JP2005342857A - Repairing method by pressure brazing and gas turbine parts - Google Patents

Repairing method by pressure brazing and gas turbine parts Download PDF

Info

Publication number
JP2005342857A
JP2005342857A JP2004167004A JP2004167004A JP2005342857A JP 2005342857 A JP2005342857 A JP 2005342857A JP 2004167004 A JP2004167004 A JP 2004167004A JP 2004167004 A JP2004167004 A JP 2004167004A JP 2005342857 A JP2005342857 A JP 2005342857A
Authority
JP
Japan
Prior art keywords
repair
brazing
repair material
melting
repairing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167004A
Other languages
Japanese (ja)
Inventor
Toshiaki Fuse
俊明 布施
Masako Nakabashi
昌子 中橋
Kazuhiro Kitayama
和弘 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004167004A priority Critical patent/JP2005342857A/en
Publication of JP2005342857A publication Critical patent/JP2005342857A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repairing method by pressure brazing reducing defects in a repairing part and unnecessitating a welding process for hermetical sealing at the time of heating and pressurizing HIP. <P>SOLUTION: In this method, a repair is performed by filling a repairing material made of a brazing material in the repairing part of a surface defect, etc. of a metal part. In the method, a repairing material melting and solidifying process for melting and solidifying at least a part of the repairing material in the repairing part and a repairing material compressing, melting and solidifying process for melting and solidifying at least a part of the repairing material in compressed gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

補修部の欠陥発生を減少させるとともに、HIP加熱加圧時の真空気密封止のための溶接工程が不要な加圧ろう付補修方法に関する。   The present invention relates to a pressure brazing repair method that reduces the occurrence of defects in repair parts and does not require a welding process for vacuum hermetic sealing during HIP heating and pressurization.

ガスタービン部品など過酷な条件で運転される部品は、運転時間の経過とともに、部品に亀裂が発生する。新部品に交換すれば問題ないが、ガスタービンなどの耐熱部品は一般に高価であり、製造にも期間を要するため、亀裂の生じた部分を補修して再利用されている。補修部分を基材の特性に近づけるために、母材と同等の粉末とこれらを固めるための低融点粉末を混合して補修が実施される。   Parts that are operated under harsh conditions such as gas turbine parts are cracked as the operation time elapses. If it is replaced with a new part, there is no problem, but heat-resistant parts such as gas turbines are generally expensive and require a long time to manufacture, so that the cracked part is repaired and reused. In order to bring the repaired part closer to the characteristics of the base material, repair is performed by mixing a powder equivalent to the base material and a low melting point powder for hardening them.

このような混合粉末による補修方法の改良に関する技術として、亀裂部内に母材同等粉末のみを加圧充填し、表面部分から低融点粉末を流し込むことで、補修部をより母材の特性に近づけようとするものが提案されている(特許文献1)。この技術における加圧充填は、最初に室温で粉末をき裂部に充填する際にき裂の内部まで粉末を十分に詰め込むことを目的としている。   As a technique for improving the repair method using such mixed powder, pressurize and fill only the base material equivalent powder into the cracked part, and pour the low melting point powder from the surface part to make the repaired part closer to the characteristics of the base material. Has been proposed (Patent Document 1). The purpose of pressure filling in this technique is to fully pack the powder into the crack when the powder is first filled into the crack at room temperature.

また、補修部に基材と同質の補助板をろう付したものを、さらにレーザ溶接した後、HIP処理する技術も提案されている(特許文献2)。この技術は、溶接された補助板がHIP処理時の真空気密封止の機能を果たし、補修部を加圧するものである。
特開2001−115857号公報 特開平09−168927号公報
In addition, a technique has also been proposed in which an auxiliary plate having the same quality as that of the base material is brazed to the repaired portion and further subjected to HIP treatment after laser welding (Patent Document 2). In this technique, the welded auxiliary plate functions as a vacuum hermetic seal during HIP processing, and pressurizes the repaired portion.
JP 2001-115857 A JP 09-168927 A

上述の特許文献1記載の技術においては、粉末をき裂内に充填する際に加圧しているが、その後、溶融した低融点補修材をこの粉末間に流入される際には、重力と毛管現象のみを利用している。き裂内に充填した粉末間隔にはばらつきが生じるので、重力と毛管現象のみでは、融液が流入しにくい部分ができて、欠陥が発生しやすい。   In the technique described in Patent Document 1 described above, pressure is applied when filling the crack into the crack, but when the molten low melting point repair material is subsequently introduced between the powder, gravity and capillary Only the phenomenon is used. Since the gap between the powders filled in the cracks varies, only the gravity and the capillary phenomenon cause a portion where the melt is difficult to flow in, and defects are likely to occur.

また、特許文献2記載の技術においては、HIP処理を行っているので、補修部は高温下で加圧され、補修部内部に欠陥は残留しにくくなる。しかし、補修部に基材と同質の補助板をろう付した後、さらにレーザ溶接を行っているので、この分補修工程が増加する。1つの部品の複数部分に補修部がある場合には、その各々の補修部をレーザ溶接するため、部品の段取り変えなどさらに工程が増加する。また、ろう付部を含めてレーザ溶接を行うので、欠陥が残留しやすくなる。また、溶接が困難な材料に対しては、この方法は適用が困難である。   Further, in the technique described in Patent Document 2, since the HIP process is performed, the repaired part is pressurized at a high temperature, and defects are less likely to remain inside the repaired part. However, after the auxiliary plate having the same quality as that of the base material is brazed to the repaired portion, further laser welding is performed, so that the number of repair steps increases accordingly. When repair parts are provided in a plurality of parts of one part, each of the repair parts is laser-welded, which further increases the number of processes such as changing parts. Moreover, since laser welding is performed including the brazed portion, defects are likely to remain. Also, this method is difficult to apply to materials that are difficult to weld.

本発明は、このような事情に鑑みてなされたもので、補修部の欠陥発生を減少させるとともに、HIP加熱加圧時の真空気密封止のための溶接工程が不要な加圧ろう付補修方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a pressure brazing repair method that reduces the occurrence of defects in repair parts and does not require a welding process for vacuum hermetic sealing during HIP heating and pressurization. The purpose is to provide.

前記の目的を達成するために、請求項1に係る発明では、金属部品の表面欠陥等の補修部に、ろう材からなる補修材を充填して補修するろう付補修方法において、前記補修部で少なくとも前記補修材の一部を溶融凝固させる補修材溶融凝固工程と、圧縮ガス中で少なくとも前記補修材の一部を溶融凝固させる補修材圧縮溶融凝固工程とを有することを特徴とする加圧ろう付補修方法を提供する。   In order to achieve the above object, in the invention according to claim 1, in a brazing repair method for repairing a repair part such as a surface defect of a metal part by filling a repair material made of a brazing material, A pressure brazing process comprising: a repair material melting and solidifying step for melting and solidifying at least a part of the repair material; and a repair material compressing and melting solidification step for melting and solidifying at least a part of the repair material in a compressed gas. Provide supplementary repair methods.

請求項2に係る発明では、金属部品の表面欠陥等の補修部に、ろう材からなる補修材を充填して補修するろう付補修方法において、前記補修部で少なくとも前記補修材の一部を溶融させる補修材溶融凝固工程と、少なくとも補修材の一部を溶融させたまま圧縮ガス雰囲気にした後、冷却凝固させる補修材冷却凝固工程とを有することを特徴とする加圧ろう付補修方法を提供する。   In the invention according to claim 2, in the brazing repair method for repairing a repair part such as a surface defect of a metal part by filling a repair material made of a brazing material, at least a part of the repair material is melted in the repair part. There is provided a pressure brazing repair method comprising: a repairing material melting and solidifying step to be performed; and a repairing material cooling and solidifying step of cooling and solidifying after at least part of the repairing material is melted in a compressed gas atmosphere. To do.

請求項3に係る発明では、前記補修部の狭隘部に低融点補修材を配置するとともに、表層部にこれより高融点の補修材を配置する請求項1または2記載の加圧ろう付補修方法を提供する。   In the invention which concerns on Claim 3, while fixing low melting point repair material to the narrow part of the said repair part, the repair material of higher melting point than this is arrange | positioned to surface layer part, The pressure brazing repair method of Claim 1 or 2 I will provide a.

請求項4に係る発明では、前記金属部品の表層部に配置した高融点補修材のさらに上層部の少なくとも一部に、これより低融点の補修材を配置する請求項1または2記載の加圧ろう付補修方法を提供する。   In the invention which concerns on Claim 4, the pressurization material of Claim 1 or 2 which arrange | positions a low melting point repair material to at least one part of the upper layer part of the high melting point repair material arrange | positioned at the surface layer part of the said metal components from this Provide brazing repair methods.

請求項5に係る発明では、前記金属部品の少なくとも表層部に、その内部よりも耐酸化特性に優れる補修材を配置する請求項1または2記載の加圧ろう付補修方法を提供する。   According to a fifth aspect of the present invention, there is provided the pressure brazing repair method according to the first or second aspect, wherein a repair material having better oxidation resistance than the inside is disposed at least on the surface layer of the metal part.

請求項6に係る発明では、前記金属部品の少なくとも基材と接する部分の一部にアルミニウムを含有しない補修材を配置する請求項1または2記載の加圧ろう付補修方法を提供する。   According to a sixth aspect of the present invention, there is provided the pressure brazing repair method according to the first or second aspect, wherein a repair material that does not contain aluminum is disposed in at least a part of the metal part that contacts the base material.

請求項7に係る発明では、前記補修材溶融凝固工程の後に、溶融凝固させた部分の気密検査工程を有する請求項1記載の加圧ろう付補修方法を提供する。   In the invention which concerns on Claim 7, the pressure brazing repair method of Claim 1 which has the airtight test process of the melt-solidified part after the said repair material melt-solidification process is provided.

請求項8に係る発明では、前記補修材溶融凝固工程で溶融凝固させた部分の一部を真空にして気密検査する請求項7記載の加圧ろう付補修方法を提供する。   According to an eighth aspect of the present invention, there is provided the pressure brazing repair method according to the seventh aspect, wherein a part of the portion melted and solidified in the repair material melting and solidifying step is evacuated and subjected to an airtight inspection.

請求項9に係る発明では、前記補修材溶融凝固工程で溶融凝固させた部分の一部を加圧して気密検査する請求項7記載のろう付補修方法を提供する。   In the invention which concerns on Claim 9, the brazing repair method of Claim 7 which pressurizes a part of part melted and solidified at the said repair material melt-solidification process, and carries out an airtight inspection is provided.

請求項10に係る発明では、請求項1〜9記載の加圧ろう付補修方法を用いて補修されたガスタービン部品を提供する。   In the invention which concerns on Claim 10, the gas turbine component repaired using the pressure brazing repair method of Claims 1-9 is provided.

本発明によれば、補修部の欠陥発生を減少させるとともに、HIP加熱加圧時の真空気密封止のための溶接工程が不要な加圧ろう付補修方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while reducing the defect generation | occurrence | production of a repair part, the pressure brazing repair method which does not require the welding process for the vacuum airtight sealing at the time of HIP heating pressurization can be provided.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態(図1、図2、図3)]
図1は、本発明の第1実施形態のろう付補修方法の説明図(補修部の縦断面図)である。また、図2および図3は、本発明の第1実施形態のろう付補修方法の流れを示すフロー図である。
[First Embodiment (FIGS. 1, 2, and 3)]
FIG. 1 is an explanatory view (longitudinal sectional view of a repair portion) of a brazing repair method according to a first embodiment of the present invention. 2 and 3 are flowcharts showing the flow of the brazing repair method according to the first embodiment of the present invention.

図1および図2に示すように、本実施形態では、Ni基合金の基材1の補修部をグラインダーなどで整形し(S101))、開先2を設ける。この開先2の内部には酸化物3が残留していてもよい。ただし、開先2の表面近傍はグラインダーなどによる整形時に酸化物を削って除去しておく。   As shown in FIGS. 1 and 2, in this embodiment, the repair portion of the Ni-based alloy base material 1 is shaped with a grinder or the like (S 101), and the groove 2 is provided. The oxide 3 may remain inside the groove 2. However, the vicinity of the surface of the groove 2 is removed by shaving the oxide during shaping with a grinder or the like.

この開先内に混合補修材4を配置する(S102)。混合補修材は、基材と同材質の粉末とこれにホウ素(B)、およびケイ素(Si)を数%添加して溶融温度を低下させた粉末との混合物で、有機物を用いてペースト状にしたものである。   The mixed repair material 4 is placed in the groove (S102). The mixed repair material is a mixture of a powder of the same material as the base material and a powder in which boron (B) and silicon (Si) are added to this powder to reduce the melting temperature, and is made into a paste using an organic substance. It is a thing.

この混合補修材を図示省略の真空炉内に設置し(S103)加熱する(S104)。加熱温度は、溶融温度を低下させた粉末が溶融し、かつ基材と同材質の粉末が溶融しない温度にする。   This mixed repair material is placed in a vacuum furnace (not shown) (S103) and heated (S104). The heating temperature is set to a temperature at which the powder whose melting temperature is lowered is melted and the powder of the same material as the substrate is not melted.

このようにして基材補修部に混合補修材をろう付した後、一旦凝固させる(S105)。これを次にHIP炉に挿入し(S106)、加熱加圧する(S107)。HIP加熱温度は、先の真空炉での加熱温度と同様の溶融温度を低下させた粉末が溶融し、かつ基材と同材質の粉末が溶融しない温度とする。加圧は通常のHIP炉で容易に得られる1000気圧程度とする。   After the mixed repair material is brazed to the base material repair portion in this way, it is once solidified (S105). This is then inserted into a HIP furnace (S106) and heated and pressurized (S107). The HIP heating temperature is set to a temperature at which a powder having a melting temperature similar to the heating temperature in the previous vacuum furnace is melted and a powder of the same material as the substrate is not melted. The pressurization is about 1000 atm which can be easily obtained with a normal HIP furnace.

このような条件で30分〜数時間程度保持した後、室温まで冷却して補修材を溶融凝固させ(S108)HIP炉から取り出す。補修部の凹凸をグラインダーなどで平滑に仕上げて補修を終了する(S109)。   After holding for about 30 minutes to several hours under such conditions, the repair material is melted and solidified by cooling to room temperature (S108) and taken out from the HIP furnace. The unevenness of the repaired portion is finished with a grinder or the like to finish the repair (S109).

なお、図3に(S201)〜(S209)として示すように、補修材配置後、真空炉ではなくHIP炉に挿入し、加熱のみを行い混合補修材の一部を溶融させ、その後HIP炉にアルゴンガスを導入し加熱加圧工程を行ってもよい。この際、十分な加圧力が得られない場合には、一旦温度を低下させるが、補修物を炉から取り出すことなく、そのまま再加熱加圧する。その後の工程は、図2で示したものと同様である。   As shown in FIG. 3 as (S201) to (S209), after the repair material is placed, it is inserted into the HIP furnace instead of the vacuum furnace, and only the heating is performed to melt a part of the mixed repair material, and then into the HIP furnace. Argon gas may be introduced to perform the heating and pressurizing step. At this time, if sufficient pressurizing force cannot be obtained, the temperature is once lowered, but reheating and pressurizing is performed as it is without taking out the repaired product from the furnace. The subsequent steps are the same as those shown in FIG.

本実施の形態によれば、まず混合補修材の少なくとも一部を溶融、あるいは溶融・凝固させた段階で、この混合補修材自体が、HIPの加熱加圧に耐える真空気密封止機能を果たすようになる。   According to the present embodiment, at first, at least a part of the mixed repair material is melted or melted and solidified so that the mixed repair material itself performs a vacuum hermetic sealing function that can withstand heating and pressurization of HIP. become.

また、この一旦溶融凝固した混合補修材はその後のHIP加熱加圧時に、板材などのキャニングと比較して容易に流動し、かつ真空気密を保つことができる。このため、別にキャニングなどの真空封止を行わなくても、補修部に残留しようとしているボイドなどの内部欠陥をHIPの等方圧でつぶして除去することができ、補修部の機械特性などが向上する。また、真空炉とHIP炉を併用しない方式では、冷却と炉の入れ替え時間を省略することができる。   Further, the once repaired and solidified mixed repair material can easily flow and maintain a vacuum airtightness in subsequent HIP heating and pressurization as compared with canning such as a plate material. For this reason, even if vacuum sealing such as canning is not performed separately, internal defects such as voids remaining in the repaired portion can be crushed and removed with isotropic pressure of HIP, and the mechanical properties of the repaired portion are improved. improves. Further, in the method in which the vacuum furnace and the HIP furnace are not used together, the cooling and furnace replacement time can be omitted.

[第2実施形態(図4)]
図4は本発明の第2実施形態のろう付補修方法の説明図(補修部の縦断面図)である。本実施形態は、基材1の発生したき裂の開口が比較的小さいものに対する適用例であり、き裂の表層部をグラインダーで整形し、酸化物を除去し開先2を設ける。
[Second Embodiment (FIG. 4)]
FIG. 4 is an explanatory view (longitudinal sectional view of a repair portion) of a brazing repair method according to a second embodiment of the present invention. This embodiment is an application example for a crack having a relatively small opening in the base material 1, and the surface layer of the crack is shaped with a grinder to remove the oxide and provide the groove 2.

き裂の開口が小さいので開先の内部には酸化物3が残留している。この開口の小さいき裂の内部には基材と同質の成分にホウ素(B)、ケイ素(Si)を数%添加して融点を低下させたペースト状のろう材5を注入する。さらに開先の表層部には混合補修材4を配置する。   Since the opening of the crack is small, the oxide 3 remains inside the groove. A paste-like brazing material 5 having a melting point lowered by adding several percent of boron (B) and silicon (Si) to components of the same quality as the base material is injected into the crack having a small opening. Further, the mixed repair material 4 is disposed on the surface layer portion of the groove.

このような状態で、第1実施形態と同様の、混合補修材の真空中での溶融凝固を行う。この際、開先のき裂の開口は小さく、また内部には酸化物が残留しているため、開先内部にはろう材が十分になじまない。しかし、開先表層部はグラインダーで酸化物を除去しているので、ろう材5と混合補修材4が十分に基材に濡れ、良好に真空封止される。この状態でHIP炉中で加熱加圧すると、一旦溶融凝固している混合補修材4から開先2の内部にHIPの加圧力が伝達される。   In this state, similar to the first embodiment, the mixed repair material is melted and solidified in vacuum. At this time, the opening of the crack in the groove is small, and the oxide remains in the inside, so that the brazing material does not fully adapt inside the groove. However, since the oxide on the groove surface layer portion is removed by a grinder, the brazing material 5 and the mixed repair material 4 are sufficiently wetted by the base material and are well vacuum-sealed. When heated and pressurized in the HIP furnace in this state, the HIP pressure is transmitted from the mixed repair material 4 once melted and solidified to the inside of the groove 2.

このため、開先内で基材側になじみが不良であった溶融ろう材は、基材に密着する。この段階では、ろう材は基材に密着しているだけで、金属的な結合はしていない。しかし、この密着状態を保っている間に、ろう材中のホウ素(B)が基材側に拡散し、基材の溶融温度を低下させ、基材の表層部も一部溶融する。基材の表層が溶融することで、基材表面に残留していた酸化物が分離する。   For this reason, the molten brazing material that was poorly adapted to the base material side in the groove closely adheres to the base material. At this stage, the brazing material is only in close contact with the base material and is not metallicly bonded. However, while maintaining this close contact state, boron (B) in the brazing material diffuses to the base material side, lowers the melting temperature of the base material, and partially melts the surface layer portion of the base material. As the surface layer of the base material melts, the oxide remaining on the base material surface is separated.

また、酸化物の不連続部からも溶融したろう材が侵入し、その内部の基材を一部溶融させるため酸化物が分離する。このような現象により、き裂内部においても、ろう材と基材との金属的な結合状態が得られる。き裂内部のろう材のホウ素(B)は基材中に拡散し、均質化する。また、開先表層部には、混合補修材を配置しているので、基材に近い材質となる。   In addition, the molten brazing material also enters from the discontinuous portion of the oxide, and the oxide is separated to partially melt the substrate inside. Due to such a phenomenon, a metallic bonding state between the brazing material and the base material can be obtained even inside the crack. Boron (B) of the brazing material inside the crack diffuses into the substrate and homogenizes. Further, since the mixed repair material is arranged on the groove surface layer portion, the material is close to the base material.

本実施の形態によれば、事前の酸化物除去工程なしに、狭隘なき裂内部の酸化物を除去し補修することができる。   According to this embodiment, the oxide inside the narrow crack can be removed and repaired without a prior oxide removal step.

[第3実施形態(図5)]
図5(a),(b)は、本発明の第3実施形態のろう付補修方法の説明図(補修部の縦断面図)である。本実施形態では、図示のように、第2実施形態に加えて、混合補修材4のさらに上層にろう材5を配置する。このようにして同様の加熱を行う。上層部にろう材を配置しているので、開先表面の封止が十分に行われるようになる。
[Third Embodiment (FIG. 5)]
FIGS. 5A and 5B are explanatory views (longitudinal sectional views of the repair portion) of the brazing repair method according to the third embodiment of the present invention. In the present embodiment, as shown in the drawing, in addition to the second embodiment, a brazing material 5 is disposed in an upper layer of the mixed repair material 4. In this way, similar heating is performed. Since the brazing material is disposed in the upper layer portion, the groove surface is sufficiently sealed.

なお、混合補修材4のみでも封止は可能であるが、ろう材と比較して流動性が劣るので、基材との金属的な結合が不十分なる部分が発生する可能性もある。このような場合には、次工程でHIP処理をしても、この結合が不十分な部分からHIP炉内のアルゴンガスが開先内部に侵入してしまい、ろう材5や混合補修材4を開先内に密着させることができなくなる。   In addition, although sealing is possible only by the mixed repair material 4, since fluidity | liquidity is inferior compared with a brazing material, the part which metal coupling | bonding with a base material becomes inadequate may generate | occur | produce. In such a case, even if the HIP process is performed in the next step, the argon gas in the HIP furnace penetrates into the inside of the groove from the insufficiently bonded portion, and the brazing material 5 and the mixed repair material 4 are removed. It becomes impossible to make it adhere in the groove.

本実施の形態によれば、上層に流動性のよいろう材を配置したので、このような不十分な結合を防止でき、確実に開先内補修部の欠陥発生を防止できる。   According to the present embodiment, since the brazing material having good fluidity is disposed in the upper layer, such insufficient bonding can be prevented, and the occurrence of defects in the in-groove repair portion can be surely prevented.

[第4実施形態(図6)]
図6は本発明の第4実施形態のろう付補修方法の説明図(補修部の縦断面図)である。本実施形態では、基材1の開先2内に混合補修材4を配置し、その表層部にこの混合補修材4より高温での耐酸化特性に優れる耐酸化補修材6を配置する。このような状態で第1実施形態と同様に加熱、および加熱加圧を行う。
[Fourth Embodiment (FIG. 6)]
FIG. 6 is an explanatory view (longitudinal sectional view of the repaired portion) of the brazing repair method according to the fourth embodiment of the present invention. In the present embodiment, the mixed repair material 4 is disposed in the groove 2 of the base material 1, and the oxidation-resistant repair material 6 that is superior in oxidation resistance characteristics at a higher temperature than the mixed repair material 4 is disposed on the surface layer portion. In this state, heating and heating / pressing are performed in the same manner as in the first embodiment.

本実施の形態によれば、補修後に、補修部の表面が耐酸化特性に優れたものになり、補修部品の高温での耐酸化特性が向上する。   According to the present embodiment, after repair, the surface of the repaired portion has excellent oxidation resistance characteristics, and the oxidation resistance characteristics at high temperatures of the repair parts are improved.

[第5実施形態(図7)]
図7は本発明の第5実施形態のろう付補修方法の説明図(補修部の縦断面図)である。
[Fifth Embodiment (FIG. 7)]
FIG. 7 is an explanatory view (longitudinal sectional view of a repair portion) of a brazing repair method according to a fifth embodiment of the present invention.

本実施形態では、基材1の補修部に設けた開先2の表面部分にアルミニウム成分を含有しないアルミニウムレス補修材7を配置する。このアルミニウムレス補修材は、ホウ素(B)、ケイ素(Si)を数%含有し、ろう材として作用するようにしてある。   In the present embodiment, an aluminum-less repair material 7 that does not contain an aluminum component is disposed on the surface portion of the groove 2 provided in the repair portion of the base material 1. This aluminum-less repair material contains several percent of boron (B) and silicon (Si), and acts as a brazing material.

さらに開先内を埋めるように混合補修材4を充填する。この混合補修材4は、基材と同材質の粉末と、これにホウ素(B)、およびケイ素(Si)を数%添加して溶融温度を低下させた粉末との混合物で、有機物を用いてペースト状にしたものである。   Further, the mixed repair material 4 is filled so as to fill the groove. This mixed repair material 4 is a mixture of a powder of the same material as the base material and a powder obtained by adding several percent of boron (B) and silicon (Si) to lower the melting temperature, and using organic matter. It is a paste.

このような補修物を第1実施形態と同様に、真空炉中で加熱すると、アルミニウムレス補修材7および混合補修材4中の低溶融温度の粉末が溶融し、開先内とその表面を埋める。次にHIP炉中で加圧溶融すると、先の真空炉中と同様に低溶融温度部分が溶融する。高圧のアルゴンガスで等方加圧されているので、補修部に微小な空隙が存在していても、これがつぶされる。   When such a repaired product is heated in a vacuum furnace in the same manner as in the first embodiment, the low melting temperature powder in the aluminum-less repair material 7 and the mixed repair material 4 is melted to fill the groove and the surface thereof. . Next, when the pressure melting is performed in the HIP furnace, the low melting temperature portion is melted as in the previous vacuum furnace. Since it is isotropically pressurized with high-pressure argon gas, even if a minute gap exists in the repaired portion, it is crushed.

このまま冷却するとボイド欠陥のほとんどない良好な補修物が得られる。アルミニウムレス補修材を使用する目的は、基材や炉壁から発生する酸素や窒素などのガス成分と補修材中のアルミニウムとの反応を防止するためである。このような反応が起きると、補修部内に、アルミナや窒化アルミニウムなどが生成し、補修部の機械的特性を低下させるため、これを防止している。基材からのガス発生が懸念される場合には、特に開先内の表面部分に設置する補修材をアルミニウムレスにすればよい。また、炉壁などからのガス発生が懸念される場合には、図7の混合補修材4の粉末にもアルミニウムを含有しないようにすればよい。   Cooling as it is, a good repair with almost no void defects can be obtained. The purpose of using the aluminum-less repair material is to prevent a reaction between gas components such as oxygen and nitrogen generated from the base material and the furnace wall and aluminum in the repair material. When such a reaction occurs, alumina, aluminum nitride, or the like is generated in the repaired portion, and the mechanical properties of the repaired portion are deteriorated. When there is a concern about gas generation from the base material, the repair material to be installed on the surface portion in the groove may be made aluminum-free. In addition, when there is a concern about gas generation from the furnace wall or the like, the powder of the mixed repair material 4 in FIG.

本実施の形態によれば、基材、あるいは炉壁などからのガス発生があっても、補修部にアルミナ、あるいは窒化アルミニウムが生成することを防止でき、補修部の機械特性の劣化を防止できる。   According to the present embodiment, even if gas is generated from the base material or the furnace wall, it is possible to prevent the generation of alumina or aluminum nitride in the repair portion, and it is possible to prevent deterioration of the mechanical properties of the repair portion. .

[第6実施形態(図8、図9、図10)]
図8は本実施形態の拡散ろう付補修方法の説明図(補修部の縦断面図)であり、図9は本実施形態のろう付補修方法の流れを示すフロー図である。
[Sixth Embodiment (FIGS. 8, 9, and 10)]
FIG. 8 is an explanatory view of the diffusion brazing repair method of the present embodiment (a longitudinal sectional view of the repair portion), and FIG. 9 is a flowchart showing the flow of the brazing repair method of the present embodiment.

本実施形態では、基材1に発生したき裂が板厚を貫通し、表面から裏面まで貫通した補修部となっている場合についてのものである。本実施形態でも、図9にステップ(S301〜311)として示すように、前記実施形態と略同様であるが、本実施形態の場合には、貫通している補修開先内を、上述実施形態と同様にして仮溶融後の補修材8で埋める。この仮溶融後の補修材8の内部に表面から裏面に貫通した欠陥があると、次のHIPによる加熱加圧時(S308,S309)に、この欠陥内にHIPのアルゴンガスが侵入し、補修部に適切な加圧が掛らない部分が発生する。   In this embodiment, it is a thing about the case where the crack which generate | occur | produced in the base material 1 is a repair part which penetrated plate | board thickness and penetrated from the surface to the back surface. Also in this embodiment, as shown as steps (S301 to S311) in FIG. 9, it is substantially the same as the above embodiment, but in the case of this embodiment, the inside of the repairing groove penetrating is described in the above embodiment. In the same manner as described above, it is filled with the repair material 8 after temporary melting. If there is a defect penetrating from the front surface to the back surface of the repair material 8 after the temporary melting, the HIP argon gas penetrates into the defect during the heating and pressurization by the next HIP (S308, S309), and repair is performed. A portion where appropriate pressure is not applied to the portion is generated.

これを防止するため、本実施形態では、真空炉での仮溶融後、真空検査容器9を片側に設置し、この内部を真空にする。   In order to prevent this, in this embodiment, after the temporary melting in the vacuum furnace, the vacuum inspection container 9 is installed on one side, and the inside is evacuated.

真空を引いた段階で明らかにリークがあると認められる場合には、仮溶融後の補修材8の表面に低溶融の補修材を塗布し、再度、真空炉中で溶融処理を行い、真空検査容器9を用いて、リークチェックを行う(S306)。また、最初の真空引きの段階で明らかにリークが認められない場合には、真空検査容器9を設置した側と反対側にヘリウム(He)ガスを流出させ、真空検査容器9側でこのヘリウムを検知する。もし、ヘリウムが検出される場合には、微細なリークがあるので、上記と同様に再仮溶融を行う。   If it is recognized that there is a clear leak when the vacuum is pulled, a low-melting repair material is applied to the surface of the repair material 8 after the temporary melting, and the melting process is performed again in a vacuum furnace, and a vacuum inspection is performed. A leak check is performed using the container 9 (S306). In addition, if no leak is clearly observed at the first evacuation stage, helium (He) gas is allowed to flow out to the side opposite to the side where the vacuum cuvette 9 is installed, and this helium is removed from the vacuum cuvette 9 side. Detect. If helium is detected, there is a fine leak, so re-premelting is performed in the same manner as described above.

なお、図10に示すように、加圧検査容器10を設置して、補修部にガス圧を加え、一定時間保持後のガス圧の低下により、補修部の貫通欠陥の有無を検査してもよい。   In addition, as shown in FIG. 10, even if a pressurized inspection container 10 is installed, a gas pressure is applied to the repaired portion, and the presence or absence of a penetration defect in the repaired portion is inspected due to a decrease in the gas pressure after holding for a certain period of time. Good.

本実施の形態によれば、補修部を仮溶融した段階で補修部の貫通欠陥を検知し、再溶融処理によりこれを埋めることができるので、最終的なHIP補修後に貫通欠陥が残留するのを防止できる。このため、補修部の機械強度の低下を防止できる。   According to this embodiment, since the penetration defect of the repaired portion can be detected at the stage where the repaired portion is temporarily melted and this can be filled by remelting processing, the penetration defect remains after the final HIP repair. Can be prevented. For this reason, the fall of the mechanical strength of a repair part can be prevented.

本発明の第1実施形態を示す説明図。Explanatory drawing which shows 1st Embodiment of this invention. 本発明の第1実施形態の流れを示すフロー図。The flowchart which shows the flow of 1st Embodiment of this invention. 本発明の第1実施形態の流れを示すフロー図。The flowchart which shows the flow of 1st Embodiment of this invention. 本発明の第2実施形態を示す説明図。Explanatory drawing which shows 2nd Embodiment of this invention. (a),(b)は、本発明の第3実施形態を示す説明図。(A), (b) is explanatory drawing which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す説明図。Explanatory drawing which shows 4th Embodiment of this invention. 本発明の第5実施形態を示す説明図。Explanatory drawing which shows 5th Embodiment of this invention. 本発明の第6実施形態を示す説明図。Explanatory drawing which shows 6th Embodiment of this invention. 本発明の第6実施形態の流れを示すフロー図。The flowchart which shows the flow of 6th Embodiment of this invention. 本発明の第6実施形態を示す説明図。Explanatory drawing which shows 6th Embodiment of this invention.

符号の説明Explanation of symbols

1 基材
2 開先
3 酸化物
4 混合補修材
5 ろう材
6 耐酸化補修材
7 アルミニウムレス補修材
8 仮溶融後の補修材
9 真空検査容器
10 加圧検査容器
DESCRIPTION OF SYMBOLS 1 Base material 2 Groove 3 Oxide 4 Mixed repair material 5 Brazing material 6 Oxidation-resistant repair material 7 Aluminum-less repair material 8 Repair material 9 after temporary melting Vacuum inspection container 10 Pressure inspection container

Claims (10)

金属部品の表面欠陥等の補修部に、ろう材からなる補修材を充填して補修するろう付補修方法において、前記補修部で少なくとも前記補修材の一部を溶融凝固させる補修材溶融凝固工程と、圧縮ガス中で少なくとも前記補修材の一部を溶融凝固させる補修材圧縮溶融凝固工程とを有することを特徴とする加圧ろう付補修方法。 In a brazing repair method in which a repairing part made of a brazing material is filled in a repairing part such as a surface defect of a metal part and repaired, a repairing material melting and solidifying step in which at least a part of the repairing material is melted and solidified in the repairing part; A pressure brazing repair method comprising: a repair material compression melting solidification step in which at least a part of the repair material is melted and solidified in a compressed gas. 金属部品の表面欠陥等の補修部に、ろう材からなる補修材を充填して補修するろう付補修方法において、前記補修部で少なくとも前記補修材の一部を溶融させる補修材溶融凝固工程と、少なくとも補修材の一部を溶融させたまま圧縮ガス雰囲気にした後、冷却凝固させる補修材冷却凝固工程とを有することを特徴とする加圧ろう付補修方法。 In a brazing repair method in which a repair material such as a surface defect of a metal part is filled with a repair material made of a brazing material and repaired, a repair material melting and solidifying step of melting at least a part of the repair material in the repair portion; A pressure brazing repair method comprising: a repair material cooling and solidifying step of cooling and solidifying after forming a compressed gas atmosphere while at least a part of the repair material is melted. 前記補修部の狭隘部に低融点補修材を配置するとともに、表層部にこれより高融点の補修材を配置する請求項1または2記載の加圧ろう付補修方法。 The pressure brazing repair method according to claim 1 or 2, wherein a low melting point repair material is disposed in a narrow portion of the repair portion, and a repair material having a higher melting point is disposed in a surface layer portion. 前記金属部品の表層部に配置した高融点補修材のさらに上層部の少なくとも一部に、これより低融点の補修材を配置する請求項1または2記載の加圧ろう付補修方法。 The pressure brazing repair method according to claim 1 or 2, wherein a repair material having a lower melting point is disposed on at least a part of a further upper layer portion of the high melting point repair material disposed on a surface layer portion of the metal part. 前記金属部品の少なくとも表層部に、その内部よりも耐酸化特性に優れる補修材を配置する請求項1または2記載の加圧ろう付補修方法。 The pressure brazing repair method according to claim 1 or 2, wherein a repair material having better oxidation resistance than the inside is disposed on at least a surface layer portion of the metal part. 前記金属部品の少なくとも基材と接する部分の一部にアルミニウムを含有しない補修材を配置する請求項1または2記載の加圧ろう付補修方法。 The pressure brazing repair method according to claim 1 or 2, wherein a repair material that does not contain aluminum is disposed on at least a part of the metal part that contacts the base material. 前記補修材溶融凝固工程の後に、溶融凝固させた部分の気密検査工程を有する請求項1記載の加圧ろう付補修方法。 The pressure brazing repair method according to claim 1, further comprising an airtightness inspection step for a melt-solidified portion after the repair material melt-solidification step. 前記補修材溶融凝固工程で溶融凝固させた部分の一部を真空にして気密検査する請求項7記載の加圧ろう付補修方法。 The pressure brazing repair method according to claim 7, wherein a part of the portion melted and solidified in the repair material melting and solidifying step is subjected to an airtight inspection by applying a vacuum. 前記補修材溶融凝固工程で溶融凝固させた部分の一部を加圧して気密検査する請求項7記載のろう付補修方法。 The brazing repair method according to claim 7, wherein a part of the portion melted and solidified in the repair material melting and solidifying step is pressurized to perform an airtight inspection. 請求項1〜9記載の加圧ろう付補修方法を用いて補修されたガスタービン部品。 A gas turbine component repaired using the pressure brazing repair method according to claim 1.
JP2004167004A 2004-06-04 2004-06-04 Repairing method by pressure brazing and gas turbine parts Pending JP2005342857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167004A JP2005342857A (en) 2004-06-04 2004-06-04 Repairing method by pressure brazing and gas turbine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167004A JP2005342857A (en) 2004-06-04 2004-06-04 Repairing method by pressure brazing and gas turbine parts

Publications (1)

Publication Number Publication Date
JP2005342857A true JP2005342857A (en) 2005-12-15

Family

ID=35495689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167004A Pending JP2005342857A (en) 2004-06-04 2004-06-04 Repairing method by pressure brazing and gas turbine parts

Country Status (1)

Country Link
JP (1) JP2005342857A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160392A (en) * 2005-12-16 2007-06-28 Honda Motor Co Ltd Die repairing method
JP2008229719A (en) * 2007-03-22 2008-10-02 United Technol Corp <Utc> Method for repairing crack in workpiece such as turbine engine component
JP2010249063A (en) * 2009-04-17 2010-11-04 Toshiba Corp Damage repairing method of high temperature component and high temperature component
CN102601571A (en) * 2011-01-24 2012-07-25 株式会社东芝 Damage-repairing method of transition piece and transition piece
EP2492044A1 (en) * 2011-02-23 2012-08-29 Rolls-Royce plc A method of repairing a component
CN103484851A (en) * 2012-06-13 2014-01-01 通用电气公司 Method for repairing metal components and gas turbine components
CN103551755A (en) * 2013-10-31 2014-02-05 常州大学 Corrosion crack welding restoration method and material for regenerator
JP2015000433A (en) * 2013-06-18 2015-01-05 日本軽金属株式会社 Construction method of airtight aluminum piping structure
CN104493422A (en) * 2014-12-29 2015-04-08 北京钢研高纳科技股份有限公司 Defect repair method of high-temperature alloy casting
CN106112296A (en) * 2016-07-25 2016-11-16 柳州名品科技有限公司 The welding method of loading shovel
CN106141477A (en) * 2016-07-29 2016-11-23 广西安讯科技投资有限公司 The welding method of fire-fighting drawdown pump
CN106141458A (en) * 2016-07-29 2016-11-23 广西安讯科技投资有限公司 The restorative procedure of fire-fighting drawdown pump
CN106181037A (en) * 2016-07-29 2016-12-07 广西安讯科技投资有限公司 The welding method of fire-fighting drawdown pump for kitchen use
CN106180942A (en) * 2016-07-25 2016-12-07 柳州名品科技有限公司 The welding method of scraper scraper bowl
CN106216863A (en) * 2016-07-25 2016-12-14 柳州名品科技有限公司 Roll the welding method of power shovel
US10625361B2 (en) * 2017-06-14 2020-04-21 General Electric Company Method of welding superalloys
KR20200052436A (en) * 2018-10-29 2020-05-15 한국해양대학교 산학협력단 Method of suppressing cracking with excess deposition in repair of part by using direct energy deposition process

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663508B2 (en) * 2005-12-16 2011-04-06 本田技研工業株式会社 Mold repair method
JP2007160392A (en) * 2005-12-16 2007-06-28 Honda Motor Co Ltd Die repairing method
JP2008229719A (en) * 2007-03-22 2008-10-02 United Technol Corp <Utc> Method for repairing crack in workpiece such as turbine engine component
JP2010249063A (en) * 2009-04-17 2010-11-04 Toshiba Corp Damage repairing method of high temperature component and high temperature component
US9149881B2 (en) 2011-01-24 2015-10-06 Kabushiki Kaisha Toshiba Damage-repairing method of transition piece and transition piece
CN102601571A (en) * 2011-01-24 2012-07-25 株式会社东芝 Damage-repairing method of transition piece and transition piece
EP2492044A1 (en) * 2011-02-23 2012-08-29 Rolls-Royce plc A method of repairing a component
CN103484851A (en) * 2012-06-13 2014-01-01 通用电气公司 Method for repairing metal components and gas turbine components
JP2015000433A (en) * 2013-06-18 2015-01-05 日本軽金属株式会社 Construction method of airtight aluminum piping structure
CN103551755A (en) * 2013-10-31 2014-02-05 常州大学 Corrosion crack welding restoration method and material for regenerator
CN104493422A (en) * 2014-12-29 2015-04-08 北京钢研高纳科技股份有限公司 Defect repair method of high-temperature alloy casting
CN106216863A (en) * 2016-07-25 2016-12-14 柳州名品科技有限公司 Roll the welding method of power shovel
CN106180942A (en) * 2016-07-25 2016-12-07 柳州名品科技有限公司 The welding method of scraper scraper bowl
CN106112296A (en) * 2016-07-25 2016-11-16 柳州名品科技有限公司 The welding method of loading shovel
CN106141477A (en) * 2016-07-29 2016-11-23 广西安讯科技投资有限公司 The welding method of fire-fighting drawdown pump
CN106141458A (en) * 2016-07-29 2016-11-23 广西安讯科技投资有限公司 The restorative procedure of fire-fighting drawdown pump
CN106181037A (en) * 2016-07-29 2016-12-07 广西安讯科技投资有限公司 The welding method of fire-fighting drawdown pump for kitchen use
US10625361B2 (en) * 2017-06-14 2020-04-21 General Electric Company Method of welding superalloys
KR20200052436A (en) * 2018-10-29 2020-05-15 한국해양대학교 산학협력단 Method of suppressing cracking with excess deposition in repair of part by using direct energy deposition process
KR102147580B1 (en) 2018-10-29 2020-08-24 한국해양대학교 산학협력단 Material repair method using the ded process to suppress cracks between the base material and the conservative

Similar Documents

Publication Publication Date Title
JP2005342857A (en) Repairing method by pressure brazing and gas turbine parts
KR102456806B1 (en) Method of welding superalloys
CN109534842B (en) Welding process for power semiconductor module
EP2492044A1 (en) A method of repairing a component
CN105479030A (en) Active anti-corrosion SnZn base brazing filler metal, manufacturing method thereof and low-temperature ultrasonic brazing method of ceramic and/or composite material and aluminum and magnesium alloy
CN102107306A (en) Repairing method for defects of turbine guide blade
US6691911B2 (en) Method for hermetic sealing of electronic parts
Li et al. Mechanical behavior of ceramic-metal joint under quasi-static and dynamic four point bending: Microstructures, damage and mechanisms
US20180142316A1 (en) Method for repairing defects on hot parts of turbomachines through hybrid hot isostatic pressing (hip) process
US7495333B2 (en) Seal cover structure comprising a nickel-tin (Ni—Sn) alloy barrier layer formed between a nickel (Ni) plating layer and a gold-tin (Au—Sn) brazing layer having Sn content of 20.65 to 25 WT % formed on the seal cover main body
CN110352103A (en) The method for obtaining the crackle of the method for the part with self-healing characteristics, the part with self-healing characteristics and reparation part
JP2005305492A (en) Diffusion brazing repair method and heat resistant component repaired thereby
CN100496852C (en) Tools for diffusion bonding and superplastic forming
JPH1133832A (en) Method for repairing aluminum alloy part item
JP4342276B2 (en) Diffusion brazing repair method for gas turbine parts
US20150190891A1 (en) Repair of Casting Defects
JP5236535B2 (en) Joining material for Al alloy-ceramic composite material and method for producing the same
JPH1080827A (en) Repairing method of aluminium alloy part
JP5209356B2 (en) Al alloy-ceramic composite material joining method and joined body using the same
JP4585928B2 (en) Method for treating metal adhering body
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
JP4303619B2 (en) Method for treating metal body having open holes and metal body
CN113145955B (en) High-reliability welding method for large-size silicon aluminum LTCC integrated product for aerospace
JP2007120310A (en) Repairing method of gas turbine part and gas turbine part
KR100899780B1 (en) Manufacturing method of material for fuel injection nozzle using hip processing