JP3572459B2 - Body front structure - Google Patents

Body front structure Download PDF

Info

Publication number
JP3572459B2
JP3572459B2 JP2001371738A JP2001371738A JP3572459B2 JP 3572459 B2 JP3572459 B2 JP 3572459B2 JP 2001371738 A JP2001371738 A JP 2001371738A JP 2001371738 A JP2001371738 A JP 2001371738A JP 3572459 B2 JP3572459 B2 JP 3572459B2
Authority
JP
Japan
Prior art keywords
side member
cross
thickness
vehicle body
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001371738A
Other languages
Japanese (ja)
Other versions
JP2003170860A (en
Inventor
秀司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001371738A priority Critical patent/JP3572459B2/en
Priority to EP02023487.8A priority patent/EP1325859B1/en
Priority to US10/286,909 priority patent/US6893078B2/en
Publication of JP2003170860A publication Critical patent/JP2003170860A/en
Application granted granted Critical
Publication of JP3572459B2 publication Critical patent/JP3572459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の車体前部構造に関する。
【0002】
【従来の技術】
車両の衝突対策としては、車体前部のサイドメンバを軸圧潰させることにより衝突エネルギーを吸収するようにしており、例えば特開2001−158377号公報にその車体前部構造が示されている。
【0003】
この車体前部構造は、多角形断面を有するサイドメンバ前部の壁部にビードを配置することにより、サイドメンバに軸方向入力が作用した際に軸圧潰を前方から促進して、衝突エネルギーを吸収するようにしたものである。
【0004】
【発明が解決しようとする課題】
しかしながら、かかる従来の車体前部構造では、サイドメンバに軸方向に入力する衝突荷重に対してはエネルギー吸収を良好に行うことができるが、この衝突が車両片側のみのオフセット衝突である場合は、オフセット衝突された片側のサイドメンバのみの前端部が変形して車両方向に後退することになる。
【0005】
このため、バンパーレインフォースとサイドメンバとの間には、バンパーレインフォースが斜めになるような塑性ヒンジが形成され、非衝突側のサイドメンバへの入力分散効率が低下してしまい、オフセット衝突時における車体の変形量を抑制する為の重量投資が増して車体重量の増加が懸念される。
【0006】
そこで、本発明は、いかなる方向からの前面衝突にあっても、衝突荷重を両側のサイドメンバに効果的に分散することができて、衝突エネルギーの吸収効率を高められる車体前部構造を提供するものである。
【0007】
【課題を解決するための手段】
請求項1の発明にあっては、フロントコンパートメントの左右両側部に車体前後方向に配設したサイドメンバに車両ユニット部品を搭載するための補強部分を設け、これらサイドメンバの前端に跨って車幅方向に延在するバンパーレインフォースを結合した車体前部構造において、
前記サイドメンバの前記補強部分から前方となるサイドメンバ前方領域に、長手方向に連なる仮想断面の前部と後部に発生する最大応力が、前部よりも後部が大きくなる強度となるような強度調整手段を設けたことを特徴としている。
【0008】
請求項2の発明にあっては、請求項1に記載の車体前部構造において、前記強度調整手段による最大応力の上限値を、サイドメンバを構成する素材の降伏強度を基準に設定したことを特徴としている。
【0009】
請求項3の発明にあっては、請求項1,2に記載の車体前部構造において、前記強度調整手段は、前記サイドメンバ前方領域の板厚分布を長手方向に変化させたサイドメンバ板厚変化構造であることを特徴としている。
【0010】
請求項4の発明にあっては、請求項3に記載の車体前部構造において、前記サイドメンバ板厚変化構造は、板厚の異なる複数の板材をそれらの板厚が段階的に変化するように接合した複合パネル材を、板厚の変化方向が長手方向となるようにして構成したことを特徴としている。
【0011】
請求項5の発明にあっては、請求項1,2に記載の車体前部構造において、前記強度調整手段は、前記サイドメンバ前方領域の閉断面内に長手方向に適宜間隔をもって複数の仕切り板を配置し、各仕切り板の板厚を前方に行くに従って増厚するようにサイドメンバの長手方向に変化させた仕切り板厚変化構造であることを特徴としている。
【0012】
請求項6の発明にあっては、請求項1〜5に記載の車体前部構造において、前記強度調整手段は、前記サイドメンバ前方領域の断面寸法を長手方向に変化させた断面寸法変化構造であることを特徴としている。
【0013】
請求項7の発明にあっては、請求項1,2に記載の車体前部構造において、押出し板厚や押出し断面寸法が押出し方向に連続して変化する押出し材によりサイドメンバ前方領域を形成して、該サイドメンバ前方領域の板厚変化または断面寸法を変化させ、若しくは板厚と断面寸法の両者を変化させて強度調整手段を構成したことを特徴としている。
【0014】
請求項8の発明にあっては、請求項1〜7に記載の車体前部構造において、前記バンパーレインフォースを閉断面構造とし、この閉断面となったバンパーレインフォースの部材断面の車両上下方向軸に対する断面二次モーメントの断面係数Zを、サイドメンバ前部の圧壊時最大反力Fmaxと、サイドメンバ前方領域のスパンLに対するバンパーレインフォース構成素材の降伏応力σy−bmprの商と、の積より大きく(Z>Fmax×L/σy−bmpr)設定するとともに、バンパーレインフォースの結合部強度Sjoint を、サイドメンバ前方領域のスパンLとサイドメンバ前部の圧壊時最大反力Fmaxとの積より大きく(Sjoint>L×Fmax)設定したことを特徴としている。
【0015】
請求項9の発明にあっては、請求項1〜8に記載の車体前部構造において、前記左右のサイドメンバのサイドメンバ前方領域は、それぞれ車体前後方向に直状に形成して相互に平行に配置したことを特徴としている。
【0016】
【発明の効果】
請求項1に記載の発明によれば、車両前方から衝突荷重が入力した際に、サイドメンバ前方領域に設けた強度調整手段によって、このサイドメンバ前方領域の後方から前方に向かって圧壊が誘発され、その圧壊をサイドメンバ前方領域の前端部まで持続的に伝播させて、衝突エネルギーの吸収効率を高めることができる。
【0017】
また、このときサイドメンバの圧壊はサイドメンバ前方領域の後方から誘発されるため、バンパーレインフォースに連結したサイドメンバの前端部の剛性は高く保持されて、バンパーレインフォースとサイドメンバとの取付け角度は一定に保持される状態にある。
【0018】
従って、オフセット衝突時に車両片側に衝突荷重が入力した場合に、衝突側のサイドメンバに軸方向入力が作用し、この軸方向入力によってバンパーレインフォースおよびこのバンパーレインフォースと非衝突側のサイドメンバの連結部にそれぞれモーメントを発生させることができるため、結果的にバンパーレインフォースは車両後方に平行移動する状態となって、前記非衝突側のサイドメンバにも軸方向入力を作用させることができるようになり、衝突による荷重分散を効果的に行って衝突エネルギーの吸収効率を高めることができる。
【0019】
請求項2に記載の発明によれば、請求項1の発明の効果に加えて、前記強度調整手段による最大応力の上限値を、サイドメンバを構成する素材の降伏強度を基準に設定したので、サイドメンバの前端部への入力時には、先ず、最大応力を大きくしたサイドメンバ前方領域の後部が素材の降伏域に達して塑性変形が生じるため、衝突時にはサイドメンバ前方領域の後部から圧壊をより確実に誘発させることができる。
【0020】
請求項3に記載の発明によれば、請求項1,2の発明の効果に加えて、前記強度調整手段を、前記サイドメンバ前方領域の板厚分布を長手方向に変化させたサイドメンバ板厚変化構造としたので、衝突荷重がサイドメンバに入力した際に、サイドメンバ前方領域の長手方向に連なる仮想断面で発生する最大応力の制御がし易くなり、ひいては強度バランスの調整が容易となって、衝突時におけるサイドメンバ前方領域の後端部からの圧壊をより確実に誘発させることができる。
【0021】
請求項4に記載の発明によれば、請求項3の発明の効果に加えて、前記サイドメンバ板厚変化構造を、板厚の異なる複数の板材をそれらの板厚が段階的に変化するように接合した複合パネル材を、板厚の変化方向が長手方向となるようにして構成したので、サイドメンバ前方領域の長手方向に連なる仮想断面で発生する最大応力の制御を近似的に行って、サイドメンバ前方領域の後端部からの圧壊を支障無く誘発することができるとともに、このような強度調整手段を備えたサイドメンバ前方領域を容易に形成することができる。
【0022】
請求項5に記載の発明によれば、請求項1,2の発明の効果に加えて、前記強度調整手段を、前記サイドメンバ前方領域の閉断面内に長手方向に適宜間隔をもって複数の仕切り板を配置し、各仕切り板の板厚を前方に行くに従って増厚するようにサイドメンバの長手方向に変化させた仕切り板厚変化構造としたので、衝突荷重がサイドメンバの前端部に入力した際に、サイドメンバ前方領域の長手方向に連なる仮想断面で発生する最大応力の制御を各仕切り板で行うことができ、ひいては強度バランスの調整が容易となって、衝突時におけるサイドメンバ前方領域の後端部からの圧壊を確実に誘発することができる。
【0023】
請求項6に記載の発明によれば、請求項1〜5の発明の効果に加えて、強度調整手段を、前記サイドメンバ前方領域の断面寸法を長手方向に変化させた断面寸法変化構造としたので、衝突荷重がサイドメンバに入力した際に、サイドメンバ前方領域の長手方向に連なる仮想断面で発生する最大応力の制御がし易くなり、ひいては強度バランスの調整が容易となって、衝突時におけるサイドメンバ前方領域の後端部からの圧壊をより確実に誘発させることができるとともに、板厚に比較して部材断面定数への感度が高い断面寸法を変化することで、サイドメンバのより一層の軽量化を図ることができる。
【0024】
請求項7に記載の発明によれば、請求項1,2の発明の効果に加えて、サイドメンバ前方領域を、押出し板厚や押出し断面寸法が押出し方向に連続して変化する押出し材により形成して強度調整手段を構成するようにしたので、板厚分布または断面寸法を長手方向に自在に調整することができるとともに、その変化を連続的に行うことができるため、板厚変化を高精度に行えてサイドメンバ前方領域の長手方向に連なる仮想断面で発生する最大応力を精度良く調整することができるとともに、より一層の構造合理化および軽量化を図ることができる。
【0025】
請求項8に記載の発明によれば、請求項1〜7の発明の効果に加えて、閉断面となったバンパーレインフォースの部材断面の車両上下方向軸に対する断面二次モーメントの断面係数Zを、サイドメンバ前部の圧壊時最大反力Fmax、サイドメンバ前方領域のスパンL、バンパーレインフォース構成素材の降伏応力σy−bmprに対してZ>Fmax×L/σy−bmprとして設定するとともに、バンパーレインフォースの結合部強度Sjoint を、Sjoint>L×Fmaxとして設定したので、バンパーレインフォース自体の剛性を高く維持して折れを抑制するとともに、バンパーレインフォースとサイドメンバとの結合強度を十分に確保して一定の角度を保持できることにより、オフセット衝突時に非衝突側のサイドメンバへの荷重分散を効率良く行うことができる。
【0026】
請求項9に記載の発明によれば、請求項1〜8の発明の効果に加えて、左右のサイドメンバのサイドメンバ前方領域を、車体前後方向に直状に形成して相互に平行に配置したので、フルラップ衝突時は勿論のこと、オフセット衝突に対してもサイドメンバ前方領域を後端部から持続的に圧壊させることができ、良好なエネルギー吸収特性を確保することができる。
【0027】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0028】
(第1実施形態)
図1〜図10は本発明の車体前部構造の第1実施形態を示し、図1は本発明の対象とする自動車の外観斜視図、図2は車体前部右側の骨格構造を示す略示的平面説明図、図3はサイドメンバ前方領域の斜視図、図4は図3中A−A線に沿った拡大断面図、図5は強度調整手段の入力形態モデルを示す説明図、図6は強度調整手段の概念を示す応力分布図、図7は前方からの衝突荷重の入力形態を示す車体前部右側の略示的平面説明図、図8はサイドメンバの変形モードを示す説明図、図9はオフセット衝突時の荷重分散形態を示す車体前部の略示的平面説明図、図10はオフセット衝突時におけるサイドメンバの変形モードを示す車体前部の略示的平面説明図である。
【0029】
本実施形態の車体前部構造は図1に示す車体10のフロントコンパートメントF・Cに適用され、その骨格構造は図2に示すように、左右両側部に車体前後方向に直状に配設したサイドメンバ11を備え、これらサイドメンバ11は平行に配置されており、かつ、それぞれのサイドメンバ11の前端部に跨って図外のバンパーの骨格を成すバンパーレインフォース12を結合してある。
【0030】
また、それぞれのサイドメンバ11の後方にはダッシュパネル17からフロアパネル18の下面側に廻り込むエクステンションサイドメンバ13を連設してあり、それぞれのエクステンションサイドメンバ13の車幅方向外側には略平行にサイドシル14を配設してあって、これらエクステンションサイドメンバ13とサイドシル14のそれぞれの前端部をアウトリガー15で結合してある。
【0031】
前記各サイドメンバ11とエクステンションサイドメンバ13の連設部間に跨ってダッシュクロスメンバ16を結合してある。
【0032】
前記サイドメンバ11の後側部には前輪20を支持するサスペンションアーム21が、直接若しくは図外のサスペンションメンバなどを介して取り付けられるとともに、左右のサイドメンバ11間には車両ユニット部品としてのエンジン等のパワーユニット30がマウントブラケット31を介して搭載される。
【0033】
サイドメンバ11には、図3に示すように前記マウントブラケット31の取付部分に、パワーユニット30を支持するのに十分な強度を備えた補強部分11R(図3中梨地部分で示す)が形成される。
【0034】
つまり、サイドメンバ11は、図3に示したように平板帯状の第1プレート11aに、断面コ字状の第2プレート11bの両側フランジ部をスポット溶接などで固設することにより閉断面構造として形成されており、前記補強部分11Rは内周面に補強プレートを接合配置する等により形成される。
【0035】
ここで、本実施形態では前記サイドメンバ11の前記補強部分11Rから前方となるサイドメンバ前方領域11Fに、長手方向に連なる仮想断面Ia,Ib…Ieの前部と後部に発生する最大応力が、前部よりも後部が大きくなる強度となるような強度調整手段としてのサイドメンバ板厚変化構造50を構成し、前記サイドメンバ前方領域11Fの板厚分布を長手方向に変化させてある。
【0036】
即ち、サイドメンバ板厚変化構造50は、図4に示すようにサイドメンバ前方領域11Fの前端方向から板厚t1,t2…t6の異なる複数の板材51a,51b…51fを、それらの板厚が前方から後方に向かって段階的に減厚変化(t1>t2>…>t6)するように全周溶接して接合した複合パネル材52で構成している。
【0037】
つまり、前記板材51a,51b…51fでは板材51fが最も薄肉化されており、この板材51fが前記補強部分11Rに配置されるが、勿論、この補強部分11Rは上述したようにパワーユニット30を支持するに十分な強度を備えている。
【0038】
また、このサイドメンバ前方領域11Fは、図5に示すようにサイドメンバ前方領域11Fの前端部に、前方からの衝突荷重Fが静的に作用した場合に、サイドメンバ板厚変化構造50における最大応力の上限値を、サイドメンバ11を構成する素材の降伏強度を基準に設定し、図6に示すように各板材51a,51b,51c…51fに対する降伏強度σ(y)の分布が得られるようにしてある。
【0039】
ところで、前記サイドメンバ11の前端から各面を延設したフランジ部11c,11d,11f,11eのうち、上下二面から延設したフランジ部11c,11dはバンパーレインフォース12の上下面12a,12bに溶接されるとともに、サイドメンバ11の左右二面から延設したフランジ部11e,11fはバンパーレインフォース12の後面12cに溶接されて、バンパーレインフォース12とサイドメンバ11との連結強度を高めるようになっている。
【0040】
ここで、閉断面構造としたバンパーレインフォース12の部材断面の車両上下方向軸に対する断面二次モーメントの断面係数をZ、サイドメンバ11前部の圧壊時最大反力をFmax、サイドメンバ前方領域11FのスパンをL、バンパーレインフォース12の構成素材の降伏応力をσy−bmprとした場合に、次の式1を満足するように構成してある。
【0041】
Z>Fmax×L/σy−bmpr ……式1
つまり、前記断面係数Zを、前記圧壊時最大反力Fmaxと、前記スパンLに対する前記降伏応力σy−bmprの商と、の積より大きく設定してある。
【0042】
また、これと同時にバンパーレインフォース12の結合部強度をSjoint とすると、次の式2を満足する構成となっている。
【0043】
Sjoint >L×Fmax ……式2
つまり、前記結合部強度Sjoint を、前記スパンLと前記圧壊時最大反力Fmaxとの積より大きく設定してある。
【0044】
(作用)
以上の構成によりこの第1実施形態の車体前部構造によれば、図7に示すように車両前方から衝突荷重Fが入力した際に、サイドメンバ板厚変化構造50によって先ず、図8に示すようにサイドメンバ前方領域11Fの後方に圧壊Kが発生し、この圧壊Kが前方に向かって誘発され、その圧壊Kをサイドメンバ前方領域11Fの前端部まで持続的に伝播させて、衝突エネルギーの吸収効率を高めることができる。
【0045】
このとき、サイドメンバ11の圧壊は、サイドメンバ前方領域11Fの後方から誘発されるため、バンパーレインフォース12に連結したサイドメンバ11の前端部の剛性は高く保持されて、バンパーレインフォース12とサイドメンバ11との取付け角度θは一定に保持される状態にある。
【0046】
従って、図9に示すようにオフセット衝突時に車両片側に衝突荷重Fが入力した場合に、衝突側(右側)のサイドメンバ11に軸方向入力Fn が作用し、この軸方向入力Fn によってバンパーレインフォース12に相対するモーメントMbmprを発生させるとともに、このバンパーレインフォース12と非衝突側(左側)のサイドメンバ12の連結部にモーメントMjnt を発生させることができる。
【0047】
このため、結果的に前記バンパーレインフォース12は車両後方に平行移動する状態となって、前記非衝突側のサイドメンバ11にも軸方向入力Fn′を作用させることができるようになり、衝突による荷重分散を効果的に行うことができる。
【0048】
ここで、バンパーレインフォース12の断面係数Zを、サイドメンバ11前部の圧壊時最大反力Fmaxと、サイドメンバ前方領域11FのスパンLに対するバンパーレインフォース12の構成素材の降伏応力σy−bmprの商と、の積より大きく(Z>Fmax×L/σy−bmpr)設定してあり、かつ、バンパーレインフォース12の結合部強度Sjoint を、前記スパンLと前記圧壊時最大反力Fmaxとの積より大きく(Sjoint >L×Fmax)設定してあるので、図10に示すようにバンパーレインフォース12自体の剛性を高く維持して折れを抑制するとともに、バンパーレインフォース12とサイドメンバ11との結合強度を十分に確保して一定の角度θを保持できる。
【0049】
従って、衝突側のサイドメンバ前方領域11Fは軸方向入力Fnにより、また、非衝突側のサイドメンバ前方領域11Fは軸方向入力Fn′によって、それぞれの後方部から圧壊Kを効果的に発生させることができるため、オフセット衝突時にあっても衝突エネルギーの吸収効率を高めることができる。
【0050】
特に、前述したように車幅方向に対向する1対のサイドメンバ前方領域11Fは車体前後方向に直状に形成して、それぞれを平行に配置してあるため、前記取付け角度θは直角となっており、従って、フルラップ衝突時は勿論のこと、オフセット衝突に対してもサイドメンバ前方領域11Fの後部からの持続的な圧壊を良好に行わせることができてエネルギー吸収特性を向上することができる。
【0051】
また、前記サイドメンバ板厚変化構造50における最大応力の上限値を、サイドメンバ11を構成する素材の降伏強度を基準に設定したので、サイドメンバ11の前端部への入力時には、先ず、最大応力を大きくしたサイドメンバ前方領域11Fの後部が素材の降伏域に達して塑性変形が生じるため、衝突時にはサイドメンバ前方領域の後部から圧壊をより確実に誘発させることができる。
【0052】
更に、前記サイドメンバ板厚変化構造50は、前記サイドメンバ前方領域11Fの板厚分布を長手方向に変化させた構造であるため、衝突荷重Fがサイドメンバ11に入力した際に、サイドメンバ前方領域11Fの長手方向に連なる仮想断面Ia,Ib…Ieで発生する最大応力の制御がし易くなり、ひいては強度バランスの調整が容易となって、衝突時におけるサイドメンバ前方領域11Fの後端部からの圧壊Kをより確実に誘発させることができる。
【0053】
更にまた、前記サイドメンバ板厚変化構造50を、板厚t1,t2…t6と板厚の異なる複数の板材51a,51b…51fをそれらの板厚が段階的に変化するように接合した複合パネル材52を用いて、板厚の変化方向が長手方向となるように構成したので、サイドメンバ前方領域11Fの長手方向に連なる仮想断面Ia,Ib…Ieで発生する最大応力の制御を近似的に行って、サイドメンバ前方領域11Fの後端部からの圧壊を支障無く誘発することができるとともに、単に板厚t1,t2…t6の異なる複数の板材51a,51b…51fの接合であるため、サイドメンバ前方領域11Fを容易に形成することができる。
【0054】
尚、前記板材51a,51b,51c…51fの数は本実施形態に限定されることはなく、その数はサイドメンバ前方領域11Fの要求圧壊特性に応じて決定すればよい。
【0055】
(第2実施形態)
図11は本発明の本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。尚、図11はサイドメンバ前方領域の拡大断面図である。
【0056】
この第2実施形態では、図11に示すように強度調整手段を、サイドメンバ前方領域11Fの閉断面内に長手方向に適宜間隔をもって複数の仕切り板61a,61b…61eを配置し、各仕切り板61a,61b…61eの板厚t1,t2…t5を、前方に行くに従って増厚(t1>t2>…>t5)するようにサイドメンバ11の長手方向に変化させた仕切り板厚変化構造60として構成してある。
【0057】
即ち、前記仕切り板61a,61b…61eは、閉断面構造となったサイドメンバ前方領域11Fの内側に固設して一体化されており、これら仕切り板61a,61b…61eの配置箇所でサイドメンバ前方領域11Fの剛性を高めるとともに、その剛性の増大率はそれぞれの板厚t1,t2…t5に応じて前方に行くに従って増大される。
【0058】
このとき、パワーユニット30(図2参照)を搭載する補強部分11Rの剛性は、仕切り板61eの板厚t5によって確保できるようになっており、また、この第2実施形態ではサイドメンバ前方領域11Fの周壁の板厚tは、全区間に亘って一定として構成してある。
【0059】
従って、この第2実施形態の車体前部構造では、衝突荷重Fがサイドメンバ11の前端部に入力された際に、サイドメンバ前方領域11Fの長手方向に連なる仮想断面で発生する最大応力の制御を各仕切り板61a,61b…61eで行うことができ、ひいては強度バランスの調整が容易となって、衝突時におけるサイドメンバ前方領域11Fの後端部からの圧壊Kを確実に誘発することができ、前記第1実施形態と同様の効果を奏することができる。
【0060】
また、この実施形態ではサイドメンバ前方領域11Fの周壁の板厚tを全区間に亘って一定としたが、前記第1実施形態のように板厚を段階的に変化させたサイドメンバ板厚変化構造50と組み合わせることもできる。
【0061】
(第3実施形態)
図12〜図14は本発明の第3実施形態を示し、前記各実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。尚、図12はサイドメンバ前方領域の斜視図、図13は図12中B−B線に沿った拡大断面図、図14は強度調整手段の概念を示す応力分布図である。
【0062】
この第3実施形態の車体前部構造は、図12に示すように強度調整手段を、サイドメンバ前方領域11Fの断面寸法x,yが前端に行くに従って幅広となるように長手方向で変化させた断面寸法変化構造70として構成してある。
【0063】
前記断面寸法変化構造70は、図13に示すようにサイドメンバ前方領域11Fで板厚t分布を前端に行くに従って増厚するように変化させてあり、前記断面寸法x,yおよび板厚tは連続的に変化される。
【0064】
この実施形態ではサイドメンバ11を全体的にアルミニウム合金などの軽合金による押出し材で形成してある。
【0065】
従って、この実施形態の車体前部構造は、前記第1実施形態と同様の機能を奏するとともに、サイドメンバ前方領域11Fは板厚tのみならず断面寸法x,yを変化させてあり、このように断面寸法x,yを変化させることにより、材料力学の観点から板厚t変化に比較して部材断面定数への感度を高くすることができる。
【0066】
また、サイドメンバ前方領域11Fを、断面寸法x,yおよび板厚tを長手方向に連続的に変化させることができる押出し材で構成したので、板厚の調整が容易になり、より一層の構造合理化および軽量化を図ることができる。
【0067】
更に、この実施形態では断面寸法x,yおよび板厚tを連続的に変化させてあるので、図14に示すように応力分布はサイドメンバ前方領域11Fの全区間に亘って略一定となっている。
【0068】
ところで、本発明の車体前部構造は前記各実施形態を例にとって説明したが、本発明の要旨を逸脱しない範囲内でその他の実施形態をとることができる。
【図面の簡単な説明】
【図1】本発明の対象とする自動車の外観斜視図。
【図2】本発明の第1実施形態における車体前部右側の骨格構造を示す略示的平面説明図。
【図3】本発明の第1実施形態におけるサイドメンバ前方領域の斜視図。
【図4】図3中A−A線に沿った拡大断面図。
【図5】本発明の第1実施形態における強度調整手段の入力形態モデルを示す説明図。
【図6】本発明の第1実施形態における強度調整手段の概念を示す応力分布図。
【図7】本発明の第1実施形態における前方からの衝突荷重の入力形態を示す車体前部右側の略示的平面説明図。
【図8】本発明の第1実施形態におけるサイドメンバの変形モードを示す説明図。
【図9】本発明の第1実施形態におけるオフセット衝突時の荷重分散形態を示す車体前部の略示的平面説明図。
【図10】本発明の第1実施形態におけるオフセット衝突時におけるサイドメンバの変形モードを示す車体前部の略示的平面説明図。
【図11】本発明の第2実施形態におけるサイドメンバ前方領域の拡大断面図。
【図12】本発明の第3実施形態におけるサイドメンバ前方領域の斜視図。
【図13】図12中B−B線に沿った拡大断面図。
【図14】本発明の第3実施形態における強度調整手段の概念を示す応力分布図。
【符号の説明】
F・C フロントコンパートメント
10 車体
11 サイドメンバ
11F サイドメンバ前方領域
11R 補強部分
30 パワーユニット(車両ユニット部品)
50 サイドメンバ板厚変化構造(強度調整手段)
51a,51b,51c…51f 板材
52 複合パネル材
60 仕切り板厚変化構造
61a,61b…61e 仕切り板
70 断面寸法変化構造
Ia,Ib…Ie 仮想断面
x,y 断面寸法
t 板厚
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle body front structure of an automobile.
[0002]
[Prior art]
