JP3632654B2 - Body front structure - Google Patents

Body front structure Download PDF

Info

Publication number
JP3632654B2
JP3632654B2 JP2001371704A JP2001371704A JP3632654B2 JP 3632654 B2 JP3632654 B2 JP 3632654B2 JP 2001371704 A JP2001371704 A JP 2001371704A JP 2001371704 A JP2001371704 A JP 2001371704A JP 3632654 B2 JP3632654 B2 JP 3632654B2
Authority
JP
Japan
Prior art keywords
side member
cross
height
bumper reinforcement
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001371704A
Other languages
Japanese (ja)
Other versions
JP2003170862A (en
Inventor
秀司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001371704A priority Critical patent/JP3632654B2/en
Priority to EP02023487.8A priority patent/EP1325859B1/en
Priority to US10/286,909 priority patent/US6893078B2/en
Publication of JP2003170862A publication Critical patent/JP2003170862A/en
Application granted granted Critical
Publication of JP3632654B2 publication Critical patent/JP3632654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の車体前部構造に関する。
【0002】
【従来の技術】
車両の衝突対策としては、車体前部のサイドメンバを軸圧潰させることにより衝突エネルギーを吸収するようにしており、例えば特開2001−158377号公報にその車体前部構造が示されている。
【0003】
この車体前部構造は、多角形断面を有するサイドメンバ前部の壁部にビードを配置することにより、サイドメンバに軸方向入力が作用した際に軸圧潰を促進して、衝突エネルギーを吸収するようにしたものである。
【0004】
【発明が解決しようとする課題】
しかしながら、かかる従来の車体前部構造では、サイドメンバに軸方向に入力する衝突荷重に対してはエネルギー吸収を良好に行うことができるが、斜め前方から入力する衝突荷重に対しては、サイドメンバ前部がその付け根部分から折れ曲がるような変形モードとなってしまいがちである。
【0005】
従って、斜め衝突時の衝突エネルギーはサイドメンバ前部の折れ曲がりで一時的に吸収されるのみで、衝突荷重を軸圧潰により持続的に吸収する荷重特性を得ることが困難になる。
【0006】
このため、サイドメンバ前部の折れ曲がりのみで十分な衝突エネルギー吸収特性を得るためには、サイドメンバの剛性を大幅に高くする必要があるため、必然的にサイドメンバの肉厚が厚くなるなどして車体重量の大幅な増加を招来する懸念がある。
【0007】
そこで、本発明は、正面方向からは勿論斜め前方からの衝突荷重入力に対してもサイドメンバの前端部分を確実に潰れ変形させることができて、衝突エネルギーの吸収効率を高められる車体前部構造を提供するものである。
【0008】
【課題を解決するための手段】
請求項1の発明にあっては、フロントコンパートメントの左右両側部に車体前後方向に配設したサイドメンバに車両ユニット部品を搭載するための補強部分を設け、これらサイドメンバの前端に跨って車幅方向に延在するバンパーレインフォースを結合した車体前部構造において、
前記サイドメンバの前記補強部分から前方となるサイドメンバ前方領域を車体前方に向かって車幅方向外方に傾斜させて形成し、この外開きとなったサイドメンバ前方領域に、長手方向の前端から後方に向けて間欠的にその長手方向に対して直交する断面をとった場合に、各断面の前部と後部に発生する最大応力が、前部が後部以上、若しくはこれに近い状態の強度となるような強度調整手段を設けるとともに、前記バンパーレインフォースのサイドメンバとの連結部分よりも車幅方向内側部分に、前方からの衝突荷重の入力によって、サイドメンバが前方から順次潰れ変形してバンパーレインフォースに干渉した際に、サイドメンバの側面中央部分に干渉して該サイドメンバの反力増大を抑制する反力調整手段を設けたことを特徴としている。
【0009】
請求項2の発明にあっては、請求項1に記載の車体前部構造において、前記反力調整手段は、バンパーレインフォースをその断面高さを、サイドメンバの連結部分近傍ではサイドメンバの断面高さと略同等以上の高さ増大部分として形成すると共に、サイドメンバの連結部分から所定距離だけ車両内側に寄った部分ではサイドメンバの断面高さよりも小さい高さ減少部分として形成して、前記高さ減少部分をサイドメンバの稜線を避けた側面中央部に対応させて構成したことを特徴としている。
【0010】
請求項3の発明にあっては、請求項1に記載の車体前部構造において、反力調整手段は、バンパーレインフォースをその断面高さをサイドメンバの断面高さと略同等以上に形成して、このバンパーレインフォースのサイドメンバの連結部分から所定距離だけ車両内側に寄った後面にサイドメンバの断面高さよりも小さな幅となる突起部を設けて、この突起部をサイドメンバの稜線を避けた側面中央部に対応させて配置して構成したことを特徴としている。
【0011】
【発明の効果】
請求項1に記載の発明によれば、補強部分から前方となるサイドメンバ前方領域は車体前方に向かって車幅方向外方に傾斜して形成されていて、このサイドメンバ前方領域は、強度調整手段によってサイドメンバ前方領域の長手方向の前端から後方に向けて間欠的にその長手方向に対して直交する断面をとった場合に、各断面の前部と後部に発生する最大応力が、前部が後部以上、若しくはこれに近い状態となる強度に設定されるため、サイドメンバの前端部に正面方向又は斜め前方の何れから衝突荷重が入力した場合でも、衝突荷重の入力点であるサイドメンバ前方領域の前端から後方に向かって潰れ変形が誘発され、その潰れ変形をサイドメンバ前方領域の後部まで持続的に伝播させて、衝突エネルギーの吸収効率を高めることができる。
【0012】
このとき、サイドメンバ前方領域は閉断面の稜線を含めて潰れ変形し、潰れ変形の進行に伴ってバンパーレインフォースの後面に順次干渉するようになるが、バンパーレインフォースに反力調整手段を設けてあるので、この反力調整手段によってサイドメンバの反力が増大するのを抑制できるため、サイドメンバの変形を促進して効率的なエネルギー吸収を行わせることができる。
【0013】
請求項2に記載の発明によれば、請求項1の発明の効果に加えて、前記反力調整手段を、高さ増大部分と高さ減少部分を形成したバンパーレインフォースの高さ変化部分として構成して、この高さ減少部分をサイドメンバの稜線を避けた側面中央部に対応させてあるので、前方からの衝突荷重入力によるサイドメンバ前方領域の変形モードは、最初はサイドメンバ前方領域が前記高さ増大部分に干渉して、閉断面となったサイドメンバの剛性の高い稜線を含む断面全体を潰れ変形させるが、この潰れ変形が進行することに伴ってサイドメンバは前記高さ減少部分に干渉して、サイドメンバ前方領域は剛性の低い側面から変形が開始されて、反力の増大を抑制した変形を容易に行わせることができる。
【0014】
請求項3に記載の発明によれば、請求項1の発明の効果に加えて、前記反力調整手段を、断面高さをサイドメンバと略同等以上に形成したバンパーレインフォースの後面の所要部位に、サイドメンバの断面高さよりも小さな幅となる突起部を設けて、この突起部をサイドメンバの稜線を避けた側面中央部に対応させて配置して構成したので、前方からの衝突荷重入力によるサイドメンバ前方領域の変形モードは、最初はサイドメンバ前方領域が断面高さを大きくしたバンパーレインフォースに干渉して、閉断面となったサイドメンバの剛性の高い稜線を含む断面全体を潰れ変形させるが、この潰れ変形が進行することに伴ってサイドメンバは前記突起部に干渉して、サイドメンバ前方領域は剛性の低い側面から変形が開始されて、反力の増大を抑制した変形を容易に行わせることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0016】
(第1実施形態)
図1〜図11は本発明の車体前部構造の第1実施形態を示し、図1は本発明の対象とする自動車の外観斜視図、図2は車体前部右側の骨格構造を示す略示的平面説明図、図3はサイドメンバ前方領域の斜視図、図4は図3中A−A線に沿った拡大断面図、図5は強度調整手段を入力形態モデル(a)と応力分布図(b)で示す説明図、図6は強度調整手段の概念を示す応力分布図、図7は反力調整手段によるサイドメンバ前方領域の変形モードを(a)〜(c)によって順を追って示す説明図、図8はバンパーレインフォースの成形工法を示す説明図、図9はバンパーレインフォースの他の成形工法を端部斜視図(a),B−B線断面(b),C−C線断面(c)によって示す説明図、図10はバンパーレインフォースの反力調整手段を設けない構造(a)と設けた構造(b)とを比較して示す説明図、図11は反力調整手段の有無によるサイドメンバの反力を比較したグラフである。
【0017】
本実施形態の車体前部構造は図1に示す車体10のフロントコンパートメントF・Cに適用され、その骨格構造は、図2に示すように左右両側部に車体前後方向に配設したサイドメンバ11を備え、これらサイドメンバ11の一般部分は平行に配置されており、かつ、それぞれのサイドメンバ11の前端部に跨って図外のバンパーの骨格を成すバンパーレインフォース12を結合してある。
【0018】
また、それぞれのサイドメンバ11の後方にはダッシュパネル17からフロアパネル18の下面側に廻り込むエクステンションサイドメンバ13を連設してあり、それぞれのエクステンションサイドメンバ13の車体幅方向外方には略平行にサイドシル14が配置され、これらエクステンションサイドメンバ13とサイドシル14のそれぞれの前端部をアウトリガー15で結合してある。
【0019】
前記各サイドメンバ11とエクステンションサイドメンバ13の連設部間に跨ってダッシュクロスメンバ16を結合してある。
【0020】
前記サイドメンバ11の後側部には前輪20を支持するサスペンションアーム21が、直接若しくは図外のサスペンションメンバなどを介して取り付けられるとともに、左右のサイドメンバ11間には車両ユニット部品としてのエンジン等のパワーユニット30がマウントブラケット31を介して搭載される。
【0021】
サイドメンバ11には、図3に示すように前記マウントブラケット31の取付部分に、サイドメンバ11の肉厚を厚くした補強部分11R(図3中梨地部分で示す)が形成される。
【0022】
つまり、サイドメンバ11は、図3に示したように平板帯状の第1プレート11aに、断面コ字状の第2プレート11bの両側フランジ部をスポット溶接などで固設することにより閉断面構造として形成されており、前記補強部分11Rは内周面に補強プレートを接合配置する等により形成される。
【0023】
ここで、本実施形態では図3に示したように、前記サイドメンバ11の前記補強部分11Rから前方となるサイドメンバ前方領域11Fを、車体前方(図3中手前側)に向かって車幅方向外方(図3中左方)に所定角度θだけ傾斜して形成してある。
【0024】
そして、前記外開きとなったサイドメンバ前方領域11Fには、図3に示したように長手方向の前端から後方に向けて間欠的にその長手方向に対して直交する断面Ia,Ib…Ieをとった場合に、各断面(以下、仮想断面と称する)の前部と後部に発生する最大応力が、前部が後部以上(前部≧後部)、若しくはこれに近い状態の強度となるような強度調整手段としてサイドメンバ板厚変化構造50を構成し、前記サイドメンバ前方領域11Fの板厚分布を長手方向に変化させてある。
【0025】
即ち、サイドメンバ板厚変化構造50は、図4に示すようにサイドメンバ前方領域11Fの前端方向から板厚t1,t2,t3…t6(t1<t2<t3<…<t6)と段階的に変化する複数の板材51a,51b,51c…51fを、全周溶接して接合した複合パネル材52で構成していて、最も厚肉化した前記板材51fは前記補強部分11Rとなっている。
【0026】
また、このサイドメンバ前方領域11Fは、図5に示すようにサイドメンバ前方領域11Fの前端部に、前方からの衝突荷重Fが静的に作用した場合に、次の式1に示すように、各仮想断面Ia,Ib…Ie(図3参照)で発生する軸力成分応力(FY/A(y))とモーメント成分応力({FX×(L−y)}/Z(y))の和の最大値が、前部≒後部になるとともに、その上限値がサイドメンバ構成素材の降伏強度σ(y)となるようにしている。
【0027】
σ(y)={FY/A(y)}+{FX×(L−y)}/Z(y) …式1
このとき、サイドメンバ板厚変化構造50による最大応力の上限値は、前述のようにサイドメンバ11を構成する素材の降伏強度を基準に設定し、その結果、図6に示すように各板材51a,51b,51c…51fに対する降伏強度σ(y)の分布が得られる。
【0028】
ところで、前記サイドメンバ前方領域11Fは、図3に示したように車幅方向外方に傾斜しているため、図7(a)〜(c)に示すように正面方向からの衝突荷重Fが入力することによって、サイドメンバ11は前方から順次潰れ変形し、潰れ変形の進行に伴ってバンパーレインフォース12の後面に干渉するようになるが、本実施形態ではバンパーレインフォース12に、サイドメンバ11の干渉が所定量進行した段階でサイドメンバ11の反力増大を抑制する反力調整手段としての高さ変化部分60を設けてある。
【0029】
前記高さ変化部分60は、バンパーレインフォース12をその断面高さが、サイドメンバ11との連結部分Cの近傍でサイドメンバ11の断面高さh0と略同等以上となる高さ増大部分61(断面高さh1)として形成すると共に、サイドメンバ11との連結部分Cから所定距離内側(図3中右方)に寄った部分で、前記サイドメンバ11の断面高さh0よりも小さくなる高さ減少部分62(断面高さh2)として形成して、この高さ減少部分62をサイドメンバ11の稜線11c,11dを避けた側面中央部11eに対応させて構成される。
【0030】
バンパーレインフォース12に形成される高さ変化部分60は、例えば図8に示すように液圧を用いたプレス成形により、中空の閉断面構造としたバンパーレインフォース12の上,下面を押し潰すことにより高さ減少部分62を形成し、段差部63を境に高さ減少部分62と高さ増大部分61とを連設して構成する。
【0031】
この他、前記高さ変化部分60は、図9(b)に示すようにバンパーレインフォース12を、断面形状が目の字状となるように閉断面の上,下部分に仕切り板64を設けた形状に軽合金材料で押出し成形し、高さ減少部分62に対応する部分の上,下両面を図9(a),(c)に示すように機械加工により切削することによっても形成することができる。
【0032】
また、前記高さ変化部分60は、前記図8の液圧成形や図9の軽合金の押出し成形材を機械加工する以外にも各種手法が有り、例えば押出し成形時に最終断面形状に沿って成形する可変断面軽合金押出し材によっても形成することができる。
【0033】
(作用)
以上の構成によりこの第1実施形態の車体前部構造によれば、図2に示すようにフロントサイドメンバ11の前端部に前方から静的な衝突荷重Fが作用した際に、図3に示したようにサイドメンバ前方領域11Fの長手方向に連なる各仮想断面Ia,Ib…Ieで発生する軸力成分応力(FY/A(y))とモーメント成分応力({FX×(L−y)}/Z(y))の和の最大値が、前部≒後部になるとともに、その上限値がサイドメンバ構成素材の降伏強度σ(y)となっているため、動的現象である衝突時には、入力点であるフロントサイドメンバ11の前端部が素材の降伏域に達して塑性変形が生じ、その結果、前記衝突荷重Fが入力した際に、サイドメンバ前方領域11Fは入力点である前端部から潰れ変形(圧壊)を誘発するとともに、その潰れ変形が後方に向かって持続的に伝播されるモードで変形し、衝突エネルギーを確実に吸収することができる。
【0034】
このとき、前述のようにサイドメンバ前方領域11Fを車体前方に向かって車幅方向外方に傾斜して形成しているので、斜め前方からの衝突は勿論のこと、正面方向からの衝突に対してもサイドメンバ前方領域11Fを先端部から持続的に潰れ変形させることができる。
【0035】
また、このように車幅方向外方に傾斜させたサイドメンバ前方領域11Fにより、サイドメンバ11の前端部をより車幅方向外方に配置することができるため車体前端部における入力支持範囲を車幅方向に拡大することができる。
【0036】
ここで、前述のように前面衝突に対してサイドメンバ前方領域11Fを前端側から後方へ向けて持続的に潰れ変形させることができるのであるが、補強部分11R付近では強度剛性が高くなっているため、どうしても反力が増大する傾向となる。
【0037】
しかし、本実施形態の構造によれば、衝突初期段階で図7(a)の状態から図7(b)に示すようにサイドメンバ前方領域11Fが閉断面となった稜線11c,11d(図3参照)を含めて潰れ変形Kし、この潰れ変形Kの進行に伴ってバンパーレインフォース12の後面12aに順次干渉して、その干渉点が潰れ変形Kの進行とともに車両後方へと移動すると、バンパーレインフォース12の高さ変化部分60によって潰れ変形Kの後半部分でフロントサイドメンバ11の反力が増大するのを抑制できる。
【0038】
即ち、前記高さ変化部分60の高さ減少部分62をフロントサイドメンバ11の稜線11c,11dを避けた側面中央部11e(図3参照)に対応させて配置してあるので、前記潰れ変形Kの進行に伴ってサイドメンバ前方領域11Fの側面中央部11eは前記高さ減少部分62に干渉すると、図7(C)に示すようにサイドメンバ前方領域11Fは剛性の低い側面11eから変形が開始され、反力の増大を抑制して潰れ変形Kを促進して効率的なエネルギー吸収を行わせることができる。
【0039】
図11は、図10(a)に示すように高さ変化部分60が形成されていないバンパーレインフォース12を用いた場合のサイドメンバ11の反力特性Pと、図10(b)に示すように高さ変化部分60を形成した本実施形態のバンパーレインフォース12を用いた場合のサイドメンバ11の反力特性Qとを比較して示しており、時間の経過に伴ってサイドメンバ前方領域11Fとバンパーレインフォース12との干渉部分が増大して行くと、反力特性Qでは前記高さ減少部分62を設けた後半部分で大きな反力低減領域を確保することができる。
【0040】
従って、バンパーレインフォース12にサイドメンバ前方領域11Fが干渉した際の潰れ変形Kを積極的に行うことができ、ひいてはサイドメンバ11による衝突荷重Fのエネルギーを効率良く吸収することができる。
【0041】
また、この第1実施形態では、反力調整手段とした高さ変化部分60は、バンパーレインフォース12の断面高さh1,h2を変化させるように加工するのみでよいため、反力調整手段の全体構造を簡素化することができる。
【0042】
ところで、本実施形態では前記サイドメンバ板厚変化構造50を、板厚t1,t2,t3…t6と板厚の異なる複数の板材51a,51b,51c…51fを、それらの板厚が段階的に変化するように接合した複合パネル材52を用いて形成したので、サイドメンバ前方領域11Fの長手方向に連なる仮想断面Ia,Ib…Ieで発生する最大応力の制御を近似的に行って、サイドメンバ前方領域11Fの前端部からの潰れ変形Kを支障無く誘発することができるとともに、サイドメンバ前方領域11Fの形成を容易にすることができる。
【0043】
また、このように前記サイドメンバ板厚変化構造50は、サイドメンバ前方領域11Fの断面寸法を長手方向に変化させた断面寸法変化構造となっているので、衝突荷重Fがサイドメンバ11の前端部に入力した際に、サイドメンバ前方領域の長手方向に連なる仮想断面で発生する最大応力の制御がし易くなり、ひいては強度バランスの調整が容易となって、衝突時におけるサイドメンバ前方領域11Fの前端部からの潰れ変形Kをより確実に誘発することができる。
【0044】
尚、前記板材51a,51b,51c…51fの数は本実施形態に限定されることはなく、その数はサイドメンバ前方領域11Fの要求圧壊特性に応じて決定すればよい。
【0045】
また、サイドメンバ板厚変化構造50は、サイドメンバ前方領域11Fの仮想断面の前部と後部に発生する最大応力が、前部≒後部となるように設定したが、これに限ることなく前部が後部以上、つまり前部≧後部、若しくはこれに近い状態となる強度に設定すれば良い。
【0046】
(第2実施形態)
図12〜図15は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0047】
図12は車体前部右側の骨格構造を示す略示的平面説明図、図13はバンパーレインフォースの要部を示す背面斜視図、図14は図13中D−D線に沿った拡大断面図、図15はサイドメンバ前方領域の変形状態を示す平面図である。
【0048】
この第2実施形態の車体前部構造は、図12,図13に示すように反力調整手段をバンパーレインフォース12の後面に付設した突起部70によって構成したものである。
【0049】
この第2実施形態ではバンパーレインフォース12の断面高さh1を、予めサイドメンバの断面高さh0と略同等以上に形成して、このバンパーレインフォース12のサイドメンバ11の連結部分Cから所定距離だけ車両内側に寄った後面にサイドメンバ11の断面高さh0よりも小さな幅h3となる前記突起部70を設けて、この突起部70を第1実施形態と同様にサイドメンバ11の稜線11c,11dを避けた側面中央部11eに対応させて配置して構成している。
【0050】
前記突起部70は、図14に示すように断面コ字状に折曲したチャンネル材として形成され、その両端フランジ71,71aをバンパーレインフォース12の後面12aの高さ方向中央部に連続溶接などによって接合している。勿論、突起部70はフロントサイドメンバ11に干渉した際にこのフロントサイドメンバ11を潰れ変形Kするのに十分な剛性を備えている。
【0051】
従って、この第2実施形態にあっても前記第1実施形態と同様に、図15に示すように正面方向からの衝突荷重F又は斜め前方からの衝突荷重F1の入力によるサイドメンバ前方領域11Fの変形モードは、最初はサイドメンバ前方領域11Fが断面高さh1を大きくしたバンパーレインフォース12に干渉して、閉断面となったフロントサイドメンバ11の稜線11c,11dを含む断面全体の潰れ変形Kを生じさせる。
【0052】
そして、前記潰れ変形Kが進行することに伴ってフロントサイドメンバ11が突起部70に干渉して、サイドメンバ前方領域11Fの剛性の低い側面11eから変形が開始され、潰れ変形Kの後半部分での反力の増大を抑制して変形を促進することができ、前記第1実施形態と同様の効果を奏することができる。
【0053】
反力調整手段は、バンパーレインフォース12の断面高さh1をフロントサイドメンバ11の断面高さh0と略同等以上に形成して、このバンパーレインフォース12の後面12aに突起部を付加するのみでよいため、バンパーレインフォース12の複雑な加工を伴うことなく構成を簡素化することができる。
【0054】
ところで、本発明の車体前部構造は前記第1,第2実施形態を例にとって説明したが、本発明の要旨を逸脱しない範囲内でその他の構成となる実施形態をとることができる。
【図面の簡単な説明】
【図1】本発明の対象とする自動車の外観斜視図。
【図2】本発明の第1実施形態における車体前部右側の骨格構造を示す略示的平面説明図。
【図3】本発明の第1実施形態におけるサイドメンバ前方領域の斜視図。
【図4】図3中A−A線に沿った拡大断面図。
【図5】本発明の第1実施形態における強度調整手段を入力形態モデル(a)と応力分布図(b)で示す説明図。
【図6】本発明の第1実施形態における強度調整手段の概念を示す応力分布図。
【図7】本発明の第1実施形態における反力調整手段によるサイドメンバ前方領域の変形モードを(a)〜(c)によって順を追って示す説明図。
【図8】本発明の第1実施形態におけるバンパーレインフォースの成形工法の一例を示す説明図。
【図9】本発明の第1実施形態におけるバンパーレインフォースの他の成形工法を端部斜視図(a),B−B線断面(b),C−C線断面(c)によって示す説明図。
【図10】本発明の第1実施形態におけるバンパーレインフォースの反力調整手段を設けない構造(a)と設けた構造(b)とを比較して示す説明図。
【図11】本発明の第1実施形態における反力調整手段の有無によるサイドメンバの反力を比較したグラフ。
【図12】本発明の第2実施形態における車体前部右側の骨格構造を示す略示的平面説明図。
【図13】本発明の第2実施形態におけるバンパーレインフォースの要部を示す背面斜視図。
【図14】図13中D−D線に沿った拡大断面図。
【図15】本発明の第2実施形態におけるサイドメンバ前方領域の変形状態を示す略示的平面説明図。
【符号の説明】
F・C フロントコンパートメント
10 車体
11 サイドメンバ
11F サイドメンバ前方領域
11R 補強部分
11c,11d 稜線
11e 側面中央部
12 バンパーレインフォース
12a 後面
30 パワーユニット(車両ユニット部品)
50 サイドメンバ板厚変化構造(強度調整手段)
60 高さ変化部分(反力調整手段)
61 高さ増大部分
62 高さ減少部分
K 潰し変形
Ia,Ib…Ie 仮想断面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle body front structure.
[0002]
[Prior art]
As a countermeasure against a collision of the vehicle, the collision energy is absorbed by axially crushing the side member at the front part of the vehicle body. For example, Japanese Patent Application Laid-Open No. 2001-158377 shows the structure of the vehicle body front part.
[0003]
This vehicle body front structure promotes axial crushing and absorbs collision energy when an axial input acts on the side member by arranging a bead on the wall of the front side member having a polygonal cross section. It is what I did.
[0004]
[Problems to be solved by the invention]
However, in such a conventional vehicle body front structure, energy can be satisfactorily absorbed with respect to a collision load that is input to the side member in the axial direction. It tends to be a deformation mode in which the front part is bent from the base part.
[0005]
Therefore, the collision energy at the time of the oblique collision is only temporarily absorbed by the bending of the front portion of the side member, and it becomes difficult to obtain a load characteristic that continuously absorbs the collision load by axial crushing.
[0006]
For this reason, in order to obtain sufficient impact energy absorption characteristics only by bending the front part of the side member, it is necessary to significantly increase the rigidity of the side member, so that the thickness of the side member inevitably increases. As a result, there is a concern that the vehicle weight will increase significantly.
[0007]
Therefore, the present invention is a vehicle body front structure that can reliably crush and deform the front end portion of the side member against a collision load input from obliquely forward as well as from the front direction, and can improve collision energy absorption efficiency. Is to provide.
[0008]
[Means for Solving the Problems]
In the first aspect of the invention, the left and right sides of the front compartment are provided with reinforcing portions for mounting vehicle unit parts on the side members arranged in the longitudinal direction of the vehicle body, and the vehicle width extends across the front ends of these side members. In the front structure of the vehicle body that combines the bumper reinforcement extending in the direction,
A side member front region that is forward from the reinforcing portion of the side member is formed to be inclined outward in the vehicle width direction toward the front of the vehicle body, and the side member front region that is opened outwardly from the front end in the longitudinal direction . When taking a cross section perpendicular to the longitudinal direction intermittently toward the rear, the maximum stress generated at the front and rear of each cross section is the strength of the state where the front is greater than or near the rear. In addition, the side member is sequentially crushed and deformed from the front by the collision load input from the front in the vehicle width direction inner portion than the connecting portion of the bumper reinforcement with the side member. upon interference reinforcement, interfere with the side surface center portion of the side member is characterized in that a reaction force adjustment means for suppressing the increase of the reaction force of the side members That.
[0009]
According to a second aspect of the present invention, in the vehicle body front part structure according to the first aspect, the reaction force adjusting means has a bumper reinforcement having a sectional height of the bumper reinforcement, and a cross-section of the side member in the vicinity of the connecting portion of the side member. It is formed as a height-increasing portion that is substantially equal to or higher than the height, and is formed as a height-decreasing portion that is smaller than the cross-sectional height of the side member at a portion that is a predetermined distance away from the connecting portion of the side member. It is characterized in that the reduced portion is configured to correspond to the center of the side surface avoiding the ridgeline of the side member.
[0010]
According to a third aspect of the present invention, in the vehicle body front part structure according to the first aspect, the reaction force adjusting means has a bumper reinforcement whose cross section height is substantially equal to or greater than the cross section height of the side member. The bumper reinforcement is provided with a protrusion having a width smaller than the cross-sectional height of the side member on the rear surface of the bumper reinforcement at a predetermined distance from the connecting portion of the side member, and the protrusion avoids the ridgeline of the side member. It is characterized by being arranged corresponding to the center of the side surface.
[0011]
【The invention's effect】
According to the first aspect of the present invention, the side member front region that is forward from the reinforcing portion is formed to incline outward in the vehicle width direction toward the front of the vehicle body, and the side member front region is strength-adjusted. When a cross section perpendicular to the longitudinal direction is intermittently taken from the front end in the longitudinal direction of the side member front region to the rear by means, the maximum stress generated in the front and rear of each cross section is Is set to a strength that is greater than or close to the rear, or even if a collision load is input to the front end of the side member from either the front direction or diagonally forward, the front side of the side member that is the input point of the collision load Crushing deformation is induced from the front end of the region toward the rear, and the crushing deformation is continuously propagated to the rear part of the side member front region, so that the efficiency of absorbing collision energy can be increased.
[0012]
At this time, the front region of the side member is crushed and deformed including the ridge line of the closed cross section, and as the crushing deformation progresses, it gradually interferes with the rear surface of the bumper reinforcement, but the bumper reinforcement is provided with reaction force adjusting means. Therefore, since the reaction force adjusting means can suppress an increase in the reaction force of the side member, the deformation of the side member can be promoted and efficient energy absorption can be performed.
[0013]
According to the invention of claim 2, in addition to the effect of the invention of claim 1, the reaction force adjusting means is used as a height change portion of a bumper reinforcement in which a height increasing portion and a height decreasing portion are formed. Since the height reduction part is made to correspond to the center part of the side surface avoiding the ridgeline of the side member, the deformation mode of the side member front area by the collision load input from the front is initially the side member front area. Interfering with the height increasing portion, the entire cross section including the rigid ridgeline of the side member having a closed cross section is crushed and deformed. As the crushing deformation progresses, the side member becomes the height decreasing portion. The side member front region is deformed starting from the side surface with low rigidity, and can be easily deformed while suppressing an increase in reaction force.
[0014]
According to the invention of claim 3, in addition to the effect of the invention of claim 1, the reaction force adjusting means has a required portion on the rear surface of the bumper reinforcement in which the cross-sectional height is formed substantially equal to or higher than that of the side member. In addition, a protrusion having a width smaller than the cross-sectional height of the side member is provided, and this protrusion is arranged so as to correspond to the center of the side surface avoiding the ridgeline of the side member. The deformation mode of the front region of the side member by the first is that the front region of the side member interferes with the bumper reinforcement whose cross section height is increased, and the entire cross section including the rigid ridgeline of the side member that has become a closed cross section is deformed. However, as the crushing deformation progresses, the side member interferes with the protruding portion, and the front region of the side member starts to be deformed from the side having low rigidity, and the reaction force increases. The suppressing deformation can be easily performed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
(First embodiment)
1 to 11 show a first embodiment of a vehicle body front structure according to the present invention, FIG. 1 is an external perspective view of an automobile targeted by the present invention, and FIG. 2 is a schematic diagram showing a skeleton structure on the right side of the vehicle front section. FIG. 3 is a perspective view of the front region of the side member, FIG. 4 is an enlarged cross-sectional view taken along the line AA in FIG. 3, and FIG. 5 is an input configuration model (a) and a stress distribution diagram. FIG. 6 is an explanatory diagram shown in (b), FIG. 6 is a stress distribution diagram showing the concept of strength adjusting means, and FIG. 7 shows the deformation modes of the side member front region by the reaction force adjusting means in order by (a) to (c). FIG. 8 is an explanatory diagram showing a bumper reinforcement molding method. FIG. 9 is an end perspective view of another bumper reinforcement molding method (a), BB line cross section (b), CC line. Explanatory drawing shown by the cross section (c), FIG. 10 is provided with a reaction force adjusting means of the bumper reinforcement There structures (a) and provided a structure (b) and illustration comparatively showing, FIG. 11 is a graph comparing the reaction force of the side members due to the presence or absence of the reaction force adjustment means.
[0017]
The vehicle body front structure of the present embodiment is applied to the front compartment F / C of the vehicle body 10 shown in FIG. 1, and the skeleton structure is a side member 11 disposed in the vehicle body front-rear direction on the left and right sides as shown in FIG. The general portions of the side members 11 are arranged in parallel, and bumper reinforcements 12 forming a skeleton of a bumper (not shown) are coupled across the front end portions of the side members 11.
[0018]
Further, an extension side member 13 that extends from the dash panel 17 to the lower surface side of the floor panel 18 is connected to the rear side of each side member 11, and the extension side member 13 is substantially outward in the vehicle width direction. Side sills 14 are arranged in parallel, and the front end portions of the extension side member 13 and the side sill 14 are connected by an outrigger 15.
[0019]
A dash cross member 16 is coupled across the connecting portions of the side members 11 and the extension side members 13.
[0020]
A suspension arm 21 that supports the front wheel 20 is attached to the rear side of the side member 11 directly or via a suspension member (not shown), and an engine or the like as a vehicle unit component is provided between the left and right side members 11. The power unit 30 is mounted via a mount bracket 31.
[0021]
As shown in FIG. 3, the side member 11 is provided with a reinforcing portion 11 </ b> R (shown as a satin portion in FIG. 3) where the thickness of the side member 11 is increased at the mounting portion of the mount bracket 31.
[0022]
That is, as shown in FIG. 3, the side member 11 has a closed cross-sectional structure by fixing both side flange portions of the U-shaped second plate 11b to the flat plate strip-shaped first plate 11a by spot welding or the like. The reinforcing portion 11R is formed by joining and arranging a reinforcing plate on the inner peripheral surface.
[0023]
Here, in this embodiment, as shown in FIG. 3, the side member front region 11 </ b> F forward from the reinforcing portion 11 </ b> R of the side member 11 is moved in the vehicle width direction toward the front of the vehicle body (front side in FIG. 3). Inclined outward (leftward in FIG. 3) by a predetermined angle θ.
[0024]
Then, in the side member front region 11F that is open outwardly, as shown in FIG. 3, sections Ia, Ib... Ie that are intermittently orthogonal to the longitudinal direction from the front end in the longitudinal direction to the rear are provided. When taken, the maximum stress generated at the front and rear of each cross section (hereinafter referred to as a virtual cross section) is such that the front is greater than or equal to the rear (front ≧ rear) or close to this strength. A side member plate thickness changing structure 50 is configured as strength adjusting means, and the plate thickness distribution of the side member front region 11F is changed in the longitudinal direction.
[0025]
That is, as shown in FIG. 4, the side member plate thickness changing structure 50 has plate thicknesses t1, t2, t3... T6 (t1 <t2 <t3 <... <t6) stepwise from the front end direction of the side member front region 11F. A plurality of changing plate members 51a, 51b, 51c,... 51f are constituted by a composite panel member 52 joined by welding all around, and the plate member 51f having the largest thickness is the reinforcing portion 11R.
[0026]
Further, when the collision load F from the front acts on the front end of the side member front region 11F as shown in FIG. Sum of axial force component stress (FY / A (y)) and moment component stress ({FX × (L−y)} / Z (y)) generated in each virtual section Ia, Ib... Ie (see FIG. 3). Is set to be the front portion≈the rear portion, and the upper limit value is set to the yield strength σ (y) of the side member constituting material.
[0027]
σ (y) = {FY / A (y)} + {FX × (L−y)} / Z (y) Equation 1
At this time, the upper limit value of the maximum stress due to the side member plate thickness changing structure 50 is set based on the yield strength of the material constituting the side member 11 as described above. As a result, as shown in FIG. , 51b, 51c... 51f, yield strength σ (y) is obtained.
[0028]
Incidentally, since the side member front region 11F is inclined outward in the vehicle width direction as shown in FIG. 3, the collision load F from the front direction is applied as shown in FIGS. By inputting, the side member 11 is sequentially crushed and deformed from the front, and as the crushing deformation progresses, the side member 11 interferes with the rear surface of the bumper reinforcement 12. A height changing portion 60 is provided as a reaction force adjusting means that suppresses an increase in the reaction force of the side member 11 when a certain amount of interference has progressed.
[0029]
The height changing portion 60 has a height-increasing portion 61 (the height of the cross section of the bumper reinforcement 12 is approximately equal to or greater than the cross sectional height h0 of the side member 11 in the vicinity of the connecting portion C with the side member 11). The cross-section height h1) is a height that is smaller than the cross-section height h0 of the side member 11 at a portion that is a predetermined distance inward (rightward in FIG. 3) from the connecting portion C with the side member 11. It is formed as a reduced portion 62 (cross-sectional height h2), and this height reduced portion 62 is configured to correspond to the side surface central portion 11e avoiding the ridge lines 11c and 11d of the side member 11.
[0030]
The height changing portion 60 formed in the bumper reinforcement 12 crushes the upper and lower surfaces of the bumper reinforcement 12 having a hollow closed cross-section structure, for example, by press molding using hydraulic pressure as shown in FIG. Thus, the height decreasing portion 62 is formed, and the height decreasing portion 62 and the height increasing portion 61 are connected to each other with the stepped portion 63 as a boundary.
[0031]
In addition, the height changing portion 60 is provided with a bumper reinforcement 12 as shown in FIG. 9B, and a partition plate 64 at the upper and lower portions of the closed cross-section so that the cross-sectional shape is an eye shape. It is also formed by extruding into a shape with a light alloy material and cutting the upper and lower surfaces corresponding to the height reducing portion 62 by machining as shown in FIGS. 9 (a) and 9 (c). Can do.
[0032]
Further, the height changing portion 60 has various methods other than the hydraulic forming in FIG. 8 and the machining of the light alloy extruded material in FIG. 9. For example, the height changing portion 60 is formed along the final cross-sectional shape at the time of extrusion forming. It can also be formed by a variable cross-section light alloy extruded material.
[0033]
(Function)
According to the vehicle body front portion structure of the first embodiment having the above configuration, when a static collision load F acts on the front end portion of the front side member 11 from the front as shown in FIG. As described above, the axial force component stress (FY / A (y)) and the moment component stress ({FX × (Ly)} generated in the virtual cross sections Ia, Ib... Ie continuous in the longitudinal direction of the side member front region 11F. / Z (y)) has a maximum value of the front part≈back part, and the upper limit value is the yield strength σ (y) of the side member constituent material. The front end of the front side member 11 that is the input point reaches the yield region of the material and plastic deformation occurs. As a result, when the collision load F is input, the side member front region 11F is separated from the front end that is the input point. Inducing crushing deformation (collapse) In addition, the crushing deformation is deformed in a mode in which the crushing deformation is continuously propagated rearward, so that the collision energy can be reliably absorbed.
[0034]
At this time, as described above, the side member front region 11F is formed to incline outward in the vehicle width direction toward the front of the vehicle body. However, the side member front region 11F can be continuously crushed and deformed from the tip.
[0035]
Further, the front end portion of the side member 11 can be disposed further outward in the vehicle width direction by the side member front region 11F inclined in the vehicle width direction outward in this manner. It can be expanded in the width direction.
[0036]
Here, as described above, the side member front region 11F can be continuously crushed and deformed from the front end side toward the rear with respect to the frontal collision, but the strength rigidity is high in the vicinity of the reinforcing portion 11R. Therefore, the reaction force inevitably increases.
[0037]
However, according to the structure of this embodiment, the ridgelines 11c and 11d (FIG. 3) in which the side member front region 11F has a closed cross section as shown in FIG. 7B from the state of FIG. If the crushing deformation K including the crushing deformation K progresses and the rear surface 12a of the bumper reinforcement 12 sequentially interferes with the progress of the crushing deformation K, and the interference point moves to the rear of the vehicle with the progress of the crushing deformation K, the bumper It is possible to suppress the reaction force of the front side member 11 from increasing in the latter half of the crushing deformation K by the height changing portion 60 of the reinforcement 12.
[0038]
That is, since the height reducing portion 62 of the height changing portion 60 is arranged corresponding to the side surface central portion 11e (see FIG. 3) avoiding the ridge lines 11c and 11d of the front side member 11, the crushing deformation K When the side central portion 11e of the side member front region 11F interferes with the height reducing portion 62 as the travel proceeds, the side member front region 11F starts to deform from the side surface 11e having low rigidity as shown in FIG. Thus, it is possible to suppress the increase of the reaction force and promote the crushing deformation K to allow efficient energy absorption.
[0039]
FIG. 11 shows the reaction force characteristic P of the side member 11 when the bumper reinforcement 12 in which the height changing portion 60 is not formed as shown in FIG. 10A, and as shown in FIG. 10B. The reaction force characteristic Q of the side member 11 in the case of using the bumper reinforcement 12 of the present embodiment in which the height changing portion 60 is formed is shown in comparison with the side member front region 11F as time elapses. As the interference portion between the bumper reinforcement 12 and the bumper reinforcement 12 increases, a large reaction force reduction region can be secured in the reaction force characteristic Q in the latter half portion where the height reduction portion 62 is provided.
[0040]
Therefore, the crushing deformation K when the side member front region 11F interferes with the bumper reinforcement 12 can be positively performed, and as a result, the energy of the collision load F by the side member 11 can be efficiently absorbed.
[0041]
In the first embodiment, the height changing portion 60 as the reaction force adjusting means only needs to be processed so as to change the cross-sectional heights h1 and h2 of the bumper reinforcement 12, so that the reaction force adjusting means The overall structure can be simplified.
[0042]
By the way, in this embodiment, the said side member board thickness change structure 50 is made into the board thickness t1, t2, t3 ... t6, and several board | plate material 51a, 51b, 51c ... 51f from which board thickness differs in step thickness. Since the composite panel material 52 joined so as to change is formed, the maximum stress generated in the virtual cross sections Ia, Ib... Ie continuous in the longitudinal direction of the side member front region 11F is approximately controlled, and the side member The crushing deformation K from the front end portion of the front region 11F can be induced without hindrance, and the formation of the side member front region 11F can be facilitated.
[0043]
Further, since the side member plate thickness changing structure 50 is thus a cross-sectional dimension changing structure in which the cross-sectional dimension of the side member front region 11F is changed in the longitudinal direction, the collision load F is applied to the front end portion of the side member 11. , The maximum stress generated in the virtual cross section continuous in the longitudinal direction of the side member front region can be easily controlled, and the strength balance can be easily adjusted, and the front end of the side member front region 11F at the time of collision The crushing deformation K from the part can be induced more reliably.
[0044]
The number of the plate members 51a, 51b, 51c,... 51f is not limited to this embodiment, and the number may be determined according to the required crushing characteristics of the side member front region 11F.
[0045]
Further, in the side member plate thickness changing structure 50, the maximum stress generated at the front and rear of the virtual cross section of the side member front region 11F is set to be front ≈ rear. May be set to a strength that is greater than or equal to the rear portion, that is, the front portion ≧ the rear portion or a state close thereto.
[0046]
(Second Embodiment)
12 to 15 show a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted.
[0047]
12 is a schematic plan view showing the skeleton structure on the right side of the front part of the vehicle body, FIG. 13 is a rear perspective view showing the main part of the bumper reinforcement, and FIG. 14 is an enlarged sectional view taken along the line DD in FIG. FIG. 15 is a plan view showing a deformed state of the side member front region.
[0048]
The vehicle body front part structure of the second embodiment is configured by a projection 70 provided with a reaction force adjusting means on the rear surface of the bumper reinforcement 12 as shown in FIGS.
[0049]
In the second embodiment, the bumper reinforcement 12 has a cross-sectional height h1 formed in advance that is substantially equal to or greater than the cross-sectional height h0 of the side member, and a predetermined distance from the connecting portion C of the side member 11 of the bumper reinforcement 12. The protrusion 70 having a width h3 smaller than the cross-sectional height h0 of the side member 11 is provided on the rear surface close to the inner side of the vehicle, and the protrusion 70 is connected to the ridge line 11c of the side member 11 as in the first embodiment. 11d is arranged to correspond to the side surface central portion 11e.
[0050]
The projection 70 is formed as a channel material bent in a U-shaped cross section as shown in FIG. 14, and both end flanges 71 and 71a are continuously welded to the center in the height direction of the rear surface 12a of the bumper reinforcement 12. Are joined by. Of course, the protrusion 70 has sufficient rigidity to crush and deform the front side member 11 when it interferes with the front side member 11.
[0051]
Accordingly, even in the second embodiment, similarly to the first embodiment, as shown in FIG. 15, the side member front region 11F is input by the input of the collision load F from the front direction or the collision load F1 from the oblique front. In the deformation mode, first, the side member front region 11F interferes with the bumper reinforcement 12 having a larger section height h1, and the entire section including the ridge lines 11c and 11d of the front side member 11 having a closed section is crushed and deformed K. Give rise to
[0052]
Then, as the crushing deformation K progresses, the front side member 11 interferes with the protrusion 70, and the deformation starts from the side surface 11e with low rigidity of the side member front region 11F. An increase in the reaction force can be suppressed and deformation can be promoted, and the same effect as in the first embodiment can be achieved.
[0053]
The reaction force adjusting means simply forms the sectional height h1 of the bumper reinforcement 12 to be substantially equal to or higher than the sectional height h0 of the front side member 11, and only adds a protrusion to the rear surface 12a of the bumper reinforcement 12. Therefore, the configuration can be simplified without complicated processing of the bumper reinforcement 12.
[0054]
By the way, although the vehicle body front part structure of the present invention has been described by taking the first and second embodiments as an example, embodiments having other configurations can be taken without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an automobile targeted by the present invention.
FIG. 2 is a schematic plan explanatory view showing a skeleton structure on the right side of the front portion of the vehicle body in the first embodiment of the present invention.
FIG. 3 is a perspective view of a front region of a side member in the first embodiment of the present invention.
4 is an enlarged sectional view taken along line AA in FIG. 3;
FIGS. 5A and 5B are explanatory diagrams showing an intensity adjustment means in the first embodiment of the present invention with an input form model (a) and a stress distribution diagram (b). FIGS.
FIG. 6 is a stress distribution diagram showing the concept of strength adjusting means in the first embodiment of the present invention.
FIGS. 7A to 7C are explanatory views sequentially showing the deformation modes of the front side member region by the reaction force adjusting means in the first embodiment of the present invention, according to (a) to (c). FIG.
FIG. 8 is an explanatory diagram showing an example of a bumper reinforcement molding method according to the first embodiment of the present invention.
FIG. 9 is an explanatory view showing another forming method of the bumper reinforcement according to the first embodiment of the present invention by an end perspective view (a), a cross section taken along line BB (b), and a cross section taken along line CC (c). .
FIG. 10 is an explanatory view showing a comparison between a structure (a) provided with no bumper reinforcement reaction force adjusting means and a provided structure (b) in the first embodiment of the present invention.
FIG. 11 is a graph comparing side member reaction forces with and without reaction force adjusting means in the first embodiment of the present invention.
FIG. 12 is a schematic plan explanatory view showing a skeleton structure on the right side of the front portion of the vehicle body in the second embodiment of the present invention.
FIG. 13 is a rear perspective view showing a main part of a bumper reinforcement in a second embodiment of the present invention.
14 is an enlarged sectional view taken along line DD in FIG.
FIG. 15 is a schematic plan view illustrating a deformed state of a side member front region in the second embodiment of the present invention.
[Explanation of symbols]
F / C Front compartment 10 Car body 11 Side member 11F Side member front area 11R Reinforcement part 11c, 11d Ridge line 11e Side surface center part 12 Bumper reinforcement 12a Rear surface 30 Power unit (vehicle unit part)
50 Side member thickness change structure (strength adjusting means)
60 Height change part (Reaction force adjustment means)
61 Height increasing portion 62 Height decreasing portion K Crushing deformation Ia, Ib ... Ie Virtual section

Claims (3)

フロントコンパートメントの左右両側部に車体前後方向に配設したサイドメンバに車両ユニット部品を搭載するための補強部分を設け、これらサイドメンバの前端に跨って車幅方向に延在するバンパーレインフォースを結合した車体前部構造において、
前記サイドメンバの前記補強部分から前方となるサイドメンバ前方領域を車体前方に向かって車幅方向外方に傾斜させて形成し、この外開きとなったサイドメンバ前方領域に、長手方向の前端から後方に向けて間欠的にその長手方向に対して直交する断面をとった場合に、各断面の前部と後部に発生する最大応力が、前部が後部以上、若しくはこれに近い状態の強度となるような強度調整手段を設けるとともに、前記バンパーレインフォースのサイドメンバとの連結部分よりも車幅方向内側部分に、前方からの衝突荷重の入力によって、サイドメンバが前方から順次潰れ変形してバンパーレインフォースに干渉した際に、サイドメンバの側面中央部分に干渉して該サイドメンバの反力増大を抑制する反力調整手段を設けたことを特徴とする車体前部構造。
Reinforced parts for mounting vehicle unit parts are provided on the side members arranged in the longitudinal direction of the vehicle body on the left and right sides of the front compartment, and the bumper reinforcement that extends in the vehicle width direction across the front ends of these side members is connected In the vehicle body front structure,
A side member front region that is forward from the reinforcing portion of the side member is formed to be inclined outward in the vehicle width direction toward the front of the vehicle body, and the side member front region that is opened outwardly from the front end in the longitudinal direction . When taking a cross section perpendicular to the longitudinal direction intermittently toward the rear, the maximum stress generated at the front and rear of each cross section is the strength of the state where the front is greater than or near the rear. In addition, the side member is sequentially crushed and deformed from the front by the collision load input from the front in the vehicle width direction inner portion than the connecting portion of the bumper reinforcement with the side member. upon interference reinforcement, interfere with the side surface center portion of the side member, characterized in that a reaction force adjustment means for suppressing the increase of the reaction force of the side members Body front structure.
反力調整手段は、バンパーレインフォースをその断面高さを、サイドメンバの連結部分近傍ではサイドメンバの断面高さと略同等以上の高さ増大部分として形成すると共に、サイドメンバの連結部分から所定距離だけ車両内側に寄った部分ではサイドメンバの断面高さよりも小さい高さ減少部分として形成して、前記高さ減少部分をサイドメンバの稜線を避けた側面中央部に対応させて構成したことを特徴とする請求項1に記載の車体前部構造。The reaction force adjusting means forms the bumper reinforcement with a cross-sectional height as a height-increasing portion that is substantially equal to or higher than the cross-sectional height of the side member in the vicinity of the connecting portion of the side member, and a predetermined distance from the connecting portion of the side member. Only the portion closer to the inner side of the vehicle is formed as a height-reduced portion smaller than the cross-sectional height of the side member, and the height-reduced portion is configured to correspond to the center of the side surface avoiding the ridgeline of the side member. The vehicle body front part structure according to claim 1. 反力調整手段は、バンパーレインフォースをその断面高さをサイドメンバの断面高さと略同等以上に形成して、このバンパーレインフォースのサイドメンバの連結部分から所定距離だけ車両内側に寄った後面にサイドメンバの断面高さよりも小さな幅となる突起部を設けて、この突起部をサイドメンバの稜線を避けた側面中央部に対応させて配置して構成したことを特徴とする請求項1に記載の車体前部構造。The reaction force adjusting means is formed on the rear surface of the bumper reinforcement, which has a sectional height substantially equal to or greater than the sectional height of the side member, and is located a predetermined distance from the side member connecting portion of the bumper reinforcement. 2. The projection according to claim 1, wherein a projection having a width smaller than a cross-sectional height of the side member is provided, and the projection is arranged so as to correspond to a central portion of the side surface avoiding the ridge line of the side member. Car body front structure.
JP2001371704A 2001-11-13 2001-12-05 Body front structure Expired - Fee Related JP3632654B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001371704A JP3632654B2 (en) 2001-12-05 2001-12-05 Body front structure
EP02023487.8A EP1325859B1 (en) 2001-11-13 2002-10-21 Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
US10/286,909 US6893078B2 (en) 2001-11-13 2002-11-04 Front body structure for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371704A JP3632654B2 (en) 2001-12-05 2001-12-05 Body front structure

Publications (2)

Publication Number Publication Date
JP2003170862A JP2003170862A (en) 2003-06-17
JP3632654B2 true JP3632654B2 (en) 2005-03-23

Family

ID=19180713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371704A Expired - Fee Related JP3632654B2 (en) 2001-11-13 2001-12-05 Body front structure

Country Status (1)

Country Link
JP (1) JP3632654B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600738B2 (en) * 2004-09-16 2010-12-15 マツダ株式会社 Automotive front structure
JP2009107445A (en) * 2007-10-29 2009-05-21 Honda Motor Co Ltd Front structure of vehicle body
JP5760481B2 (en) * 2011-02-16 2015-08-12 マツダ株式会社 Vehicle front structure
JP6311896B2 (en) * 2016-10-14 2018-04-18 マツダ株式会社 Vehicle shock absorption structure
JP7067254B2 (en) * 2018-05-16 2022-05-16 スズキ株式会社 Body front structure
CN112793525B (en) * 2019-11-13 2022-08-16 广州汽车集团股份有限公司 Automobile front longitudinal beam section design method and automobile front longitudinal beam
JP7419125B2 (en) * 2020-03-19 2024-01-22 本田技研工業株式会社 car body
CN113734294B (en) * 2021-09-26 2023-09-22 重庆长安汽车股份有限公司 Engine compartment boundary beam front section assembly and vehicle

Also Published As

Publication number Publication date
JP2003170862A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP6368851B2 (en) Body structure
CN105339243B (en) The vehicle body front structure of vehicle
JP4969827B2 (en) Body front structure
EP1325859A2 (en) Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
EP2617628A1 (en) Structure of front section of vehicle body
JP6315292B2 (en) Vehicle frame structure
JP5482987B2 (en) Front body structure of the vehicle
JP7318478B2 (en) Vehicle front body structure
JP6284056B1 (en) Vehicle frame structure
JP3632654B2 (en) Body front structure
US20240278847A1 (en) Front frame structure for electric vehicle
US11242091B2 (en) Vehicle body front structure
JP7354757B2 (en) Vehicle front body structure
JP3357234B2 (en) Car front side member structure
JP2010155539A (en) Structure of coupling part of dash panel with tunnel part
JP3613229B2 (en) Body front structure
JP7347110B2 (en) Vehicle front body structure
JP6044795B2 (en) Front body structure of the vehicle
JP3572459B2 (en) Body front structure
JP4415684B2 (en) Side member kick-up structure
EP2428432B1 (en) Front side vehicle body structure
JP7213292B2 (en) rear body structure
JP4123012B2 (en) Body front structure
JP7201146B2 (en) vehicle front structure
JP5150168B2 (en) Lower member structure of vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees