JP2003170862A - Body front part structure - Google Patents

Body front part structure

Info

Publication number
JP2003170862A
JP2003170862A JP2001371704A JP2001371704A JP2003170862A JP 2003170862 A JP2003170862 A JP 2003170862A JP 2001371704 A JP2001371704 A JP 2001371704A JP 2001371704 A JP2001371704 A JP 2001371704A JP 2003170862 A JP2003170862 A JP 2003170862A
Authority
JP
Japan
Prior art keywords
side member
bumper reinforcement
height
vehicle
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001371704A
Other languages
Japanese (ja)
Other versions
JP3632654B2 (en
Inventor
Hideji Saeki
秀司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001371704A priority Critical patent/JP3632654B2/en
Priority to EP02023487.8A priority patent/EP1325859B1/en
Priority to US10/286,909 priority patent/US6893078B2/en
Publication of JP2003170862A publication Critical patent/JP2003170862A/en
Application granted granted Critical
Publication of JP3632654B2 publication Critical patent/JP3632654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a body front part structure capable of increasing an impact energy absorption efficiency by surely collapsably deforming the front end portion of a side member even against an impact load input from a diagonal forward direction as well as a frontal direction. <P>SOLUTION: A side member forward area 11F positioned forward of a reinforcement portion 11R is formed aslant to a lateral outside toward the forward direction of a body, and the side member forward area 11F is set by a strength control means 50 to such a strength that the maximum stresses occurring at the front and rear parts of a virtual cross section longitudinally arranged continuously with each other are nearly equal to or larger in the front part than in the rear part. Accordingly, a collapsable deformation is induced from the front end of the side member forward area 11F as the input point of the impact load toward the rear against any impact in the frontal direction or diagonal forward direction. This collapsable deformation can be continuously propagated to the rear and, when the side member forward area 11F interferes with the rear face of a bumper reinforce 12 in the latter half portion of the collapsable deformation, an increase in reaction is suppressed by a reaction control means 60, and an efficient energy absorption can be performed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の車体前部
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle body front structure.

【0002】[0002]

【従来の技術】車両の衝突対策としては、車体前部のサ
イドメンバを軸圧潰させることにより衝突エネルギーを
吸収するようにしており、例えば特開2001−158
377号公報にその車体前部構造が示されている。
2. Description of the Related Art As a countermeasure against a vehicle collision, the side members at the front of the vehicle body are axially crushed to absorb the collision energy. For example, Japanese Patent Laid-Open No. 2001-158.
Japanese Laid-Open Patent Publication No. 377 discloses the front structure of the vehicle body.

【0003】この車体前部構造は、多角形断面を有する
サイドメンバ前部の壁部にビードを配置することによ
り、サイドメンバに軸方向入力が作用した際に軸圧潰を
促進して、衝突エネルギーを吸収するようにしたもので
ある。
In this vehicle body front structure, a bead is arranged on the wall portion of the side member front portion having a polygonal cross section to promote axial crushing when an axial input is applied to the side member, thereby colliding energy. Is designed to absorb.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の車体前部構造では、サイドメンバに軸方向に入力
する衝突荷重に対してはエネルギー吸収を良好に行うこ
とができるが、斜め前方から入力する衝突荷重に対して
は、サイドメンバ前部がその付け根部分から折れ曲がる
ような変形モードとなってしまいがちである。
However, in such a conventional vehicle body front structure, it is possible to favorably absorb energy against a collision load applied to the side member in the axial direction, but the energy is applied obliquely from the front. With respect to a collision load, there is a tendency that the front portion of the side member is in a deformation mode in which it bends from its root portion.

【0005】従って、斜め衝突時の衝突エネルギーはサ
イドメンバ前部の折れ曲がりで一時的に吸収されるのみ
で、衝突荷重を軸圧潰により持続的に吸収する荷重特性
を得ることが困難になる。
Therefore, the collision energy at the time of an oblique collision is only temporarily absorbed by the bending of the front portion of the side member, and it becomes difficult to obtain the load characteristic of continuously absorbing the collision load by axial crushing.

【0006】このため、サイドメンバ前部の折れ曲がり
のみで十分な衝突エネルギー吸収特性を得るためには、
サイドメンバの剛性を大幅に高くする必要があるため、
必然的にサイドメンバの肉厚が厚くなるなどして車体重
量の大幅な増加を招来する懸念がある。
Therefore, in order to obtain sufficient collision energy absorption characteristics only by bending the front portion of the side member,
Since it is necessary to significantly increase the rigidity of the side members,
Inevitably, there is a concern that the thickness of the side member will become thicker and the weight of the vehicle body will increase significantly.

【0007】そこで、本発明は、正面方向からは勿論斜
め前方からの衝突荷重入力に対してもサイドメンバの前
端部分を確実に潰れ変形させることができて、衝突エネ
ルギーの吸収効率を高められる車体前部構造を提供する
ものである。
Therefore, according to the present invention, the front end portion of the side member can be securely crushed and deformed even when the collision load is input from the front as well as the diagonal front, and the collision energy absorption efficiency can be improved. A front structure is provided.

【0008】[0008]

【課題を解決するための手段】請求項1の発明にあって
は、フロントコンパートメントの左右両側部に車体前後
方向に配設したサイドメンバに車両ユニット部品を搭載
するための補強部分を設け、これらサイドメンバの前端
に跨って車幅方向に延在するバンパーレインフォースを
結合した車体前部構造において、前記サイドメンバの前
記補強部分から前方となるサイドメンバ前方領域を車体
前方に向かって車幅方向外方に傾斜させて形成し、この
外開きとなったサイドメンバ前方領域に、長手方向に連
なる仮想断面の前部と後部に発生する最大応力が、前部
が後部以上、若しくはこれに近い状態の強度となるよう
な強度調整手段を設けるとともに、前記バンパーレイン
フォースのサイドメンバとの連結部分よりも車幅方向内
側部分に、前方からの衝突荷重の入力によって、サイド
メンバが前方から順次潰れ変形してバンパーレインフォ
ースに干渉した際に、サイドメンバの反力増大を抑制す
る反力調整手段を設けたことを特徴としている。
According to the invention of claim 1, reinforcing members for mounting vehicle unit parts are provided on side members arranged in the vehicle front-rear direction on both left and right sides of the front compartment. In a vehicle body front part structure in which a bumper reinforcement extending across the front end of a side member in the vehicle width direction is coupled, a side member front region that is forward from the reinforcing portion of the side member is directed toward the vehicle body front in the vehicle width direction. The maximum stress generated at the front and rear of the virtual cross section that is continuous in the longitudinal direction in the front side region that is formed by inclining outward and is open to the outside is such that the front is greater than or equal to the rear, or close to this. The strength adjustment means for adjusting the strength of the bumper reinforcement is provided, and the front side of the bumper reinforcement is connected to the inner side portion of the vehicle width direction with respect to the connection portion with the side member. The input of the collision load, when the side members are to interfere with the bumper reinforcement deforms sequentially crushed from the front, is characterized in that a reaction force adjusting means for suppressing a reaction force increase of the side member.

【0009】請求項2の発明にあっては、請求項1に記
載の車体前部構造において、前記反力調整手段は、バン
パーレインフォースをその断面高さを、サイドメンバの
連結部分近傍ではサイドメンバの断面高さと略同等以上
の高さ増大部分として形成すると共に、サイドメンバの
連結部分から所定距離だけ車両内側に寄った部分ではサ
イドメンバの断面高さよりも小さい高さ減少部分として
形成して、前記高さ減少部分をサイドメンバの稜線を避
けた側面中央部に対応させて構成したことを特徴として
いる。
According to a second aspect of the present invention, in the vehicle body front structure according to the first aspect, the reaction force adjusting means includes a bumper reinforcement having a cross-sectional height and a side member near a connecting portion of the side member. It is formed as a height-increased portion that is substantially equal to or greater than the cross-sectional height of the member, and is formed as a height-reduced portion that is smaller than the cross-sectional height of the side member in the portion that is located inside the vehicle by a predetermined distance from the connecting portion of the side member. It is characterized in that the height-reduced portion is made to correspond to the central portion of the side surface avoiding the ridgeline of the side member.

【0010】請求項3の発明にあっては、請求項1に記
載の車体前部構造において、反力調整手段は、バンパー
レインフォースをその断面高さをサイドメンバの断面高
さと略同等以上に形成して、このバンパーレインフォー
スのサイドメンバの連結部分から所定距離だけ車両内側
に寄った後面にサイドメンバの断面高さよりも小さな幅
となる突起部を設けて、この突起部をサイドメンバの稜
線を避けた側面中央部に対応させて配置して構成したこ
とを特徴としている。
According to a third aspect of the present invention, in the vehicle body front structure according to the first aspect, the reaction force adjusting means sets the bumper reinforcement so that its sectional height is substantially equal to or greater than the sectional height of the side member. A bump having a width smaller than the cross-sectional height of the side member is formed on the rear surface of the bumper reinforcement that is located inside the vehicle by a predetermined distance from the connecting portion of the side member. It is characterized in that it is arranged corresponding to the central part of the side surface that avoids.

【0011】[0011]

【発明の効果】請求項1に記載の発明によれば、補強部
分から前方となるサイドメンバ前方領域は車体前方に向
かって車幅方向外方に傾斜して形成されていて、このサ
イドメンバ前方領域は、強度調整手段によってサイドメ
ンバ前方領域の長手方向に連なる仮想断面の前部と後部
に発生する最大応力が、前部が後部以上、若しくはこれ
に近い状態となる強度に設定されるため、サイドメンバ
の前端部に正面方向又は斜め前方の何れから衝突荷重が
入力した場合でも、衝突荷重の入力点であるサイドメン
バ前方領域の前端から後方に向かって潰れ変形が誘発さ
れ、その潰れ変形をサイドメンバ前方領域の後部まで持
続的に伝播させて、衝突エネルギーの吸収効率を高める
ことができる。
According to the first aspect of the invention, the front region of the side member, which is the front side from the reinforcing portion, is formed to be inclined outward in the vehicle width direction toward the front of the vehicle body. The region, the strength adjusting means, the maximum stress generated in the front portion and the rear portion of the virtual cross section continuous in the longitudinal direction of the side member front region, since the front portion is set to the rear portion or more, or to a strength close to this, Whether a collision load is input to the front end of the side member from the front direction or diagonally forward, crush deformation is induced from the front end of the front region of the side member, which is the input point of the collision load, toward the rear, and the crush deformation is caused. The efficiency of absorbing collision energy can be increased by continuously propagating to the rear portion of the front region of the side member.

【0012】このとき、サイドメンバ前方領域は閉断面
の稜線を含めて潰れ変形し、潰れ変形の進行に伴ってバ
ンパーレインフォースの後面に順次干渉するようになる
が、バンパーレインフォースに反力調整手段を設けてあ
るので、この反力調整手段によってサイドメンバの反力
が増大するのを抑制できるため、サイドメンバの変形を
促進して効率的なエネルギー吸収を行わせることができ
る。
At this time, the front region of the side member is crushed and deformed including the ridgeline of the closed cross section, and as the crushed deformation progresses, it interferes sequentially with the rear surface of the bumper reinforcement, but the reaction force is adjusted to the bumper reinforcement. Since the means is provided, the reaction force adjusting means can suppress an increase in the reaction force of the side member, so that the deformation of the side member can be promoted and efficient energy absorption can be performed.

【0013】請求項2に記載の発明によれば、請求項1
の発明の効果に加えて、前記反力調整手段を、高さ増大
部分と高さ減少部分を形成したバンパーレインフォース
の高さ変化部分として構成して、この高さ減少部分をサ
イドメンバの稜線を避けた側面中央部に対応させてある
ので、前方からの衝突荷重入力によるサイドメンバ前方
領域の変形モードは、最初はサイドメンバ前方領域が前
記高さ増大部分に干渉して、閉断面となったサイドメン
バの剛性の高い稜線を含む断面全体を潰れ変形させる
が、この潰れ変形が進行することに伴ってサイドメンバ
は前記高さ減少部分に干渉して、サイドメンバ前方領域
は剛性の低い側面から変形が開始されて、反力の増大を
抑制した変形を容易に行わせることができる。
According to the invention of claim 2, claim 1
In addition to the effect of the invention described above, the reaction force adjusting means is configured as a height changing portion of a bumper reinforcement having a height increasing portion and a height reducing portion, and the height reducing portion is provided with a ridge line of a side member. Since it is made to correspond to the center of the side face avoiding, the deformation mode of the front region of the side member due to the collision load input from the front is initially a closed cross section because the front region of the side member interferes with the height increasing portion. The entire cross section including the highly rigid ridge line of the side member is crushed and deformed. As the crush deformation progresses, the side member interferes with the height-reduced portion, and the side member front region has a low rigidity side surface. The deformation is started from, and it is possible to easily perform the deformation while suppressing the increase of the reaction force.

【0014】請求項3に記載の発明によれば、請求項1
の発明の効果に加えて、前記反力調整手段を、断面高さ
をサイドメンバと略同等以上に形成したバンパーレイン
フォースの後面の所要部位に、サイドメンバの断面高さ
よりも小さな幅となる突起部を設けて、この突起部をサ
イドメンバの稜線を避けた側面中央部に対応させて配置
して構成したので、前方からの衝突荷重入力によるサイ
ドメンバ前方領域の変形モードは、最初はサイドメンバ
前方領域が断面高さを大きくしたバンパーレインフォー
スに干渉して、閉断面となったサイドメンバの剛性の高
い稜線を含む断面全体を潰れ変形させるが、この潰れ変
形が進行することに伴ってサイドメンバは前記突起部に
干渉して、サイドメンバ前方領域は剛性の低い側面から
変形が開始されて、反力の増大を抑制した変形を容易に
行わせることができる。
According to the invention of claim 3, claim 1
In addition to the effect of the invention described above, the reaction force adjusting means is provided with a protrusion having a width smaller than the sectional height of the side member at a required portion of the rear surface of the bumper reinforcement in which the sectional height is formed to be substantially equal to or more than that of the side member. Since the projections are arranged so as to correspond to the center of the side surface avoiding the ridgeline of the side member, the deformation mode in the front region of the side member due to the collision load input from the front is initially the side member. The front area interferes with the bumper reinforcement with an increased cross-section height, causing the entire cross-section including the highly rigid ridgeline of the side member with a closed cross-section to be crushed and deformed. The member interferes with the protrusion, and the front side region of the side member starts to be deformed from the side surface having low rigidity, so that the deformation can be easily performed while suppressing the increase of the reaction force. That.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図面と
共に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】(第1実施形態)図1〜図11は本発明の
車体前部構造の第1実施形態を示し、図1は本発明の対
象とする自動車の外観斜視図、図2は車体前部右側の骨
格構造を示す略示的平面説明図、図3はサイドメンバ前
方領域の斜視図、図4は図3中A−A線に沿った拡大断
面図、図5は強度調整手段を入力形態モデル(a)と応
力分布図(b)で示す説明図、図6は強度調整手段の概
念を示す応力分布図、図7は反力調整手段によるサイド
メンバ前方領域の変形モードを(a)〜(c)によって
順を追って示す説明図、図8はバンパーレインフォース
の成形工法を示す説明図、図9はバンパーレインフォー
スの他の成形工法を端部斜視図(a),B−B線断面
(b),C−C線断面(c)によって示す説明図、図1
0はバンパーレインフォースの反力調整手段を設けない
構造(a)と設けた構造(b)とを比較して示す説明
図、図11は反力調整手段の有無によるサイドメンバの
反力を比較したグラフである。
(First Embodiment) FIGS. 1 to 11 show a first embodiment of a vehicle body front portion structure of the present invention. FIG. 1 is an external perspective view of an automobile targeted by the present invention, and FIG. 3 is a schematic plan explanatory view showing the skeleton structure on the right side of the portion, FIG. 3 is a perspective view of the front region of the side member, FIG. 4 is an enlarged cross-sectional view taken along the line AA in FIG. 3, and FIG. FIG. 6 is an explanatory view showing a morphological model (a) and a stress distribution diagram (b), FIG. 6 is a stress distribution diagram showing the concept of the strength adjusting means, and FIG. 7 is a deformation mode of the side member front region by the reaction force adjusting means (a). 8A to 8C are explanatory views showing the steps in sequence, FIG. 8 is an explanatory view showing a bumper reinforcement forming method, and FIG. 9 is an end perspective view of another bumper reinforcement forming method. Explanatory drawing shown by the cross section (b) and the CC cross section (c), FIG.
0 is an explanatory view showing a structure (a) in which the reaction force adjusting means of the bumper reinforcement is not provided and a structure (b) in which it is provided, and FIG. 11 compares the reaction forces of the side members with and without the reaction force adjusting means. It is a graph.

【0017】本実施形態の車体前部構造は図1に示す車
体10のフロントコンパートメントF・Cに適用され、
その骨格構造は、図2に示すように左右両側部に車体前
後方向に配設したサイドメンバ11を備え、これらサイ
ドメンバ11の一般部分は平行に配置されており、か
つ、それぞれのサイドメンバ11の前端部に跨って図外
のバンパーの骨格を成すバンパーレインフォース12を
結合してある。
The vehicle body front structure of this embodiment is applied to the front compartments F and C of the vehicle body 10 shown in FIG.
As shown in FIG. 2, the skeleton structure includes side members 11 arranged in the vehicle front-rear direction on both left and right sides, and general parts of these side members 11 are arranged in parallel and each side member 11 A bumper reinforcement 12 forming a skeleton of a bumper (not shown) is connected across the front end of the.

【0018】また、それぞれのサイドメンバ11の後方
にはダッシュパネル17からフロアパネル18の下面側
に廻り込むエクステンションサイドメンバ13を連設し
てあり、それぞれのエクステンションサイドメンバ13
の車体幅方向外方には略平行にサイドシル14が配置さ
れ、これらエクステンションサイドメンバ13とサイド
シル14のそれぞれの前端部をアウトリガー15で結合
してある。
Further, behind the respective side members 11, extension side members 13 extending from the dash panel 17 to the lower surface side of the floor panel 18 are continuously provided, and each extension side member 13 is provided.
A side sill 14 is arranged substantially parallel to the outer side in the vehicle width direction, and the front end portions of the extension side member 13 and the side sill 14 are joined by an outrigger 15.

【0019】前記各サイドメンバ11とエクステンショ
ンサイドメンバ13の連設部間に跨ってダッシュクロス
メンバ16を結合してある。
A dash cross member 16 is connected so as to straddle the continuous portions of the side members 11 and extension side members 13.

【0020】前記サイドメンバ11の後側部には前輪2
0を支持するサスペンションアーム21が、直接若しく
は図外のサスペンションメンバなどを介して取り付けら
れるとともに、左右のサイドメンバ11間には車両ユニ
ット部品としてのエンジン等のパワーユニット30がマ
ウントブラケット31を介して搭載される。
A front wheel 2 is provided on the rear side of the side member 11.
A suspension arm 21 for supporting 0 is attached directly or via a suspension member (not shown), and a power unit 30 such as an engine as a vehicle unit component is mounted via a mount bracket 31 between the left and right side members 11. To be done.

【0021】サイドメンバ11には、図3に示すように
前記マウントブラケット31の取付部分に、サイドメン
バ11の肉厚を厚くした補強部分11R(図3中梨地部
分で示す)が形成される。
As shown in FIG. 3, the side member 11 is provided with a reinforcing portion 11R (shown as a satin portion in FIG. 3) in which the wall thickness of the side member 11 is increased, at a mounting portion of the mount bracket 31.

【0022】つまり、サイドメンバ11は、図3に示し
たように平板帯状の第1プレート11aに、断面コ字状
の第2プレート11bの両側フランジ部をスポット溶接
などで固設することにより閉断面構造として形成されて
おり、前記補強部分11Rは内周面に補強プレートを接
合配置する等により形成される。
That is, as shown in FIG. 3, the side member 11 is closed by fixing both side flange portions of the second plate 11b having a U-shaped cross section to the flat plate-shaped first plate 11a by spot welding or the like. It is formed as a cross-sectional structure, and the reinforcing portion 11R is formed by joining and disposing a reinforcing plate on the inner peripheral surface.

【0023】ここで、本実施形態では図3に示したよう
に、前記サイドメンバ11の前記補強部分11Rから前
方となるサイドメンバ前方領域11Fを、車体前方(図
3中手前側)に向かって車幅方向外方(図3中左方)に
所定角度θだけ傾斜して形成してある。
Here, in the present embodiment, as shown in FIG. 3, the side member front region 11F, which is the front side from the reinforcing portion 11R of the side member 11, faces toward the front side of the vehicle body (front side in FIG. 3). It is formed so as to be inclined outward at the vehicle width direction (left side in FIG. 3) by a predetermined angle θ.

【0024】そして、前記外開きとなったサイドメンバ
前方領域11Fには、図3に示したように長手方向に連
なる仮想断面Ia,Ib…Ieの前部と後部に発生する
最大応力が、前部が後部以上(前部≧後部)、若しくは
これに近い状態の強度となるような強度調整手段として
サイドメンバ板厚変化構造50を構成し、前記サイドメ
ンバ前方領域11Fの板厚分布を長手方向に変化させて
ある。
Then, in the front side region 11F of the side member which is opened outward, the maximum stress generated in the front and rear portions of the imaginary cross sections Ia, Ib ... Ie continuous in the longitudinal direction as shown in FIG. The side member plate thickness changing structure 50 is configured as a strength adjusting means such that the part has a strength equal to or more than the rear part (front part ≧ rear part) or close thereto, and the plate thickness distribution of the side member front region 11F is set in the longitudinal direction. Has been changed to.

【0025】即ち、サイドメンバ板厚変化構造50は、
図4に示すようにサイドメンバ前方領域11Fの前端方
向から板厚t1,t2,t3…t6(t1<t2<t3
<…<t6)と段階的に変化する複数の板材51a,5
1b,51c…51fを、全周溶接して接合した複合パ
ネル材52で構成していて、最も厚肉化した前記板材5
1fは前記補強部分11Rとなっている。
That is, the side member plate thickness changing structure 50 is
As shown in FIG. 4, the plate thicknesses t1, t2, t3 ... t6 (t1 <t2 <t3 from the front end direction of the side member front region 11F).
<... <t6) A plurality of plate members 51a, 5 that change stepwise
51f is composed of a composite panel material 52 formed by welding the entire circumferences of 1b, 51c ... 51f, and the thickest plate material 5 is formed.
If is the reinforcing portion 11R.

【0026】また、このサイドメンバ前方領域11F
は、図5に示すようにサイドメンバ前方領域11Fの前
端部に、前方からの衝突荷重Fが静的に作用した場合
に、次の式1に示すように、各仮想断面Ia,Ib…I
e(図3参照)で発生する軸力成分応力(FY/A
(y))とモーメント成分応力({FX×(L−y)}
/Z(y))の和の最大値が、前部≒後部になるととも
に、その上限値がサイドメンバ構成素材の降伏強度σ
(y)となるようにしている。
The front area 11F of the side member
When the collision load F from the front statically acts on the front end portion of the side member front region 11F as shown in FIG. 5, each virtual cross section Ia, Ib, ...
e (See Fig. 3) Axial force component stress (FY / A
(Y)) and moment component stress ({FX × (L−y)}
The maximum value of the sum of / Z (y) is the front portion ≈ the rear portion, and the upper limit value is the yield strength σ of the side member constituent material.
(Y).

【0027】 σ(y)={FY/A(y)}+{FX×(L−y)}/Z(y) …式1 このとき、サイドメンバ板厚変化構造50による最大応
力の上限値は、前述のようにサイドメンバ11を構成す
る素材の降伏強度を基準に設定し、その結果、図6に示
すように各板材51a,51b,51c…51fに対す
る降伏強度σ(y)の分布が得られる。
Σ (y) = {FY / A (y)} + {FX × (L−y)} / Z (y) Equation 1 At this time, the upper limit value of the maximum stress due to the side member plate thickness change structure 50 Is set on the basis of the yield strength of the material forming the side member 11 as described above, and as a result, as shown in FIG. 6, the distribution of the yield strength σ (y) with respect to each plate material 51a, 51b, 51c, ... can get.

【0028】ところで、前記サイドメンバ前方領域11
Fは、図3に示したように車幅方向外方に傾斜している
ため、図7(a)〜(c)に示すように正面方向からの
衝突荷重Fが入力することによって、サイドメンバ11
は前方から順次潰れ変形し、潰れ変形の進行に伴ってバ
ンパーレインフォース12の後面に干渉するようになる
が、本実施形態ではバンパーレインフォース12に、サ
イドメンバ11の干渉が所定量進行した段階でサイドメ
ンバ11の反力増大を抑制する反力調整手段としての高
さ変化部分60を設けてある。
By the way, the side member front region 11
Since F is inclined outward in the vehicle width direction as shown in FIG. 3, the collision load F from the front direction is input as shown in FIGS. 11
Is crushed and deformed sequentially from the front, and as the crush deformation progresses, it interferes with the rear surface of the bumper reinforcement 12, but in the present embodiment, the stage where the interference of the side member 11 progresses with the bumper reinforcement 12 by a predetermined amount. A height changing portion 60 is provided as a reaction force adjusting means for suppressing an increase in the reaction force of the side member 11.

【0029】前記高さ変化部分60は、バンパーレイン
フォース12をその断面高さが、サイドメンバ11との
連結部分Cの近傍でサイドメンバ11の断面高さh0と
略同等以上となる高さ増大部分61(断面高さh1)と
して形成すると共に、サイドメンバ11との連結部分C
から所定距離内側(図3中右方)に寄った部分で、前記
サイドメンバ11の断面高さh0よりも小さくなる高さ
減少部分62(断面高さh2)として形成して、この高
さ減少部分62をサイドメンバ11の稜線11c,11
dを避けた側面中央部11eに対応させて構成される。
The height changing portion 60 increases in height so that the sectional height of the bumper reinforcement 12 becomes substantially equal to or more than the sectional height h0 of the side member 11 in the vicinity of the connecting portion C with the side member 11. Formed as a portion 61 (cross-sectional height h1), and a connecting portion C with the side member 11
Is formed as a height reducing portion 62 (cross-section height h2) smaller than the cross-sectional height h0 of the side member 11 at a portion closer to the inner side (right side in FIG. 3) from the height reduction portion. The portion 62 is defined by the ridge lines 11c, 11
It is configured so as to correspond to the side surface central portion 11e avoiding d.

【0030】バンパーレインフォース12に形成される
高さ変化部分60は、例えば図8に示すように液圧を用
いたプレス成形により、中空の閉断面構造としたバンパ
ーレインフォース12の上,下面を押し潰すことにより
高さ減少部分62を形成し、段差部63を境に高さ減少
部分62と高さ増大部分61とを連設して構成する。
The height changing portions 60 formed on the bumper reinforcement 12 are formed by press forming using hydraulic pressure as shown in FIG. The height reduced portion 62 is formed by crushing, and the height reduced portion 62 and the height increased portion 61 are connected in series with the step portion 63 as a boundary.

【0031】この他、前記高さ変化部分60は、図9
(b)に示すようにバンパーレインフォース12を、断
面形状が目の字状となるように閉断面の上,下部分に仕
切り板64を設けた形状に軽合金材料で押出し成形し、
高さ減少部分62に対応する部分の上,下両面を図9
(a),(c)に示すように機械加工により切削するこ
とによっても形成することができる。
In addition, the height changing portion 60 is shown in FIG.
As shown in (b), the bumper reinforcement 12 is extruded from a light alloy material into a shape in which partition plates 64 are provided on the upper and lower portions of the closed cross section so that the cross section has an eye shape.
The upper and lower surfaces of the portion corresponding to the height reduction portion 62 are shown in FIG.
It can also be formed by cutting by machining as shown in (a) and (c).

【0032】また、前記高さ変化部分60は、前記図8
の液圧成形や図9の軽合金の押出し成形材を機械加工す
る以外にも各種手法が有り、例えば押出し成形時に最終
断面形状に沿って成形する可変断面軽合金押出し材によ
っても形成することができる。
Further, the height changing portion 60 is the same as that shown in FIG.
There are various methods other than the hydraulic forming of Fig. 9 and the machining of the light alloy extruded material shown in Fig. 9. For example, a variable cross-section light alloy extruded material formed along the final cross-sectional shape at the time of extrusion molding can be used. it can.

【0033】(作用)以上の構成によりこの第1実施形
態の車体前部構造によれば、図2に示すようにフロント
サイドメンバ11の前端部に前方から静的な衝突荷重F
が作用した際に、図3に示したようにサイドメンバ前方
領域11Fの長手方向に連なる各仮想断面Ia,Ib…
Ieで発生する軸力成分応力(FY/A(y))とモー
メント成分応力({FX×(L−y)}/Z(y))の
和の最大値が、前部≒後部になるとともに、その上限値
がサイドメンバ構成素材の降伏強度σ(y)となってい
るため、動的現象である衝突時には、入力点であるフロ
ントサイドメンバ11の前端部が素材の降伏域に達して
塑性変形が生じ、その結果、前記衝突荷重Fが入力した
際に、サイドメンバ前方領域11Fは入力点である前端
部から潰れ変形(圧壊)を誘発するとともに、その潰れ
変形が後方に向かって持続的に伝播されるモードで変形
し、衝突エネルギーを確実に吸収することができる。
(Operation) According to the vehicle body front structure of the first embodiment having the above-described structure, as shown in FIG. 2, a static collision load F is applied to the front end of the front side member 11 from the front.
When the action is performed, as shown in FIG. 3, the virtual cross sections Ia, Ib ... Which are continuous in the longitudinal direction of the side member front region 11F.
The maximum value of the sum of the axial force component stress (FY / A (y)) and the moment component stress ({FX × (L−y)} / Z (y)) generated in Ie becomes the front portion ≈ the rear portion. Since the upper limit value is the yield strength σ (y) of the side member constituent material, at the time of collision, which is a dynamic phenomenon, the front end portion of the front side member 11 which is the input point reaches the yield area of the material and the plasticity increases. Deformation occurs, and as a result, when the collision load F is input, the side member front region 11F induces a crushing deformation (crushing) from the front end portion which is an input point, and the crushing deformation is continuously rearward. It can be deformed in a mode that propagates to, and can reliably absorb collision energy.

【0034】このとき、前述のようにサイドメンバ前方
領域11Fを車体前方に向かって車幅方向外方に傾斜し
て形成しているので、斜め前方からの衝突は勿論のこ
と、正面方向からの衝突に対してもサイドメンバ前方領
域11Fを先端部から持続的に潰れ変形させることがで
きる。
At this time, as described above, since the side member front region 11F is formed so as to be inclined outward in the vehicle width direction toward the front of the vehicle body, not only the collision from the diagonal front but also the front direction. Even in the event of a collision, the side member front region 11F can be continuously crushed and deformed from the tip portion.

【0035】また、このように車幅方向外方に傾斜させ
たサイドメンバ前方領域11Fにより、サイドメンバ1
1の前端部をより車幅方向外方に配置することができる
ため車体前端部における入力支持範囲を車幅方向に拡大
することができる。
Further, the side member front region 11F inclined outward in the vehicle width direction as described above is provided with the side member 1
Since the front end portion of No. 1 can be arranged further outward in the vehicle width direction, the input support range at the vehicle body front end portion can be expanded in the vehicle width direction.

【0036】ここで、前述のように前面衝突に対してサ
イドメンバ前方領域11Fを前端側から後方へ向けて持
続的に潰れ変形させることができるのであるが、補強部
分11R付近では強度剛性が高くなっているため、どう
しても反力が増大する傾向となる。
Here, as described above, the side member front region 11F can be continuously crushed and deformed from the front end side to the rear side against a frontal collision, but the strength and rigidity are high in the vicinity of the reinforcing portion 11R. Therefore, the reaction force tends to increase.

【0037】しかし、本実施形態の構造によれば、衝突
初期段階で図7(a)の状態から図7(b)に示すよう
にサイドメンバ前方領域11Fが閉断面となった稜線1
1c,11d(図3参照)を含めて潰れ変形Kし、この
潰れ変形Kの進行に伴ってバンパーレインフォース12
の後面12aに順次干渉して、その干渉点が潰れ変形K
の進行とともに車両後方へと移動すると、バンパーレイ
ンフォース12の高さ変化部分60によって潰れ変形K
の後半部分でフロントサイドメンバ11の反力が増大す
るのを抑制できる。
However, according to the structure of the present embodiment, the ridge line 1 in which the side member front region 11F has a closed cross section as shown in FIG. 7B from the state of FIG. 7A at the initial stage of collision.
The crush deformation K including 1c and 11d (see FIG. 3) is performed, and as the crush deformation K progresses, the bumper reinforcement 12 is deformed.
The rear surface 12a is sequentially interfered with, and the interference point is crushed and deformed K.
When the vehicle moves rearward as the vehicle moves, the crush deformation K due to the height changing portion 60 of the bumper reinforcement 12 is caused.
It is possible to suppress an increase in the reaction force of the front side member 11 in the latter half of the above.

【0038】即ち、前記高さ変化部分60の高さ減少部
分62をフロントサイドメンバ11の稜線11c,11
dを避けた側面中央部11e(図3参照)に対応させて
配置してあるので、前記潰れ変形Kの進行に伴ってサイ
ドメンバ前方領域11Fの側面中央部11eは前記高さ
減少部分62に干渉すると、図7(C)に示すようにサ
イドメンバ前方領域11Fは剛性の低い側面11eから
変形が開始され、反力の増大を抑制して潰れ変形Kを促
進して効率的なエネルギー吸収を行わせることができ
る。
That is, the height decreasing portion 62 of the height changing portion 60 is formed into the ridge lines 11c and 11 of the front side member 11.
Since it is arranged so as to correspond to the side surface central portion 11e (see FIG. 3) avoiding d, the side surface central portion 11e of the side member front region 11F becomes the height decreasing portion 62 as the crush deformation K progresses. When the interference occurs, as shown in FIG. 7C, the side member front region 11F starts to be deformed from the side surface 11e having low rigidity, suppresses an increase in reaction force, promotes the crush deformation K, and efficiently absorbs energy. Can be done.

【0039】図11は、図10(a)に示すように高さ
変化部分60が形成されていないバンパーレインフォー
ス12を用いた場合のサイドメンバ11の反力特性P
と、図10(b)に示すように高さ変化部分60を形成
した本実施形態のバンパーレインフォース12を用いた
場合のサイドメンバ11の反力特性Qとを比較して示し
ており、時間の経過に伴ってサイドメンバ前方領域11
Fとバンパーレインフォース12との干渉部分が増大し
て行くと、反力特性Qでは前記高さ減少部分62を設け
た後半部分で大きな反力低減領域を確保することができ
る。
FIG. 11 shows a reaction force characteristic P of the side member 11 when the bumper reinforcement 12 having no height changing portion 60 as shown in FIG. 10A is used.
And the reaction force characteristic Q of the side member 11 when the bumper reinforcement 12 of the present embodiment in which the height changing portion 60 is formed as shown in FIG. Side member front region 11 with the progress of
As the interference portion between F and the bumper reinforcement 12 increases, in the reaction force characteristic Q, a large reaction force reduction region can be secured in the latter half portion where the height reduction portion 62 is provided.

【0040】従って、バンパーレインフォース12にサ
イドメンバ前方領域11Fが干渉した際の潰れ変形Kを
積極的に行うことができ、ひいてはサイドメンバ11に
よる衝突荷重Fのエネルギーを効率良く吸収することが
できる。
Therefore, the crushing deformation K when the front region 11F of the side member interferes with the bumper reinforcement 12 can be positively performed, and the energy of the collision load F by the side member 11 can be efficiently absorbed. .