As a countermeasure against a vehicle collision, the collision energy is absorbed by crushing a side member at a front portion of the vehicle body with an axis. For example, Japanese Patent Application Laid-Open No. 2001-158377 discloses the vehicle body front structure.
[0003]
This front body structure has a bead on the front wall of the side member having a polygonal cross section, thereby promoting axial crushing from the front when an axial input is applied to the side member, thereby reducing collision energy. It is intended to be absorbed.
[0004]
[Problems to be solved by the invention]
However, in such a conventional vehicle body front structure, energy can be favorably absorbed with respect to a collision load input to the side member in the axial direction. However, when the collision is an offset collision on only one side of the vehicle, The front end of only one of the side members subjected to the offset collision is deformed and retreats in the vehicle direction.
[0005]
For this reason, a plastic hinge is formed between the bumper reinforce and the side member so that the bumper reinforce is oblique, and the efficiency of input dispersion to the side member on the non-collision side is reduced. There is a concern that the weight investment for suppressing the deformation amount of the vehicle body in the above will increase and the vehicle body weight will increase.
[0006]
Therefore, the present invention provides a vehicle body front structure capable of effectively dispersing a collision load to the side members on both sides even in a frontal collision from any direction and improving the efficiency of absorbing collision energy. Things.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, reinforcing members for mounting vehicle unit components are provided on side members arranged in the front-rear direction of the vehicle body on both left and right sides of the front compartment, and the vehicle width spans the front ends of these side members. In the vehicle body front structure combining the bumper reinforce extending in the direction,
In the side member front region of the side member forward from the reinforcement portion of the side member, the maximum stress generated in the front and rear portions of the imaginary cross section continuous in the longitudinal direction is adjusted so that the rear portion is larger than the front portion. It is characterized in that means are provided.
[0008]
According to a second aspect of the present invention, in the vehicle body front structure according to the first aspect, an upper limit value of a maximum stress by the strength adjusting means is set based on a yield strength of a material forming a side member. Features.
[0009]
According to a third aspect of the present invention, in the vehicle body front structure according to the first or second aspect, the strength adjusting means changes a thickness distribution of the front region of the side member in a longitudinal direction. It is characterized by a variable structure.
[0010]
According to the fourth aspect of the present invention, in the vehicle body front structure according to the third aspect, the side member thickness changing structure is configured to change a plurality of plate materials having different thicknesses stepwise. Is characterized in that the composite panel material joined to the above is configured such that the direction of change in the plate thickness is the longitudinal direction.
[0011]
According to a fifth aspect of the present invention, in the vehicle body front structure according to the first or second aspect, the strength adjusting means includes a plurality of partition plates provided at appropriate intervals in a longitudinal direction in a closed cross section of the side member front region. , And a partition plate thickness changing structure in which the thickness of each partition plate is changed in the longitudinal direction of the side member so as to increase as going forward.
[0012]
According to a sixth aspect of the present invention, in the vehicle body front structure according to the first to fifth aspects, the strength adjusting means is a cross-sectional dimension changing structure in which a cross-sectional dimension of the front region of the side member is changed in a longitudinal direction. It is characterized by having.
[0013]
According to the invention of claim 7, in the vehicle body front structure according to claims 1 and 2, the side member front region is formed by an extruded material whose extruded plate thickness or extruded cross-sectional dimension continuously changes in the extruding direction. The strength adjusting means is constituted by changing the thickness or the cross-sectional dimension of the front region of the side member, or changing both the thickness and the cross-sectional dimension.
[0014]
According to an eighth aspect of the present invention, in the vehicle body front structure according to any one of the first to seventh aspects, the bumper reinforce has a closed cross-sectional structure, and a member cross section of the bumper reinforce having the closed cross section has a vehicle vertical direction. The sectional coefficient Z of the second moment of area with respect to the axis is the product of the maximum reaction force Fmax at the time of crushing at the front part of the side member and the quotient of the yield stress σy-bmpr of the material constituting the bumper reinforcement with respect to the span L in the front region of the side member. A larger value (Z> Fmax × L / σy-bmpr) is set, and the joint strength Sjoint of the bumper reinforce is calculated from the product of the span L of the front region of the side member and the maximum reaction force Fmax at the time of crushing of the front portion of the side member. It is characterized in that it is set to be large (Sjoint> L × Fmax).
[0015]
According to a ninth aspect of the present invention, in the vehicle body front structure according to any one of the first to eighth aspects, the side member front regions of the left and right side members are each formed in a straight line in the vehicle front-rear direction and are parallel to each other. It is characterized by being arranged in.
[0016]
【The invention's effect】
According to the first aspect of the present invention, when a collision load is input from the front of the vehicle, the strength adjusting means provided in the front region of the side member induces crush from the rear of the side member front region toward the front. The crush can be continuously propagated to the front end of the front region of the side member, so that the efficiency of absorbing collision energy can be increased.
[0017]
Also, at this time, since the side members are crushed from behind the front region of the side members, the rigidity of the front end of the side members connected to the bumper reinforce is kept high, and the mounting angle between the bumper reinforce and the side members is increased. Is kept constant.
[0018]
Therefore, when a collision load is input to one side of the vehicle at the time of an offset collision, an axial input acts on the side member on the collision side, and the axial input causes the bumper reinforce and the bumper reinforce and the side member on the non-collision side to act. Since a moment can be generated in each of the connecting portions, the bumper reinforce is consequently moved parallel to the rear of the vehicle, so that an axial input can be applied to the side member on the non-collision side. Thus, the load distribution due to the collision can be effectively performed, and the efficiency of absorbing the collision energy can be increased.
[0019]
According to the second aspect of the invention, in addition to the effect of the first aspect, the upper limit of the maximum stress by the strength adjusting means is set based on the yield strength of the material constituting the side member. At the time of input to the front end of the side member, first, the rear portion of the front region of the side member where the maximum stress is increased reaches the yield region of the material and plastic deformation occurs. Can be triggered.
[0020]
According to the third aspect of the present invention, in addition to the effects of the first and second aspects of the present invention, the strength adjusting means is provided by changing the thickness distribution of the front region of the side member in the longitudinal direction. Because of the variable structure, when a collision load is input to the side member, it becomes easier to control the maximum stress that occurs in the virtual cross-section that extends in the longitudinal direction of the front region of the side member, and thus it becomes easier to adjust the strength balance. Thus, the crush from the rear end of the front region of the side member at the time of collision can be more reliably induced.
[0021]
According to the fourth aspect of the present invention, in addition to the effect of the third aspect of the present invention, the side member thickness changing structure is configured such that a plurality of plate materials having different thicknesses change stepwise. Since the composite panel material joined to was formed so that the direction of change in the plate thickness was the longitudinal direction, the control of the maximum stress generated in the virtual cross-section in the longitudinal direction of the side member front region was performed approximately, The crush from the rear end portion of the side member front region can be induced without any trouble, and the side member front region provided with such strength adjusting means can be easily formed.
[0022]
According to the fifth aspect of the present invention, in addition to the effects of the first and second aspects of the present invention, the plurality of partitioning plates are provided at appropriate intervals in the longitudinal direction within the closed cross section of the front region of the side member. Is arranged, and the thickness of each partition plate is changed in the longitudinal direction of the side member so as to increase as going forward, so that when a collision load is input to the front end of the side member. In addition, it is possible to control the maximum stress generated in the imaginary cross section extending in the longitudinal direction of the side member front region by each partition plate, thereby easily adjusting the strength balance, and after the side member front region at the time of a collision. Crushing from the end can be reliably induced.
[0023]
According to the sixth aspect of the invention, in addition to the effects of the first to fifth aspects, the strength adjusting means has a cross-sectional dimension changing structure in which the cross-sectional dimension of the front region of the side member is changed in the longitudinal direction. Therefore, when a collision load is input to the side member, it becomes easy to control the maximum stress generated in a virtual cross section extending in the longitudinal direction of the front region of the side member, and thus it becomes easy to adjust the strength balance, and at the time of a collision, Crushing from the rear end of the front region of the side member can be more reliably induced, and by changing the cross-sectional dimension having a higher sensitivity to the member cross-sectional constant than the plate thickness, the side member can be further improved. The weight can be reduced.
[0024]
According to the seventh aspect of the invention, in addition to the effects of the first and second aspects, the front region of the side member is formed of an extruded material whose extruded plate thickness and extruded cross-sectional dimension continuously change in the extruding direction. As a result, the thickness adjustment or the cross-sectional dimension can be freely adjusted in the longitudinal direction, and the change can be continuously performed. In addition, it is possible to accurately adjust the maximum stress generated in the virtual cross-section that is continuous in the longitudinal direction of the side member front region, and it is possible to further simplify the structure and reduce the weight.
[0025]
According to the eighth aspect of the invention, in addition to the effects of the first to seventh aspects, in addition to the effect of the first to seventh aspects, the section modulus Z of the second moment of area of the member cross section of the closed bumper reinforce with respect to the vehicle vertical axis is obtained. The maximum reaction force Fmax at the time of crushing of the front part of the side member, the span L of the front region of the side member, and the yield stress σy-bmpr of the bumper reinforcement component are set as Z> Fmax × L / σy-bmpr, and the bumper is set. Since the joint strength Sjoint of the reinforcement is set as Sjoint> L × Fmax, the rigidity of the bumper reinforce itself is kept high to suppress breakage, and the joint strength between the bumper reinforce and the side member is sufficiently ensured. To maintain a certain angle, the side member on the non-collision side can be It is possible to perform a heavy dispersion efficiently.
[0026]
According to the ninth aspect of the invention, in addition to the effects of the first to eighth aspects, the side member front regions of the left and right side members are formed straight in the vehicle body front-rear direction and arranged parallel to each other. Therefore, the front region of the side member can be continuously crushed from the rear end portion not only at the time of a full lap collision but also at the time of an offset collision, so that good energy absorption characteristics can be secured.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0028]
(1st Embodiment)
1 to 10 show a first embodiment of a vehicle body front structure of the present invention, FIG. 1 is an external perspective view of an automobile to which the present invention is applied, and FIG. 3 is a perspective view of the front region of the side member, FIG. 4 is an enlarged sectional view taken along line AA in FIG. 3, FIG. 5 is an explanatory view showing an input form model of the strength adjusting means, and FIG. 7 is a stress distribution diagram showing the concept of the strength adjusting means, FIG. 7 is a schematic plan explanatory view of the front right side of the vehicle body showing an input form of a collision load from the front, FIG. 8 is an explanatory diagram showing a deformation mode of the side member, FIG. 9 is a schematic plan explanatory view of a front portion of the vehicle body showing a load distribution mode at the time of an offset collision, and FIG. 10 is a schematic plan explanatory view of a front portion of the vehicle body showing a deformation mode of a side member at the time of an offset collision.
[0029]
The vehicle body front structure of the present embodiment is applied to the front compartments F and C of the vehicle body 10 shown in FIG. 1, and its skeletal structure is disposed on both right and left sides in the vehicle front-rear direction as shown in FIG. Side members 11 are arranged in parallel with each other, and a bumper reinforce 12 forming a skeleton of a bumper (not shown) is connected across the front end of each side member 11.
[0030]
An extension side member 13 that extends from the dash panel 17 to the lower surface side of the floor panel 18 is connected to the rear of each side member 11 and is substantially parallel to the outside of the extension side member 13 in the vehicle width direction. A side sill 14 is disposed at the front end of each of the extension side members 13 and the side sill 14.
[0031]
A dash cross member 16 is connected between the connected portions of the side members 11 and the extension side members 13.
[0032]
A suspension arm 21 for supporting a front wheel 20 is attached to the rear side of the side member 11 directly or via a suspension member (not shown), and an engine or the like as a vehicle unit component is provided between the left and right side members 11. Are mounted via a mount bracket 31.
[0033]
As shown in FIG. 3, a reinforcing portion 11R (shown by a satin portion in FIG. 3) having sufficient strength to support the power unit 30 is formed on the side bracket 11 at the mounting portion of the mount bracket 31, as shown in FIG. .
[0034]
That is, as shown in FIG. 3, the side member 11 has a closed sectional structure by fixing both side flange portions of the second plate 11b having a U-shaped cross section to the first plate 11a having a flat plate shape by spot welding or the like. The reinforcing portion 11R is formed by joining and arranging a reinforcing plate on the inner peripheral surface.
[0035]
Here, in the present embodiment, the maximum stress generated in the front and rear portions of the imaginary cross sections Ia, Ib... Ie extending in the longitudinal direction is formed in the side member front region 11F forward from the reinforcing portion 11R of the side member 11. A side member thickness changing structure 50 is formed as a strength adjusting means so that the rear portion becomes larger than the front portion, and the thickness distribution of the side member front region 11F is changed in the longitudinal direction.
[0036]
That is, as shown in FIG. 4, the side member plate thickness changing structure 50 includes a plurality of plate members 51a, 51b... 51f having different plate thicknesses t1, t2... T6 from the front end direction of the side member front region 11F. It is composed of a composite panel material 52 welded and joined all around so that the thickness changes stepwise (t1>t2>...> T6) from the front to the rear.
[0037]
That is, in the plate members 51a, 51b,... 51f, the plate member 51f is the thinnest, and the plate member 51f is disposed on the reinforcing portion 11R. Of course, the reinforcing portion 11R supports the power unit 30 as described above. It has enough strength.
[0038]
Further, as shown in FIG. 5, when the collision load F from the front statically acts on the front end of the side member front region 11F, the side member front region 11F has a maximum value in the side member plate thickness change structure 50. The upper limit value of the stress is set based on the yield strength of the material constituting the side member 11 so that the distribution of the yield strength σ (y) for each of the plate members 51a, 51b, 51c... 51f is obtained as shown in FIG. It is.
[0039]
Among the flanges 11c, 11d, 11f, 11e extending from the front end of the side member 11, the flanges 11c, 11d extending from the upper and lower surfaces are upper and lower surfaces 12a, 12b of the bumper reinforcement 12. And the flange portions 11e and 11f extending from the two left and right surfaces of the side member 11 are welded to the rear surface 12c of the bumper reinforce 12 so as to increase the connection strength between the bumper reinforce 12 and the side member 11. It has become.
[0040]
Here, the section coefficient of the second moment of area of the member section of the bumper reinforce 12 having the closed section structure with respect to the vehicle vertical axis is Z, the maximum reaction force at the time of crushing of the front portion of the side member 11 is Fmax, and the side member front area 11F. Is L and the yield stress of the constituent material of the bumper reinforce 12 is σy-bmpr, the following equation 1 is satisfied.
[0041]
Z> Fmax × L / σy-bmpr Equation 1
That is, the sectional modulus Z is set to be larger than the product of the maximum reaction force Fmax during crushing and the quotient of the yield stress σy-bmpr with respect to the span L.
[0042]
At the same time, assuming that the joint strength of the bumper reinforcement 12 is Sjoint, the structure satisfies the following expression (2).
[0043]
Sjoint> L × Fmax Expression 2
That is, the joint strength Sjoint is set to be larger than the product of the span L and the maximum reaction force Fmax at the time of crush.
[0044]
(Action)
According to the vehicle body front structure of the first embodiment having the above configuration, when the collision load F is input from the front of the vehicle as shown in FIG. As described above, the crush K occurs behind the side member front region 11F, and the crush K is induced toward the front, and the crush K is continuously propagated to the front end of the side member front region 11F to reduce the collision energy. Absorption efficiency can be increased.
[0045]
At this time, since the crush of the side member 11 is induced from behind the front region 11F of the side member 11, the rigidity of the front end of the side member 11 connected to the bumper reinforcement 12 is kept high, and The attachment angle θ with the member 11 is kept constant.
[0046]
Accordingly, when a collision load F is input to one side of the vehicle at the time of an offset collision as shown in FIG. 9, an axial input Fn acts on the side member 11 on the collision side (right side), and the bumper reinforcement F is applied by the axial input Fn. In addition to the generation of the moment Mbmpr relative to the bumper 12, the moment Mjnt can be generated at the connection between the bumper reinforce 12 and the side member 12 on the non-collision side (left side).
[0047]
As a result, the bumper reinforce 12 moves parallel to the rear of the vehicle, and the axial input Fn 'can also act on the side member 11 on the non-collision side. Load distribution can be performed effectively.
[0048]
Here, the section modulus Z of the bumper reinforce 12 is calculated by calculating the maximum reaction force Fmax at the time of crushing at the front part of the side member 11 and the yield stress σy-bmpr of the constituent material of the bumper reinforce 12 with respect to the span L of the front region 11F of the side member 11. And the product of the quotient and (Z> Fmax × L / σy-bmpr), and the joint strength Sjoint of the bumper reinforce 12 is calculated by multiplying the span L by the maximum reaction force Fmax during crushing. Since it is set to be larger (Sjoint> L × Fmax), the rigidity of the bumper reinforce 12 itself is kept high as shown in FIG. 10 to suppress breakage and the connection between the bumper reinforce 12 and the side member 11. The strength can be sufficiently ensured to maintain a constant angle θ.
[0049]
Therefore, the crushing K can be effectively generated from the respective rear portions of the front side region 11F of the collision side by the axial input Fn and the front side region 11F of the non-collision side by the axial input Fn '. Therefore, even at the time of the offset collision, the efficiency of absorbing the collision energy can be increased.
[0050]
In particular, as described above, the pair of side member front regions 11F opposed to each other in the vehicle width direction is formed in a straight line in the vehicle front-rear direction, and is disposed in parallel with each other, so that the mounting angle θ is a right angle. Therefore, not only at the time of a full lap collision but also at the time of an offset collision, it is possible to favorably perform continuous crushing from the rear portion of the side member front region 11F and improve energy absorption characteristics. .
[0051]
In addition, since the upper limit of the maximum stress in the side member plate thickness change structure 50 is set based on the yield strength of the material forming the side member 11, when inputting to the front end of the side member 11, the maximum stress is first set. Since the rear portion of the side member front region 11 </ b> F in which the height is increased reaches the yield region of the material and plastic deformation occurs, crush can be more reliably induced from the rear portion of the side member front region at the time of collision.
[0052]
Further, since the side member thickness changing structure 50 is a structure in which the thickness distribution of the side member front region 11F is changed in the longitudinal direction, when the collision load F is input to the side member 11, the side member front thickness changing structure 50 is formed. The maximum stress generated in the virtual cross sections Ia, Ib... Ie continuous in the longitudinal direction of the region 11F can be easily controlled, and the strength balance can be easily adjusted. Can be induced more reliably.
[0053]
Furthermore, the side member plate thickness changing structure 50 is joined to a plurality of plate members 51a, 51b... 51f having different plate thicknesses from the plate thicknesses t1, t2... T6 so that the plate thicknesses change stepwise. Since the plate 52 is configured so that the change direction of the plate thickness becomes the longitudinal direction by using the material 52, the control of the maximum stress generated in the imaginary sections Ia, Ib,. As a result, crushing from the rear end of the front region 11F of the side member can be induced without any trouble, and a plurality of plate members 51a, 51b... 51f having different plate thicknesses t1, t2. The member front region 11F can be easily formed.
[0054]
The number of the plate members 51a, 51b, 51c... 51f is not limited to the present embodiment, and the number may be determined according to the required crushing characteristics of the front region 11F of the side member.
[0055]
(2nd Embodiment)
FIG. 11 shows a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. 11 is an enlarged sectional view of the front region of the side member.
[0056]
In the second embodiment, as shown in FIG. 11, a plurality of partition plates 61a, 61b... 61e are arranged at appropriate intervals in the longitudinal direction in the closed cross section of the side member front region 11F as shown in FIG. The partition plate thickness changing structure 60 in which the plate thicknesses t1, t2... T5 of 61a, 61b... 61e are changed in the longitudinal direction of the side member 11 so as to increase (t1> t2 >>. It is composed.
[0057]
That is, the partition plates 61a, 61b... 61e are fixed and integrated inside the side member front area 11F having a closed cross-sectional structure, and the side members are disposed at the positions where these partition plates 61a, 61b. The rigidity of the front region 11F is increased, and the rate of increase in the rigidity is increased as going forward in accordance with the respective plate thicknesses t1, t2... T5.
[0058]
At this time, the rigidity of the reinforcing portion 11R on which the power unit 30 (see FIG. 2) is mounted can be secured by the plate thickness t5 of the partition plate 61e, and in the second embodiment, the side member front region 11F is provided. The thickness t of the peripheral wall is configured to be constant over the entire section.
[0059]
Therefore, in the vehicle body front structure according to the second embodiment, when the collision load F is input to the front end of the side member 11, the control of the maximum stress generated in the virtual cross section extending in the longitudinal direction of the side member front region 11F is performed. 61e, the adjustment of the strength balance is facilitated, and the crush K from the rear end of the side member front area 11F at the time of collision can be reliably induced. The same effects as those of the first embodiment can be obtained.
[0060]
Further, in this embodiment, the thickness t of the peripheral wall of the side member front region 11F is constant over the entire section. However, as in the first embodiment, the side member thickness change is obtained by changing the thickness stepwise. It can also be combined with the structure 50.
[0061]
(Third embodiment)
FIGS. 12 to 14 show a third embodiment of the present invention, in which the same components as those in the above embodiments are denoted by the same reference numerals, and redundant description will be omitted. FIG. 12 is a perspective view of the front region of the side member, FIG. 13 is an enlarged sectional view taken along line BB in FIG. 12, and FIG. 14 is a stress distribution diagram showing the concept of the strength adjusting means.
[0062]
In the vehicle body front structure of the third embodiment, as shown in FIG. 12, the strength adjusting means is changed in the longitudinal direction such that the cross-sectional dimensions x, y of the side member front region 11F become wider toward the front end. It is configured as a cross-sectional dimension changing structure 70.
[0063]
As shown in FIG. 13, the cross-sectional dimension changing structure 70 changes the thickness t distribution in the front region 11F of the side member so as to increase in thickness toward the front end, and the cross-sectional dimensions x, y and the thickness t are changed. Changed continuously.
[0064]
In this embodiment, the side member 11 is entirely formed of an extruded material of a light alloy such as an aluminum alloy.
[0065]
Therefore, the vehicle body front structure of this embodiment has the same function as that of the first embodiment, and the side member front region 11F is changed not only in the plate thickness t but also in the cross-sectional dimensions x and y. By changing the cross-sectional dimensions x and y, the sensitivity to the member cross-sectional constant can be increased from the viewpoint of material mechanics as compared with the change in the plate thickness t.
[0066]
Further, since the side member front region 11F is made of an extruded material capable of continuously changing the cross-sectional dimensions x and y and the plate thickness t in the longitudinal direction, the plate thickness can be easily adjusted, and the structure is further improved. Rationalization and weight reduction can be achieved.
[0067]
Further, in this embodiment, since the cross-sectional dimensions x and y and the plate thickness t are continuously changed, the stress distribution becomes substantially constant over the entire section of the side member front region 11F as shown in FIG. I have.
[0068]
By the way, the vehicle body front structure of the present invention has been described by taking each of the above embodiments as an example, but other embodiments can be adopted without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an automobile to which the present invention is applied.
FIG. 2 is a schematic plan explanatory view showing a skeletal structure of a vehicle body front right side in the first embodiment of the present invention.
FIG. 3 is a perspective view of a front region of a side member according to the first embodiment of the present invention.
FIG. 4 is an enlarged sectional view taken along line AA in FIG. 3;
FIG. 5 is an explanatory diagram showing an input mode model of an intensity adjusting unit according to the first embodiment of the present invention.
FIG. 6 is a stress distribution diagram illustrating a concept of a strength adjusting unit according to the first embodiment of the present invention.
FIG. 7 is a schematic plan explanatory view of the right front portion of the vehicle body showing an input form of a collision load from the front according to the first embodiment of the present invention.
FIG. 8 is an explanatory diagram showing a deformation mode of the side member according to the first embodiment of the present invention.
FIG. 9 is a schematic plan explanatory view of a front portion of the vehicle body showing a load distribution mode at the time of an offset collision in the first embodiment of the present invention.
FIG. 10 is a schematic plan view of a front portion of the vehicle body showing a deformation mode of a side member at the time of an offset collision according to the first embodiment of the present invention.
FIG. 11 is an enlarged sectional view of a front region of a side member according to a second embodiment of the present invention.
FIG. 12 is a perspective view of a front region of a side member according to a third embodiment of the present invention.
FIG. 13 is an enlarged sectional view taken along line BB in FIG. 12;
FIG. 14 is a stress distribution diagram illustrating the concept of a strength adjusting unit according to a third embodiment of the present invention.
[Explanation of symbols]
FC front compartment
10 Body
11 Side member
11F Side member front area
11R reinforcement part
30 Power unit (vehicle unit parts)
50 Side member thickness change structure (strength adjusting means)
51a, 51b, 51c ... 51f plate material
52 Composite panel materials
60 Partition thickness change structure
61a, 61b ... 61e Partition plate
70 Cross-sectional dimension change structure
Ia, Ib ... Ie Virtual cross section
x, y Cross-sectional dimensions
t Sheet thickness

Claims (9)

フロントコンパートメントの左右両側部に車体前後方向に配設したサイドメンバに車両ユニット部品を搭載するための補強部分を設け、これらサイドメンバの前端に跨って車幅方向に延在するバンパーレインフォースを結合した車体前部構造において、
前記サイドメンバの前記補強部分から前方となるサイドメンバ前方領域に、長手方向に連なる仮想断面の前部と後部に発生する最大応力が、前部よりも後部が大きくなる強度となるような強度調整手段を設けたことを特徴とする車体前部構造。
Reinforcing parts for mounting vehicle unit parts are provided on side members arranged in the front-rear direction on both left and right sides of the front compartment, and bumper reinforcements extending in the vehicle width direction across the front ends of these side members are connected. In the car body front structure
Strength adjustment in which the maximum stress generated in the front part and the rear part of the imaginary cross-section that extends in the longitudinal direction in the front part of the side member that is forward from the reinforcing part of the side member is such that the rear part is larger than the front part. A vehicle body front structure provided with means.
強度調整手段による最大応力の上限値を、サイドメンバを構成する素材の降伏強度を基準に設定したことを特徴とする請求項1に記載の車体前部構造。The vehicle body front structure according to claim 1, wherein an upper limit value of the maximum stress by the strength adjusting means is set based on a yield strength of a material forming the side member. 強度調整手段は、前記サイドメンバ前方領域の板厚分布を長手方向に変化させたサイドメンバ板厚変化構造であることを特徴とする請求項1または2に記載の車体前部構造。The vehicle body front structure according to claim 1 or 2, wherein the strength adjusting means is a side member thickness changing structure in which a thickness distribution of the side member front region is changed in a longitudinal direction. サイドメンバ板厚変化構造は、板厚の異なる複数の板材をそれらの板厚が段階的に変化するように接合した複合パネル材を、板厚の変化方向が長手方向となるようにして構成したことを特徴とする請求項3に記載の車体前部構造。The side member plate thickness change structure is configured such that a composite panel material in which a plurality of plate materials having different plate thicknesses are joined such that the plate thickness changes stepwise is formed such that the change direction of the plate thickness becomes the longitudinal direction. The vehicle body front part structure according to claim 3, wherein: 強度調整手段は、前記サイドメンバ前方領域の閉断面内に長手方向に適宜間隔をもって複数の仕切り板を配置し、各仕切り板の板厚を前方に行くに従って増厚するようにサイドメンバの長手方向に変化させた仕切り板厚変化構造であることを特徴とする請求項1または2に記載の車体前部構造。Strength adjusting means arranges a plurality of partition plates in the closed cross section of the side member front region at appropriate intervals in the longitudinal direction, and increases the thickness of each partition plate in the longitudinal direction of the side member so as to increase in thickness as going forward. The vehicle body front structure according to claim 1 or 2, wherein the partition plate thickness is changed. 強度調整手段は、前記サイドメンバ前方領域の断面寸法を長手方向に変化させた断面寸法変化構造であることを特徴とする請求項1〜5のいずれかに記載の車体前部構造。The vehicle body front structure according to any one of claims 1 to 5, wherein the strength adjusting means is a cross-sectional dimension changing structure in which a cross-sectional dimension of the front region of the side member is changed in a longitudinal direction. 押出し板厚や押出し断面寸法が押出し方向に連続して変化する押出し材によりサイドメンバ前方領域を形成して、サイドメンバ前方領域の板厚変化または断面寸法を変化させ、若しくは板厚と断面寸法の両者を変化させて強度調整手段を構成したことを特徴とする請求項1または2に記載の車体前部構造。The extruded material whose extruded sheet thickness and extruded cross-sectional dimension continuously change in the extrusion direction is used to form the side member front region, and the thickness or cross-sectional size of the side member front region is changed, or the thickness and cross-sectional size are changed. The vehicle body front structure according to claim 1 or 2, wherein the strength adjustment means is configured by changing both of them. バンパーレインフォースを閉断面構造とし、この閉断面となったバンパーレインフォースの部材断面の車両上下方向軸に対する断面二次モーメントの断面係数Zを、サイドメンバ前部の圧壊時最大反力Fmaxと、サイドメンバ前方領域のスパンLに対するバンパーレインフォース構成素材の降伏応力σy−bmprの商と、の積より大きく(Z>Fmax×L/σy−bmpr)設定するとともに、バンパーレインフォースの結合部強度Sjoint を、サイドメンバ前方領域のスパンLとサイドメンバ前部の圧壊時最大反力Fmaxとの積より大きく(Sjoint>L×Fmax)設定したことを特徴とする請求項1〜7のいずれかに記載の車体前部構造。The bumper reinforce has a closed cross-sectional structure, and the section coefficient Z of the second moment of area of the member cross section of the bumper reinforce with the closed cross section with respect to the vertical axis of the vehicle, the maximum reaction force Fmax at the time of crushing of the front part of the side member, It is set to be larger than the product of the quotient of the yield stress σy-bmpr of the material forming the bumper reinforce and the span L of the region in front of the side member (Z> Fmax × L / σy-bmpr), and the joint strength Sjoint of the bumper reinforce 8 is set to be larger than the product of the span L of the front region of the side member and the maximum reaction force Fmax at the time of crushing of the front portion of the side member (Sjoint> L × Fmax). Body front structure. 左右のサイドメンバのサイドメンバ前方領域は、それぞれ車体前後方向に直状に形成して相互に平行に配置したことを特徴とする請求項1〜8のいずれかに記載の車体前部構造。The vehicle body front structure according to any one of claims 1 to 8, wherein the side member front regions of the left and right side members are respectively formed in a straight shape in the vehicle front-rear direction and arranged in parallel with each other.
JP2001371738A 2001-11-13 2001-12-05 Body front structure Expired - Fee Related JP3572459B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001371738A JP3572459B2 (en) 2001-12-05 2001-12-05 Body front structure
EP02023487.8A EP1325859B1 (en) 2001-11-13 2002-10-21 Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
US10/286,909 US6893078B2 (en) 2001-11-13 2002-11-04 Front body structure for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371738A JP3572459B2 (en) 2001-12-05 2001-12-05 Body front structure

Publications (2)

Publication Number Publication Date
JP2003170860A JP2003170860A (en) 2003-06-17
JP3572459B2 true JP3572459B2 (en) 2004-10-06

Family

ID=19180742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371738A Expired - Fee Related JP3572459B2 (en) 2001-11-13 2001-12-05 Body front structure

Country Status (1)

Country Link
JP (1) JP3572459B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153567A (en) * 2003-11-20 2005-06-16 Toyota Motor Corp Shock absorbing member
DE102014212924A1 (en) 2014-07-03 2016-01-07 Bayerische Motoren Werke Aktiengesellschaft Side member assembly of a body of a motor vehicle and body of a motor vehicle with such a side member assembly
JP6617859B1 (en) * 2018-07-20 2019-12-11 日本製鉄株式会社 Structural members for vehicles
WO2020017645A1 (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Vehicle structural member
WO2020017647A1 (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Vehicle structural member

Also Published As

Publication number Publication date
JP2003170860A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP4122887B2 (en) Body front structure
JP5967292B2 (en) Vehicle front structure
JP5698340B2 (en) Car body rear structure
US6893078B2 (en) Front body structure for vehicle
JP6070821B2 (en) Vehicle front structure
JP5975168B2 (en) Vehicle front structure
JP7384065B2 (en) Vehicle front body structure
JP2012006507A (en) Rear body structure of vehicle
JP4244666B2 (en) Front body structure of the vehicle
JP2021054103A (en) Body of electric vehicle
CN112677914A (en) Front body structure of vehicle
JP2004075021A (en) Car body skeleton structure
JP5936265B2 (en) Car FRP cabin
JP3572459B2 (en) Body front structure
US11345407B2 (en) Upper vehicle-body structure
JP3632654B2 (en) Body front structure
CN112677915A (en) Front body structure of vehicle
JP3613229B2 (en) Body front structure
JP3591508B2 (en) Body front structure
JP3608540B2 (en) Auto body structure
JPH028944B2 (en)
JP2002321657A (en) Body floor structure of automobile
JP2001063620A (en) Body structure for automobile
JP4244663B2 (en) Front body structure of the vehicle
WO2019198751A1 (en) Body structure for automobiles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees