JP2003176727A - Repair method for high-temperature component and repaired high-temperature component - Google Patents

Repair method for high-temperature component and repaired high-temperature component

Info

Publication number
JP2003176727A
JP2003176727A JP2001375841A JP2001375841A JP2003176727A JP 2003176727 A JP2003176727 A JP 2003176727A JP 2001375841 A JP2001375841 A JP 2001375841A JP 2001375841 A JP2001375841 A JP 2001375841A JP 2003176727 A JP2003176727 A JP 2003176727A
Authority
JP
Japan
Prior art keywords
nickel
groove
brazing material
high temperature
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001375841A
Other languages
Japanese (ja)
Other versions
JP3759028B2 (en
Inventor
Kei Osawa
圭 大澤
Ikuo Okada
郁生 岡田
Koji Takahashi
孝二 高橋
Masahiko Onda
雅彦 恩田
Yasushi Takeuchi
康 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001375841A priority Critical patent/JP3759028B2/en
Publication of JP2003176727A publication Critical patent/JP2003176727A/en
Application granted granted Critical
Publication of JP3759028B2 publication Critical patent/JP3759028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repair method for a high-temperature component which repaires a defect portion and damage penetrating to the rear face side with high accuracy with high quality, and also to provide the repaired high- temperature component. <P>SOLUTION: This method for repairing the high-temperature component used for an energy engine operated at high temperatures has a process for grinding and shaping the defect portion or the damage penetrating to the rear face side from the front face side of the high-temperature component made of a nickel-based alloy or a cobalt-based alloy to form an open tip having a groove shape wherein the front face side is wider than the rear face side; a process for disposing nickel foil such that the nickel foil covers a face exposed in the open tip; and a process for filling a nickel-based alloy brazing material into the open tip from above the nickel foil, heating and melting the brazing material under a heat treatment condition maintaining the heated state for 2-24 hours at a temperature of 1,080-1,270°C, and heating and melting at least one part of a base material and the nickel foil to integrate the base material and the nickel foil with the nickel-based alloy brazing material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン、ス
チームタービン、ジェットエンジン等のエネルギ機関の
高温部品、特にタービン動翼、静翼、燃焼器、分割環に
生じた損傷や欠陥を補修する高温部品の補修方法及び補
修された高温部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature component for repairing a high temperature component of an energy engine such as a gas turbine, a steam turbine, a jet engine, etc., particularly a turbine rotor blade, a stator blade, a combustor, and a split ring. The present invention relates to a repair method for parts and a repaired high temperature part.

【0002】[0002]

【従来の技術】ニッケル基超合金およびコバルト基超合
金は、高温環境下におかれるタービン機関の動翼、静
翼、燃焼器、分割環、ノズル等の各種高温部品に用いら
れている。これらの高温部品は高温ガスと直接接触して
過酷な熱サイクルとエロージョン腐食を受けて著しい損
傷を生じる。このため比較的短期間に部品が劣化してし
まい、設計仕様通りの本来の性能が出力されなくなるの
で、頻繁に交換又は補修がなされている。
2. Description of the Related Art Nickel-based superalloys and cobalt-based superalloys are used in various high-temperature components such as rotor blades, stationary blades, combustors, split rings, and nozzles of turbine engines that are exposed to high-temperature environments. These hot parts come into direct contact with hot gases and undergo severe thermal cycling and erosion corrosion resulting in significant damage. For this reason, the parts deteriorate in a relatively short period of time, and the original performance as designed is not output. Therefore, replacement or repair is frequently performed.

【0003】これらのニッケル基超合金およびコバルト
基超合金は高価な材料であるので、受けた損傷が致命的
である場合を除いて部品を交換しないで、その損傷を受
けた部位のみをろう付け補修して再度使用に供し、寿命
延長を図っている。
Since these nickel-base superalloys and cobalt-base superalloys are expensive materials, components are not replaced unless the damage received is fatal, and only the damaged part is brazed. It is repaired and used again to extend the service life.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高温部
品に発生した割れなどの損傷が肉厚を貫通して部品の裏
面側で約0.5mm以上に開口している場合は、ろう付
け材の融液が開口から漏れ出て部品の裏面側にたれ込ん
でしまうために、補修部の強度を保証できる確実なろう
付け施工をすることができない。また、タービン動翼を
空冷するための冷却通路周壁の酸化、腐食、エロージョ
ンによる減肉部を補修する場合にも同様の問題を生じ
る。さらに、運転稼働中に発生した損傷のみならず高温
部品の製造時に発生する貫通欠陥を補修する場合にも同
様の問題を生じる。
However, when the damage such as cracks generated in the high temperature component penetrates through the wall thickness and opens at about 0.5 mm or more on the back surface side of the component, the brazing material is melted. Since the liquid leaks from the opening and spills on the back side of the component, it is not possible to carry out a reliable brazing work that can guarantee the strength of the repaired portion. The same problem occurs when repairing a thinned portion due to oxidation, corrosion and erosion of the peripheral wall of the cooling passage for air-cooling the turbine rotor blade. Further, the same problem occurs when repairing not only the damage that occurs during operation but also the penetration defect that occurs during the manufacture of the high temperature component.

【0005】本発明は上記の課題を解決するためになさ
れたものであり、裏面側に貫通する損傷および欠陥部位
を高精度かつ高品質に補修することができる高温部品の
補修方法及び補修された高温部品を提供することを目的
とする。
The present invention has been made in order to solve the above-mentioned problems, and a method and a method for repairing a high temperature component capable of repairing a damage and a defective portion penetrating to the back side with high precision and high quality. The purpose is to provide high temperature parts.

【0006】[0006]

【課題を解決するための手段】本発明に係る高温部品の
補修方法は、高温で運転されるエネルギ機関に用いられ
る高温部品を補修するための方法であって、ニッケル基
合金またはコバルト基合金からなる高温部品の表面側か
ら裏面側に貫通する損傷または欠陥部位を研削整形し、
表面側が裏面側よりも幅広となる溝形状の開先を形成す
る工程と、前記開先に露出する面を覆うようにニッケル
箔を配置する工程と、前記ニッケル箔の上から前記開先
内にニッケル基合金ろう付け材を充填し、温度1080
〜1270℃に2〜24時間保持する熱処理条件下で前
記ろう付け材を加熱溶融させるとともに、前記ニッケル
箔および母材の少なくとも一部を加熱溶融させて前記ニ
ッケル基合金ろう付け材と一体化させる工程と、を具備
することを特徴とする。
A method for repairing a high temperature component according to the present invention is a method for repairing a high temperature component used in an energy engine operated at a high temperature, which is a nickel base alloy or a cobalt base alloy. Grind and shape the damaged or defective part that penetrates from the front side to the back side of the high temperature component
A step of forming a groove-shaped groove in which the front surface side is wider than the back surface side, a step of arranging a nickel foil so as to cover a surface exposed to the groove, and a step from above the nickel foil into the groove. Nickel-based alloy brazing material is filled and temperature is 1080
The brazing material is heated and melted under the heat treatment condition of holding at ˜1270 ° C. for 2 to 24 hours, and at least a part of the nickel foil and the base material is heated and melted to be integrated with the nickel-base alloy brazing material. And a process.

【0007】本発明に係る補修された高温部品は、高温
で運転されるエネルギ機関に用いられる補修された高温
部品であって、ニッケル基合金またはコバルト基合金か
らなる高温部品の表面側から裏面側に貫通する損傷また
は欠陥部位を研削整形し、表面側が裏面側よりも幅広と
なる溝形状の開先を形成し、該開先に露出する面を覆う
ようにニッケル箔を配置し、該ニッケル箔の上から開先
内にニッケル基合金ろう付け材を充填し、温度1080
〜1270℃に2〜24時間保持する熱処理条件下で前
記ろう付け材を加熱溶融させるとともに、前記ニッケル
箔および母材の少なくとも一部を加熱溶融させて前記ニ
ッケル基合金ろう付け材の融液と拡散または希釈される
ことにより一体化された合金化補修部位を具備すること
を特徴とする。
The repaired high temperature component according to the present invention is a repaired high temperature component used in an energy engine operated at a high temperature, the front surface side to the back surface side of the high temperature component made of a nickel base alloy or a cobalt base alloy. By grinding and shaping a damaged or defective portion penetrating the groove, a groove-shaped groove whose front side is wider than the rear side is formed, and a nickel foil is arranged so as to cover the surface exposed to the groove. From above, fill the groove with nickel-base alloy brazing material and
The brazing material is heated and melted under heat treatment conditions of holding at ˜1270 ° C. for 2 to 24 hours, and at least a part of the nickel foil and the base material is heated and melted to form a melt of the nickel-base alloy brazing material. It is characterized by having an alloyed repair site integrated by being diffused or diluted.

【0008】本発明の高温部品の補修方法はタービン機
関の動翼、静翼、燃焼器、分割環等のいずれにも好適に
用いることができ、補修された高温部品として動翼、静
翼、燃焼器、分割環がそれぞれ提供される。
The method for repairing high-temperature parts of the present invention can be preferably used for any of the moving blades, stationary blades, combustors, split rings, etc. of turbine engines. The repaired high-temperature parts include moving blades, stationary blades, A combustor and a split ring are provided respectively.

【0009】この場合に、ニッケル箔の厚みを5〜10
0μmとすることが好ましく、10μm程度とすること
が最も好ましい。箔の厚みが5μmを下回ると、箔が破
れやすくなり通常の取り扱いができなくなる。一方、箔
の厚みが100μmを上回ると、開先の形状に沿わせて
変形し難くなり作業者が手指で箔を曲げることができな
くなるからである。
In this case, the thickness of the nickel foil should be 5-10.
The thickness is preferably 0 μm, and most preferably about 10 μm. If the thickness of the foil is less than 5 μm, the foil is easily broken and cannot be handled normally. On the other hand, when the thickness of the foil exceeds 100 μm, it is difficult for the foil to be deformed along the shape of the groove, and the operator cannot bend the foil with fingers.

【0010】開先の裏面側の溝幅は1〜10mmとする
ことが好ましい。裏面側の溝幅が1mmを下回ると、開
先露出面を裏面側まで覆うようにニッケル箔を装着する
ことが困難になるとともに、ろう付け材の融液が裏面側
まで十分に供給されなくなるからである。一方、裏面側
の溝幅が10mmを上回ると、ニッケル箔が溶融して強
度を失ったときにろう付け材の融液が開先の裏面側に漏
れ出てしまい、溶け込み不良や形状不良を生じるからで
ある。
The groove width on the back surface side of the groove is preferably 1 to 10 mm. If the groove width on the back surface side is less than 1 mm, it will be difficult to mount the nickel foil so as to cover the exposed groove surface to the back surface side, and the melt of the brazing material will not be sufficiently supplied to the back surface side. Is. On the other hand, if the groove width on the back surface side exceeds 10 mm, when the nickel foil melts and loses its strength, the melt of the brazing material leaks to the back surface side of the groove, resulting in poor melting and poor shape. Because.

【0011】損傷部位が高温部品を空冷するための冷却
孔の周壁である場合は、該冷却孔の周壁を研削整形し、
表面側が裏面側よりも幅広となる溝形状の開先を形成
し、開先の露出面を覆うようにニッケル箔を配置し、該
ニッケル箔の上から開先内にニッケル基合金ろう付け材
を押し込むことにより充填し、温度1080〜1270
℃に2〜24時間保持する熱処理条件下でろう付け材を
加熱溶融させるとともに、ニッケル箔および母材の少な
くとも一部を溶融させてニッケル基合金ろう付け材と一
体化させた後に、冷却通路の周壁が損傷を受ける前の大
きさと形状の冷却孔を穿孔加工する。これにより冷却孔
は設計仕様通りの大きさと形状に回復され、割れ等の危
険度の高い損傷を生じる起点になるおそれがなくなり、
高温部品の寿命がさらに延長される。
When the damaged portion is the peripheral wall of the cooling hole for air-cooling the high temperature component, the peripheral wall of the cooling hole is ground and shaped,
Form a groove-shaped groove whose front side is wider than the back side, arrange a nickel foil so as to cover the exposed surface of the groove, and place a nickel-based alloy brazing material in the groove from above the nickel foil. Fill by pushing in, temperature 1080-1270
After heating and melting the brazing material under heat treatment conditions of holding at 2 ° C for 2 to 24 hours, at least a part of the nickel foil and the base material is melted and integrated with the nickel-base alloy brazing material, Drill a cooling hole of the size and shape before the peripheral wall is damaged. As a result, the cooling holes are restored to the size and shape according to the design specifications, and there is no risk of becoming a starting point for highly dangerous damage such as cracks.
The service life of hot parts is further extended.

【0012】ニッケル基合金ろう付け材は、Ni,C
r,Co,W,Ti,Al,Bを含有する融点1080
〜1270℃の低融点合金粉末とNi,Cr,Co,W
を含有する融点1200℃以上の高融点合金粉末とを
3:7〜7:3の割合で混合したものからなることが好
ましい。母材となるニッケル基合金は例えばインコネル
738LC(Cr15.70〜16.30%,Co8.00〜9.00%,
Ti3.20〜3.70%,Al3.20〜3.70%,W2.40〜2.80
%,Mo1.50〜2.00%,Ta1.50〜2.00%,C0.09〜0.
13%,B0.01%以下,P0.01%未満,S0.01%未満)で
あり、それに対する低融点Ni基合金粉末の組成の一例
としてはNi−8〜12Cr−16〜20Co−2〜3.5Mo−
1.5〜2.5W−5〜9Ta−7.5〜10Ti−8.5〜10.5Al−
1〜3Nb−0.5〜3.5B−0.35Zrを、高融点Ni基合金
粉末の組成の一例としてはNi−16〜18Cr−〜5Co
−〜3.5W−〜1.0Ta−〜1.0Ti−〜1.0Al−0.15〜
0.3C−0.01〜0.03B−〜0.1Zrをそれぞれあげること
ができる。なお、低融点Ni合金粉末の配合割合が30
重量%未満の場合は焼結が十分に進まなくなる。一方、
低融点Ni合金粉末の配合割合が70重量%を越えると
液相がですぎて十分な強度が得られなくなる。
Nickel-based alloy brazing materials are Ni, C
Melting point 1080 containing r, Co, W, Ti, Al, B
〜1270 ℃ low melting point alloy powder and Ni, Cr, Co, W
It is preferable that the high melting point alloy powder having a melting point of 1200 ° C. or higher containing ## STR3 ## is mixed at a ratio of 3: 7 to 7: 3. The nickel-based alloy as the base material is, for example, Inconel 738LC (Cr 15.70 to 16.30%, Co 8.00 to 9.00%,
Ti3.20-3.70%, Al3.20-3.70%, W2.40-2.80
%, Mo1.50-2.00%, Ta1.50-2.00%, C0.09-0.
13%, B0.01% or less, P0.01% or less, S0.01% or less), and as an example of the composition of the low-melting Ni-based alloy powder, Ni-8-12Cr-16-20Co-2- 3.5Mo-
1.5-2.5W-5-9Ta-7.5-10Ti-8.5-10.5Al-
1 to 3 Nb-0.5 to 3.5B-0.35Zr, and as an example of the composition of the high melting point Ni-based alloy powder, Ni-16 to 18Cr- to 5Co.
-~ 3.5W- ~ 1.0Ta- ~ 1.0Ti- ~ 1.0Al-0.15 ~
0.3C-0.01-0.03B--0.1Zr can be mentioned, respectively. The mixing ratio of the low melting point Ni alloy powder was 30.
If it is less than wt%, the sintering will not proceed sufficiently. on the other hand,
If the blending ratio of the low melting point Ni alloy powder exceeds 70% by weight, the liquid phase becomes too large and sufficient strength cannot be obtained.

【0013】Niに添加する各成分の効果は次のとおり
である。
The effects of each component added to Ni are as follows.

【0014】まず、Crは、合金に耐酸化性及び耐食性
を付与する合金成分である。Coは、γ’相(Ni
l)を形成することで高温強度改善に有効な合金成分で
あるAl及びTiに対して、高温におけるそれらの固溶
限度を大きくし、結果として高温強度向上に寄与する。
Wは、固溶強化の効果があり、高温強度の向上に寄与す
る。Taは、固溶強化とγ’相による析出強化により高
温強度の向上に寄与する。
First, Cr is an alloy component that imparts oxidation resistance and corrosion resistance to the alloy. Co is a γ'phase (Ni 3 A
The formation of l) increases the solid solution limit of Al and Ti, which are alloy components effective for improving high temperature strength, at high temperature, and consequently contributes to improvement of high temperature strength.
W has the effect of solid solution strengthening and contributes to the improvement of high temperature strength. Ta contributes to the improvement of high temperature strength by solid solution strengthening and precipitation strengthening by the γ'phase.

【0015】Ti及びAlはγ’相による析出強化によ
り高温強度の向上に寄与する。Cは、炭化物を形成し、
主として結晶粒界を強化して高温強度の向上に寄与す
る。B及びZrは、粒界の結合力を増加させ高温強度を
向上する。
Ti and Al contribute to the improvement of high temperature strength by precipitation strengthening by the γ'phase. C forms a carbide,
It mainly strengthens the grain boundaries and contributes to the improvement of high temperature strength. B and Zr increase the bond strength of the grain boundary and improve the high temperature strength.

【0016】なお、各合金成分の添加効果は上記高融点
を有するNi合金粉末と同じであり、高融点を有するN
i合金粉末に含まれていないMoはWと同じく、固溶強
化の効果があり、高温強度の向上に寄与する。また、N
bは、Tiと同様、Alとともにγ’相を形成して高温
強度の向上に寄与する。更に、Co,Mo,Ta,T
i,Al,Bは、高融点を有するNi合金粉末より多く
添加しており、これは合金粉末の融点を低下させること
が目的であり、特にBはその効果が大きい。
The effect of addition of each alloy component is the same as that of the Ni alloy powder having a high melting point, that is, N having a high melting point.
Mo, which is not contained in the i alloy powder, has the effect of solid solution strengthening like W, and contributes to the improvement of high temperature strength. Also, N
Similar to Ti, b forms a γ ′ phase together with Al and contributes to the improvement of high temperature strength. Furthermore, Co, Mo, Ta, T
i, Al, and B are added in a larger amount than the Ni alloy powder having a high melting point, and this is for the purpose of lowering the melting point of the alloy powder, and B is particularly effective.

【0017】各合金粉末における合金成分の組成範囲
は、融点を調整するとともに、所定の配合比で配合し反
応させた後、各合金成分の添加効果が発揮するよう、σ
相等有害な脆化相が生じないよう配慮し決定した。
The composition range of the alloying components in each alloy powder is adjusted so that the addition effect of each alloying component is exerted after the melting point is adjusted and after mixing and reacting at a predetermined mixing ratio.
It was decided in consideration that no harmful embrittlement phases would occur.

【0018】加熱前は、高融点を有するNi合金粉末
(H)間に低融点を有するNi合金粉末(L)が配置さ
れているが、加熱によりNi合金粉末(L)が溶融し、
溶融した粉末がNi合金粉末(H)間の大部分の隙間を
毛細管現象により埋めることになる。
Before heating, the Ni alloy powder (L) having a low melting point is disposed between the Ni alloy powder (H) having a high melting point, but the Ni alloy powder (L) is melted by heating,
The molten powder fills most of the gaps between the Ni alloy powder (H) by the capillary phenomenon.

【0019】加熱は1080〜1270℃の温度で、か
つ2〜24時間保持の条件下で行うことが好ましい。こ
こで、加熱温度が1080℃未満では毛細管現象による
液相が生ずることなく、加熱温度が1270℃を越える
と母材の方が溶けやすい。また、本発明では、上記加熱
処理(焼結)後、更に段階的な加熱処理を行なうことが
好ましい。具体的には、1120℃±10℃で2〜4時
間加熱(前者)し、更に850℃±10℃で16〜24
時間加熱(後者)する。
The heating is preferably carried out at a temperature of 1080 to 1270 ° C. and a condition of holding for 2 to 24 hours. Here, if the heating temperature is lower than 1080 ° C., the liquid phase due to the capillary phenomenon does not occur, and if the heating temperature exceeds 1270 ° C., the base material is more easily melted. Further, in the present invention, it is preferable to further perform stepwise heat treatment after the above heat treatment (sintering). Specifically, it is heated at 1120 ° C. ± 10 ° C. for 2 to 4 hours (the former), and further at 850 ° C. ± 10 ° C. for 16 to 24.
Heat for an hour (latter).

【0020】ここで、前者の加熱は、上記焼結のための
熱処理における冷却過程で析出した母材中のγ’相(N
Al金属間化合物)を固溶させることを目的に実施
するものであり、その温度はγ’相の固溶かつまた初期
融解を発生させないため1120℃とし、処理時間は各
合金成分の拡散を十分進めるために、上記のとおりとし
た。後者の加熱は、γ’相を均一に析出させるために行
うものであり、γ’相の析出状態を均一、微細とするた
めに850℃、また合金組成に見合って析出させるため
に16〜24時間の処理とした。
Here, the former heating is performed by the γ'phase (N) in the base metal precipitated in the cooling process in the heat treatment for sintering.
i 3 Al intermetallic compound), the temperature is set to 1120 ° C. to prevent solid solution of the γ ′ phase and initial melting, and the treatment time is diffusion of each alloy component. In order to proceed sufficiently, The latter heating is performed in order to uniformly precipitate the γ ′ phase, and is 850 ° C. in order to make the precipitation state of the γ ′ phase uniform and fine, and 16 to 24 in order to precipitate in accordance with the alloy composition. It was time processing.

【0021】熱処理後のNi基焼結合金における気孔の
面積率は、〜5%であることが好ましい。これはこの種
焼結法では気孔の発生を避け得ないが、5%を超える場
合、合金の強度及び延性に悪影響をきたすためである。
The area ratio of pores in the Ni-based sintered alloy after heat treatment is preferably ˜5%. This is because generation of pores cannot be avoided by this type of sintering method, but if it exceeds 5%, the strength and ductility of the alloy are adversely affected.

【0022】Ni基焼結合金は、例えばバルク成形、コ
ーティング、局所的肉盛に利用可能である。ここで、バ
ルク成形は、翼材の形に上記Ni基焼結合金の粉を圧を
かけて成形した後、焼結することにより行う。前記コー
ティングは、高温酸化などの減肉部に上記Ni基焼結合
金粉を低圧プラズマ溶射法、高速フレーム溶射法などで
吹き付けてコーティングした後、加熱して焼結するもの
である。前記局所的肉盛は、き裂部分などの補修対象部
に上記Ni基焼結合金粉を肉盛りした後、焼結するもの
である。
The Ni-based sintered alloy can be used for, for example, bulk forming, coating, and local overlaying. Here, the bulk molding is performed by pressing the powder of the Ni-based sintered alloy into the shape of the wing material and then sintering the powder. The coating is performed by spraying the Ni-based sintered alloy powder on a thinned portion such as high temperature oxidation by a low pressure plasma spraying method or a high speed flame spraying method, and then heating and sintering. The local build-up is one in which the Ni-based sintered alloy powder is built up on a repair target portion such as a cracked portion and then sintered.

【0023】[0023]

【発明の実施の形態】以下、添付の図面を参照して本発
明の種々の好ましい実施の形態について説明する。本実
施形態では発電用ガスタービン機関に用いられる各種の
高温部品をろう付け補修する場合を例にとって説明す
る。
Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In the present embodiment, an example will be described in which various types of high temperature parts used in a gas turbine engine for power generation are repaired by brazing.

【0024】図1に示すように、発電用ガスタービン機
関1は、燃料供給管2,4、ノズル3,5、燃焼器内筒
6、燃焼器尾筒7、静翼8および動翼9からなるタービ
ン翼10、分割環11、圧縮機(過給機)12、圧縮空
気導入口13、バイパス弁14を備え、燃料供給管2を
通って複数の予混合ノズル3からメイン燃料が燃焼器内
に勢いよく噴射され、これに圧縮機(過給機)12から
圧縮空気導入口13を通って導入される空気が混合して
燃焼し、その燃焼ガスによりタービン翼10を回転させ
るようになっている。なお、運転開始時にはパイロット
燃料を燃料供給管4に供給してパイロットノズル5から
噴射させて着火する。
As shown in FIG. 1, the gas turbine engine 1 for power generation includes a fuel supply pipe 2, 4, nozzles 3, 5, a combustor inner cylinder 6, a combustor tail cylinder 7, a stationary blade 8 and a moving blade 9. The turbine blade 10, the split ring 11, the compressor (supercharger) 12, the compressed air introduction port 13, and the bypass valve 14 are provided, and the main fuel flows from the plurality of premixing nozzles 3 through the fuel supply pipe 2 into the combustor. The air that is injected into the compressor (supercharger) 12 through the compressed air introduction port 13 is mixed and burned, and the combustion gas rotates the turbine blade 10. There is. At the start of operation, pilot fuel is supplied to the fuel supply pipe 4 and injected from the pilot nozzle 5 for ignition.

【0025】燃焼器は、ノズル3,5の噴射孔が開口す
る内筒6と、これに続く尾筒7とを具備するものであ
る。燃焼器尾筒7の後端部はタービン翼10に燃焼ガス
を吹き付けるように開口している。また、燃焼器尾筒7
の途中にはバイパス弁14を備えたバイパス管が連通し
ている。燃焼器尾筒7を構成する周壁はニッケル基耐熱
合金からなる。
The combustor comprises an inner cylinder 6 in which the injection holes of the nozzles 3 and 5 are open, and a tail cylinder 7 following the inner cylinder. The rear end of the combustor transition piece 7 is opened so as to blow the combustion gas to the turbine blade 10. Also, the combustor transition piece 7
A bypass pipe provided with a bypass valve 14 is connected in the middle of. The peripheral wall forming the combustor transition piece 7 is made of a nickel-base heat-resistant alloy.

【0026】タービン翼10を構成する静翼8と動翼9
とは交互に繰り返し配置され、静翼8と動翼9と隙間を
通って燃焼ガスが外部へ漏れ出さないように、静翼8と
動翼9との隙間を外側から取り囲むように分割環11が
設けられている。この分割環11を構成する周壁はコバ
ルト基耐熱合金からなる。
A stationary blade 8 and a moving blade 9 which form a turbine blade 10.
Are alternately arranged repeatedly. The split ring 11 surrounds the gap between the stationary blade 8 and the moving blade 9 from the outside so that the combustion gas does not leak to the outside through the gap between the stationary blade 8 and the moving blade 9. Is provided. The peripheral wall forming the split ring 11 is made of a cobalt-base heat-resistant alloy.

【0027】動翼9の翼本体91には図2に示すように
多数の空冷用貫通孔94が形成されている。また、静翼
8にも同様の空冷用貫通孔(図示せず)が多数形成され
ている。
As shown in FIG. 2, a large number of air cooling through holes 94 are formed in the blade body 91 of the moving blade 9. A large number of similar air cooling through holes (not shown) are also formed in the stationary blade 8.

【0028】(実施例1)図2および図3を参照して、
実施例1としてNi基合金(IN738LC)からなる
ガスタービン動翼の貫通割れをろう付け補修する場合に
ついて説明する。
Example 1 With reference to FIGS. 2 and 3,
As Example 1, a case will be described in which a penetration crack in a gas turbine blade made of a Ni-based alloy (IN738LC) is repaired by brazing.

【0029】タービン動翼9は、図2に示すように、円
周方向に延び出す翼本体91と、翼本体91の内周側の
基部に設けられたプラットフォーム92と、プラットフ
ォーム92の内周側に設けられた固定部93とが一体化
した精密鋳造品である。翼本体91は中空構造をなし、
翼本体91を空冷するために、翼本体を表面側から裏面
側に貫通する多数の孔94が翼本体91の長手に沿って
直列に形成されている。
As shown in FIG. 2, the turbine rotor blade 9 includes a blade main body 91 extending in a circumferential direction, a platform 92 provided at a base portion on the inner peripheral side of the blade main body 91, and an inner peripheral side of the platform 92. It is a precision casting product that is integrated with the fixing portion 93 provided in the. The wing body 91 has a hollow structure,
In order to air-cool the blade body 91, a large number of holes 94 penetrating the blade body from the front surface side to the back surface side are formed in series along the length of the blade body 91.

【0030】動翼9は高温高応力の過酷な条件で使用さ
れると、図2に示すように、翼本体91の先端部分にチ
ップシニング亀裂と呼ばれる貫通割れ99を発じやす
く、またプラットフォーム92の端縁部にプラットフォ
ーム亀裂と呼ばれる貫通割れ99を生じやすい。さら
に、空冷用の貫通孔94の周壁は酸化、腐食、エロージ
ョンにより表面側が削り取られて、孔94の径が表面側
で拡大される。安全にガスタービンを運用するために
は、これらの亀裂部、減肉部を補修する必要がある。
When the moving blade 9 is used under severe conditions of high temperature and high stress, as shown in FIG. 2, a through crack 99 called a tip thinning crack is easily generated at the tip portion of the blade body 91, and the platform A through crack 99 called a platform crack is likely to occur at the edge of 92. Further, the surface of the peripheral wall of the through hole 94 for air cooling is scraped off due to oxidation, corrosion and erosion, and the diameter of the hole 94 is enlarged on the surface side. In order to safely operate the gas turbine, it is necessary to repair these cracks and thinned parts.

【0031】次に、図3を用いて動翼のプラットフォー
ムが受けた損傷部位を補修する場合について詳しく説明
する。
Next, the case of repairing a damaged portion received by the moving blade platform will be described in detail with reference to FIG.

【0032】図3の(a)はプラットフォーム92の端
縁部に発生したプラットフォーム亀裂99を拡大して示
す断面図である。図示の如く亀裂99はプラットフォー
ム92の肉厚を貫通して裏面側まで達している。この亀
裂99の部位を砥石等を用いて研削し、図3の(b)に
示すように開先100を形成する。開先100は、表面
側(外周面側)のほうが裏面側(内周面側)よりも幅広
の溝形状に形成され、その裏面側(内周面側)の溝幅は
1〜10mmである。なお、開先の露出面101は、表
面側(外周面側)の溝幅が大きくなりすぎないように適
当な傾斜とする。
FIG. 3A is an enlarged sectional view showing the platform crack 99 generated at the edge of the platform 92. As shown in the figure, the crack 99 penetrates the thickness of the platform 92 and reaches the back surface side. The portion of the crack 99 is ground with a grindstone or the like to form a groove 100 as shown in FIG. The groove 100 is formed in a groove shape in which the front surface side (outer peripheral surface side) is wider than the rear surface side (inner peripheral surface side), and the rear surface side (inner peripheral surface side) has a groove width of 1 to 10 mm. . The exposed surface 101 of the groove is appropriately inclined so that the groove width on the surface side (outer peripheral surface side) does not become too large.

【0033】開先の露出面101を脱脂洗浄した後に、
図3の(c)に示すように、ニッケル箔102を開先露
出面101に沿わせて配置し、ニッケル箔102で露出
面101をすべて覆う。ニッケル箔102の厚みは10
μmであり、作業者が手指を使って容易に曲げることが
できる可撓性と、通常の取り扱いによって破れない強度
とを兼ね備えている。
After degreasing and cleaning the exposed surface 101 of the groove,
As shown in FIG. 3C, the nickel foil 102 is arranged along the groove exposed surface 101, and the nickel foil 102 covers the entire exposed surface 101. The thickness of the nickel foil 102 is 10
It is μm, and has both flexibility that allows an operator to easily bend it with fingers and strength that does not break by normal handling.

【0034】45質量%の低融点ニッケル基合金粉末と
55質量%の高融点ニッケル基合金粉末とを配合したろ
う付け材をニッケル箔102の上に押し込み、図3の
(d)に示すように、ろう付け部103を形成する。こ
の場合に、低融点ニッケル基合金粉末は融点1080〜
1270℃のNi−8〜12Cr−16〜20Co−2〜3.5M
o−1.5〜2.5W−5〜9Ta−7.5〜10Ti−8.5〜10.5A
l−1〜3Nb−0.5〜3.5B−0.35Zrの組成の合金粉末
からなり、高融点ニッケル基合金粉末は融点1200℃
以上のNi−16〜18Cr−〜5Co−〜3.5W−〜1.0T
a−〜1.0Ti−〜1.0Al−0.15〜0.3C−0.01〜0.03
B−〜0.1Zrの組成の合金粉末からなるものである。
A brazing material containing 45% by mass of the low melting point nickel-based alloy powder and 55% by mass of the high melting point nickel-based alloy powder is pressed onto the nickel foil 102, and as shown in FIG. , The brazing part 103 is formed. In this case, the low melting point nickel-base alloy powder has a melting point of 1080 to
Ni-8-12Cr-16-20Co-2-3.5M at 1270 ℃
o-1.5 to 2.5W-5 to 9Ta-7.5 to 10Ti-8.5 to 10.5A
The alloy powder has a composition of 1-1 to 3Nb-0.5 to 3.5B-0.35Zr, and the high melting point nickel-base alloy powder has a melting point of 1200 ° C.
Above Ni-16-18Cr--5Co--3.5W--1.0T
a- ~ 1.0Ti- ~ 1.0Al-0.15 ~ 0.3C-0.01 ~ 0.03
It consists of alloy powder having a composition of B− to 0.1 Zr.

【0035】ろう付け施工後、動翼9を熱処理炉内に装
入し、1080〜1270℃×2〜24時間の条件で熱
処理し、図3の(e)に示すように、合金化補修部位と
してのろう付け部103とニッケル箔102を焼結させ
一体化させ、プラットフォーム92の母材と一体化させ
た。引き続き、強度上昇のため溶体化及び時効,即ち1
120℃×2時間+850℃×24時間の二段階の熱処
理を行った。
After brazing, the rotor blades 9 were placed in a heat treatment furnace and heat treated under the conditions of 1080 to 1270 ° C. for 2 to 24 hours. As shown in FIG. The brazed part 103 and the nickel foil 102 were sintered and integrated, and integrated with the base material of the platform 92. Subsequently, solution strengthening and aging for strength increase, ie, 1
A two-step heat treatment of 120 ° C. × 2 hours + 850 ° C. × 24 hours was performed.

【0036】さらに、ろう付け部103の余盛り部分を
砥石などにより研削し、図3の(f)に示すように、補
修部位の表面を平坦面とした。
Further, the extra portion of the brazing portion 103 was ground with a grindstone or the like, and the surface of the repaired portion was made flat as shown in FIG. 3 (f).

【0037】本実施例1によれば、2種のNi基合金を
混合し、加熱することにより動翼9を補修するため、低
融点粉末と高融点粉末との間で毛細管現象が起こり、強
度が十分な合金化補修部位103を得ることができる。
また、焼結のための加熱後、段階的な熱処理を行なうの
で、母材中にγ’相が均一に析出し、強度がさらに増し
た合金化補修部位103を得ることができた。
According to the first embodiment, since two kinds of Ni-based alloys are mixed and heated to repair the moving blade 9, a capillary phenomenon occurs between the low-melting powder and the high-melting powder, and the strength is increased. It is possible to obtain a sufficient alloying repair portion 103.
In addition, since the stepwise heat treatment is performed after the heating for sintering, the alloying repaired portion 103 in which the γ'phase is uniformly precipitated in the base material and the strength is further increased can be obtained.

【0038】(実施例2)次に、実施例2としてNi基
合金(IN738LC)からなるガスタービン動翼の冷
却孔周壁の酸化、腐食、エロージョンによる損傷部位を
補修する場合について図4を参照しながら説明する。
(Embodiment 2) Next, referring to FIG. 4, as a second embodiment, a case of repairing a damaged portion due to oxidation, corrosion, and erosion of a peripheral wall of a cooling hole of a gas turbine blade made of a Ni-based alloy (IN738LC) will be described. While explaining.

【0039】図4の(a)は翼本体91の冷却孔94に
発生した酸化、腐食、エロージョンによる損傷95を拡
大して示す断面図である。図示の如く損傷95は翼本体
91の表面側の孔径を拡張するように冷却孔94の周壁
が減肉したものである。
FIG. 4A is an enlarged sectional view showing a damage 95 caused by oxidation, corrosion, and erosion generated in the cooling hole 94 of the blade body 91. As shown in the figure, the damage 95 is caused by reducing the peripheral wall of the cooling hole 94 so as to expand the hole diameter on the surface side of the blade body 91.

【0040】この損傷95の部位を砥石等を用いて研削
し、図4の(b)に示すように開先100を形成する。
開先100は、表面側(外周面側)のほうが裏面側(内
周面側)よりも幅広の溝形状に形成され、その裏面側
(内周面側)の溝幅は平均5mmである。なお、開先の
露出面101は、表面側(外周面側)の溝幅が大きくな
りすぎないように適当な傾斜とする。
The damaged portion 95 is ground with a grindstone or the like to form a groove 100 as shown in FIG. 4 (b).
The groove 100 is formed in a groove shape in which the front surface side (outer peripheral surface side) is wider than the rear surface side (inner peripheral surface side), and the groove width on the rear surface side (inner peripheral surface side) is 5 mm on average. The exposed surface 101 of the groove is appropriately inclined so that the groove width on the surface side (outer peripheral surface side) does not become too large.

【0041】開先の露出面101を脱脂洗浄した後に、
図4の(c)に示すように、ニッケル箔102を開先露
出面101に沿わせて配置し、ニッケル箔102で露出
面101をすべて覆う。ニッケル箔102の厚みは10
μmであり、作業者が手指を使って容易に曲げることが
できる可撓性と、通常の取り扱いによって破れない強度
とを兼ね備えている。
After degreasing and cleaning the exposed surface 101 of the groove,
As shown in FIG. 4C, the nickel foil 102 is arranged along the groove exposed surface 101, and the exposed surface 101 is entirely covered with the nickel foil 102. The thickness of the nickel foil 102 is 10
It is μm, and has both flexibility that allows an operator to easily bend it with fingers and strength that does not break by normal handling.

【0042】45質量%の低融点ニッケル基合金粉末と
55質量%の高融点ニッケル基合金粉末とを配合したろ
う付け材をニッケル箔102の上に押し込み、図4の
(d)に示すように、ろう付け部103を形成する。こ
の場合に、低融点ニッケル基合金粉末は融点1080〜
1270℃のNi−8〜12Cr−16〜20Co−2〜3.5M
o−1.5〜2.5W−5〜9Ta−7.5〜10Ti−8.5〜10.5A
l−1〜3Nb−0.5〜3.5B−0.35Zrの組成の合金粉末
からなり、高融点ニッケル基合金粉末は融点1200℃
以上のNi−16〜18Cr−〜5Co−〜3.5W−〜1.0T
a−〜1.0Ti−〜1.0Al−0.15〜0.3C−0.01〜0.03
B−〜0.1Zrの組成の合金粉末からなるものである。
A brazing material containing 45% by mass of the low melting point nickel-based alloy powder and 55% by mass of the high melting point nickel-based alloy powder is pressed onto the nickel foil 102, and as shown in FIG. , The brazing part 103 is formed. In this case, the low melting point nickel-base alloy powder has a melting point of 1080 to
Ni-8-12Cr-16-20Co-2-3.5M at 1270 ℃
o-1.5 to 2.5W-5 to 9Ta-7.5 to 10Ti-8.5 to 10.5A
The alloy powder has a composition of 1-1 to 3Nb-0.5 to 3.5B-0.35Zr, and the high melting point nickel-base alloy powder has a melting point of 1200 ° C.
Above Ni-16-18Cr--5Co--3.5W--1.0T
a- ~ 1.0Ti- ~ 1.0Al-0.15 ~ 0.3C-0.01 ~ 0.03
It consists of alloy powder having a composition of B− to 0.1 Zr.

【0043】ろう付け施工後、動翼9を熱処理炉内に装
入し、1080〜1270℃×2〜24時間保持の条件
で熱処理し、図4の(e)に示すように、合金化補修部
位としてのろう付け部103とニッケル箔102を焼結
させ、翼本体91の母材と一体化させた。引き続き、強
度上昇のため溶体化及び時効,即ち1120℃×2時間
+850℃×24時間の二段階の熱処理を行った。
After brazing, the rotor blades 9 were placed in a heat treatment furnace and heat treated under the condition of 1,080 to 1,270 ° C. for 2 to 24 hours, and alloying repair was performed as shown in FIG. The brazing part 103 as a part and the nickel foil 102 were sintered and integrated with the base material of the blade body 91. Subsequently, in order to increase the strength, solution treatment and aging, that is, two-step heat treatment of 1120 ° C. × 2 hours + 850 ° C. × 24 hours were performed.

【0044】さらに、ろう付け部103の余盛り部分を
砥石などにより研削し、図4の(f)に示すように、補
修部位の表面を平坦面とした。次いで、放電加工を用い
てろう付け部103に穿孔し、図4の(g)に示すよう
に、所定サイズおよび形状の冷却孔94を形成した。こ
れにより損傷を受ける前の設計通りのサイズと形状の冷
却孔94が動翼9に再生された。
Further, the extra portion of the brazed portion 103 was ground with a grindstone or the like, and the surface of the repaired portion was made flat as shown in FIG. 4 (f). Then, the brazing portion 103 was perforated by using electric discharge machining to form a cooling hole 94 having a predetermined size and shape as shown in FIG. As a result, the cooling holes 94 having the designed size and shape before being damaged were reproduced in the moving blade 9.

【0045】本実施例2によれば、2種のNi基合金を
混合し、加熱することにより動翼9を補修するため、低
融点粉末と高融点粉末との間で毛細管現象が起こり、強
度が十分な合金化補修部位103を得ることができる。
また、焼結のための加熱後、段階的な熱処理を行なうの
で、母材中にγ’相が均一に析出し、強度がさらに増し
た合金化補修部位103を得ることができた。
According to the second embodiment, since two kinds of Ni-based alloys are mixed and heated to repair the rotor blade 9, a capillary phenomenon occurs between the low melting point powder and the high melting point powder, and the strength is increased. It is possible to obtain a sufficient alloying repair portion 103.
In addition, since the stepwise heat treatment is performed after the heating for sintering, the alloying repaired portion 103 in which the γ'phase is uniformly precipitated in the base material and the strength is further increased can be obtained.

【0046】[0046]

【発明の効果】以上詳述したように本発明によれば、部
品の裏面側にろう付け材の融液がたれ込むことなく、裏
面側開口量が0.5mm以上の貫通損傷や貫通欠陥を確
実にろう付け補修することができ、保証強度の要求レベ
ルを満たす高品質の補修部位が得られる。このため、従
来は新品に交換して廃棄していたような損傷部品を補修
して再度使用に供することができるので、メンテナンス
コストを大幅に低減することができる。
As described above in detail, according to the present invention, a penetration damage or a penetration defect having a back side opening amount of 0.5 mm or more is prevented without the melt of the brazing material dripping on the back side of the component. The brazing can be surely repaired, and a high-quality repaired part satisfying the required level of guaranteed strength can be obtained. For this reason, it is possible to repair the damaged parts that were conventionally replaced with new ones and discarded, and to reuse them, so that the maintenance cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガスタービンの概要を示す要部断面図。FIG. 1 is a cross-sectional view of a main part showing an outline of a gas turbine.

【図2】損傷したガスタービン動翼の外観を示す斜視
図。
FIG. 2 is a perspective view showing the appearance of a damaged gas turbine rotor blade.

【図3】(a)〜(f)は本発明の実施形態に係る高温
部品の補修方法を示す工程図。
3A to 3F are process diagrams showing a method for repairing a high temperature component according to an embodiment of the present invention.

【図4】(a)〜(g)は本発明の他の実施形態に係る
高温部品の補修方法を示す工程図。
4A to 4G are process drawings showing a method for repairing a high temperature component according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2,4…燃料供給管、 3,5…ノズル、 6…燃焼器内筒、 7…燃焼器尾筒、 8…静翼、 9…動翼、 10…タービン翼、 11…分割環、 12…圧縮機(過給機)、 13…圧縮空気導入口、 14…バイパス弁、 91…翼本体、 92…プラットフォーム、 93…固定部、 94…貫通孔(冷却孔)、 99…貫通欠陥(亀裂、割れ)、 100…開先、 101…開先露出面、 102…Ni箔、 103…Ni合金部(合金化補修部位)。 2, 4 ... Fuel supply pipe, 3, 5 ... Nozzle, 6 ... Combustor inner cylinder, 7 ... Combustor transition piece, 8 ... Shizuka, 9 ... moving blades, 10 ... turbine blades, 11 ... split ring, 12 ... Compressor (supercharger), 13 ... Compressed air inlet, 14 ... Bypass valve, 91 ... Wing body, 92 ... Platform, 93: fixed part, 94 ... Through hole (cooling hole), 99 ... Penetration defects (cracks, cracks), 100 ... groove, 101 ... exposed surface of groove 102 ... Ni foil, 103 ... Ni alloy part (alloying repair part).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/10 C22F 1/10 K F01D 5/28 F01D 5/28 // C22F 1/00 614 C22F 1/00 614 651 651B 691 691B 691C (72)発明者 高橋 孝二 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 恩田 雅彦 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 竹内 康 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 Fターム(参考) 3G002 EA06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/10 C22F 1/10 K F01D 5/28 F01D 5/28 // C22F 1/00 614 C22F 1 / 00 614 651 651B 691 691B 691C (72) Inventor Koji Takahashi 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Takasago Plant (72) Masahiko Onda 2-1-1, Niihama, Arai-cho, Takasago, Hyogo Prefecture No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Plant (72) Inventor Yasushi Takeuchi 2-1-1, Niihama, Arai-cho, Takasago City, Hyogo Prefecture Mitsubishi Heavy Industries Ltd. Takasago Plant F-term (reference) 3G002 EA06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高温で運転されるエネルギ機関に用いら
れる高温部品を補修するための方法であって、 ニッケル基合金またはコバルト基合金からなる高温部品
の表面側から裏面側に貫通する損傷または欠陥部位を研
削整形し、表面側が裏面側よりも幅広となる溝形状の開
先を形成する工程と、 前記開先に露出する面を覆うようにニッケル箔を配置す
る工程と、 前記ニッケル箔の上から前記開先内にニッケル基合金ろ
う付け材を充填し、温度1080〜1270℃に2〜2
4時間保持する熱処理条件下で前記ろう付け材を加熱溶
融させるとともに、前記ニッケル箔および母材の少なく
とも一部を加熱溶融させて前記ニッケル基合金ろう付け
材と一体化させる工程と、を具備することを特徴とする
高温部品の補修方法。
1. A method for repairing a high temperature component used in an energy engine operated at high temperature, the damage or defect penetrating from a front surface side to a back surface side of a high temperature component made of a nickel base alloy or a cobalt base alloy. Grinding and shaping the part to form a groove-shaped groove in which the front surface side is wider than the back surface side, a step of arranging a nickel foil so as to cover the surface exposed to the groove, and the nickel foil From the above, the groove is filled with a nickel-base alloy brazing material, and the temperature is set to 1080 to 1270 ° C for 2 to 2
Heating and melting the brazing material under a heat treatment condition of holding for 4 hours, and at least part of the nickel foil and the base material being heated and melting to be integrated with the nickel-base alloy brazing material. A method for repairing high temperature parts, which is characterized in that
【請求項2】 前記ニッケル箔の厚みを5〜100μm
とすることを特徴とする請求項1記載の方法。
2. The thickness of the nickel foil is 5 to 100 μm.
The method of claim 1, wherein:
【請求項3】 前記開先の裏面側の溝幅を1〜10mm
とすることを特徴とする請求項1記載の方法。
3. The groove width on the back surface side of the groove is 1 to 10 mm.
The method of claim 1, wherein:
【請求項4】 前記損傷部位は高温部品を空冷するため
の冷却通路の周壁であり、該冷却通路の周壁を研削整形
し、表面側が裏面側よりも幅広となる溝形状の開先を形
成し、該開先に露出する面を覆うようにニッケル箔を配
置し、該ニッケル箔の上から前記開先内にニッケル基合
金ろう付け材を充填し、温度1080〜1270℃に2
〜24時間保持する熱処理条件下で前記ろう付け材を加
熱溶融させるとともに、前記ニッケル箔および母材の少
なくとも一部を加熱溶融させて前記ニッケル基合金ろう
付け材と一体化させた後に、前記冷却通路の周壁が損傷
を受ける前の大きさと形状の冷却孔を穿孔加工すること
を特徴とする請求項1記載の方法。
4. The damaged portion is a peripheral wall of a cooling passage for air-cooling a high temperature component, and the peripheral wall of the cooling passage is ground and shaped to form a groove-shaped groove whose front side is wider than the rear side. A nickel foil is arranged so as to cover the surface exposed to the groove, and a nickel-base alloy brazing material is filled into the groove from above the nickel foil, and the temperature is set to 1080 to 1270 ° C.
The brazing material is heated and melted under a heat treatment condition of holding for 24 hours, and at least a part of the nickel foil and the base material is heated and melted to be integrated with the nickel-base alloy brazing material and then cooled. The method of claim 1, wherein the cooling holes are sized and shaped before the peripheral wall of the passage is damaged.
【請求項5】 前記ニッケル基合金ろう付け材は、N
i,Cr,Co,W,Ti,Al,Bを含有する融点1
080〜1270℃の低融点合金粉末とNi,Cr,C
o,Wを含有する融点1200℃以上の高融点合金粉末
とを3:7〜7:3の割合で混合したものからなること
を特徴とする請求項1記載の方法。
5. The nickel-base alloy brazing material is N
Melting point 1 containing i, Cr, Co, W, Ti, Al, B
Low melting point alloy powder of 080 to 1270 ° C and Ni, Cr, C
2. The method according to claim 1, wherein the high melting point alloy powder containing o and W and having a melting point of 1200 [deg.] C. or higher is mixed at a ratio of 3: 7 to 7: 3.
【請求項6】 高温で運転されるエネルギ機関に用いら
れる補修された高温部品であって、 ニッケル基合金またはコバルト基合金からなる高温部品
の表面側から裏面側に貫通する損傷または欠陥部位を研
削整形し、表面側が裏面側よりも幅広となる溝形状の開
先を形成し、該開先に露出する面を覆うようにニッケル
箔を配置し、該ニッケル箔の上から開先内にニッケル基
合金ろう付け材を充填し、温度1080〜1270℃に
2〜24時間保持する熱処理条件下で前記ろう付け材を
加熱溶融させるとともに、前記ニッケル箔および母材の
少なくとも一部を加熱溶融させて前記ニッケル基合金ろ
う付け材の融液と拡散または希釈されることにより一体
化された合金化補修部位を具備することを特徴とする補
修された高温部品。
6. A repaired high temperature component for use in an energy engine operated at high temperature, wherein a damaged or defective portion penetrating from the front surface side to the back surface side of a high temperature component made of a nickel base alloy or a cobalt base alloy is ground. A groove-shaped groove is formed so that the front surface side is wider than the back surface side, nickel foil is arranged so as to cover the surface exposed to the groove, and a nickel base is placed in the groove from above the nickel foil. The alloy brazing material is filled and the brazing material is heated and melted under a heat treatment condition of holding the temperature at 1080 to 1270 ° C. for 2 to 24 hours, and at least a part of the nickel foil and the base material is heated and melted to A repaired high-temperature component having an alloying repaired part integrated by being diffused or diluted with a melt of a nickel-base alloy brazing material.
【請求項7】 前記ニッケル基合金ろう付け材は、N
i,Cr,Co,W,Ti,Al,Bを含有する融点1
080〜1270℃の低融点合金粉末とNi,Cr,C
o,Wを含有する融点1200℃以上の高融点合金粉末
とを3:7〜7:3の割合で混合したものからなること
を特徴とする請求項6記載の高温部品。
7. The nickel-base alloy brazing material is N
Melting point 1 containing i, Cr, Co, W, Ti, Al, B
Low melting point alloy powder of 080 to 1270 ° C and Ni, Cr, C
7. The high temperature component according to claim 6, which is composed of a mixture of a high melting point alloy powder containing o and W and having a melting point of 1200 ° C. or higher at a ratio of 3: 7 to 7: 3.
【請求項8】 前記合金化補修部位は、タービン機関の
動翼、静翼、燃焼器および分割環のうちのいずれかの一
部であることを特徴とする請求項6記載の高温部品。
8. The high temperature component according to claim 6, wherein the alloying repaired portion is a part of any of a rotor blade, a stator blade, a combustor and a split ring of a turbine engine.
JP2001375841A 2001-12-10 2001-12-10 High temperature parts repair method and repaired high temperature parts Expired - Lifetime JP3759028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375841A JP3759028B2 (en) 2001-12-10 2001-12-10 High temperature parts repair method and repaired high temperature parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375841A JP3759028B2 (en) 2001-12-10 2001-12-10 High temperature parts repair method and repaired high temperature parts

Publications (2)

Publication Number Publication Date
JP2003176727A true JP2003176727A (en) 2003-06-27
JP3759028B2 JP3759028B2 (en) 2006-03-22

Family

ID=19184147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375841A Expired - Lifetime JP3759028B2 (en) 2001-12-10 2001-12-10 High temperature parts repair method and repaired high temperature parts

Country Status (1)

Country Link
JP (1) JP3759028B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246570A (en) * 2004-03-05 2005-09-15 Toshiba Corp Method for repairing wear resistive portion
JP2005254409A (en) * 2004-03-12 2005-09-22 Toshiba Corp Repaire method for abrasion resistant member
JP2009202203A (en) * 2008-02-28 2009-09-10 Kogi Corp Die repair powder and die repair method
WO2009157174A1 (en) * 2008-06-23 2009-12-30 株式会社 東芝 Steam turbine and steam turbine blade
JP2010249063A (en) * 2009-04-17 2010-11-04 Toshiba Corp Damage repairing method of high temperature component and high temperature component
JP2011106431A (en) * 2009-11-20 2011-06-02 Toshiba Corp Repairing method of gas turbine moving blade and gas turbine moving blade
JP2012154197A (en) * 2011-01-24 2012-08-16 Toshiba Corp Damage-repairing method of transition piece, and transition piece
JP2016508070A (en) * 2012-12-05 2016-03-17 リバルディ エンジニアリング リミテッド Superalloy cladding and fusion welding process
US9366139B2 (en) 2013-04-09 2016-06-14 Mitsubishi Heavy Industries, Ltd. Repair method of plate member, plate member, combustor, ring segment, and gas turbine
JP2017020421A (en) * 2015-07-10 2017-01-26 株式会社東芝 Method of repairing turbine component, and turbine component
JP6210258B1 (en) * 2017-02-15 2017-10-11 三菱日立パワーシステムズ株式会社 Rotor blade, gas turbine including the same, rotor blade repair method, and rotor blade manufacturing method
CN109483146A (en) * 2018-10-15 2019-03-19 中国航发北京航空材料研究院 A method of repairing Intermatallic Ti-Al compound casting defect
CN114632990A (en) * 2022-03-15 2022-06-17 北京科技大学 Repair process for repairing defects of high-temperature alloy blade
CN114734128A (en) * 2022-03-30 2022-07-12 大唐锅炉压力容器检验中心有限公司 Welding repair method for valve seat sealing surface
WO2023026761A1 (en) * 2021-08-27 2023-03-02 三菱重工業株式会社 Blade repair method and blade
EP4194139A1 (en) * 2021-12-02 2023-06-14 General Electric Company Braze method to modify a passage

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246570A (en) * 2004-03-05 2005-09-15 Toshiba Corp Method for repairing wear resistive portion
JP2005254409A (en) * 2004-03-12 2005-09-22 Toshiba Corp Repaire method for abrasion resistant member
JP4611396B2 (en) * 2008-02-28 2011-01-12 虹技株式会社 Mold repair powder and mold repair method
JP2009202203A (en) * 2008-02-28 2009-09-10 Kogi Corp Die repair powder and die repair method
US9309773B2 (en) 2008-06-23 2016-04-12 Kabushiki Kaisha Toshiba Steam turbine and steam turbine blade
WO2009157174A1 (en) * 2008-06-23 2009-12-30 株式会社 東芝 Steam turbine and steam turbine blade
JP2010249063A (en) * 2009-04-17 2010-11-04 Toshiba Corp Damage repairing method of high temperature component and high temperature component
JP2011106431A (en) * 2009-11-20 2011-06-02 Toshiba Corp Repairing method of gas turbine moving blade and gas turbine moving blade
JP2012154197A (en) * 2011-01-24 2012-08-16 Toshiba Corp Damage-repairing method of transition piece, and transition piece
US9149881B2 (en) 2011-01-24 2015-10-06 Kabushiki Kaisha Toshiba Damage-repairing method of transition piece and transition piece
JP2016508070A (en) * 2012-12-05 2016-03-17 リバルディ エンジニアリング リミテッド Superalloy cladding and fusion welding process
US9366139B2 (en) 2013-04-09 2016-06-14 Mitsubishi Heavy Industries, Ltd. Repair method of plate member, plate member, combustor, ring segment, and gas turbine
JP2017020421A (en) * 2015-07-10 2017-01-26 株式会社東芝 Method of repairing turbine component, and turbine component
JP6210258B1 (en) * 2017-02-15 2017-10-11 三菱日立パワーシステムズ株式会社 Rotor blade, gas turbine including the same, rotor blade repair method, and rotor blade manufacturing method
JP2018131971A (en) * 2017-02-15 2018-08-23 三菱日立パワーシステムズ株式会社 Moving blade, gas turbine with the same, repairing method for moving blade, and manufacturing method of moving blade
CN109483146A (en) * 2018-10-15 2019-03-19 中国航发北京航空材料研究院 A method of repairing Intermatallic Ti-Al compound casting defect
WO2023026761A1 (en) * 2021-08-27 2023-03-02 三菱重工業株式会社 Blade repair method and blade
EP4194139A1 (en) * 2021-12-02 2023-06-14 General Electric Company Braze method to modify a passage
CN114632990A (en) * 2022-03-15 2022-06-17 北京科技大学 Repair process for repairing defects of high-temperature alloy blade
CN114632990B (en) * 2022-03-15 2024-02-20 北京科技大学 Repair process for repairing defects of high-temperature alloy blade
CN114734128A (en) * 2022-03-30 2022-07-12 大唐锅炉压力容器检验中心有限公司 Welding repair method for valve seat sealing surface

Also Published As

Publication number Publication date
JP3759028B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US6609894B2 (en) Airfoils with improved oxidation resistance and manufacture and repair thereof
US6575702B2 (en) Airfoils with improved strength and manufacture and repair thereof
EP1775054B1 (en) Weld closure of through-holes in a nickel-base superalloy hollow airfoil
US6908288B2 (en) Repair of advanced gas turbine blades
JP2003176727A (en) Repair method for high-temperature component and repaired high-temperature component
US20060248718A1 (en) Superalloy repair methods and inserts
US20160199930A1 (en) Combined braze and coating method for fabrication and repair of mechanical components
JP7275252B2 (en) Section replacement of turbine blades using brazed metal preforms
RU2763527C1 (en) Pre-sintered billet for repair of gas turbine service starting components
JP2022542180A (en) Systems and methods for repairing hot gas turbine components
JP2003206748A (en) Repair method and repaired high-temperature part of peripheral wall of cooling hole of high-temperature part
EP2412930B1 (en) Turbine nozzle segment and method of repairing same
JP2021109240A (en) Superalloy part and method of processing
US11780020B2 (en) Exothermic braze precursor material
US11982207B2 (en) Tip repair of a turbine component using a composite tip boron base pre-sintered preform
JP2003343280A (en) Method of repairing high temperature component by coupon and high temperature component having coupon
JP2017136641A (en) Casting methods and articles
EP4025771A1 (en) Closure element with extensions for internal passage of component
RU2785029C1 (en) Repairment of end part of turbine component, using composite pre-sintered mold of boron-doped base
CN113226611A (en) Welding-brazing technique
Sparling et al. Liburdi Power Metallurgy: New Compositions for High Strength Repairs of Turbine Components

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R151 Written notification of patent or utility model registration

Ref document number: 3759028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term