【0041】また、この第1実施形態では、反力調整手
段とした高さ変化部分60は、バンパーレインフォース
12の断面高さh1,h2を変化させるように加工する
のみでよいため、反力調整手段の全体構造を簡素化する
ことができる。
Further, in the first embodiment, the height changing portion 60 used as the reaction force adjusting means only needs to be processed so as to change the sectional heights h1 and h2 of the bumper reinforcement 12, so that the reaction force can be changed. The overall structure of the adjusting means can be simplified.

【0042】ところで、本実施形態では前記サイドメン
バ板厚変化構造50を、板厚t1,t2,t3…t6と
板厚の異なる複数の板材51a,51b,51c…51
fを、それらの板厚が段階的に変化するように接合した
複合パネル材52を用いて形成したので、サイドメンバ
前方領域11Fの長手方向に連なる仮想断面Ia,Ib
…Ieで発生する最大応力の制御を近似的に行って、サ
イドメンバ前方領域11Fの前端部からの潰れ変形Kを
支障無く誘発することができるとともに、サイドメンバ
前方領域11Fの形成を容易にすることができる。
By the way, in the present embodiment, the side member plate thickness changing structure 50 includes a plurality of plate members 51a, 51b, 51c ... 51 having plate thicknesses t1, t2, t3, ...
Since f is formed by using the composite panel material 52 joined so that the plate thickness thereof changes stepwise, the virtual cross sections Ia, Ib continuous in the longitudinal direction of the side member front region 11F.
... The maximum stress generated in Ie is approximately controlled, so that the crush deformation K from the front end portion of the side member front region 11F can be induced without any trouble, and the side member front region 11F can be easily formed. be able to.

【0043】また、このように前記サイドメンバ板厚変
化構造50は、サイドメンバ前方領域11Fの断面寸法
を長手方向に変化させた断面寸法変化構造となっている
ので、衝突荷重Fがサイドメンバ11の前端部に入力し
た際に、サイドメンバ前方領域の長手方向に連なる仮想
断面で発生する最大応力の制御がし易くなり、ひいては
強度バランスの調整が容易となって、衝突時におけるサ
イドメンバ前方領域11Fの前端部からの潰れ変形Kを
より確実に誘発することができる。
Further, since the side member plate thickness changing structure 50 has a sectional size changing structure in which the sectional size of the side member front region 11F is changed in the longitudinal direction as described above, the collision load F is influenced by the side member 11. When it is input to the front end of the side member, it becomes easier to control the maximum stress that occurs in the virtual cross section that is continuous in the longitudinal direction of the side member front region, and it becomes easier to adjust the strength balance. The crush deformation K from the front end of 11F can be more reliably induced.

【0044】尚、前記板材51a,51b,51c…5
1fの数は本実施形態に限定されることはなく、その数
はサイドメンバ前方領域11Fの要求圧壊特性に応じて
決定すればよい。
The plate members 51a, 51b, 51c ... 5
The number of 1f is not limited to this embodiment, and the number may be determined according to the required crushing characteristics of the side member front region 11F.

【0045】また、サイドメンバ板厚変化構造50は、
サイドメンバ前方領域11Fの仮想断面の前部と後部に
発生する最大応力が、前部≒後部となるように設定した
が、これに限ることなく前部が後部以上、つまり前部≧
後部、若しくはこれに近い状態となる強度に設定すれば
良い。
Further, the side member plate thickness changing structure 50 is
Although the maximum stress generated at the front and rear of the imaginary cross section of the side member front region 11F is set to be front ≈ rear, the front is not limited to this, that is, front ≧
The strength may be set to the rear part or a state close to this.

【0046】(第2実施形態)図12〜図15は本発明
の第2実施形態を示し、前記第1実施形態と同一構成部
分に同一符号を付して重複する説明を省略して述べる。
(Second Embodiment) FIGS. 12 to 15 show a second embodiment of the present invention, in which the same components as those in the first embodiment are designated by the same reference numerals, and a duplicate description will be omitted.

【0047】図12は車体前部右側の骨格構造を示す略
示的平面説明図、図13はバンパーレインフォースの要
部を示す背面斜視図、図14は図13中D−D線に沿っ
た拡大断面図、図15はサイドメンバ前方領域の変形状
態を示す平面図である。
FIG. 12 is a schematic plan explanatory view showing a skeleton structure on the right side of the front part of the vehicle body, FIG. 13 is a rear perspective view showing an essential part of the bumper reinforcement, and FIG. 14 is taken along line D-D in FIG. FIG. 15 is an enlarged sectional view, and FIG. 15 is a plan view showing a deformed state of the front region of the side member.

【0048】この第2実施形態の車体前部構造は、図1
2,図13に示すように反力調整手段をバンパーレイン
フォース12の後面に付設した突起部70によって構成
したものである。
The vehicle body front structure of the second embodiment is shown in FIG.
As shown in FIG. 2 and FIG. 13, the reaction force adjusting means is constituted by a protrusion 70 attached to the rear surface of the bumper reinforcement 12.

【0049】この第2実施形態ではバンパーレインフォ
ース12の断面高さh1を、予めサイドメンバの断面高
さh0と略同等以上に形成して、このバンパーレインフ
ォース12のサイドメンバ11の連結部分Cから所定距
離だけ車両内側に寄った後面にサイドメンバ11の断面
高さh0よりも小さな幅h3となる前記突起部70を設
けて、この突起部70を第1実施形態と同様にサイドメ
ンバ11の稜線11c,11dを避けた側面中央部11
eに対応させて配置して構成している。
In the second embodiment, the sectional height h1 of the bumper reinforcement 12 is previously formed to be substantially equal to or greater than the sectional height h0 of the side member, and the connecting portion C of the side member 11 of the bumper reinforcement 12 is formed. The protrusion 70 having a width h3 smaller than the sectional height h0 of the side member 11 is provided on the rear surface of the side member 11 which is closer to the inside of the vehicle by a predetermined distance from the side member 11, as in the first embodiment. Side center part 11 avoiding ridges 11c and 11d
It is arranged corresponding to e.

【0050】前記突起部70は、図14に示すように断
面コ字状に折曲したチャンネル材として形成され、その
両端フランジ71,71aをバンパーレインフォース1
2の後面12aの高さ方向中央部に連続溶接などによっ
て接合している。勿論、突起部70はフロントサイドメ
ンバ11に干渉した際にこのフロントサイドメンバ11
を潰れ変形Kするのに十分な剛性を備えている。
The projection 70 is formed as a channel material bent in a U-shaped cross section as shown in FIG. 14, and both end flanges 71 and 71a thereof are attached to the bumper reinforcement 1.
It is joined to the central portion of the rear surface 12a in the height direction by continuous welding or the like. Of course, when the projection 70 interferes with the front side member 11,
It has sufficient rigidity to crush and deform K.

【0051】従って、この第2実施形態にあっても前記
第1実施形態と同様に、図15に示すように正面方向か
らの衝突荷重F又は斜め前方からの衝突荷重F1の入力
によるサイドメンバ前方領域11Fの変形モードは、最
初はサイドメンバ前方領域11Fが断面高さh1を大き
くしたバンパーレインフォース12に干渉して、閉断面
となったフロントサイドメンバ11の稜線11c,11
dを含む断面全体の潰れ変形Kを生じさせる。
Therefore, also in the second embodiment, as in the first embodiment, as shown in FIG. 15, the front side member is input by the collision load F from the front direction or the collision load F1 from the diagonal front. In the deformation mode of the region 11F, initially, the front region 11F of the side member interferes with the bumper reinforcement 12 having the increased sectional height h1, and the ridgelines 11c, 11 of the front side member 11 having a closed cross section.
The collapse deformation K of the entire cross section including d is caused.

【0052】そして、前記潰れ変形Kが進行することに
伴ってフロントサイドメンバ11が突起部70に干渉し
て、サイドメンバ前方領域11Fの剛性の低い側面11
eから変形が開始され、潰れ変形Kの後半部分での反力
の増大を抑制して変形を促進することができ、前記第1
実施形態と同様の効果を奏することができる。
As the crush deformation K progresses, the front side member 11 interferes with the projection 70, and the side surface 11 of the side member front region 11F having a low rigidity.
Deformation is started from e, the increase of the reaction force in the latter half of the crush deformation K can be suppressed, and the deformation can be promoted.
The same effect as that of the embodiment can be obtained.

【0053】反力調整手段は、バンパーレインフォース
12の断面高さh1をフロントサイドメンバ11の断面
高さh0と略同等以上に形成して、このバンパーレイン
フォース12の後面12aに突起部を付加するのみでよ
いため、バンパーレインフォース12の複雑な加工を伴
うことなく構成を簡素化することができる。
The reaction force adjusting means forms the sectional height h1 of the bumper reinforcement 12 to be substantially equal to or greater than the sectional height h0 of the front side member 11, and adds a protrusion to the rear surface 12a of the bumper reinforcement 12. Therefore, the structure can be simplified without complicated processing of the bumper reinforcement 12.

【0054】ところで、本発明の車体前部構造は前記第
1,第2実施形態を例にとって説明したが、本発明の要
旨を逸脱しない範囲内でその他の構成となる実施形態を
とることができる。
Although the vehicle body front structure of the present invention has been described by taking the first and second embodiments as examples, other embodiments having other configurations can be adopted without departing from the scope of the present invention. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対象とする自動車の外観斜視図。FIG. 1 is an external perspective view of an automobile targeted by the present invention.

【図2】本発明の第1実施形態における車体前部右側の
骨格構造を示す略示的平面説明図。
FIG. 2 is a schematic plan explanatory view showing a skeleton structure on the right side of the front portion of the vehicle body in the first embodiment of the invention.

【図3】本発明の第1実施形態におけるサイドメンバ前
方領域の斜視図。
FIG. 3 is a perspective view of a side member front region according to the first embodiment of the present invention.

【図4】図3中A−A線に沿った拡大断面図。FIG. 4 is an enlarged cross-sectional view taken along the line AA in FIG.

【図5】本発明の第1実施形態における強度調整手段を
入力形態モデル(a)と応力分布図(b)で示す説明
図。
FIG. 5 is an explanatory view showing the strength adjusting means in the first embodiment of the present invention with an input form model (a) and a stress distribution diagram (b).

【図6】本発明の第1実施形態における強度調整手段の
概念を示す応力分布図。
FIG. 6 is a stress distribution diagram showing the concept of strength adjusting means in the first embodiment of the present invention.

【図7】本発明の第1実施形態における反力調整手段に
よるサイドメンバ前方領域の変形モードを(a)〜
(c)によって順を追って示す説明図。
7A to 7D show deformation modes of a side member front region by the reaction force adjusting means in the first embodiment of the present invention.
Explanatory drawing which shows in order by (c).

【図8】本発明の第1実施形態におけるバンパーレイン
フォースの成形工法の一例を示す説明図。
FIG. 8 is an explanatory view showing an example of a bumper reinforcement forming method according to the first embodiment of the present invention.

【図9】本発明の第1実施形態におけるバンパーレイン
フォースの他の成形工法を端部斜視図(a),B−B線
断面(b),C−C線断面(c)によって示す説明図。
FIG. 9 is an explanatory view showing another forming method of the bumper reinforcement in the first embodiment of the present invention with an end perspective view (a), a BB line cross section (b), and a CC line cross section (c). .

【図10】本発明の第1実施形態におけるバンパーレイ
ンフォースの反力調整手段を設けない構造(a)と設け
た構造(b)とを比較して示す説明図。
FIG. 10 is an explanatory view showing a structure (a) in which a reaction force adjusting means for bumper reinforcement is not provided and a structure (b) provided in the first embodiment of the present invention in comparison.

【図11】本発明の第1実施形態における反力調整手段
の有無によるサイドメンバの反力を比較したグラフ。
FIG. 11 is a graph comparing the reaction forces of the side members with and without the reaction force adjusting means according to the first embodiment of the present invention.

【図12】本発明の第2実施形態における車体前部右側
の骨格構造を示す略示的平面説明図。
FIG. 12 is a schematic plan explanatory view showing a skeleton structure on the right side of the front portion of the vehicle body in the second embodiment of the invention.

【図13】本発明の第2実施形態におけるバンパーレイ
ンフォースの要部を示す背面斜視図。
FIG. 13 is a rear perspective view showing a main part of a bumper reinforcement according to a second embodiment of the present invention.

【図14】図13中D−D線に沿った拡大断面図。FIG. 14 is an enlarged cross-sectional view taken along the line DD in FIG.

【図15】本発明の第2実施形態におけるサイドメンバ
前方領域の変形状態を示す略示的平面説明図。
FIG. 15 is a schematic plan explanatory view showing a deformed state of a side member front region in the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

F・C フロントコンパートメント 10 車体 11 サイドメンバ 11F サイドメンバ前方領域 11R 補強部分 11c,11d 稜線 11e 側面中央部 12 バンパーレインフォース 12a 後面 30 パワーユニット(車両ユニット部品) 50 サイドメンバ板厚変化構造(強度調整手段) 60 高さ変化部分(反力調整手段) 61 高さ増大部分 62 高さ減少部分 K 潰し変形 Ia,Ib…Ie 仮想断面 FC front compartment 10 car body 11 side members 11F Side member front area 11R reinforcement part 11c, 11d ridge 11e Side center part 12 Bumper reinforcement 12a rear surface 30 power units (vehicle unit parts) 50 Side member thickness change structure (strength adjusting means) 60 Height change part (reaction force adjusting means) 61 Height increase part 62 Height reduction area K crush deformation Ia, Ib ... Ie virtual cross section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フロントコンパートメントの左右両側部
に車体前後方向に配設したサイドメンバに車両ユニット
部品を搭載するための補強部分を設け、これらサイドメ
ンバの前端に跨って車幅方向に延在するバンパーレイン
フォースを結合した車体前部構造において、 前記サイドメンバの前記補強部分から前方となるサイド
メンバ前方領域を車体前方に向かって車幅方向外方に傾
斜させて形成し、この外開きとなったサイドメンバ前方
領域に、長手方向に連なる仮想断面の前部と後部に発生
する最大応力が、前部が後部以上、若しくはこれに近い
状態の強度となるような強度調整手段を設けるととも
に、前記バンパーレインフォースのサイドメンバとの連
結部分よりも車幅方向内側部分に、前方からの衝突荷重
の入力によって、サイドメンバが前方から順次潰れ変形
してバンパーレインフォースに干渉した際に、サイドメ
ンバの反力増大を抑制する反力調整手段を設けたことを
特徴とする車体前部構造。
1. Reinforcing parts for mounting vehicle unit parts are provided on side members arranged in the vehicle front-rear direction on both left and right sides of the front compartment, and extend in the vehicle width direction across the front ends of these side members. In a vehicle body front structure in which a bumper reinforcement is coupled, a side member front region that is forward from the reinforcing portion of the side member is formed by inclining outward in the vehicle width direction toward the front of the vehicle body. In the front region of the side member, the strength adjusting means is provided such that the maximum stress generated in the front and rear portions of the virtual cross section continuous in the longitudinal direction is such that the front portion has a strength equal to or higher than the rear portion, or close to this. By inputting the collision load from the front, the side member is located inside the bumper reinforcement in the vehicle width direction inside the connection with the side member. Vehicle body front structure, characterized in that when the interfering with bumper reinforcement deforms sequentially crushed from the front, provided with a reaction force adjusting means for suppressing a reaction force increase of the side member.
【請求項2】 反力調整手段は、バンパーレインフォー
スをその断面高さを、サイドメンバの連結部分近傍では
サイドメンバの断面高さと略同等以上の高さ増大部分と
して形成すると共に、サイドメンバの連結部分から所定
距離だけ車両内側に寄った部分ではサイドメンバの断面
高さよりも小さい高さ減少部分として形成して、前記高
さ減少部分をサイドメンバの稜線を避けた側面中央部に
対応させて構成したことを特徴とする請求項1に記載の
車体前部構造。
2. The reaction force adjusting means forms the bumper reinforcement as a height-increasing portion whose cross-sectional height is approximately equal to or higher than the cross-sectional height of the side member in the vicinity of the connecting portion of the side member, and at the same time, At a portion closer to the inner side of the vehicle by a predetermined distance from the connecting portion, a height reducing portion smaller than the sectional height of the side member is formed, and the height reducing portion is made to correspond to the central portion of the side surface avoiding the ridgeline of the side member. The vehicle body front structure according to claim 1, which is configured.
【請求項3】 反力調整手段は、バンパーレインフォー
スをその断面高さをサイドメンバの断面高さと略同等以
上に形成して、このバンパーレインフォースのサイドメ
ンバの連結部分から所定距離だけ車両内側に寄った後面
にサイドメンバの断面高さよりも小さな幅となる突起部
を設けて、この突起部をサイドメンバの稜線を避けた側
面中央部に対応させて配置して構成したことを特徴とす
る請求項1に記載の車体前部構造。
3. The reaction force adjusting means forms the bumper reinforcement so that its sectional height is substantially equal to or greater than the sectional height of the side member, and a predetermined distance from the connecting portion of the side member of the bumper reinforcement is inside the vehicle. It is characterized in that a protrusion having a width smaller than the sectional height of the side member is provided on the rear surface of the side member, and the protrusion is arranged corresponding to the center of the side surface avoiding the ridge line of the side member. The vehicle body front structure according to claim 1.
JP2001371704A 2001-11-13 2001-12-05 Body front structure Expired - Fee Related JP3632654B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001371704A JP3632654B2 (en) 2001-12-05 2001-12-05 Body front structure
EP02023487.8A EP1325859B1 (en) 2001-11-13 2002-10-21 Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
US10/286,909 US6893078B2 (en) 2001-11-13 2002-11-04 Front body structure for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371704A JP3632654B2 (en) 2001-12-05 2001-12-05 Body front structure

Publications (2)

Publication Number Publication Date
JP2003170862A true JP2003170862A (en) 2003-06-17
JP3632654B2 JP3632654B2 (en) 2005-03-23

Family

ID=19180713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371704A Expired - Fee Related JP3632654B2 (en) 2001-11-13 2001-12-05 Body front structure

Country Status (1)

Country Link
JP (1) JP3632654B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082721A (en) * 2004-09-16 2006-03-30 Mazda Motor Corp Front structure of automobile
JP2009107445A (en) * 2007-10-29 2009-05-21 Honda Motor Co Ltd Front structure of vehicle body
JP2012166744A (en) * 2011-02-16 2012-09-06 Mazda Motor Corp Front structure of vehicle
JP2018062290A (en) * 2016-10-14 2018-04-19 マツダ株式会社 Impact absorption structure of vehicle
JP2019199170A (en) * 2018-05-16 2019-11-21 スズキ株式会社 Vehicle body front structure
CN112793525A (en) * 2019-11-13 2021-05-14 广州汽车集团股份有限公司 Automobile front longitudinal beam section design method and automobile front longitudinal beam
CN113492917A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Vehicle body
CN113734294A (en) * 2021-09-26 2021-12-03 重庆长安汽车股份有限公司 Engine compartment boundary beam front section assembly and vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082721A (en) * 2004-09-16 2006-03-30 Mazda Motor Corp Front structure of automobile
JP4600738B2 (en) * 2004-09-16 2010-12-15 マツダ株式会社 Automotive front structure
JP2009107445A (en) * 2007-10-29 2009-05-21 Honda Motor Co Ltd Front structure of vehicle body
JP2012166744A (en) * 2011-02-16 2012-09-06 Mazda Motor Corp Front structure of vehicle
JP2018062290A (en) * 2016-10-14 2018-04-19 マツダ株式会社 Impact absorption structure of vehicle
JP2019199170A (en) * 2018-05-16 2019-11-21 スズキ株式会社 Vehicle body front structure
JP7067254B2 (en) 2018-05-16 2022-05-16 スズキ株式会社 Body front structure
CN112793525A (en) * 2019-11-13 2021-05-14 广州汽车集团股份有限公司 Automobile front longitudinal beam section design method and automobile front longitudinal beam
CN113492917A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Vehicle body
CN113492917B (en) * 2020-03-19 2024-03-19 本田技研工业株式会社 Vehicle body
CN113734294A (en) * 2021-09-26 2021-12-03 重庆长安汽车股份有限公司 Engine compartment boundary beam front section assembly and vehicle
CN113734294B (en) * 2021-09-26 2023-09-22 重庆长安汽车股份有限公司 Engine compartment boundary beam front section assembly and vehicle

Also Published As

Publication number Publication date
JP3632654B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
EP1325859B1 (en) Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
JP5967292B2 (en) Vehicle front structure
JP5975168B2 (en) Vehicle front structure
JP6070821B2 (en) Vehicle front structure
JP4122887B2 (en) Body front structure
JP4059187B2 (en) Vehicle hood structure
CN105339243B (en) The vehicle body front structure of vehicle
JP2003226266A (en) Front structure of vehicle body
JP2001253370A (en) Rear body structure of automobile
JP7318478B2 (en) Vehicle front body structure
JP2004074868A (en) Vehicle front structure of automobile
JP2003170862A (en) Body front part structure
JP2004075021A (en) Car body skeleton structure
JP3617481B2 (en) Auto body front structure
JP2004345466A (en) Vehicle body front part skeleton structure
JP7354757B2 (en) Vehicle front body structure
JP2003095135A (en) Body front structure of automobile
JP2005297857A (en) Bumper reinforcing structure
US11242091B2 (en) Vehicle body front structure
JP2003146241A (en) Vehicle body front structure
JP3572459B2 (en) Body front structure
JP6044795B2 (en) Front body structure of the vehicle
EP2428432B1 (en) Front side vehicle body structure
JP7213292B2 (en) rear body structure
JP2002370672A (en) Car body front structure of automobile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees