JP2003176183A - Inorganic joining member and production method therefor - Google Patents
Inorganic joining member and production method thereforInfo
- Publication number
- JP2003176183A JP2003176183A JP2001376736A JP2001376736A JP2003176183A JP 2003176183 A JP2003176183 A JP 2003176183A JP 2001376736 A JP2001376736 A JP 2001376736A JP 2001376736 A JP2001376736 A JP 2001376736A JP 2003176183 A JP2003176183 A JP 2003176183A
- Authority
- JP
- Japan
- Prior art keywords
- solidified
- gel casting
- mold
- interface
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ゲルキャスティン
グ法を利用した無機質接合部材およびその製造方法に関
するものであり、さらに詳しくは、異なる組成および/
または異なる微構造を有する焼結体同士が凹凸を有する
界面で接合してなる無機質接合部材およびその製造方法
に関するものである。TECHNICAL FIELD The present invention relates to an inorganic joining member using a gel casting method and a method for producing the same, and more specifically, to a different composition and / or
Further, the present invention relates to an inorganic bonding member in which sintered bodies having different microstructures are bonded to each other at an interface having irregularities, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】本発明に関わる無機質接合部材の構成材
料は、アルミナ、マグネシア、炭化ケイ素などのセラミ
ックスや、各種金属、あるいは、これらの組み合わせか
ら構成されるものであり、実質的に空孔を含まない緻密
体から相互に連結した空孔を有する多孔体までが含まれ
る。2. Description of the Related Art The constituent material of the inorganic bonding member according to the present invention is composed of ceramics such as alumina, magnesia, silicon carbide, etc., various metals, or a combination thereof. Includes dense bodies that do not contain to porous bodies that have interconnected pores.
【0003】次に、異なる組成および/または異なる微
構造の有する焼結体同士を接合する方法としては、従来
から接合や溶射を利用する方法が知られている。一例と
して、接合においては、タービンシャフトに見られるよ
うな金属とセラミックスの界面をメタライズと嵌合技術
を組み合わせた方法が知られている。Next, as a method for joining sintered bodies having different compositions and / or different microstructures, a method utilizing joining or thermal spraying is conventionally known. As an example, in joining, a method is known in which an interface between metal and ceramics, which is found in a turbine shaft, is combined with metallizing and fitting techniques.
【0004】[0004]
【発明が解決しようとする課題】しかし、従来法による
異種材料の接合においては、界面における作製時の剥離
や使用中の破壊が生じ易い。その原因としては、目的と
する母材同士の熱膨張率の違いの他に、以下のようなも
のが例示される。ひとつには界面の組成についていえ
ば、“糊”としての接合材が母材よりも融点が低く、同
時に機械的強度が低いために、界面から破壊が生じる。
また、界面の形状から言えば、界面に凹凸がない平滑な
形状では、接合材や相手母材の“食い込み”による投錨
効果が寄与しないことが破壊の原因となる。勿論、母材
同士や、母材と接合材との濡れ性なども、界面における
欠陥の生成を左右する。理想的には、接合界面には目的
とする母材成分以外のものが含まれないこと、および、
接合面において、上記のような機械的特性などが損なわ
れないことが好ましく、更には、接合面の形状が制約を
受けないことが望ましい。しかし、例えば金属を介して
セラミックス同士を接合させた場合には、セラミックス
の特徴である高温強度や高剛性を損なう可能性がある。
また、金属同士をレーザーによって接合する場合には、
得られる界面は平面に限定される。この他、爆裂衝撃を
利用した接合方法では、適用可能な寸法や形状への制約
が大きい。However, in the joining of dissimilar materials by the conventional method, peeling at the interface at the time of fabrication and breakage during use are likely to occur. Examples of the cause thereof include the following, in addition to the difference in the coefficient of thermal expansion between the target base materials. One is the composition of the interface, and the bonding material as "glue" has a lower melting point than the base material, and at the same time, the mechanical strength is low.
In terms of the shape of the interface, if the interface has a smooth shape with no irregularities, the anchoring effect due to the "cutting in" of the bonding material or the mating base material does not contribute to the destruction. Of course, the wettability between the base materials, the wettability between the base material and the bonding material, and the like also affect the generation of defects at the interface. Ideally, the bonding interface contains nothing but the intended base metal component, and
It is preferable that the above-mentioned mechanical properties and the like are not impaired at the joint surface, and further, that the shape of the joint surface is not restricted. However, for example, when the ceramics are bonded to each other via a metal, there is a possibility that the high temperature strength and the high rigidity which are the characteristics of the ceramics may be impaired.
Also, when joining metals by laser,
The resulting interface is limited to a plane. In addition, in the joining method using explosion impact, there are large restrictions on applicable dimensions and shapes.
【0005】次に、溶射で複合材料を得る場合には、溶
射のターゲットとなる母材の硬度が比較的低いものでな
いと、溶射材料が衝突した瞬間の衝撃を吸収しにくく、
界面の接着強度が低く剥離が発生しやすくなることか
ら、特に緻密質セラミックスを母材として利用しにく
い。更に、被溶射成分が母材表面に達した際の温度変化
が大きいために、溶射では層厚を大きくすると残留歪に
依る剥離などの欠陥を生じ易いという問題があった。Next, in the case of obtaining a composite material by thermal spraying, unless the hardness of the base material which is the target of thermal spraying is relatively low, it is difficult to absorb the impact at the moment when the thermal spraying material collides,
Since the adhesive strength at the interface is low and peeling easily occurs, it is particularly difficult to use dense ceramics as a base material. Further, since the temperature change is large when the components to be sprayed reach the surface of the base material, there is a problem that when the layer thickness is increased in spraying, defects such as peeling due to residual strain are likely to occur.
【0006】上記諸問題を解決するためには、界面にお
いて異種成分を介することなく、目的成分同士が密着
し、且つ、その界面形状が任意のものである接合方法が
望まれる。本発明は上記問題を鑑みたものであり、ゲル
キャスティングスラリ法を利用し、異なる組成および/
または異なる微構造を有する焼結体同士が凹凸を有する
界面で接合してなり、かつ強固に一体化した無機質接合
部材を信頼性良く得られる技術を提供することを目的と
している。In order to solve the above problems, a joining method is desired in which the target components are in close contact with each other without interposing different components at the interface and the interface shape is arbitrary. The present invention has been made in view of the above problems, and utilizes a gel casting slurry method to obtain different compositions and / or
It is another object of the present invention to provide a technique capable of reliably obtaining an inorganic bonding member in which sintered bodies having different microstructures are bonded to each other at an interface having irregularities and which is firmly integrated.
【0007】[0007]
【課題を解決するための手段】上記した本発明の目的
は、異なる組成および/または異なる微構造を有する焼
結体同士が凹凸を有する界面で接合してなる無機質接合
部材であって、該焼結体がゲルキャスティング法により
得られる固化体を焼結したものであることを特徴とする
無機質接合部材によって達成される。また本発明の目的
は、ゲルキャスティングスラリを凹凸面を有する型枠に
注型し、固化後に脱型して該凹凸を固化体表面に形成す
る工程と、該凹凸を形成した固化体表面に前記と異なる
組成および/または異なる微構造のゲルキャスティング
スラリを注型し、固化後に脱型して異なる組成および/
または異なる微構造を有する固化体同士が凹凸を有する
界面で接合してなる固化体を得る工程と、該固化体を焼
結する工程を含むことを特徴とする無機質接合部材の製
造方法によっても達成される。The above-mentioned object of the present invention is an inorganic joining member obtained by joining sintered bodies having different compositions and / or different microstructures at an interface having irregularities. This is achieved by an inorganic bonding member characterized in that the bonded body is obtained by sintering a solidified body obtained by the gel casting method. Further, an object of the present invention is to cast the gel casting slurry into a mold having an uneven surface, to remove the mold after solidification to form the unevenness on the surface of the solidified body, and to the surface of the solidified body on which the unevenness is formed. Gel casting slurry with different composition and / or different microstructure, and then demolding after solidification to obtain different composition and / or
Also achieved by a method for producing an inorganic bonding member characterized by including a step of obtaining a solidified body in which solidified bodies having different microstructures are bonded at an interface having irregularities, and a step of sintering the solidified body. To be done.
【0008】[0008]
【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に関わるゲルキャスティング法に用いる
スラリは、無機質骨格材としてのセラミックス粉末また
は金属粉末に、水や有機溶媒などの分散媒および所定の
ゲル化剤などを混合することにより得られる。ここで、
本発明においてゲルキャスティング法を使用するのは、
型枠内にスラリを流し込んだ後、そのままの状態で固化
させ固化体を得ることが出来ることによる。このことに
より、型枠に所望の形状を形成すれば、その形状を保持
した固化体を容易に得ることが可能となる。さらに、ゲ
ルキャスティングで得られた固化体は、乾燥させること
なく、その表面に別のゲルキャスティングスラリを用い
て一体の成形体とすることが可能である。このことは乾
燥収縮に伴って発生する界面応力を軽減する効果があ
る。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The slurry used in the gel casting method according to the present invention is obtained by mixing ceramic powder or metal powder as an inorganic skeleton material with a dispersion medium such as water or an organic solvent and a predetermined gelling agent. here,
In the present invention, the gel casting method is used.
This is because after pouring the slurry into the mold, it can be solidified as it is to obtain a solidified body. As a result, if a desired shape is formed on the mold, it becomes possible to easily obtain a solidified body that retains the shape. Further, the solidified body obtained by gel casting can be made into an integral molded body by using another gel casting slurry on the surface without drying. This has the effect of reducing the interfacial stress that occurs with drying shrinkage.
【0009】ゲル化剤としては、例えば水溶性エポキシ
系樹脂などを用いることが出来るが、スラリおよび成形
体の取扱い性を考慮すると反応架橋により高分子を構成
する成分を用いることが望ましい。これは、寒天やポリ
ビニルアルコールなどの初めから高分子を構成する成分
を用いるとスラリの粘度が高くなり、十分な取扱い性を
確保するために分散媒を増やす必要があり、その結果、
固形分が低く、脱脂および焼成時に亀裂などが発生しや
すくなる問題があるためである。また、反応によって固
化する成分を用いることで、界面の接着強度を高めるこ
とが可能であり、特に、同一カテゴリに属するゲル化剤
成分を用いることで、その効果が高められる。As the gelling agent, for example, a water-soluble epoxy resin or the like can be used, but it is desirable to use a component which constitutes a polymer by reactive crosslinking in view of handling of the slurry and the molded product. This is because the viscosity of the slurry becomes high when using components that make up the polymer from the beginning such as agar and polyvinyl alcohol, and it is necessary to increase the dispersion medium in order to ensure sufficient handleability, and as a result,
This is because the solid content is low and cracks are likely to occur during degreasing and firing. In addition, it is possible to increase the adhesive strength of the interface by using the component that solidifies by the reaction, and particularly, by using the gelling agent component that belongs to the same category, the effect can be enhanced.
【0010】そこで、スラリ中では単量体ないしは低重
合体として添加し、これを型枠内で熱などの刺激によっ
て架橋重合させて高分子とすることが望ましく、上記の
エポキシ系樹脂の他、アクリル樹脂、ユリア-アミド樹
脂、フェノール樹脂などのカテゴリに含まれる化合物が
挙げられるが、これらには耐熱性が優れ、分解および焼
失温度が比較的高温であるものが多い。Therefore, it is desirable to add it as a monomer or a low polymer in the slurry, and to cross-link it by a heat or the like in a mold to form a polymer. In addition to the above epoxy resin, The compounds included in the categories of acrylic resin, urea-amide resin, phenol resin and the like are listed, but many of them have excellent heat resistance and relatively high decomposition and burning temperatures.
【0011】また、焼失により気孔を形成する気孔形成
材をスラリに添加したり、気孔形成材中にスラリを含浸
させることにより、多孔質体とすることが可能である。
このような気孔形成材としては、ポリエチレン製やポリ
スチレン製などの合成樹脂ビーズ、澱粉、カーボンなど
の粒子状や繊維状の有機物が挙げられる。また、バイン
ダ成分を成形に必要な量よりも多量に添加し、これの消
失痕を利用することによっても微細な気孔を形成するこ
とが出来る。勿論、このような気孔形成材を用いずに、
繊維状の高分子気孔形成材が存在しない部分に独立気孔
のみを存在させても良いし、緻密質にしても良い。Further, it is possible to obtain a porous body by adding a pore-forming material that forms pores by burning out or by impregnating the slurry with the pore-forming material.
Examples of such a pore-forming material include synthetic resin beads such as polyethylene and polystyrene, and particulate or fibrous organic substances such as starch and carbon. Also, fine pores can be formed by adding a binder component in a larger amount than that required for molding and utilizing the disappearance mark of the binder component. Of course, without using such a pore-forming material,
Only the independent pores may be present in the portion where the fibrous polymer pore-forming material is not present, or the pores may be dense.
【0012】ゲルキャスティングを行なうための型枠
は、ゲルキャスティングスラリ中の分散媒を吸収しない
材質を用いる。但し、ゲルキャスティングスラリは、例
えば、放置または所定温度に加熱することにより完全に
固化するので、型枠には吸収性は不要である。型枠の素
材には、アクリル樹脂、ポリカーボネイト樹脂、テフロ
ン(登録商標)樹脂などの合成樹脂、蝋などの天然油
脂、無機ガラス、金属のほか、スラリ分散媒を吸収しな
いように処理した石膏や合成木材を使用することが出来
るが、耐久性やメンテナンス性、特に表面凹凸加工にお
ける、それらの性質を考慮して選択することが好まし
い。The mold for gel casting is made of a material that does not absorb the dispersion medium in the gel casting slurry. However, since the gel casting slurry is completely solidified by, for example, leaving it standing or heating it to a predetermined temperature, the mold does not need to be absorbent. The material of the formwork is synthetic resin such as acrylic resin, polycarbonate resin, Teflon (registered trademark) resin, natural oils and fats such as wax, inorganic glass, metal, gypsum and synthetic treated so as not to absorb the slurry dispersion medium. Although wood can be used, it is preferable to select it in consideration of durability and maintainability, especially those properties in surface unevenness processing.
【0013】本発明においてはゲルキャスティングスラ
リを凹凸面を有する型枠に注型することを提案している
が、型枠に付与する凹凸の形状および寸法については任
意であり、用途によって適宜選択される。また、その付
与方法についても種々の手法を適用可能であり、例え
ば、無機ガラスに対してはフッ化水素酸による化学的加
工やサンドブラストによる物理的加工が可能である、合
成樹脂や天然油脂ではそれらの成形型枠である金型への
物理的加工や化学的加工、あるいは、成形後の物理的加
工などが可能である。化学的加工による凹凸の深さは典
型的には数から数十ミクロンと比較的微細であり、均一
に形成されるのに対して、物理的加工による凹凸は数百
ミクロンから数mmと比較的粗大となる傾向がある。凹
凸の深さが大きく、且つ、その形状が複雑になるほど母
材同士の投錨効果が高まるが、同時に成形時に型枠と成
形体との間での投錨効果も生じることから、“蛸壺”に
喩えられるような、開口部の径よりも大きな径の空間を
母材中に有する界面は型枠からの転写では形成できな
い。また、凹凸の深さが大きくとも、最近接の凸部同士
あるいは凹部同士の距離である、凹凸のピッチが大きく
なると共に投錨効果の寄与が小さくなることから、凹凸
のピッチの平均値が凹凸の深さの平均値を上回らないよ
うにすることが望ましいが、母材間において、それらの
特性を損なわないような反応が進行して組成や微構造が
傾斜化する場合には、界面における接合強度が向上した
り、残留応力が軽減されることから、凹凸の形状や寸法
の自由度は大きくなる。In the present invention, it is proposed to cast the gel casting slurry into a mold having an uneven surface, but the shape and size of the unevenness imparted to the mold are arbitrary and are appropriately selected depending on the application. It Further, various methods can be applied to the applying method, for example, inorganic glass can be chemically processed by hydrofluoric acid or physically processed by sandblasting. It is possible to perform physical processing, chemical processing, or physical processing after molding on the metal mold which is the molding frame of. The depth of the unevenness due to the chemical processing is typically as fine as several to several tens of microns, and is uniformly formed, whereas the unevenness due to the physical processing is relatively several hundred microns to several mm. It tends to be coarse. The greater the depth of the unevenness, and the more complicated the shape becomes, the more the anchoring effect between the base materials increases, but at the same time, the anchoring effect between the mold and the molded body also occurs at the time of molding, making it a “octopus”. An interface having a space larger in diameter than the diameter of the opening in the base material, which can be likened to, cannot be formed by transfer from the mold. In addition, even if the depth of the unevenness is large, the distance between the closest convex portions or concave portions, that is, the pitch of the unevenness becomes large and the contribution of the anchoring effect becomes small. It is desirable not to exceed the average depth, but when the reaction that does not impair the properties of the base materials progresses and the composition and microstructure are graded, the joint strength at the interface is Is improved and residual stress is reduced, so that the degree of freedom in the shape and size of the unevenness is increased.
【0014】以下に実施例と比較例により詳細に説明す
るが、本発明は実施例に限定されるものではない。
(実施例1)イットリア安定化ジルコニア粉末100重量
部、ゲル化剤(水溶性アクリル系樹脂)4重量部、イオン
交換水160重量部をボールミルにて混合してゲルキャス
ティングスラリ(A)とした。次に、アルミナ粉末100重
量部、ゲル化剤(水溶性アクリル系樹脂)7重量部イオン
交換水250重量部をボールミルにて混合してゲルキャス
ティングスラリ(B)とした。100×100mmガラス板に対
して、スラリ接触面をフッ化水素酸で処理して70×70m
mの面範囲に凹凸面を付与した。接触式表面粗さ計で測
定したところ、凹凸面の平均深さは約50ミクロン、平均
ピッチは40ミクロンであった。このガラス板と、上記の
ような処理を行わない、平滑表面である同一寸法のガラ
ス板を向かい合わせて、それらを厚み10mm、幅15mm
のシリコーン樹脂を介してクランプで固定して形成され
る空間を型枠とした。この型枠内に、上記ゲルキャステ
ングスラリ(A)を注型し、流動パラフィンを注いで封口
した。これを恒温槽中で60℃に加熱して、70×70×10m
mの固化体を得た。凹凸面を付与したガラス板を取り外
して、固化体の周囲に、外寸100×100×60mmで内部に
70×70×60mmの切抜きを持つシリコーン樹脂を前記固
化体の周囲に組み込んで設置した。次に、シリコーン樹
脂と凹凸面を転写した固化体表面で形成される型枠にゲ
ルキャスティングスラリ(B)を流し込み、更に流動パラ
フィンを流し込んで蓋とすることで加熱固化時の分散媒
の蒸発を防ぐようにした。次に、60℃に加熱してゲルキ
ャスティングスラリ(B)を固化させて脱型した。得られ
た接合固化体を零下25℃で凍結させた後、1Torr以下を
保つように真空脱気することで乾燥体を得て、これを空
気中、450℃で脱脂後、1500℃で焼成した。このように
して、一方がイットリア安定化ジルコニア焼結体で、も
う一方がアルミナ焼結体から成り、互いが凹凸界面によ
り接合した無機質接合部材を得た。この無機質接合部材
を軸方向に垂直に界面が含まれるように曲げ試験片5本
を切り出し、室温にて三点曲げ試験を行ったところ、曲
げ強度は平均430Mpaと大きかった。Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the examples. (Example 1) 100 parts by weight of yttria-stabilized zirconia powder, 4 parts by weight of gelling agent (water-soluble acrylic resin), and 160 parts by weight of ion-exchanged water were mixed in a ball mill to prepare a gel casting slurry (A). Next, 100 parts by weight of alumina powder, 7 parts by weight of gelling agent (water-soluble acrylic resin) and 250 parts by weight of ion-exchanged water were mixed in a ball mill to prepare a gel casting slurry (B). 70 × 70m for 100 × 100mm glass plate by treating the slurry contact surface with hydrofluoric acid
An uneven surface was provided in the surface range of m. When measured with a contact surface roughness meter, the average depth of the uneven surface was about 50 microns, and the average pitch was 40 microns. Face this glass plate with a glass plate of the same size that has not been treated as above and has a smooth surface, and make them 10 mm thick and 15 mm wide.
The space formed by fixing with a clamp through the silicone resin was used as a mold. The gel casting slurry (A) was cast into the mold, and liquid paraffin was poured to seal the mold. This is heated to 60 ℃ in a constant temperature bath, 70 × 70 × 10m
A solidified product of m was obtained. Remove the glass plate with the uneven surface and put it inside the solidified body around the outside with a size of 100 x 100 x 60 mm.
A silicone resin having a cutout of 70 × 70 × 60 mm was installed around the solidified body. Next, the gel casting slurry (B) is poured into a mold formed by the surface of the solidified body on which the silicone resin and the uneven surface are transferred, and liquid paraffin is further poured into the lid to form a lid to evaporate the dispersion medium at the time of heating and solidification. I tried to prevent it. Next, the gel casting slurry (B) was heated to 60 ° C. to be solidified and demolded. After the obtained bonded solidified body was frozen at 25 ° C. under zero, a dried body was obtained by vacuum degassing so as to keep it at 1 Torr or less, which was degreased in air at 450 ° C. and then calcined at 1500 ° C. . In this way, an inorganic bonding member was obtained, one of which was a yttria-stabilized zirconia sintered body and the other of which was an alumina sintered body, which were bonded to each other at the uneven interface. Five bending test pieces were cut out from the inorganic bonding member so that an interface was included perpendicularly to the axial direction, and a three-point bending test was performed at room temperature. The bending strength was as large as 430 Mpa on average.
【0015】(実施例2)アルミナ粉末100重量部、ゲ
ル化剤(水溶性アクリル系樹脂)14重量部、アクリル樹脂
ビーズ10重量部、イオン交換水270重量部をボールミル
にて混合してゲルキャスティングスラリ(A)とした。次
に、アルミナ粉末100重量部、ゲル化剤(水溶性アクリル
系樹脂)7重量部、イオン交換水250重量部をボールミル
にて混合してゲルキャスティングスラリ(B)とした。実
施例1と同様にして得た接合固化体を凍結乾燥後、空気
中、450℃で脱脂後、1500℃で焼成することで、一方が
緻密体、もう一方が多孔質体から成り、互いが凹凸界面
により接合した無機質接合部材を得た。得られた接合部
材の界面には、剥離等の欠陥は認められず、強固に一体
化した接合体を得ることができた。(Example 2) 100 parts by weight of alumina powder, 14 parts by weight of gelling agent (water-soluble acrylic resin), 10 parts by weight of acrylic resin beads, and 270 parts by weight of ion-exchanged water were mixed in a ball mill to perform gel casting. The slurry (A) was used. Next, 100 parts by weight of alumina powder, 7 parts by weight of gelling agent (water-soluble acrylic resin), and 250 parts by weight of ion-exchanged water were mixed in a ball mill to prepare a gel casting slurry (B). After freeze-drying the bonded solidified body obtained in the same manner as in Example 1, after degreasing in air at 450 ° C. and baking at 1500 ° C., one is made of a dense body and the other is made of a porous body. An inorganic joining member joined at the uneven interface was obtained. No defects such as peeling were observed at the interface of the obtained bonded member, and a strongly integrated bonded body could be obtained.
【0016】(比較例1)平滑なガラス板を型枠とした以
外は、実施例1と同様にしてイットリア安定化ジルコニ
ア/アルミナ接合部材を作製した。その界面を軸に垂直
に含むようにして曲げ試験片5本を切り出し、室温にて
三点曲げ試験を行ったところ、平均105MPaと低くなっ
た。Comparative Example 1 A yttria-stabilized zirconia / alumina bonding member was produced in the same manner as in Example 1 except that a smooth glass plate was used as the frame. Five bending test pieces were cut out so that the interface was included perpendicularly to the axis, and a three-point bending test was performed at room temperature. The average was 105 MPa, which was low.
【0017】(比較例2)平滑なガラス板を型枠とした以
外は、実施例2と同様にして無機質接合部材を作製し
た。得られた接合部材の界面には、剥離が発生し、一体
化した接合体は得られなかった。Comparative Example 2 An inorganic joining member was produced in the same manner as in Example 2 except that a smooth glass plate was used as the mold. Peeling occurred at the interface of the obtained bonded member, and an integrated bonded body could not be obtained.
【0018】[0018]
【発明の効果】以上の結果から、本発明による製造方法
によれば、ゲルキャスティングの特徴を利用して、組成
や微構造が異なる焼結体を良好な接合状態で接合するこ
とが可能であり、信頼性の高い無機質接合部材を提供で
きるという効果がある。From the above results, according to the manufacturing method of the present invention, it is possible to bond sintered bodies having different compositions and microstructures in a good bonding state by utilizing the characteristics of gel casting. There is an effect that a highly reliable inorganic joining member can be provided.
Claims (2)
を有する焼結体同士が凹凸を有する界面で接合してなる
無機質接合部材であって、該焼結体がゲルキャスティン
グ法により得られる固化体を焼結したものであることを
特徴とする無機質接合部材。1. An inorganic joining member, comprising sintered bodies having different compositions and / or different microstructures, which are joined together at an interface having irregularities, wherein the sintered bodies are solidified bodies obtained by a gel casting method. An inorganic joining member characterized by being sintered.
する型枠に注型し、固化後に脱型して該凹凸を固化体表
面に形成する工程と、該凹凸を形成した固化体表面に前
記と異なる組成および/または異なる微構造のゲルキャ
スティングスラリを注型し、固化後に脱型して異なる組
成および/または異なる微構造を有する固化体同士が凹
凸を有する界面で接合してなる固化体を得る工程と、該
固化体を焼結する工程を含むことを特徴とする請求項1
記載の無機質接合部材の製造方法。2. A step of casting the gel casting slurry on a mold having an uneven surface, demolding after solidification to form the unevenness on the surface of the solidified body, and a step different from the above on the surface of the solidified body on which the unevenness is formed. A step of casting a gel casting slurry having a different composition and / or different microstructure, demolding after solidification, and obtaining a solidified body in which solidified bodies having different compositions and / or different microstructures are joined at an interface having irregularities. And a step of sintering the solidified body.
A method for producing the inorganic bonding member as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001376736A JP2003176183A (en) | 2001-12-11 | 2001-12-11 | Inorganic joining member and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001376736A JP2003176183A (en) | 2001-12-11 | 2001-12-11 | Inorganic joining member and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003176183A true JP2003176183A (en) | 2003-06-24 |
Family
ID=19184868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001376736A Pending JP2003176183A (en) | 2001-12-11 | 2001-12-11 | Inorganic joining member and production method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003176183A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1296322C (en) * | 2004-04-20 | 2007-01-24 | 东北大学 | Gelcasting method for producing refractory materials using millimeter-class large granule |
WO2012011359A1 (en) * | 2010-07-22 | 2012-01-26 | 日本碍子株式会社 | Molded article and process for production of molded article |
-
2001
- 2001-12-11 JP JP2001376736A patent/JP2003176183A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1296322C (en) * | 2004-04-20 | 2007-01-24 | 东北大学 | Gelcasting method for producing refractory materials using millimeter-class large granule |
WO2012011359A1 (en) * | 2010-07-22 | 2012-01-26 | 日本碍子株式会社 | Molded article and process for production of molded article |
JP4929423B2 (en) * | 2010-07-22 | 2012-05-09 | 日本碍子株式会社 | Molded body and method for producing molded body |
CN103003038A (en) * | 2010-07-22 | 2013-03-27 | 日本碍子株式会社 | Molded article and process for production of molded article |
US8900686B2 (en) | 2010-07-22 | 2014-12-02 | Ngk Insulators, Ltd. | Molded body, and method for producing the molded body |
CN103003038B (en) * | 2010-07-22 | 2015-03-25 | 日本碍子株式会社 | Molded article and process for production of molded article |
US9718212B2 (en) | 2010-07-22 | 2017-08-01 | Ngk Insulators, Ltd. | Method for producing the molded body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tallon et al. | Recent trends in shape forming from colloidal processing: A review | |
EP0396240B1 (en) | Ceramic meterial and method for producing the same | |
WO2013123584A1 (en) | Highly filled particulate composite materials and methods and apparatus for making same | |
KR101401084B1 (en) | Particle-stabilized ceramic foams coated on ceramic materials and the method for manufacturing the same | |
US20030117730A1 (en) | Ultra lightweight and ultra rigid solid ceramic reflector and method of making same | |
US6365082B1 (en) | Polymer gel molds | |
US6699555B2 (en) | Bonding of thermal tile insulation | |
EP3040323B1 (en) | Method for bonding dissimilar ceramic components, and composite object obtained | |
JP2003176183A (en) | Inorganic joining member and production method therefor | |
JP5067751B2 (en) | Ceramic joined body and manufacturing method thereof | |
JP2008260655A (en) | Porous ceramic, and filter for sensor using the same | |
JPS60171269A (en) | Manufacture of complicated shape silicon nitride sintered body | |
EP0243502A1 (en) | Mold for pad molding of powder | |
JP2002292613A (en) | Method for manufacturing ceramic molding | |
JP2009202464A (en) | Method for manufacturing ceramic honeycomb structure, and coating material used for it | |
JP2006321698A (en) | Ceramic structure and method of manufacturing the same | |
Gupta | A Perspective on Green Body Fabrication and Design for Sustainable Manufacturing | |
JP2566886B2 (en) | Method for producing porous sintered body having continuous pores | |
JP2006224114A (en) | Member for molten metal and producing method therefor | |
US20240173889A1 (en) | Methods of fabrication of graphite powder molds | |
JPH10278015A (en) | Molding method for ceramic powder | |
JPH0292880A (en) | Production of heat resistant and porous acoustical material | |
JP2003238267A (en) | Method of producing ceramic porous composite member | |
JP2000233979A (en) | Silicon nitride sintered body and its production | |
JP6890239B2 (en) | Method for manufacturing inorganic porous sintered body and inorganic porous sintered body |