JP2010249063A - Damage repairing method of high temperature component and high temperature component - Google Patents

Damage repairing method of high temperature component and high temperature component Download PDF

Info

Publication number
JP2010249063A
JP2010249063A JP2009100611A JP2009100611A JP2010249063A JP 2010249063 A JP2010249063 A JP 2010249063A JP 2009100611 A JP2009100611 A JP 2009100611A JP 2009100611 A JP2009100611 A JP 2009100611A JP 2010249063 A JP2010249063 A JP 2010249063A
Authority
JP
Japan
Prior art keywords
damage
repairing
repair
temperature component
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009100611A
Other languages
Japanese (ja)
Other versions
JP5254116B2 (en
Inventor
Daizo Saito
大蔵 斎藤
Toshiaki Fuse
俊明 布施
Reki Takaku
歴 高久
Hiroaki Yoshioka
洋明 吉岡
Kazuhiro Kitayama
和弘 北山
Kazutoshi Ishibashi
和利 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009100611A priority Critical patent/JP5254116B2/en
Publication of JP2010249063A publication Critical patent/JP2010249063A/en
Application granted granted Critical
Publication of JP5254116B2 publication Critical patent/JP5254116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To positively and quickly repair a plurality of damage generated in a high temperature component. <P>SOLUTION: The damage repairing method of the high temperature component repairs the plurality of damage such as cracks 22 and thinned parts generated in a stator blade 11 of a gas turbine operated in a high temperature state and includes: a repairing material filling step for filling braze-repairing materials 28 in a plurality of cracks 22 of the stator blade 11; a repairing material holding step for covering an exposed portion of the filled braze-repairing material 28 by metal foil 29 and holding the braze-repairing material 28; and a heat treatment step for subjecting the stator blade 11 and the braze-repairing material 28 to dispersion heat treatment and brazing and repairing the plurality of cracks 22. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ガスタービンの静翼のような高温部品に生じたき裂などの損傷を補修する高温部品の損傷補修方法、及び損傷が補修された高温部品に関する。   The present invention relates to a damage repairing method for a high-temperature part for repairing damage such as a crack generated in a high-temperature part such as a stationary blade of a gas turbine, and a high-temperature part in which the damage is repaired.

ガスタ−ビン発電プラントは、ガスタ−ビンと同軸に設けられた圧縮機の駆動によって圧縮された圧縮空気を燃焼器に案内して、燃焼器ライナの燃焼室内で燃料とともに燃焼する。燃焼により発生した高温の燃焼ガスは、トランジションピ−ス及び静翼を経て動翼へ案内され、この動翼を回転駆動させて、ガスタ−ビンの仕事をさせるようになっている。   In a gas turbine power plant, compressed air compressed by driving a compressor provided coaxially with the gas turbine is guided to a combustor and burned together with fuel in a combustion chamber of a combustor liner. The high-temperature combustion gas generated by the combustion is guided to the moving blade through the transition piece and the stationary blade, and the moving blade is driven to rotate so that the work of the gas turbine is performed.

この種のガスタ−ビンの高温部品である燃焼器ライナ、トランジションピ−ス、静翼及び動翼には、Ni基、Co基、またはNi−Fe基の耐熱超合金が用いられるが、ガスタ−ビンの運転とともに種々の損傷が発生する。まず、これらの高温部品は、高温の燃焼ガス雰囲気に晒されるため材質劣化が生じるとともに、動翼については、高速回転により生ずる遠心応力の作用でクリ−プ損傷が蓄積する。また、ガスタ−ビンの高温部品は、起動時には比較的低温環境域から高温環境域に、停止時には逆に高温環境域から低温環境域にそれぞれ推移する段階で熱疲労が生じ、疲労損傷が蓄積する。これらの損傷(材質劣化、クリ−プ損傷、疲労損傷)は重畳して蓄積する。   Ni-based, Co-based, or Ni-Fe-based heat-resistant superalloys are used for combustor liners, transition pieces, stationary blades, and moving blades, which are high-temperature parts of this type of gas turbine. Various damages occur with the operation of the bin. First, since these high-temperature parts are exposed to a high-temperature combustion gas atmosphere, material deterioration occurs, and creeping damage accumulates on the rotor blades due to the action of centrifugal stress caused by high-speed rotation. In addition, high temperature components of gas turbines are subject to thermal fatigue at the stage of transition from a relatively low temperature environment region to a high temperature environment region during start-up and conversely from a high temperature environment region to a low temperature environment region during stoppage, and fatigue damage accumulates. . These damages (material deterioration, creep damage, fatigue damage) accumulate and accumulate.

ところで、ガスタ−ビンの高温部品の保守管理は、機器の設計段階で決まるクリ−プあるいは疲労寿命と、実機の運転、立地上の環境により設定される設計寿命とを基に、同一機種あるいは同一運転形態をとるガスタ−ビンを分類し、分類された各グル−プの先行機の実績を用いて設計寿命を補正し、後続機の保守管理を行っている。近年では、ガスタ−ビンの高温部品の劣化、損傷診断を効率的に精度良く予測する保守管理方法が実施されつつある。いずれの保守管理方法においても、ガスタ−ビンの高温部品は、必要に応じて定検毎に補修が繰り返えされ、管理寿命に到達した後に一律に廃却となり、非常に高価な新品と交換される。   By the way, the maintenance management of high-temperature parts of the gas turbine is the same model or the same based on the creep or fatigue life determined at the equipment design stage and the design life set by the actual machine operation and location environment. The gas turbines taking the operation form are classified, the design life is corrected using the results of the preceding machines of each classified group, and the maintenance of the subsequent machines is performed. In recent years, a maintenance management method for efficiently and accurately predicting deterioration and damage diagnosis of high-temperature parts of a gas turbine is being implemented. Regardless of the maintenance management method, the high-temperature parts of the gas turbine are repeatedly repaired at regular inspections as necessary, and after reaching the management life, they are uniformly discarded and replaced with very expensive new ones. Is done.

ガスタ−ビン静翼の定検毎の補修において、使用によりき裂が発生していた場合には、き裂周辺を除去し、溶接補修することで再使用が可能となる。また、溶接補修の他にろう付け補修する方法もある。以下に溶接補修またはろう付け補修の公知例(特許文献)を示す。   In the repair of the gas turbine stationary blade at every regular inspection, if a crack has occurred due to use, it can be reused by removing the periphery of the crack and repairing the weld. In addition to welding repairs, there is a method of brazing repairs. A known example (patent document) of welding repair or brazing repair is shown below.

特許文献1では、発電用ガスタービン静翼の精密鋳造時に生じた欠陥あるいは使用中に生じたき裂の補修方法として、クリープ特性、耐熱疲労特性及び耐腐食性に優れたCo基合金の材料を用いた溶接方法を提案している。また、特許文献2では、高温金属(合金)部品に発生した、高温腐食生成物で充満したき裂の補修方法として、水酸化ナトリウム及び/または水酸化カリウム水溶液に浸漬して高温腐食生成物を除去した後、Niろう材またはCoろう材によりき裂を補修している。   In Patent Document 1, a Co-based alloy material having excellent creep characteristics, thermal fatigue characteristics and corrosion resistance is used as a repair method for defects generated during precision casting of gas turbine stationary blades for power generation or cracks generated during use. We have proposed a welding method. In Patent Document 2, as a method for repairing a crack generated in a high-temperature metal (alloy) part and filled with a high-temperature corrosion product, the high-temperature corrosion product is immersed in an aqueous solution of sodium hydroxide and / or potassium hydroxide. After removal, the crack is repaired with Ni brazing material or Co brazing material.

特許文献3では、き裂が生じたジェットエンジンの静翼を水素雰囲気中に曝露して酸化物を還元し、アクリルレジンとろう材を補修材としてき裂に塗布して、高温、真空中でろう付け補修している。また、特許文献4では、ガスタービン静翼においてき裂が発生している表面部位の酸化層を、き裂が一部残存する形で削り、この削り部内に補修材を充填し、不活性ガスによる加圧下での熱処理によって、ろう材を溶融させてき裂を補修している。   In Patent Document 3, the stationary blade of a jet engine in which a crack has occurred is exposed to a hydrogen atmosphere to reduce the oxide, and acrylic resin and brazing material are applied to the crack as a repair material, and in high temperature and vacuum. Brazing repair. Further, in Patent Document 4, an oxide layer at a surface portion where a crack is generated in a gas turbine stationary blade is shaved so that a part of the crack remains, a repair material is filled in the shaved portion, and an inert gas is filled. The brazing material is melted and the crack is repaired by heat treatment under pressure.

特開平11−117705号公報JP-A-11-117705 特開平6−234066号公報JP-A-6-234066 特開平6−344129号公報JP-A-6-344129 特開2006−46147号公報JP 2006-46147 A

ところが、上述の特許文献において、特にき裂のろう付け補修では、補修すべき製品が複雑な形状で様々な部位にき裂が生じている場合に、ろう付けが可能な姿勢で数回に分けて補修しているため、補修に長時間を要し、補修コストが増大するという課題がある。   However, in the above-mentioned patent document, especially in the case of crack brazing repair, when the product to be repaired has a complicated shape and cracks have occurred in various parts, it is divided into several times in a posture capable of brazing. Therefore, there is a problem that the repair takes a long time and the repair cost increases.

本発明の目的は、上述の事情を考慮してなされたものであり、高温部品に生じた複数の損傷を確実且つ迅速に補修できる高温部品の損傷補修方法及び高温部品を提供することにある。   An object of the present invention is to provide a high temperature component damage repairing method and a high temperature component capable of reliably and quickly repairing a plurality of damages occurring in a high temperature component.

本発明に係る高温部品の損傷補修方法は、高温状態で運転されるエネルギー機関の高温部品に生じた複数の損傷を補修する高温部品の損傷補修方法であって、前記高温部品の複数の損傷内にろう付け補修材を装填する補修材装填工程と、この装填された前記ろう付け補修材の露出部分を保持部材により覆って、このろう付け補修材を保持する補修材保持工程と、前記高温部品及び前記ろう付け補修材を拡散熱処理して、複数の損傷をろう付け補修する熱処理工程と、を有することを特徴とするものである。   A damage repair method for a high-temperature part according to the present invention is a damage repair method for a high-temperature part that repairs a plurality of damages that have occurred in a high-temperature part of an energy engine that is operated in a high-temperature state. A repair material loading step of loading the brazing repair material, a repair material holding step of covering the exposed portion of the loaded brazing repair material with a holding member and holding the brazing repair material, and the high temperature component And a heat treatment step of brazing and repairing the plurality of damages by diffusion heat treatment of the brazing repair material.

また、本発明に係る高温部品は、高温状態で運転されるエネルギー機関の高温部品であって、本発明に係る高温部品の損傷補修方法により損傷が補修されて構成されたことを特徴とするものである。   The high-temperature component according to the present invention is a high-temperature component of an energy engine operated in a high-temperature state, wherein the damage is repaired by the high-temperature component damage repair method according to the present invention. It is.

本発明に係る高温部品の損傷補修方法及び高温部品によれば、高温部品に生じた複数の損傷内に装填されたろう付け補修材を保持部材により保持した後に、拡散熱処理を実施して複数の損傷をろう付け補修するので、拡散熱処理において溶融したろう付け補修材が損傷内から流出することを防止できる。この結果、高温部品に生じた複数の損傷を確実且つ迅速に補修できる。   According to the high temperature component damage repairing method and the high temperature component according to the present invention, the brazing repair material loaded in the plurality of damages generated in the high temperature component is held by the holding member, and then the diffusion heat treatment is performed to perform the multiple damage. Therefore, it is possible to prevent the brazing repair material melted in the diffusion heat treatment from flowing out of the damage. As a result, it is possible to reliably and quickly repair a plurality of damages that have occurred in the high-temperature parts.

本発明に係る高温部材の損傷補修方法における第1の実施の形態であるガスタービン静翼の損傷補修方法が適用されるガスタービンの一部を示す部分断面図。The fragmentary sectional view which shows a part of gas turbine to which the damage repair method of the gas turbine stationary blade which is 1st Embodiment in the damage repair method of the high temperature member which concerns on this invention is applied. 図1のガスタービンの静翼を示す斜視図。The perspective view which shows the stationary blade of the gas turbine of FIG. (A)〜(E)は、第1の実施の形態における静翼の損傷補修手順を示す工程図。(A)-(E) is process drawing which shows the damage repair procedure of the stationary blade in 1st Embodiment. 図2の静翼と同一材料の実験材に対し模擬的に形成されたき裂(つまり溝)を補修した後の断面図。Sectional drawing after repairing the crack (namely, groove | channel) formed in simulation material with respect to the experimental material of the same material as the stationary blade of FIG. 図4の補修部分を示す拡大断面図。The expanded sectional view which shows the repair part of FIG. 図2の静翼に生じたき裂を補修する際の熱処理工程直前状態を示す静翼の断面図。FIG. 3 is a cross-sectional view of a stationary blade showing a state immediately before a heat treatment step when repairing a crack generated in the stationary blade of FIG. 2. 図6で補修を完了した後の補修部分を示す拡大断面図。The expanded sectional view which shows the repair part after completing repair in FIG. 図3(C)の金属箔を用いないでき裂の補修を完了した場合における補修部分を示す断面図。Sectional drawing which shows the repair part in the case of completing repair of a crack without using the metal foil of FIG.3 (C). 第1の実施の形態における補修部分のクリープ破断試験結果を、母材などの場合と比較して示すグラフ。The graph which shows the creep rupture test result of the repair part in 1st Embodiment compared with the case of a base material. 本発明に係る高温部品の損傷補修方法における第2の実施の形態であるガスタービン静翼の損傷補修方法を適用して、静翼に生じたき裂を補修する際の熱処理工程直前状態を示す静翼の断面図。The static turbine which shows the state just before the heat treatment process at the time of repairing the crack which arose in the stationary blade by applying the damage repairing method of the gas turbine stationary blade which is the 2nd embodiment in the damage repairing method of the high temperature parts concerning the present invention. Cross section of a wing. 図10で補修を完了した後の補修部分を拡大して示す断面図。Sectional drawing which expands and shows the repair part after completing repair in FIG. 第2の実施の形態における補修部分のクリープ破断試験結果を、母材の場合と比較して示すグラフ。The graph which shows the creep rupture test result of the repair part in 2nd Embodiment compared with the case of a base material. 本発明に係る高温部品の損傷補修方法における第3の実施の形態であるガスタービン静翼の損傷補修方法を適用して、静翼に生じたき裂を補修する際の熱処理工程直前状態を示す静翼の断面図。A static turbine showing a state immediately before a heat treatment process when repairing a crack generated in a stationary blade by applying a damage repairing method for a gas turbine stationary blade, which is a third embodiment of the damage repairing method for a high-temperature part according to the present invention. Cross section of a wing.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態(図1〜図9)
図1は、本発明に係る高温部材の損傷補修方法における第1の実施の形態であるガスタービン静翼の損傷補修方法が適用されるガスタービンの一部を示す部分断面図である。
[A] First embodiment (FIGS. 1 to 9)
FIG. 1 is a partial cross-sectional view showing a part of a gas turbine to which a damage repair method for a gas turbine stationary blade according to a first embodiment of the damage repair method for a high temperature member according to the present invention is applied.

この図1に示すガスタービン10は、高温状態で運転されるエネルギー機関の一例であり、図示しない圧縮機からの圧縮空気と燃料とが図示しないに燃料器ライナの燃焼室内で混合され燃焼して燃焼ガスとなり、この燃焼ガスがトランジションピース(不図示)及び静翼11に案内されて動翼12へ導入され、この動翼12が植設されたタービンロータ13を回転させる。このタービンロータ13の回転により、発電機などが回転駆動される。   The gas turbine 10 shown in FIG. 1 is an example of an energy engine that is operated in a high temperature state, and compressed air and fuel from a compressor (not shown) are mixed and burned in a combustion chamber of a fuel liner, not shown. The combustion gas is guided to a transition piece (not shown) and a stationary blade 11 and introduced into the moving blade 12 to rotate the turbine rotor 13 in which the moving blade 12 is implanted. The generator and the like are driven to rotate by the rotation of the turbine rotor 13.

タービンロータ13は、複数のロータディスク14が軸方向に結合されて構成され、各ロータディスク14の周囲に動翼12が複数枚植設される。また、静翼11は、タービンケーシング15にシュラウドセグメント16やリテイニングリング17、サポートリング18を介して支持される。これらの静翼11は、各ロータディスク14の動翼12の前方に配置されて、タービン段落を構成する。このタービン段落は、燃焼ガスの流れ方向(矢印A)の上流側から下流側へ向かって第1段落、第2段落、第3段落と称される。   The turbine rotor 13 is configured by connecting a plurality of rotor disks 14 in the axial direction, and a plurality of rotor blades 12 are implanted around each rotor disk 14. Further, the stationary blade 11 is supported by the turbine casing 15 via a shroud segment 16, a retaining ring 17, and a support ring 18. These stationary blades 11 are disposed in front of the rotor blades 12 of the respective rotor disks 14 and constitute turbine stages. The turbine paragraphs are referred to as a first paragraph, a second paragraph, and a third paragraph from the upstream side to the downstream side in the combustion gas flow direction (arrow A).

上述のガスタービン10における静翼11は高温部品であり、図2に示すように、インナーサイドウォール19とアウターサイドウォール20に2連の翼部21が一体化されて形成される。両翼部21間に燃焼ガスが流れる。   The stationary blade 11 in the gas turbine 10 described above is a high-temperature component, and as illustrated in FIG. 2, the two blade portions 21 are integrated with the inner sidewall 19 and the outer sidewall 20. Combustion gas flows between the blade portions 21.

また、静翼11及び動翼12などはNi基、Co基、またはNi−Fe基などの耐熱超合金により構成され、このうち特に、静翼11はCo基超合金、動翼12はNi基超合金にて構成される。しかしながら、これらの静翼11及び動翼12は、高温の燃焼ガスにさらされるなどの原因で損傷を受けやすく、例えば複雑な形状の静翼11における翼部21、インナーサイドウォール19及びアウターサイドウォール20の各箇所にき裂22が生じやすい。静翼11は、高価な耐熱超合金にて構成されているため、損傷が致命的である場合を除いて、き裂22等の損傷を補修して再使用に供される。   The stationary blade 11 and the moving blade 12 are made of a heat-resistant superalloy such as a Ni base, a Co base, or a Ni—Fe base. Among these, the stationary blade 11 is a Co base superalloy, and the moving blade 12 is a Ni base. Consists of superalloys. However, the stationary blades 11 and the moving blades 12 are easily damaged due to exposure to high-temperature combustion gas. For example, the blade portion 21, the inner sidewall 19, and the outer sidewall in the stationary blade 11 having a complicated shape. Cracks 22 are likely to occur at each of the 20 locations. Since the stationary blade 11 is composed of an expensive heat-resistant superalloy, it is used for reuse after repairing damage such as the crack 22 unless the damage is fatal.

本実施の形態においては、図3の補修手順に従ってき裂などの損傷を補修する。この補修手順は補修前処理(図3(A))、補修材装填工程(図3(B))、補修材保持工程(図3(C))、熱処理工程(図3(D))、表面仕上げ工程(図3(E))の順である。但し、この図3は、静翼11と同一材料の実験材23に形成された、き裂22を模擬した溝24を補修する手順を示す。従って、補修前処理工程については実プラントの静翼11に対する場合と異なるが、他の工程については同様である。   In the present embodiment, damage such as a crack is repaired in accordance with the repair procedure of FIG. This repair procedure includes repair pretreatment (FIG. 3 (A)), repair material loading step (FIG. 3 (B)), repair material holding step (FIG. 3 (C)), heat treatment step (FIG. 3 (D)), surface It is an order of a finishing process (Drawing 3 (E)). However, FIG. 3 shows a procedure for repairing the groove 24 simulating the crack 22 formed in the experimental material 23 made of the same material as the stationary blade 11. Accordingly, the pre-repair process is different from that for the stationary blade 11 of the actual plant, but the other processes are the same.

実験材23は、実プラントの静翼11と同様にCo基超合金製であり、特に表1に示す組成のCo基超合金FSX414が用いられている。実験材23では、実プラントの静翼11において様々な深さ方向に延びるき裂22を模擬するために、例えば天面25、左側面26、右側面27に、ワイヤカット加工によって溝24が形成されている(図3(A))。

Figure 2010249063
The experimental material 23 is made of a Co-base superalloy similar to the stationary blade 11 of the actual plant, and in particular, the Co-base superalloy FSX414 having the composition shown in Table 1 is used. In the experimental material 23, in order to simulate the crack 22 extending in various depth directions in the stationary blade 11 of the actual plant, for example, grooves 24 are formed on the top surface 25, the left side surface 26, and the right side surface 27 by wire cutting. (FIG. 3A).
Figure 2010249063

さて、まず実験材23について実施する損傷補修手順について説明する。   First, the damage repair procedure performed on the experimental material 23 will be described.

前処理工程(図3(A))では、溝24の加工時の油分を除去するために、実験材23全体を例えばアセトンなどを用いて脱脂処理する。   In the pretreatment step (FIG. 3A), the entire experimental material 23 is degreased using, for example, acetone in order to remove oil during the processing of the grooves 24.

次の補修材装填工程(図3(B))では、実験材23の天面25、左側面26、右側面27における全ての溝24内にろう付け補修材28を装填する。このろう付け補修材28は、Ni基溶融合金粉末とCo基非溶融合金粉末とが配合されたものである。Ni基溶融合金粉末はNi−Cr−Co−Si−B系であり、熱処理工程において溶融状態となる低融点のろう材として機能する。また、Co基非溶融合金粉末はCo−Ni−Cr系であり、実験材23の組成と同等の組成であり、熱処理工程において溶融しない。尚、Ni基溶融合金に代えて、Pt、AgまたはPbを用いてもよい。   In the next repairing material loading step (FIG. 3B), the brazing repairing material 28 is loaded into all the grooves 24 in the top surface 25, the left side surface 26, and the right side surface 27 of the experimental material 23. The brazing repair material 28 is a mixture of Ni-based molten alloy powder and Co-based non-molten alloy powder. The Ni-based molten alloy powder is a Ni—Cr—Co—Si—B system and functions as a low melting point brazing material that becomes a molten state in the heat treatment step. Further, the Co-based non-molten alloy powder is a Co—Ni—Cr system and has the same composition as that of the experimental material 23 and does not melt in the heat treatment step. Note that Pt, Ag, or Pb may be used instead of the Ni-based molten alloy.

次の補修材保持工程(図3(C))では、実験材23における天面25の溝24、左側面26の溝24、右側面27の溝24にそれぞれ装填された全てのろう付け補修材28の露出部分(盛り上げ部分)を、保持部材である金属箔29により覆って、各溝24内のろう付け補修材28を保持する。この場合、金属箔29は、実験材23の天面25、左側面26、右側面27に固着(例えばスポット溶着)される。この金属箔29は、例えば厚さが0.1mm以下の金箔が好ましい。厚さが0.1mm以下としたのは、金属箔29を実験材23の天面25、左側面26、右側面27の形状や、静翼11の複雑な表面形状に適合させるためである。   In the next repair material holding step (FIG. 3C), all brazing repair materials loaded in the groove 24 on the top surface 25, the groove 24 on the left side surface 26, and the groove 24 on the right side surface 27 in the experimental material 23, respectively. The exposed portion (swelled portion) 28 is covered with a metal foil 29 which is a holding member, and the brazing repair material 28 in each groove 24 is held. In this case, the metal foil 29 is fixed (for example, spot welding) to the top surface 25, the left side surface 26, and the right side surface 27 of the experimental material 23. The metal foil 29 is preferably a gold foil having a thickness of 0.1 mm or less, for example. The reason why the thickness is set to 0.1 mm or less is to adapt the metal foil 29 to the shapes of the top surface 25, the left side surface 26, and the right side surface 27 of the experimental material 23 and the complicated surface shape of the stationary blade 11.

次の熱処理工程(図3(D))では、補修材保持工程を経た実験材23を真空熱処理炉に投入し、例えば1200℃の条件で、実験材23及びろう付け補修材28に拡散熱処理を施す。つまり、このときの加熱温度は、ろう付け補修材28のNi基溶融合金粉末を溶融させ、且つろう付け補修材28のCo基非溶融合金粉末を溶融させない温度である。この溶融状態のNi基溶融合金と、非溶融状態のCo基非溶融合金粉末及び実験材23の母材とが拡散反応により固着されて、溝24がろう付け補修される。この熱処理工程は、前述の如く、実験材23における天面25、左側面26、右側面27の全ての溝24にろう付け補修材28が装填され、且つこれらのろう付け補修材28の全てを金属箔29が保持した後に実施される。   In the next heat treatment step (FIG. 3D), the experimental material 23 that has undergone the repair material holding step is put into a vacuum heat treatment furnace, and diffusion heat treatment is performed on the experimental material 23 and the brazing repair material 28 at, for example, 1200 ° C. Apply. That is, the heating temperature at this time is a temperature at which the Ni-based molten alloy powder of the brazing repair material 28 is melted and the Co-based non-melting alloy powder of the brazing repair material 28 is not melted. The molten Ni-based molten alloy, the non-molten Co-based non-molten alloy powder, and the base material of the experimental material 23 are fixed by a diffusion reaction, and the groove 24 is repaired by brazing. In this heat treatment step, as described above, the brazing repair material 28 is loaded in all the grooves 24 on the top surface 25, the left side surface 26, and the right side surface 27 of the experimental material 23, and all of these brazing repair materials 28 are removed. This is performed after the metal foil 29 is held.

この熱処理工程後の表面仕上げ工程(図3(E))では、実験材23の天面25、左側面26、右側面27から金属箔29を取り除き、これらの補修部分の表面を仕上げ加工する。この表面仕上げ加工後の状態を図4に示す。   In the surface finishing step after this heat treatment step (FIG. 3E), the metal foil 29 is removed from the top surface 25, the left side surface 26, and the right side surface 27 of the experimental material 23, and the surfaces of these repaired portions are finished. The state after this surface finishing is shown in FIG.

この表面仕上げ加工後の実験材23における補修部分を断面観察したところ、実験材23の天面25、左側面26、右側面27のそれぞれに形成された模擬き裂である各溝24内において、図5に示すように、Co基非溶融合金粉末30と、溶融したNi基溶融合金31が、ボイド(隙間)を有することなく装填されていた。従って、補修部分の高温強度は、実験材23の非補修部分と同等レベルを示すものと推定される。   When the repaired portion of the experimental material 23 after the surface finishing process is observed in a cross section, in each groove 24 which is a simulated crack formed on each of the top surface 25, the left side surface 26, and the right side surface 27 of the experimental material 23, As shown in FIG. 5, the Co-based non-molten alloy powder 30 and the molten Ni-based molten alloy 31 were loaded without having voids (gap). Therefore, it is estimated that the high temperature strength of the repaired portion shows the same level as the non-repaired portion of the experimental material 23.

次に、実プラントで使用された静翼11(例えばガスタービン第1段静翼)を対象とした損傷補修手順について説明する。   Next, a damage repair procedure for the stationary blade 11 (for example, a gas turbine first stage stationary blade) used in an actual plant will be described.

この静翼11は、実験材23と同様に、表1に示す組成と同等の組成のCo基超合金にて構成されている。また、この静翼11には、長期間の使用によって、図6に示すように、翼部21、インナーサイドウォール19及びアウターサイドウォール20に異なる深さ方向に延びるき裂22が発生している。これらのき裂22を損傷補修手順によって補修する。   The stationary blade 11 is made of a Co-base superalloy having a composition equivalent to the composition shown in Table 1, as with the experimental material 23. Further, in the stationary blade 11, cracks 22 extending in different depth directions are generated in the blade portion 21, the inner sidewall 19 and the outer sidewall 20 as shown in FIG. 6 due to long-term use. . These cracks 22 are repaired by a damage repair procedure.

実プラントの静翼11に対する補修前処理工程では、補修すべきき裂22の表面に生成された酸化皮膜を、水素雰囲気中で熱処理を実施することで除去する。この酸化皮膜の除去によって、き裂22の表面とろう付け補修材28とのなじみ(接着)が良好になる。   In the pretreatment process for repairing the stationary blade 11 of the actual plant, the oxide film formed on the surface of the crack 22 to be repaired is removed by performing a heat treatment in a hydrogen atmosphere. By removing the oxide film, the familiarity (adhesion) between the surface of the crack 22 and the brazing repair material 28 is improved.

この補修前処理工程の後に、前述の実験材23に対して実施した場合と同様に、全てのき裂22にろう付け補修材28を装填する補修材装填工程と、これら全てのろう付け補修材28の露出部分を金属箔29により覆って保持する補修材保持工程と、ろう付け補修材28のNi基溶融合金粉末及びCo基非溶融合金粉末と静翼11の母材とを拡散反応により固着してろう付け補修する熱処理工程と、金属箔29を取り除いて静翼11の表面を仕上げ加工する表面仕上げ工程と、を順次実施する。   After this repair pretreatment step, the repair material loading step of loading all the cracks 22 with the brazing repair material 28, and all these brazing repair materials, as in the case of the test material 23 described above. A repair material holding step of covering and holding the exposed portion of 28 with the metal foil 29, and fixing the Ni-based molten alloy powder and Co-based non-molten alloy powder of the brazing repair material 28 and the base material of the stationary blade 11 by diffusion reaction Then, a heat treatment process for repairing the brazing and a surface finishing process for removing the metal foil 29 and finishing the surface of the stationary blade 11 are sequentially performed.

上述の損傷補修手順によってき裂22が補修された補修部分を観察したところ、図7に示すように、静翼11のき裂22内において、Co基非溶融合金粉末30と、溶融したNi基溶融合金31とが、ボイド(隙間)を有することなく充填されていた。尚、金属箔29を設けないでき裂22を補修した場合には、図8に示すように、補修部分の断面において、Co基非溶融合金粉末30と溶融したNi基溶融合金31との間にボイド32が観察された。   When the repaired part where the crack 22 was repaired by the above-described damage repairing procedure was observed, as shown in FIG. 7, the Co-based non-molten alloy powder 30 and the molten Ni-based alloy were cracked in the crack 22 of the stationary blade 11. The molten alloy 31 was filled without having a void (gap). When the crack 22 is repaired without the metal foil 29, as shown in FIG. 8, in the cross section of the repaired portion, between the Co-based non-molten alloy powder 30 and the molten Ni-based molten alloy 31, Void 32 was observed.

次に、補修部分の高温強度を確認した。上述のようにして補修した静翼11の補修部分を含めて切り出し加工した第1試験片と、金属箔29を用いないで補修した静翼11の補修部分を含めて切り出し加工した第2試験片と、静翼11の母材から切り出し加工した第3試験片とを用いて、クリープ破断試験を実施した。この試験では、加熱温度が1000℃と500℃の場合について試験を行った。クリープ破断時間は、第2試験片が第3試験片よりも著しく低かったが、第1試験片が第3試験片と同程度であった。従って、高温強度は、第1試験片が第3試験片と同等であることが確認された。   Next, the high temperature strength of the repaired part was confirmed. A first test piece cut out including the repaired portion of the stationary blade 11 repaired as described above, and a second test piece cut out including the repaired portion of the stationary blade 11 repaired without using the metal foil 29. And the creep rupture test was implemented using the 3rd test piece cut out and processed from the base material of the stationary blade 11. FIG. In this test, the test was performed for heating temperatures of 1000 ° C. and 500 ° C. The creep rupture time was significantly lower for the second test piece than for the third test piece, but the first test piece was comparable to the third test piece. Therefore, it was confirmed that the high temperature strength was equivalent to the first test piece and the third test piece.

以上のことから、本実施の形態によれば、次の効果(1)〜(3)を奏する。   From the above, according to the present embodiment, the following effects (1) to (3) are obtained.

(1)複雑な形状の静翼11の様々な箇所に生じた、深さ方向の異なる複数のき裂22内にろう付け補修材28を装填し、このろう付け補修材28を金属箔29により保持した後に、拡散熱処理を実施して複数のき裂22をろう付け補修する。このため、拡散熱処理において、溶融したろう付け補修材28(Ni基溶融合金)がき裂22内から流出することを金属箔29により防止できる。この結果、補修部分にボイド32がなく、従って補修部分を静翼11の母材と同等の高温強度に確保できるので、損傷を確実に補修できる。また、溶融したろう付け補修材28の流出が金属箔29により防止されるので、複数のき裂22を同時に補修でき、このため複数のき裂22の補修を迅速に実施できる。これらの結果、静翼11に生じた複数のき裂22を合理的に補修できる。   (1) A brazing repair material 28 is loaded into a plurality of cracks 22 having different depths, which are generated at various locations on the stator blade 11 having a complicated shape, and the brazing repair material 28 is loaded with a metal foil 29. After holding, a diffusion heat treatment is performed to repair the plurality of cracks 22 by brazing. For this reason, the metal foil 29 can prevent the molten brazing repair material 28 (Ni-based molten alloy) from flowing out of the crack 22 in the diffusion heat treatment. As a result, there is no void 32 in the repaired portion, and therefore the repaired portion can be secured at a high temperature strength equivalent to that of the base material of the stationary blade 11, so that damage can be repaired reliably. In addition, since the molten brazing repair material 28 is prevented from flowing out by the metal foil 29, a plurality of cracks 22 can be repaired at the same time, so that the plurality of cracks 22 can be repaired quickly. As a result, a plurality of cracks 22 generated in the stationary blade 11 can be repaired reasonably.

(2)静翼11に生じたき裂22がろう付け補修材28を用いてろう付け補修されるので、溶接による補修の場合に比べ、静翼11に補修による変形の発生を防止できる。   (2) Since the crack 22 generated in the stationary blade 11 is brazed and repaired by using the brazing repair material 28, it is possible to prevent the stator blade 11 from being deformed by repair compared to the repair by welding.

(3)静翼11に生じた複数のき裂22の全てにろう付け補修材28を装填し、且つこれらの全てのろう付け補修材28を金属箔29により保持した後に、この静翼11を、同様にしてろう付け補修材28を装填し金属箔29によりろう付け補修材28を保持した他の静翼11と共に真空熱処理炉に投入して、バッチ処理にて拡散熱処理を実施するので、効率的な補修を実現できる。   (3) After the brazing repair material 28 is loaded into all of the plurality of cracks 22 generated in the stationary blade 11 and all these brazing repair materials 28 are held by the metal foil 29, the stationary blade 11 is In the same manner, the brazing repair material 28 is loaded and the brazing repair material 28 is held by the metal foil 29 together with the other stationary blades 11 and put into a vacuum heat treatment furnace, and diffusion heat treatment is performed by batch processing. Can be repaired.

[B]第2の実施の形態(図10〜図12)
図10は、本発明に係る高温部品の損傷補修方法における第2の実施の形態であるガスタービン静翼の損傷補修方法を適用して、静翼に生じたき裂を補修する際の熱処理工程直前状態を示す静翼の断面図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 10 to 12)
FIG. 10 shows a state immediately before a heat treatment process when repairing a crack generated in a stationary blade by applying a damage repairing method for a gas turbine stationary blade, which is a second embodiment of the damage repairing method for a high-temperature component according to the present invention. It is sectional drawing of the stationary blade which shows a state. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態が前記第1の実施の形態と異なる点は、保持部材の構成である。つまり、本実施の形態の保持部材は、アルミナまたはシリカを主成分とするセラミックス接着剤33が採用され、このセラミックス接着剤33がろう付け補修材28の露出部分を覆うことでこのろう付け補修材28を保持する。   The difference between the present embodiment and the first embodiment is the configuration of the holding member. That is, the holding member of the present embodiment employs a ceramic adhesive 33 mainly composed of alumina or silica, and the brazing repair material is covered by the ceramic adhesive 33 covering the exposed portion of the brazing repair material 28. 28 is held.

このセラミックス接着剤33を保持部材として用いてき裂22を補修した場合にも、図11に示すように、補修後の静翼11内において、Co基非溶融合金粉末30と溶融したNi基溶融合金31とがボイド(隙間)を有することなく充填されていた。また、この補修された静翼11の補修部分を含めて切り出し加工した第4試験片と第3試験片とを用いてクリープ破断試験を実施したところ、図12に示すように、加熱温度が1000℃と500℃のいずれの場合においても、クリープ破断時間は第4試験片と第3試験片とで同程度であった。つまり、第4試験片の高温強度は第3試験片と同程度であった。   Even when the ceramic adhesive 33 is used as a holding member and the crack 22 is repaired, as shown in FIG. 11, the Co-based non-molten alloy powder 30 and the molten Ni-based molten alloy in the stationary blade 11 after the repair. 31 was filled without having a void (gap). Further, when a creep rupture test was carried out using the fourth test piece and the third test piece cut out including the repaired portion of the repaired stationary blade 11, the heating temperature was 1000 as shown in FIG. The creep rupture time was comparable between the fourth test piece and the third test piece in both cases of ° C and 500 ° C. That is, the high temperature strength of the fourth test piece was comparable to that of the third test piece.

以上のことから、本実施の形態によれば、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)を奏する。   From the above, according to the present embodiment, in addition to the same effects as the effects (1) to (3) of the first embodiment, the following effect (4) is achieved.

(4)セラミックス接着剤33はペースト状であり、更に熱処理工程終了後には材質強度が低下して剥離しやすくなるので、このセラミックス接着剤33を静翼11の表面に容易に固着できると共に除去できる。この結果、き裂22の補修の作業性を向上させることができる。   (4) The ceramic adhesive 33 is in the form of a paste, and after the heat treatment process is finished, the strength of the material is reduced and it is easy to peel off. Therefore, the ceramic adhesive 33 can be easily fixed to the surface of the stationary blade 11 and can be removed. . As a result, the workability of repairing the crack 22 can be improved.

[C]第3の実施の形態(図13)
図13は、本発明に係る高温部品の損傷補修方法における第3の実施の形態であるガスタービン静翼の損傷補修方法を適用して、静翼に生じたき裂を補修する際の熱処理工程直前状態を示す静翼の断面図である。この第3の実施の形態において、前記第1及び第2の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 13)
FIG. 13 shows a third embodiment of the damage repairing method for high-temperature parts according to the present invention, in which the gas turbine stationary blade damage repairing method is applied and immediately before the heat treatment process when repairing a crack generated in the stationary blade. It is sectional drawing of the stationary blade which shows a state. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態が前記第1及び第2の実施の形態と異なる点は、保持部材の構成である。つまり、本実施の形態の保持部材34は、金属箔29の上にセラミックス接着剤33を付着して積層させたものである。この場合、金属箔29は、第1の実施の形態の如く例えばスポット溶着などによって固着する必要はなく、積層されるセラミックス接着剤33によって静翼11の表面に固着される。   The difference between the present embodiment and the first and second embodiments is the configuration of the holding member. That is, the holding member 34 according to the present embodiment is obtained by adhering and laminating the ceramic adhesive 33 on the metal foil 29. In this case, the metal foil 29 does not need to be fixed by spot welding or the like as in the first embodiment, and is fixed to the surface of the stationary blade 11 by the laminated ceramic adhesive 33.

従って、本実施の形態においても、熱処理工程において、溶融したろう付け補修材28(つまり、溶融したNi基溶融合金)がき裂22内から流出することを保持部材34により防止できるので、前記第1及び第2の実施の形態の効果(1)〜(4)と同様な効果を奏する。   Therefore, also in the present embodiment, the holding member 34 can prevent the molten brazing repair material 28 (that is, the molten Ni-based molten alloy) from flowing out of the crack 22 in the heat treatment step. In addition, the same effects as the effects (1) to (4) of the second embodiment are obtained.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、本実施の形態において、ろう付け補修材28を装填する部位はき裂22だけではなく、酸化またはエロージョンによって様々な方向に窪んだ複数の減肉部であってもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this. For example, in the present embodiment, the portion into which the brazing repair material 28 is loaded may be not only the crack 22 but also a plurality of thinned portions recessed in various directions by oxidation or erosion.

また、本実施の形態では、静翼11のき裂22または減肉部に対して補修する場合を述べたが、動翼12や燃焼器ライナ、トランジションピースなどに生じたき裂22または減肉部に対して補修してもよい。この場合、特に動翼12の場合には、この動翼12がNi基超合金にて構成されていることから、ろう付け補修材28はNi基溶融合金粉末のみが用いられる。   In the present embodiment, the case where the crack 22 or the thinned portion of the stationary blade 11 is repaired has been described. However, the crack 22 or the thinned portion generated in the moving blade 12, the combustor liner, the transition piece, or the like. May be repaired. In this case, particularly in the case of the moving blade 12, since the moving blade 12 is made of a Ni-base superalloy, only the Ni-base molten alloy powder is used for the brazing repair material 28.

更に、本発明は、蒸気タービンやジェットエンジンなどのように、高温状態で運転されるエネルギー機関に対しても適用可能な補修方法である。   Furthermore, the present invention is a repair method applicable to an energy engine that operates at a high temperature, such as a steam turbine or a jet engine.

10 ガスタービン(エネルギー機関)
11 静翼(高温部品)
12 動翼(高温部品)
19 インナーサイドウォール
20 アウターサイドウォール
21 翼部
22 き裂(損傷)
28 ろう付け補修材
29 金属箔(保持部材)
30 Co基非溶融合金粉末
31 Ni基溶融合金
33 セラミックス接着剤(保持部材)
34 保持部材
10 Gas turbine (energy engine)
11 Stator blade (high temperature parts)
12 Rotor blade (high temperature parts)
19 Inner side wall 20 Outer side wall 21 Wing part 22 Crack (damage)
28 Brazing repair material 29 Metal foil (holding member)
30 Co-based non-molten alloy powder 31 Ni-based molten alloy 33 Ceramic adhesive (holding member)
34 Holding member

Claims (7)

高温状態で運転されるエネルギー機関の高温部品に生じた複数の損傷を補修する高温部品の損傷補修方法であって、
前記高温部品の複数の損傷内にろう付け補修材を装填する補修材装填工程と、
この装填された前記ろう付け補修材の露出部分を保持部材により覆って、このろう付け補修材を保持する補修材保持工程と、
前記高温部品及び前記ろう付け補修材を拡散熱処理して、複数の損傷をろう付け補修する熱処理工程と、を有することを特徴とする高温部品の損傷補修方法。
A method for repairing damage to a high-temperature part that repairs multiple damages caused to a high-temperature part of an energy engine operated in a high-temperature state,
A repair material loading step of loading a brazing repair material into the plurality of damages of the high temperature part;
A repair material holding step of covering the exposed portion of the loaded brazing repair material with a holding member and holding the brazing repair material;
A high temperature component damage repairing method comprising: a heat treatment step of performing diffusion heat treatment on the high temperature component and the brazing repair material to braze and repair a plurality of damages.
前記複数の損傷は、異なる深さ方向に延びる複数のき裂、または異なる方向に窪む複数の減肉部であることを特徴とする請求項1に記載の高温部品の損傷補修方法。 2. The method of repairing damage to a high-temperature component according to claim 1, wherein the plurality of damages are a plurality of cracks extending in different depth directions or a plurality of thinning portions recessed in different directions. 前記保持部材が、金属箔またはセラミックス接着剤であることを特徴とする請求項1に記載の高温部品の損傷補修方法。 The method for repairing damage to a high-temperature component according to claim 1, wherein the holding member is a metal foil or a ceramic adhesive. 前記保持部材は、金属箔にセラミックス接着剤を積層させたものであることを特徴とする請求項1に記載の高温部品の損傷補修方法。 The method for repairing damage to a high-temperature component according to claim 1, wherein the holding member is obtained by laminating a ceramic adhesive on a metal foil. 前記熱処理工程は、高温部品における複数の損傷の全てにろう付け補修材を装填し、且つ保持部材により前記ろう付け補修材を保持した後に実施することを特徴とする請求項1に記載の高温部品の損傷補修方法。 2. The high temperature component according to claim 1, wherein the heat treatment step is performed after a brazing repair material is loaded to all of a plurality of damages in the high temperature component and the brazing repair material is held by a holding member. How to repair damage. 前記高温部品が、ガスタービンの静翼または動翼であることを特徴とする請求項1に記載の高温部品の損傷補修方法。 The method for repairing damage to a high-temperature component according to claim 1, wherein the high-temperature component is a stationary blade or a moving blade of a gas turbine. 高温状態で運転されるエネルギー機関の高温部品であって、請求項1乃至5のいずれか1項に記載の損傷補修方法により損傷が補修されて構成されたことを特徴とする高温部品。 A high-temperature part of an energy engine operated in a high-temperature state, wherein the damage is repaired by the damage repair method according to any one of claims 1 to 5.
JP2009100611A 2009-04-17 2009-04-17 Damage repair method for high temperature parts and high temperature parts Active JP5254116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100611A JP5254116B2 (en) 2009-04-17 2009-04-17 Damage repair method for high temperature parts and high temperature parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100611A JP5254116B2 (en) 2009-04-17 2009-04-17 Damage repair method for high temperature parts and high temperature parts

Publications (2)

Publication Number Publication Date
JP2010249063A true JP2010249063A (en) 2010-11-04
JP5254116B2 JP5254116B2 (en) 2013-08-07

Family

ID=43311653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100611A Active JP5254116B2 (en) 2009-04-17 2009-04-17 Damage repair method for high temperature parts and high temperature parts

Country Status (1)

Country Link
JP (1) JP5254116B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154197A (en) * 2011-01-24 2012-08-16 Toshiba Corp Damage-repairing method of transition piece, and transition piece
JP2020094499A (en) * 2018-12-10 2020-06-18 株式会社東芝 Method for repairing turbine component and method for manufacturing repaired turbine component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176727A (en) * 2001-12-10 2003-06-27 Mitsubishi Heavy Ind Ltd Repair method for high-temperature component and repaired high-temperature component
JP2005146920A (en) * 2003-11-12 2005-06-09 Toshiba Corp Diffusion brazing repairing method of heat resisting member
JP2005342857A (en) * 2004-06-04 2005-12-15 Toshiba Corp Repairing method by pressure brazing and gas turbine parts
JP2006046147A (en) * 2004-08-03 2006-02-16 Toshiba Corp Reproduction treatment method for gas turbine stationary blade and gas turbine
JP2009095840A (en) * 2007-10-15 2009-05-07 Mitsubishi Heavy Ind Ltd Repairing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176727A (en) * 2001-12-10 2003-06-27 Mitsubishi Heavy Ind Ltd Repair method for high-temperature component and repaired high-temperature component
JP2005146920A (en) * 2003-11-12 2005-06-09 Toshiba Corp Diffusion brazing repairing method of heat resisting member
JP2005342857A (en) * 2004-06-04 2005-12-15 Toshiba Corp Repairing method by pressure brazing and gas turbine parts
JP2006046147A (en) * 2004-08-03 2006-02-16 Toshiba Corp Reproduction treatment method for gas turbine stationary blade and gas turbine
JP2009095840A (en) * 2007-10-15 2009-05-07 Mitsubishi Heavy Ind Ltd Repairing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154197A (en) * 2011-01-24 2012-08-16 Toshiba Corp Damage-repairing method of transition piece, and transition piece
JP2020094499A (en) * 2018-12-10 2020-06-18 株式会社東芝 Method for repairing turbine component and method for manufacturing repaired turbine component
JP7068153B2 (en) 2018-12-10 2022-05-16 株式会社東芝 How to repair turbine parts and how to manufacture repaired turbine parts

Also Published As

Publication number Publication date
JP5254116B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5726545B2 (en) Transition piece damage repair method and transition piece
KR101836400B1 (en) Repair of superalloy component
JP2017020501A (en) Systems and methods for turbine blade repair
US7824510B2 (en) Methods of repairing engine components
JP5341457B2 (en) Defect repair method for high temperature parts and high temperature parts
JP2007138950A (en) Method for repairing gas turbine engine component
JP5734766B2 (en) Gas turbine combustor liner repair and regeneration method
JP2016079922A (en) Damage repair method for combustor liner and combustor liner
JP2009041449A (en) Repair method for gas turbine rotor vane
JP5535799B2 (en) Repair method of metal parts and repaired metal parts
JP2017020421A (en) Method of repairing turbine component, and turbine component
JP2012112290A (en) Repairing method for damaged high-temperature parts of gas turbine, and high-temperature parts of gas turbine
JP2009255111A (en) Defect repair method for high temperature component, high temperature component, and repair material charging apparatus
JP5439196B2 (en) Damage repair method for high temperature parts of gas turbine
JP5254116B2 (en) Damage repair method for high temperature parts and high temperature parts
JP6462485B2 (en) Turbine parts repair method and turbine parts
JP5885625B2 (en) Transition piece damage repair method and transition piece
US11982207B2 (en) Tip repair of a turbine component using a composite tip boron base pre-sintered preform
JP2009068400A (en) Gas turbine blade and method for repairing gas turbine blade
JP6567394B2 (en) Method for repairing worn parts of gas turbine parts
JP2017206971A (en) Method for repairing wear portion of gas turbine component, and gas turbine component
RU2785029C1 (en) Repairment of end part of turbine component, using composite pre-sintered mold of boron-doped base
US11517969B2 (en) Weld-brazing techniques
Klimczuk Repairability analysis of the energy gas turbine rotor blade second stage shroud by high-temperature brazing
KR100245017B1 (en) Van lug repair technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R151 Written notification of patent or utility model registration

Ref document number: 5254116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3