and the like. In recent years, with the trend of microfabrication, there is an increasing demand for an ultra-fine alloy whose average particle size is increasingly smaller. Therefore, conventionally known metals such as V, Ta, Cr or compounds of these metals (carbides, nitrides, carbonitrides, etc.) have been used independently as grain growth inhibitors for WC. Two or more kinds have been added aiming at an average particle size of 0.6 μm or less. For example, Japanese Examined Patent Publication No. Sho 62-56224 (Patent No. 15399991) discloses a device in which two kinds of V and Cr are added and the toughness is not deteriorated so that the third phase does not appear in the alloy. Yes. In addition, in Patent No. 3008532, the bending strength is improved by adding V and Cr in combination and allowing the composite carbide containing V and W to exist in the grain boundary of the metal bonded phase and WC as the third phase. Is disclosed. Patent No. 3010859 is also a patent for composite addition of V and Cr, but Cr and V composite carbide can be more accurately described without precipitating Cr carbide or (W, V) C (Cr, V ) only 2 C is dispersed in the matrix, it is disclosed that improved both hardness and toughness.
[0003]
Further, regarding the three types of composite addition, Japanese Patent Publication No. 62-56493 (Patent No. 1467291) discloses the addition of three types of V, Cr, and Mo. In Japanese Examined Patent Publication No. 62-56494 (Patent No. 1487479), three kinds of V, Cr, and 0.5 to 8.0 wt% TaC or (Ta, Nb) C are added to form a finer carbide. It is disclosed that an alloy is obtained. In this case, if the precipitation phase of the solid solution carbide phase mainly composed of TaC or (Ta, Nb) C is not more than a certain amount, it is said that the toughness is not lowered. Japanese Patent Publication No. 03-46538 also discloses three types of addition of V, Cr, and 0.4 to 0.5% TaNbC. Japanese Patent No. 3206375 also discloses an ultrafine alloy having a WC grain size of 0.7 to 1.0 μm by the combined addition of V, Cr and 0.05 to 2.5% TaC.
[0004]
[Problems to be solved by the invention]
Since the WC particles cause grain growth during sintering, the particle size of the WC particles in the alloy is larger than that before sintering. Therefore, research on a method for suppressing grain growth of WC by adding a grain growth inhibitor has been advanced, and it has been found that V is the most effective and Cr, Ta, and Mo are also effective. If the average grain size is 0.6 μm or less, and hopefully 0.5 μm or less, a large amount of grain growth inhibitor, especially V, may be added. . For this reason, attempts have been made to reduce the amount of addition of V and compensate for the resulting decrease in grain growth suppression effect with Cr or Ta, that is, combined addition of grain growth inhibitor. However, the inventors have intensively studied including the above prior art, and in the combination of V and Cr, a third phase different from the binder phase and the WC phase precipitates during cooling after sintering, which increases the toughness. It became clear to reduce. Therefore, if the addition amount is reduced to such an extent that the third phase does not precipitate, the effect of suppressing grain growth becomes dilute. The combination of V and Ta makes the appearance of the third phase easier, and the toughness is drastically reduced. Therefore, to obtain a tough cemented carbide having an average particle size of 0.6 μm or less and preferably 0.5 μm, it is necessary to rely on the addition of three types of V, Cr, and Ta. However, as a result of further testing of the above prior art, it has been found that the addition of Ta, like the combination of V and Ta, is a major obstacle to the reduction in toughness.
[0005]
[Means for Solving the Problems]
As a result of various examinations from the viewpoint of why the addition of three kinds of V, Cr, and Ta can evaluate the effect of suppressing grain growth, but the remarkable decrease in toughness occurs, the present inventors clearly show the binder phase and the WC phase. It was observed that different different phases and objects spread throughout the alloy. This separate phase and obscured material (hereinafter referred to as the appearance phase) increases with the amount of Ta added, with the same amount of Ta, the lower the carbon alloy, the lower the cooling rate from the end of sintering to the liquid phase disappearance temperature. It was found that it decreased and disappeared in some cases. In addition, it has been clarified that the toughness, which is evaluated by the bending strength value, rapidly decreases as the amount of the appearance phase increases. Therefore, a rigorous investigation was conducted on the appropriate amount of Ta (in the case of Ta compound, Ta), and when it exceeds 0.4%, the appearance phase becomes excessive, and the V addition amount is in the range of 0.1 to 2.0. It was revealed that sufficient toughness could not be maintained. Furthermore, how to adjust the amount of alloy carbon in the range where V is 0.1 to 2.0% and Cr is 0.1 to 2.0%, and how to increase the cooling rate within the practical range. The desirable upper limit of the appearance phase is exceeded, and an alloy having a sufficiently tough WC average particle diameter of 0.6 μm or less cannot be obtained.
[0006]
That is, the present invention is one or two of Co and Ni: 2 to 30%, V: 0.1 to 2.0%, Cr: 0.1 to 2.0%, Ta: 0.01 % And less than 0.4%, and the balance: tungsten carbide and inevitable impurities, and the microstructure of the cemented carbide has an average of a binder phase mainly composed of Co and / or Ni, and particle size 0.6μm or less of tungsten carbide phase, Cr, Ta, with a compound phase composed mainly of one or more metal elements selected from V and W, having three phases or three or more phases A cemented carbide, characterized by
[0007]
In the present invention, V (in the case of a V compound, V component) is 0.1 to 2.0%. If it is less than 0.1%, a sufficient grain growth suppressing effect cannot be obtained, which is contrary to the gist of the present invention. If it exceeds 0.2%, sufficient toughness cannot be obtained, and the bending strength is reduced to a practical range or less. Here, the practical range of the bending strength is set to 3000 MPa or more, but it may be used even less than that depending on the application, and is not strictly defined. Cr (in the case of a Cr compound, its Cr content) is 0.1 to 2.0%. If it is less than 0.1%, a sufficient grain growth suppressing effect cannot be obtained, which is contrary to the gist of the present invention. If it exceeds 0.2%, sufficient toughness cannot be obtained, and the bending strength is reduced to a practical range or less. Ta (in the case of a Ta compound, Ta content) is defined as 0.01% or more and less than 0.4%. If it is less than 0.01%, a sufficient synergistic effect for suppressing grain growth of V + Cr + Ta cannot be obtained, which is contrary to the gist of the present invention. If it is 0.4% or more, sufficient toughness cannot be obtained, and the bending strength is lowered to a practical range or less. Co and / or Ni is in the range of 2 to 30%. If it is less than 2%, sufficient toughness cannot be obtained. If it exceeds 30%, the decrease in hardness, which is one of the essential properties of cemented carbide, is remarkable, and it is not practical except for some applications.
[0008]
The microstructure of the cemented carbide of the present invention is basically two phases, a metal phase and a WC phase, but other phases may appear depending on the production conditions. Moreover, the appearance phase is observed depending on the condition in both cases. The appearance phase is mainly composed of one or more metals of Cr, Ta, and V and C, and sometimes Co or W is a constituent element. The appearance phase does not strictly define the chemical composition because the constituent elements and the composition ratio vary depending on the production conditions. When the present inventors diligently examined, when this appearance phase increases more than a certain amount, toughness will fall remarkably. Therefore, another feature of the present invention is that the amount of the appearance phase is limited by defining the amount of Ta. As a result, the average particle size of tough WC is 0.6 μm or less, preferably 0.4 μm or less. There is a place to obtain ultrafine alloy. Hereinafter, the present invention will be described in detail by examples.
[0009]
【Example】
As raw material powders, WC powder having an average particle diameter of 0.6 μm, and Co, VC, Cr 3 C 2 and TaC raw material powders of about 1 μm were blended so as to obtain the final composition shown in Table 1, (Cr3C2 and TaC are shown in terms of V, Cr and Ta, respectively) After mixing for 12 hours in an alcohol-containing attritor containing a molding binder, the mixture was granulated and dried by spray drying.
[0010]
[Table 1]
Figure 0003962818
[0011]
The obtained granulated powder was press-molded at a pressure of 100 MPa to form a green compact, and the green compact was sintered in a vacuum atmosphere of 10 Pa to obtain a sintered body. Next, each of these sintered bodies was ground to prepare a 4 mm × 8 mm × 24 mm JIS bending test piece, and the bending force due to three-point bending was measured at a span of 20 mm, and Rockwell A scale hardness ( HRA) was also measured, and the structure was observed with a scanning electron microscope (SEM) to determine the average particle diameter of WC. Further, elemental mapping of the fracture surface after measuring the bending strength was performed with an X-ray microanalyzer (XMA) to investigate the presence or absence of an appearance phase. These results are summarized in Table 1. In sintering, the optimum temperature was selected from the results of the study. Since the amount of the appearance phase decreases when the cooling rate after sintering is high, a rapid cooling with nitrogen gas was performed in the partial cooling process.
[0012]
From Table 1, it can be seen from the Examples that the combined addition of V, Cr and Ta regulates the respective amounts, and the synergistic effect appears remarkably. In Comparative Example 1, since the Ta addition amount is 0, there is no synergistic effect of mixing three kinds, and the bending strength is as low as 3000 MPa or less. This is presumed to be due to the existence of a remarkable appearance phase with a characteristic of reducing toughness. In Invention Examples 2 to 5, the average particle diameter of WC is 0.6 μm or less, and a bending strength of 3000 MPa or more is maintained to be a high toughness alloy. In Comparative Example 6, since the amount of Ta exceeded 0.4%, the amount of the appearance phase increased, and the bending strength was less than 3000 MPa.
[0013]
In Comparative Example 7, since the V addition amount is 0, the average particle size of WC is coarsened to 0.65 μm, and the particle suppression effect is dilute. In Invention Examples 8 to 10, since the V amount is in the range of the present invention, that is, in the range of 0.1 to 2.0%, both the grain growth and the decrease in toughness are suppressed. It has become an alloy. In Comparative Example 11, since V is excessive, the bending strength is 3000 MPa or less and a rapid decrease in toughness is observed. In Comparative Example 12, since the amount of Cr added is 0, the effect of suppressing grain growth is dilute. In Comparative Example 14, although the Cr amount is excessive and there is a grain growth suppressing effect, the bending strength is 3000 MPa or less and low toughness. In Comparative Example 15, Co is insufficient and sufficient toughness is not obtained. In Comparative Example 18, Co is excessive and rigidity is insufficient, and sufficient bending strength is not obtained. Other examples of the present invention achieve an average particle size of WC of 0.6 μm, a minimum of 0.36 μm, and a bending strength of 3000 MPa or more.
[0014]
【The invention's effect】
From the above, the cemented carbide of the present invention has a very small WC particle size and high toughness, and when used in various cutting tools, shear tools, small diameter end mills, printed circuit board drills, etc. Excellent performance.

Claims (1)

Co及びNiのうちの1種又は2種:2〜30%、V:0.1〜2.0%、Cr:0.1〜2.0%、Ta:0.01%以上0.4%未満、を含有し、残り:炭化タングステン及び不可避不純物、からなる組成を有し、該超硬合金のミクロ組織は、Co及び/又はNiを主体とする結合相と、平均粒径が0.6μm以下の炭化タングステンと、Cr、Ta、V及びWから選ばれた1種又は2種以上の金属元素を主体とする化合物との、3相又は3相以上有することを特徴とする超硬合金。One or two of Co and Ni: 2 to 30%, V: 0.1 to 2.0%, Cr: 0.1 to 2.0%, Ta: 0.01% to 0.4% And the balance: tungsten carbide and inevitable impurities, and the microstructure of the cemented carbide has a binder phase mainly composed of Co and / or Ni and an average particle size of 0.6 μm. carbide, characterized in that it comprises the following tungsten carbide phase, Cr, Ta, with a compound phase composed mainly of one or more metal elements selected from V and W, 3-phase or three-phase or more alloy.
JP2001387614A 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide Expired - Fee Related JP3962818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387614A JP3962818B2 (en) 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387614A JP3962818B2 (en) 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide

Publications (2)

Publication Number Publication Date
JP2003183760A JP2003183760A (en) 2003-07-03
JP3962818B2 true JP3962818B2 (en) 2007-08-22

Family

ID=27596386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387614A Expired - Fee Related JP3962818B2 (en) 2001-12-20 2001-12-20 Tungsten carbide based cemented carbide

Country Status (1)

Country Link
JP (1) JP3962818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741001A (en) * 2014-01-16 2014-04-23 河源普益硬质合金厂有限公司 High-hardness and high-strength PY30T hard alloy and preparation method of high-hardness and high-strength PY30T hard alloy product

Also Published As

Publication number Publication date
JP2003183760A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
KR101411049B1 (en) Cemented carbide with refined structure
TWI479027B (en) Hard alloy
JP5117931B2 (en) Fine-grained cemented carbide
KR100436327B1 (en) Sintered hard alloy
JPS6256224B2 (en)
JP2004059946A (en) Ultra-fine grain hard metal
EP3814542B1 (en) Cemented carbide with alternative binder
JP3962818B2 (en) Tungsten carbide based cemented carbide
JP3954844B2 (en) Cemented carbide and manufacturing method thereof
JP3954845B2 (en) Tungsten carbide-based cemented carbide and method for producing the same
JP3954843B2 (en) Tungsten carbide based cemented carbide
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JP4282298B2 (en) Super fine cemented carbide
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JP3954857B2 (en) Tungsten carbide based cemented carbide
JPS6256943B2 (en)
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPS6256944B2 (en)
JP3341776B2 (en) Super hard alloy
JP3063310B2 (en) Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness
JP3008532B2 (en) High hardness, high toughness cemented carbide
RU2771728C1 (en) Hard alloy with an alternative binder
WO2009116616A1 (en) Tungsten carbide-based sintered object
JP2003306738A (en) Tough cemented carbide
JP2008307622A (en) Cutting tool made of titanium carbonitride base cermet having excellent chipping resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Ref document number: 3962818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees