JP2003146241A - Vehicle body front structure - Google Patents

Vehicle body front structure

Info

Publication number
JP2003146241A
JP2003146241A JP2001347573A JP2001347573A JP2003146241A JP 2003146241 A JP2003146241 A JP 2003146241A JP 2001347573 A JP2001347573 A JP 2001347573A JP 2001347573 A JP2001347573 A JP 2001347573A JP 2003146241 A JP2003146241 A JP 2003146241A
Authority
JP
Japan
Prior art keywords
side member
vehicle body
plate thickness
cross
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001347573A
Other languages
Japanese (ja)
Other versions
JP3613229B2 (en
Inventor
Hideji Saeki
秀司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001347573A priority Critical patent/JP3613229B2/en
Priority to EP02023487.8A priority patent/EP1325859B1/en
Priority to US10/286,909 priority patent/US6893078B2/en
Publication of JP2003146241A publication Critical patent/JP2003146241A/en
Application granted granted Critical
Publication of JP3613229B2 publication Critical patent/JP3613229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle body front structure that can surely axially collapse a front end portion of a side member even against an input of collision load from the diagonal front direction and that can increase absorption efficiency of collision energy. SOLUTION: The maximum stress generated at front portions and rear portions of virtual cross sections Ia to Ie that continue in the longitudinal direction of a side member front area 11F is set so that the strength of each of the front portions is not less than or similar to each of the rear portions by a strength adjusting means 50 placed on the side member front area 11F. Accordingly, when collision load is input from the diagonal front direction to the front end portion of the side member 11, collapse is induced toward the rearward from the front end of the side member front area 11F functioning as an input point and the collapse is propagated continuously to the rear portion of the side member front area 11F so that the absorption efficiency of the collision energy is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の車体前部
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle body front structure.

【0002】[0002]

【従来の技術】車両の衝突対策としては、車体前部のサ
イドメンバを軸圧潰させることにより衝突エネルギーを
吸収するようにしており、例えば特開2001−158
377号公報にその車体前部構造が示されている。
2. Description of the Related Art As a countermeasure against a vehicle collision, the side members at the front of the vehicle body are axially crushed to absorb the collision energy. For example, Japanese Patent Laid-Open No. 2001-158.
Japanese Laid-Open Patent Publication No. 377 discloses the front structure of the vehicle body.

【0003】この車体前部構造は、多角形断面を有する
サイドメンバ前部の壁部にビードを配置することによ
り、サイドメンバに軸方向入力が作用した際に軸圧潰を
促進して、衝突エネルギーを吸収するようにしたもので
ある。
In this vehicle body front structure, a bead is arranged on the wall portion of the side member front portion having a polygonal cross section to promote axial crushing when an axial input is applied to the side member, thereby colliding energy. Is designed to absorb.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の車体前部構造では、サイドメンバに軸方向に入力
する衝突荷重に対してはエネルギー吸収を良好に行うこ
とができるが、斜め前方から入力する衝突荷重に対して
は、サイドメンバ前部がその付け根部分から折れ曲がる
ような変形モードとなってしまいがちである。
However, in such a conventional vehicle body front structure, it is possible to favorably absorb energy against a collision load applied to the side member in the axial direction, but the energy is applied obliquely from the front. With respect to a collision load, there is a tendency that the front portion of the side member is in a deformation mode in which it bends from its root portion.

【0005】従って、斜め衝突時の衝突エネルギーはサ
イドメンバ前部の折れ曲がりで一時的に吸収されるのみ
で、衝突荷重を軸圧潰により持続的に吸収する荷重特性
を得ることが困難になる。
Therefore, the collision energy at the time of an oblique collision is only temporarily absorbed by the bending of the front portion of the side member, and it becomes difficult to obtain the load characteristic of continuously absorbing the collision load by axial crushing.

【0006】このため、サイドメンバ前部の折れ曲がり
のみで十分な衝突エネルギー吸収特性を得るためには、
サイドメンバの剛性を大幅に高くする必要があるため、
必然的にサイドメンバの肉厚が厚くなるなどして車体重
量の大幅な増加を招来する懸念がある。
Therefore, in order to obtain sufficient collision energy absorption characteristics only by bending the front portion of the side member,
Since it is necessary to significantly increase the rigidity of the side members,
Inevitably, there is a concern that the thickness of the side member will become thicker and the weight of the vehicle body will increase significantly.

【0007】そこで、本発明は、斜め前方からの衝突荷
重入力に対してもサイドメンバの前端部分を確実に軸圧
壊させることができて、衝突エネルギーの吸収効率を高
められる車体前部構造を提供するものである。
Therefore, the present invention provides a vehicle body front structure capable of reliably axially crushing the front end portions of the side members even when a collision load is input from diagonally forward, thereby enhancing the efficiency of absorbing collision energy. To do.

【0008】[0008]

【課題を解決するための手段】請求項1の発明にあって
は、フロントコンパートメントの左右両側部に車体前後
方向に配設したサイドメンバに車両ユニット部品を搭載
するための補強部分を設けた車体前部構造において、前
記サイドメンバの前記補強部分から前方となるサイドメ
ンバ前方領域に、長手方向に連なる仮想断面の前部と後
部に発生する最大応力が、前部が後部以上、若しくはこ
れに近い状態の強度となるような強度調整手段を設けた
ことを特徴としている。
According to a first aspect of the present invention, there is provided a vehicle body having reinforcing members for mounting vehicle unit parts on side members arranged in front and rear directions of the vehicle body on both left and right sides of the front compartment. In the front part structure, the maximum stress generated in the front part and the rear part of the virtual cross section which is continuous in the longitudinal direction in the front region of the side member, which is located forward from the reinforcing portion of the side member, is such that the front part is equal to or more than the rear part, or close to this. It is characterized in that strength adjusting means for adjusting the strength of the state is provided.

【0009】請求項2の発明にあっては、請求項1に記
載の車体前部構造において、前記強度調整手段による最
大応力の上限値を、サイドメンバを構成する素材の降伏
強度を基準に設定したことを特徴としている。
According to a second aspect of the invention, in the vehicle body front structure according to the first aspect, the upper limit value of the maximum stress by the strength adjusting means is set based on the yield strength of the material forming the side member. It is characterized by having done.

【0010】請求項3の発明にあっては、請求項1,2
に記載の車体前部構造において、前記強度調整手段は、
前記サイドメンバ前方領域の板厚分布を長手方向に変化
させたサイドメンバ板厚変化構造であることを特徴とし
ている。
According to the invention of claim 3, claims 1 and 2 are provided.
In the vehicle body front structure described in,
It is characterized by a side member plate thickness changing structure in which the plate thickness distribution in the front region of the side member is changed in the longitudinal direction.

【0011】請求項4の発明にあっては、請求項3に記
載の車体前部構造において、前記サイドメンバ板厚変化
構造は、板厚の異なる複数の板材をそれらの板厚が段階
的に変化するように接合した複合パネル材を、板厚の変
化方向が長手方向となるようにして構成したことを特徴
としている。
According to a fourth aspect of the present invention, in the vehicle body front structure according to the third aspect, the side member plate thickness changing structure includes a plurality of plate members having different plate thicknesses in a stepwise manner. It is characterized in that the composite panel material bonded so as to change is configured such that the changing direction of the plate thickness is the longitudinal direction.

【0012】請求項5の発明にあっては、請求項1,2
に記載の車体前部構造において、前記強度調整手段は、
前記サイドメンバ前方領域の閉断面内に長手方向に適宜
間隔をもって複数の仕切り板を配置し、各仕切り板の板
厚をサイドメンバの長手方向に変化させた仕切り板厚変
化構造であることを特徴としている。
According to the invention of claim 5, claims 1 and 2 are provided.
In the vehicle body front structure described in,
A partition plate thickness changing structure in which a plurality of partition plates are arranged in the closed cross section of the front region of the side member at appropriate intervals in the longitudinal direction, and the plate thickness of each partition plate is changed in the longitudinal direction of the side member. I am trying.

【0013】請求項6の発明にあっては、請求項1〜5
に記載の車体前部構造において、強度調整手段は、前記
サイドメンバ前方領域の断面寸法を長手方向に変化させ
た断面寸法変化構造であることを特徴としている。
According to the invention of claim 6, claims 1 to 5 are provided.
In the vehicle body front structure described in (1), the strength adjusting means is a cross-sectional dimension changing structure in which the cross-sectional dimension of the side member front region is changed in the longitudinal direction.

【0014】請求項7の発明にあっては、請求項1また
は2に記載の車体前部構造において、押出し板厚や押出
し断面寸法が押出し方向に連続して変化する押出し材に
よりサイドメンバ前方領域を形成して、サイドメンバ前
方領域の板厚または断面寸法を変化させ、若しくは板厚
と断面寸法の両者を変化させて強度調整手段を構成した
ことを特徴としている。
According to a seventh aspect of the present invention, in the vehicle body front structure according to the first or second aspect, the side member front region is formed by an extruded material whose extruded plate thickness and extruded cross-sectional dimension continuously change in the extruding direction. Is formed to change the plate thickness or the cross-sectional dimension of the front region of the side member, or both the plate thickness and the cross-sectional dimension are changed to constitute the strength adjusting means.

【0015】請求項8の発明にあっては、請求項1〜7
に記載の車体前部構造において、強度調整手段による最
大応力設定は、サイドメンバの前端部に静的に斜め入力
が作用した場合を想定し、サイドメンバ前方領域の長手
方向に連なる各仮想断面に発生する軸力成分応力とモー
メント成分応力の両方を考慮することにより演算した値
を適用することを特徴としている。
According to the invention of claim 8, claims 1 to 7 are provided.
In the vehicle body front structure described in (1), the maximum stress setting by the strength adjusting means is assumed on the assumption that static input is statically applied to the front end portion of the side member, and is set to each virtual cross section continuous in the longitudinal direction of the side member front region. The feature is that the calculated value is applied by considering both the generated axial force component stress and the generated moment component stress.

【0016】請求項9の発明にあっては、請求項1〜8
に記載の車体前部構造において、左右のサイドメンバの
サイドメンバ前方領域は、それぞれ車体前後方向に直状
に形成して、相互に平行配置したことを特徴としてい
る。
In the invention of claim 9, claims 1 to 8
In the vehicle body front structure described in [1], the side member front regions of the left and right side members are formed straight in the vehicle body front-rear direction, and are arranged parallel to each other.

【0017】請求項10の発明にあっては、請求項1〜
8のいずれかに記載の車体前部構造において、左右のサ
イドメンバのサイドメンバ前方領域は、それぞれを車体
前方に向かって車幅方向外方に傾斜させて形成したこと
を特徴としている。
According to the invention of claim 10, claim 1
In the vehicle body front structure described in any one of 8 above, the side member front regions of the left and right side members are formed so as to be inclined outward in the vehicle width direction toward the front of the vehicle body.

【0018】[0018]

【発明の効果】請求項1に記載の発明によれば、サイド
メンバ前方領域に設けた強度調整手段によって、このサ
イドメンバ前方領域の長手方向に連なる仮想断面の前部
と後部に発生する最大応力が、前部が後部以上、若しく
はこれに近い状態となる強度に設定されているため、サ
イドメンバの前端部に斜め前方から衝突荷重が入力した
際に、入力点であるサイドメンバ前方領域の前端から後
方に向かって圧壊が誘発され、その圧壊をサイドメンバ
前方領域の後部まで持続的に伝播させて、衝突エネルギ
ーの吸収効率を高めることができる。
According to the first aspect of the present invention, the maximum stress generated at the front and rear portions of the virtual cross section continuous in the longitudinal direction of the side member front region by the strength adjusting means provided in the side member front region. However, since the front part is set to have a strength equal to or more than the rear part or close to this, when a collision load is input diagonally from the front end of the side member, the front end of the side member front region, which is the input point, is input. The crushing is induced from the rear side to the rear side, and the crushing can be continuously propagated to the rear part of the front region of the side member to enhance the absorption efficiency of the collision energy.

【0019】勿論、正面方向から衝突荷重がサイドメン
バの前端部に軸方向に入力した場合にも、同様にサイド
メンバ前方領域の全域に亘って軸圧壊を誘発して衝突エ
ネルギーを効果的に吸収できるとともに、前記強度調整
手段を設けたサイドメンバ前方領域の後端部は、車両ユ
ニット部品を搭載するための補強部分となっているの
で、この補強部分の剛性特性を利用することにより、サ
イドメンバを合理的に構成することができる。
Of course, even when a collision load is axially input to the front end portion of the side member from the front direction, axial crushing is similarly induced over the entire front region of the side member to effectively absorb the collision energy. At the same time, since the rear end of the side member front region provided with the strength adjusting means is a reinforcing portion for mounting vehicle unit parts, the rigidity characteristic of this reinforcing portion is utilized to make the side member. Can be reasonably configured.

【0020】請求項2に記載の発明によれば、請求項1
の発明の効果に加えて、前記強度調整手段による最大応
力の上限値を、サイドメンバを構成する素材の降伏強度
を基準に設定したので、サイドメンバの前端部への入力
時には、先ず、入力点である前端部近傍が素材の降伏域
に達して塑性変形が生じるため、衝突時にはサイドメン
バ前方領域の前端部から圧壊をより確実に誘発すること
ができる。
According to the invention of claim 2, claim 1
In addition to the effect of the invention, since the upper limit of the maximum stress by the strength adjusting means is set based on the yield strength of the material forming the side member, when inputting to the front end of the side member, first, Since the vicinity of the front end reaches the yield region of the material and plastic deformation occurs, it is possible to more reliably induce crushing from the front end of the front region of the side member at the time of collision.

【0021】請求項3に記載の発明によれば、請求項
1,2の発明の効果に加えて、前記強度調整手段を、前
記サイドメンバ前方領域の板厚分布を長手方向に変化さ
せたサイドメンバ板厚変化構造としたので、衝突荷重が
サイドメンバの前端部に入力された際に、サイドメンバ
前方領域の長手方向に連なる仮想断面で発生する最大応
力の制御がし易くなり、ひいては強度バランスの調整が
容易となって、衝突時におけるサイドメンバ前方領域の
前端部からの圧壊をより確実に誘発することができる。
According to the third aspect of the invention, in addition to the effects of the first and second aspects of the invention, the strength adjusting means changes the plate thickness distribution in the front region of the side member in the longitudinal direction. The member thickness change structure makes it easy to control the maximum stress generated in the virtual cross section that is continuous in the longitudinal direction of the front area of the side member when a collision load is input to the front end of the side member. Can be easily adjusted, and the collapse from the front end of the front region of the side member at the time of collision can be more reliably induced.

【0022】請求項4に記載の発明によれば、請求項3
の発明の効果に加えて、前記サイドメンバ板厚変化構造
を、板厚の異なる複数の板材をそれらの板厚が段階的に
変化するように接合した複合パネル材を、板厚の変化方
向が長手方向となるようにして構成したので、サイドメ
ンバ前方領域の長手方向に連なる仮想断面で発生する最
大応力の制御を近似的に行って、サイドメンバ前方領域
の前端部からの圧壊を支障無く誘発することができると
ともに、このような強度調整手段を備えたサイドメンバ
前方領域を容易に形成することができる。
According to the invention of claim 4, claim 3
In addition to the effect of the invention described above, a composite panel material obtained by joining the side member plate thickness changing structure to a plurality of plate materials having different plate thicknesses so that the plate thicknesses thereof are changed stepwise is Since it is configured to be in the longitudinal direction, the maximum stress generated in the virtual cross section that is continuous in the longitudinal direction of the front region of the side member is approximately controlled, and crushing from the front end of the front region of the side member is induced without problems. In addition, the side member front region provided with such strength adjusting means can be easily formed.

【0023】請求項5に記載の発明によれば、請求項
1,2の発明の効果に加えて、前記強度調整手段を、前
記サイドメンバ前方領域の閉断面内に長手方向に適宜間
隔をもって複数の仕切り板を配置し、各仕切り板の板厚
をサイドメンバの長手方向に変化させた仕切り板厚変化
構造としたので、衝突荷重がサイドメンバの前端部に入
力された際に、サイドメンバ前方領域の長手方向に連な
る仮想断面で発生する最大応力の制御を各仕切り板で行
うことができ、ひいては強度バランスの調整が容易とな
って、衝突時におけるサイドメンバ前方領域の前端部か
らの圧壊を確実に誘発することができる。
According to the invention of claim 5, in addition to the effects of the inventions of claims 1 and 2, a plurality of the strength adjusting means are provided at appropriate intervals in the longitudinal direction within the closed cross section of the front region of the side member. The partition plates are arranged and the thickness of each partition plate is changed in the longitudinal direction of the side member, so that when the collision load is input to the front end of the side member, The maximum stress generated in the imaginary cross section that is continuous in the longitudinal direction of the area can be controlled by each partition plate, which in turn makes it easier to adjust the strength balance and prevent crushing from the front end of the side member front area during a collision. Can be surely triggered.

【0024】請求項6に記載の発明によれば、請求項1
〜5の発明の効果に加えて、強度調整手段を、前記サイ
ドメンバ前方領域の断面寸法を長手方向に変化させた断
面寸法変化構造としたので、衝突荷重がサイドメンバの
前端部に入力された際に、サイドメンバ前方領域の長手
方向に連なる仮想断面で発生する最大応力の制御がし易
くなり、ひいては強度バランスの調整が容易となって、
衝突時におけるサイドメンバ前方領域の前端部からの圧
壊をより確実に誘発することができるとともに、板厚に
比較して部材断面定数への感度が高い断面寸法を変化す
ることで、サイドメンバのより一層の軽量化を図ること
ができる。
According to the invention of claim 6, claim 1
In addition to the effects of the inventions of 5 to 5, since the strength adjusting means has a cross-sectional dimension changing structure in which the cross-sectional dimension of the side member front region is changed in the longitudinal direction, the collision load is input to the front end portion of the side member. At this time, it becomes easier to control the maximum stress generated in the virtual cross section that is continuous in the longitudinal direction of the front region of the side member, and it becomes easier to adjust the strength balance.
It is possible to more reliably induce crushing from the front end of the front region of the side member at the time of collision, and to change the cross-sectional dimension that is more sensitive to the member cross-section constant than the plate thickness, and Further weight reduction can be achieved.

【0025】請求項7に記載の発明によれば、請求項
1,2の発明の効果に加えて、サイドメンバ前方領域
を、押出し板厚や押出し断面寸法が押出し方向に連続し
て変化する押出し材により形成して強度調整手段を構成
するようにしたので、板厚分布または断面寸法を長手方
向に自在に調整することができるとともに、その変化を
連続的に行うことができるため、板厚変化を高精度に行
えてサイドメンバ前方領域の長手方向に連なる仮想断面
で発生する最大応力を精度良く調整することができると
ともに、より一層の構造合理化および軽量化を図ること
ができる。
According to the invention described in claim 7, in addition to the effects of the inventions of claims 1 and 2, in the extruding section, the extruded plate thickness and the extruded sectional size continuously change in the extruding direction in the front region of the side member. Since the strength adjusting means is formed of a material, the plate thickness distribution or the cross-sectional dimension can be freely adjusted in the longitudinal direction, and the change can be continuously performed, so that the plate thickness change Can be performed with high accuracy, the maximum stress generated in the virtual cross section continuous in the longitudinal direction of the front region of the side member can be adjusted with high accuracy, and further structural rationalization and weight reduction can be achieved.

【0026】請求項8に記載の発明によれば、請求項1
〜7の発明の効果に加えて、強度調整手段による最大応
力設定は、サイドメンバの前端部に静的に斜め入力が作
用した場合を想定し、サイドメンバ前方領域の長手方向
に連なる各仮想断面に発生する軸力成分応力とモーメン
ト成分応力の両方を考慮することにより演算した値を適
用したので、斜め前方からの衝突荷重がサイドメンバの
前端部に入力した場合には、サイドメンバ前方領域の前
端部からの圧壊をより高い精度をもって確実に誘発する
ことができる。
According to the invention described in claim 8, claim 1
In addition to the effects of the inventions of 7 to 7, the maximum stress setting by the strength adjusting means is assumed assuming that a diagonal input is statically applied to the front end portion of the side member, and each virtual cross section that is continuous in the longitudinal direction of the front region of the side member. Since the value calculated by considering both the axial force component stress and the moment component stress generated in the side member is applied, if the collision load from the diagonal front is input to the front end of the side member, Crushing from the front end can be reliably induced with higher accuracy.

【0027】請求項9に記載の発明によれば、請求項1
〜8の発明の効果に加えて、左右のサイドメンバのサイ
ドメンバ前方領域を、車体前後方向に直状に形成して相
互に平行に配置したので、正面方向からの衝突荷重がサ
イドメンバの前端部に作用した場合は勿論のこと、斜め
前方からの衝突に対してもサイドメンバ前方領域を先端
部から持続的に圧壊させることができ、良好なエネルギ
ー吸収特性を確保することができる。
According to the invention of claim 9, claim 1
In addition to the effects of the inventions of 8 to 8, since the side member front regions of the left and right side members are formed straight in the vehicle front-rear direction and are arranged parallel to each other, the collision load from the front direction is applied to the front end of the side member. The side member front region can be continuously crushed from the tip end portion not only when it acts on the portion, but also when it strikes obliquely from the front, and good energy absorption characteristics can be secured.

【0028】請求項10に記載の発明によれば、請求項
1〜8の発明の効果に加えて、サイドメンバのサイドメ
ンバ前方領域を、車体前方に向かって車幅方向外方に傾
斜させたので、斜め前方からの衝突は勿論のこと、正面
方向からの衝突に対してもサイドメンバ前方領域を先端
部から持続的に圧壊させることができ、特に車幅方向外
方に傾斜させたサイドメンバ前方領域により、車体前端
部における入力支持範囲を車幅方向に拡大することがで
きる。
According to the invention described in claim 10, in addition to the effects of the inventions of claims 1-8, the side member front region of the side member is inclined outward in the vehicle width direction toward the front of the vehicle body. Therefore, the front region of the side member can be continuously crushed from the tip portion not only when the vehicle strikes diagonally from the front, but also when the vehicle strikes from the front direction. In particular, the side member inclined outward in the vehicle width direction can be crushed. The front region allows the input support range at the front end of the vehicle body to be expanded in the vehicle width direction.

【0029】また、前記サイドメンバ前方領域は、車両
ユニット部品を搭載する補強部分から車幅方向外方に傾
斜しているため、サイドメンバへの衝突荷重の入力を補
強部分から車両ユニット部品、更にはこの車両ユニット
部品を介して他方の補強部分および他方のサイドメンバ
へと伝達することができるため、衝突荷重を車体前部の
幅広い部位で分散支持することができる。
Further, since the front region of the side member is inclined outward in the vehicle width direction from the reinforcing portion on which the vehicle unit component is mounted, input of a collision load to the side member is performed from the reinforcing portion to the vehicle unit component, and further. Can be transmitted to the other reinforcing portion and the other side member via this vehicle unit component, so that the collision load can be dispersed and supported in a wide portion of the front portion of the vehicle body.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施形態を図面と
共に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0031】(第1実施形態)図1〜図10は本発明の
車体前部構造の第1実施形態を示し、図1は本発明の対
象とする自動車の外観斜視図、図2は車体前部右側の骨
格構造を示す略示的平面説明図、図3はサイドメンバ前
方領域の斜視図、図4は図3中A−A線に沿った拡大断
面図、図5は強度調整手段を入力形態モデル(a)と応
力分布図(b)で示す説明図、図6は強度調整手段の概
念を示す応力分布図、図7は正面衝突および斜め前面衝
突時における入力形態を示す車体前部右側の略示的平面
説明図、図8は従来に観られるサイドメンバの変形モー
ドを示す説明図、図9は本実施形態の正面衝突(a)お
よび斜め前面衝突(b)時のサイドメンバの変形モード
を示す説明図、図10はサイドメンバの正面衝突および
斜め前面衝突時のエネルギー吸収量と時間の関係を従来
(a)と本実施形態(b)で比較したグラフである。
(First Embodiment) FIGS. 1 to 10 show a first embodiment of a vehicle body front structure of the present invention. FIG. 1 is an external perspective view of an automobile to which the present invention is applied, and FIG. 3 is a schematic plan explanatory view showing the skeleton structure on the right side of the portion, FIG. 3 is a perspective view of the front region of the side member, FIG. 4 is an enlarged cross-sectional view taken along the line AA in FIG. 3, and FIG. FIG. 6 is an explanatory view showing a morphological model (a) and a stress distribution diagram (b), FIG. 6 is a stress distribution diagram showing the concept of the strength adjusting means, and FIG. 7 is a vehicle front right side showing an input form at the time of frontal collision and oblique frontal collision. FIG. 8 is a schematic plan explanatory view of FIG. 8, FIG. 8 is an explanatory view showing a deformation mode of a side member that is conventionally seen, and FIG. 9 is a deformation of the side member during a frontal collision (a) and an oblique frontal collision (b) of the present embodiment. FIG. 10 is an explanatory view showing the mode, and FIG. 10 shows a front collision and a diagonal front collision of the side member. Energy is a graph comparing the uptake versus time in the prior (a) and the embodiment (b).

【0032】本実施形態の車体前部構造は図1に示す車
体10のフロントコンパートメントF・Cに適用され、
その骨格構造は図2に示すように、左右両側部に車体前
後方向に直状に配設したサイドメンバ11を備え、これ
らサイドメンバ11は平行に配置されており、かつ、そ
れぞれのサイドメンバ11の前端部に跨って図外のバン
パーの骨格を成すバンパーレインフォース12を結合し
てある。
The vehicle body front structure of this embodiment is applied to the front compartments F and C of the vehicle body 10 shown in FIG.
As shown in FIG. 2, the skeleton structure includes side members 11 arranged on both left and right sides in a straight line in the vehicle front-rear direction, and these side members 11 are arranged in parallel and each side member 11 A bumper reinforcement 12 forming a skeleton of a bumper (not shown) is connected across the front end of the.

【0033】また、それぞれのサイドメンバ11の後方
にはダッシュパネル17からフロアパネル18の下面側
に廻り込むエクステンションサイドメンバ13を連設し
てあり、それぞれのエクステンションサイドメンバ13
の車体幅方向外側には略平行にサイドシル14を配設し
てあって、これらエクステンションサイドメンバ13と
サイドシル14のそれぞれの前端部をアウトリガー15
で結合してある。
Further, extension side members 13 that extend from the dash panel 17 to the lower surface side of the floor panel 18 are connected to the rear side of each side member 11, and each extension side member 13 is provided.
The side sills 14 are arranged substantially parallel to each other on the outer side in the vehicle width direction, and the front end portions of the extension side members 13 and the side sills 14 are respectively attached to the outriggers 15.
It is combined with.

【0034】前記各サイドメンバ11とエクステンショ
ンサイドメンバ13の連設部間に跨ってダッシュクロス
メンバ16を結合してある。
A dash cross member 16 is connected so as to straddle the continuous portions of the side members 11 and the extension side members 13.

【0035】前記サイドメンバ11の後側部には前輪2
0を支持するサスペンションアーム21が、直接若しく
は図外のサスペンションメンバなどを介して取り付けら
れるとともに、左右のサイドメンバ11間には車両ユニ
ット部品としてのエンジン等のパワーユニット30がマ
ウントブラケット31を介して搭載される。
A front wheel 2 is provided on the rear side of the side member 11.
A suspension arm 21 for supporting 0 is attached directly or via a suspension member (not shown), and a power unit 30 such as an engine as a vehicle unit component is mounted via a mount bracket 31 between the left and right side members 11. To be done.

【0036】サイドメンバ11には、図3に示すように
前記マウントブラケット31の取付部分に、サイドメン
バ11の肉厚を厚くした補強部分11R(図3中梨地部
分で示す)が形成される。
As shown in FIG. 3, the side member 11 is provided with a reinforcing portion 11R (shown as a satin portion in FIG. 3) in which the wall thickness of the side member 11 is increased at the mounting portion of the mount bracket 31.

【0037】つまり、サイドメンバ11は、図3に示し
たように平板帯状の第1プレート11aに、断面コ字状
の第2プレート11bの両側フランジ部をスポット溶接
などで固設することにより閉断面構造として形成されて
おり、前記補強部分11Rは内周面に補強プレートを接
合配置する等により形成される。
That is, as shown in FIG. 3, the side member 11 is closed by fixing both side flange portions of the second plate 11b having a U-shaped cross section to the first plate 11a having a flat plate shape by spot welding or the like. It is formed as a cross-sectional structure, and the reinforcing portion 11R is formed by joining and disposing a reinforcing plate on the inner peripheral surface.

【0038】ここで、本実施形態では前記サイドメンバ
11の前記補強部分11Rから前方となるサイドメンバ
前方領域11Fに、長手方向に連なる仮想断面Ia,I
b…Ieの前部と後部に発生する最大応力が、前部が後
部以上、若しくはこれに近い状態の強度となるような強
度調整手段としてサイドメンバ板厚変化構造50を構成
し、前記サイドメンバ前方領域11Fの板厚分布を長手
方向に変化させてある。
Here, in this embodiment, the imaginary cross sections Ia, I extending in the longitudinal direction extend from the reinforcing portion 11R of the side member 11 to the front side member front region 11F.
b ... The side member plate thickness changing structure 50 is configured as a strength adjusting means so that the maximum stress generated in the front and rear portions of Ie is such that the front portion has a strength equal to or higher than the rear portion, or close to this. The plate thickness distribution of the front region 11F is changed in the longitudinal direction.

【0039】即ち、サイドメンバ板厚変化構造50は、
図4に示すようにサイドメンバ前方領域11Fの前端方
向から板厚t1,t2,t3…t6(t1<t2<t3
<…<t6)と段階的に変化する複数の板材51a,5
1b,51c…51fを、全周溶接して接合した複合パ
ネル材52で構成していて、最も厚肉化した前記板材5
1fは前記補強部分11Rとなっている。
That is, the side member thickness changing structure 50 is
As shown in FIG. 4, the plate thicknesses t1, t2, t3 ... t6 (t1 <t2 <t3 from the front end direction of the side member front region 11F).
<... <t6) A plurality of plate members 51a, 5 that change stepwise
51f is composed of a composite panel material 52 formed by welding the entire circumferences of 1b, 51c ... 51f, and the thickest plate material 5 is formed.
If is the reinforcing portion 11R.

【0040】また、このサイドメンバ前方領域11F
は、図5に示すようにサイドメンバ前方領域11Fの前
端部に、斜め前方からの衝突荷重Fが静的に作用した場
合に、次の式1に示すように、各仮想断面Ia,Ib…
Ie(図3参照)で発生する軸力成分応力(FY/A
(y))とモーメント成分応力({FX×(L−y)}
/Z(y))の和の最大値が、前部≒後部になるととも
に、その上限値がサイドメンバ構成素材の降伏強度σ
(y)となるようにしている。
The side member front area 11F
When the collision load F obliquely from the front is statically applied to the front end portion of the side member front region 11F as shown in FIG. 5, each virtual cross section Ia, Ib ...
Ie (see FIG. 3) generated axial force component stress (FY / A
(Y)) and moment component stress ({FX × (L−y)}
The maximum value of the sum of / Z (y) is the front portion ≈ the rear portion, and the upper limit value is the yield strength σ of the side member constituent material.
(Y).

【0041】 σ(y)={FY/A(y)}+{FX×(L−y)}/Z(y) …式1 このとき、サイドメンバ板厚変化構造50による最大応
力の上限値は前述のようにサイドメンバ11を構成する
素材の降伏強度を基準に設定し、その結果、図6に示す
ように各板材51a,51b,51c…51fに対する
降伏強度σ(y)の分布が得られる。
Σ (y) = {FY / A (y)} + {FX × (L−y)} / Z (y) Equation 1 At this time, the upper limit value of the maximum stress due to the side member plate thickness change structure 50 Is set based on the yield strength of the material forming the side member 11 as described above, and as a result, as shown in FIG. 6, the distribution of the yield strength σ (y) for each of the plate members 51a, 51b, 51c ... 51f is obtained. To be

【0042】(作用)以上の構成によりこの第1実施形
態の車体前部構造によれば、図7に示すようにサイドメ
ンバ11の前端部に斜め前方から静的な衝突荷重F2が
作用した際に、図3に示したようにサイドメンバ前方領
域11Fの長手方向に連なる各仮想断面Ia,Ib…I
eで発生する軸力成分応力(FY/A(y))とモーメ
ント成分応力({FX×(L−y)}/Z(y))の和
の最大値が、前部≒後部になるとともに、その上限値が
サイドメンバ構成素材の降伏強度σ(y)となっている
ため、動的現象である衝突時には、入力点であるサイド
メンバ11の前端部が素材の降伏域に達して塑性変形が
生じ、その結果、斜め前方からの衝突で前記衝突荷重F
2が入力した際に、サイドメンバ前方領域11Fは、図
8に示すような従来のサイドメンバに観られがちな付け
根部での単なる折れ曲がりモードを生ずることはなく、
図9(b)に示すようにサイドメンバ前方領域11F
は、入力点である前端部からの圧壊Kを誘発するととも
に、その圧壊Kが後方に向かって持続的に伝播されるモ
ードで変形し、衝突エネルギーを確実に吸収することが
できる。
(Operation) According to the vehicle body front structure of the first embodiment having the above-described structure, when the static collision load F2 is applied obliquely from the front to the front end of the side member 11, as shown in FIG. As shown in FIG. 3, the imaginary cross sections Ia, Ib, ... I that are continuous in the longitudinal direction of the side member front region 11F.
The maximum value of the sum of the axial force component stress (FY / A (y)) and the moment component stress ({FX × (L−y)} / Z (y)) generated at e becomes the front portion ≈ the rear portion. Since the upper limit value is the yield strength σ (y) of the side member constituent material, the front end portion of the side member 11 which is the input point reaches the yield area of the material and undergoes plastic deformation during a collision which is a dynamic phenomenon. As a result, as a result of the collision from diagonally forward, the collision load F
When 2 is input, the side member front region 11F does not cause a simple bending mode at the base portion, which is apt to be seen in the conventional side member as shown in FIG.
As shown in FIG. 9B, the side member front region 11F
Induces a crush K from the front end which is the input point, and is deformed in a mode in which the crush K is continuously propagated backward, so that the collision energy can be reliably absorbed.

【0043】尚、この場合、サイドメンバ前方領域11
Fは、斜め前方からの衝突荷重F2の分力荷重が作用し
て、図9(b)に示したように付け根部から車幅方向内
側へのずれを伴うが、このずれ動きを伴いつつサイドメ
ンバ前方領域11Fは軸圧壊Kされることになる。
In this case, the side member front region 11
The component force of the collision load F2 from diagonally forward acts on F, which causes a shift from the base to the inside in the vehicle width direction as shown in FIG. The member front region 11F is to be axially crushed K.

【0044】また、前記サイドメンバ前方領域11Fの
後端部は、パワーユニット30を搭載するための補強部
11Rとなっているので、この補強部分11Rの剛性特
性を利用することにより、特別な補強を施す必要が無く
なるため、サイドメンバ11の構造の合理化および軽量
化を図ることができる。
Further, since the rear end portion of the side member front region 11F is a reinforcing portion 11R for mounting the power unit 30, special reinforcement is made by utilizing the rigidity characteristic of the reinforcing portion 11R. Since it is not necessary to apply it, rationalization and weight reduction of the structure of the side member 11 can be achieved.

【0045】更に、前記サイドメンバ板厚変化構造50
をサイドメンバ前方領域11Fに設けてあるため、斜め
前方からの衝突荷重F2に限ることなく、図7に示すよ
うに正面方向からの衝突荷重F1がサイドメンバ11の
前端部に軸方向に入力した場合にも、図9(a)に示す
ように同様にサイドメンバ前方領域11Fの全域に亘っ
て軸圧壊Kを誘発して衝突エネルギーを効果的に吸収で
きる。
Further, the side member plate thickness changing structure 50.
Is provided in the side member front region 11F, the collision load F1 from the front direction is axially input to the front end portion of the side member 11 as shown in FIG. Also in this case, as shown in FIG. 9A, similarly, the shaft crush K can be induced over the entire side member front region 11F to effectively absorb the collision energy.

【0046】従って、本実施形態では正面方向からの衝
突荷重F1や斜め前方からの衝突荷重F2に対して、サ
イドメンバ前方領域11Fに軸方向の圧壊Kを生じさせ
ることができるため、図10(a)に示すような従来構
造のサイドメンバに観られがちな衝突荷重Fの入力角度
に対する衝突エネルギーの吸収バラツキを抑制し、本実
施形態では図10(b)に示すように安定した衝突エネ
ルギーの吸収効果を得ることができる。
Therefore, in the present embodiment, an axial crush K can be generated in the side member front region 11F with respect to the collision load F1 from the front direction and the collision load F2 from the oblique front, so that FIG. The absorption variation of the collision energy with respect to the input angle of the collision load F, which tends to be seen in the side member of the conventional structure as shown in a), is suppressed, and in the present embodiment, stable collision energy as shown in FIG. The absorption effect can be obtained.

【0047】ところで、本実施形態では前記サイドメン
バ板厚変化構造50を、板厚t1,t2,t3…t6と
板厚の異なる複数の板材51a,51b,51c…51
fを、それらの板厚が段階的に変化するように接合した
複合パネル材52を用いて形成したので、サイドメンバ
前方領域11Fの長手方向に連なる仮想断面Ia,Ib
…Ieで発生する最大応力の制御を近似的に行って、サ
イドメンバ前方領域11Fの前端部からの圧壊Kを支障
無く誘発することができるとともに、サイドメンバ前方
領域11Fの形成を容易にすることができる。
By the way, in the present embodiment, the side member plate thickness changing structure 50 has a plurality of plate members 51a, 51b, 51c, ... 51 having different plate thicknesses t1, t2, t3 ... T6.
Since f is formed by using the composite panel material 52 joined so that the plate thickness thereof changes stepwise, the virtual cross sections Ia, Ib continuous in the longitudinal direction of the side member front region 11F.
... The maximum stress generated in Ie is approximately controlled so that the collapse K from the front end of the side member front region 11F can be induced without any trouble, and the side member front region 11F can be easily formed. You can

【0048】また、このように前記サイドメンバ板厚変
化構造50は、サイドメンバ前方領域11Fの断面寸法
を長手方向に変化させた断面寸法変化構造となっている
ので、衝突荷重Fがサイドメンバ11の前端部に入力さ
れた際に、サイドメンバ前方領域の長手方向に連なる仮
想断面で発生する最大応力の制御がし易くなり、ひいて
は強度バランスの調整が容易となって、衝突時における
サイドメンバ前方領域11Fの前端部からの圧壊Kをよ
り確実に誘発することができる。
Further, since the side member plate thickness changing structure 50 has a cross sectional size changing structure in which the cross sectional size of the side member front region 11F is changed in the longitudinal direction, the collision load F is influenced by the side member 11. When input to the front end of the side member, it becomes easier to control the maximum stress that occurs in the virtual cross section that is continuous in the longitudinal direction of the side member front region, and it becomes easier to adjust the strength balance, so that the front side member at the time of collision can be controlled. The collapse K from the front end of the region 11F can be more reliably induced.

【0049】尚、前記板材51a,51b,51c…5
1fの数は本実施形態に限定されることはなく、その数
はサイドメンバ前方領域11Fの要求圧壊特性に応じて
決定すればよい。
The plate members 51a, 51b, 51c ... 5
The number of 1f is not limited to this embodiment, and the number may be determined according to the required crushing characteristics of the side member front region 11F.

【0050】また、サイドメンバ板厚変化構造50は、
サイドメンバ前方領域11Fの仮想断面の前部と後部に
発生する最大応力が、前部≒後部となるように設定した
が、これに限ることなく前部が後部以上、つまり前部≧
後部、若しくはこれに近い状態となる強度に設定すれば
良い。
Further, the side member plate thickness changing structure 50 is
Although the maximum stress generated at the front and rear of the imaginary cross section of the side member front region 11F is set to be front ≈ rear, the front is not limited to this, that is, front ≧
The strength may be set to the rear part or a state close to this.

【0051】(第2実施形態)図11は本発明の本発明
の第2実施形態を示し、前記第1実施形態と同一構成部
分に同一符号を付して重複する説明を省略して述べる。
尚、図11はサイドメンバ前方領域の拡大断面図であ
る。
(Second Embodiment) FIG. 11 shows a second embodiment of the present invention. The same components as those of the first embodiment will be designated by the same reference numerals and overlapping description will be omitted.
Note that FIG. 11 is an enlarged cross-sectional view of the front region of the side member.

【0052】この第2実施形態では、図11に示すよう
に強度調整手段を、サイドメンバ前方領域11Fの閉断
面内に長手方向に適宜間隔をもって複数の仕切り板61
a,61b,61c…61eを配置し、各仕切り板61
a,61b…61eの板厚t1,t2…t5(t1<t
2<…<t5)をサイドメンバ11の長手方向に変化さ
せた仕切り板厚変化構造60として構成してある。
In the second embodiment, as shown in FIG. 11, the strength adjusting means is provided with a plurality of partition plates 61 at appropriate intervals in the longitudinal direction within the closed cross section of the side member front region 11F.
a, 61b, 61c ... 61e are arranged, and each partition plate 61
a, 61b ... 61e, plate thickness t1, t2 ... t5 (t1 <t
2 <... <t5) is configured as a partition plate thickness changing structure 60 in which the side member 11 is changed in the longitudinal direction.

【0053】即ち、前記仕切り板61a,61b…61
eは、閉断面構造となったサイドメンバ前方領域11F
の内側に固設して一体化されており、これら仕切り板6
1a,61b…61eの配置箇所でサイドメンバ前方領
域11Fの剛性を高めるとともに、その剛性の増大率は
それぞれの板厚t1,t2…t5に応じて増大できるよ
うになっている。
That is, the partition plates 61a, 61b ... 61
e is a side member front region 11F having a closed cross-section structure
These partition plates 6 are fixed and integrated inside the
61e is arranged to increase the rigidity of the side member front region 11F, and the increase rate of the rigidity can be increased in accordance with the plate thicknesses t1, t2, ... T5.

【0054】このとき、パワーユニット30(図2参
照)を搭載する補強部分11Rの剛性は、仕切り板61
eの板厚t5によって確保できるようになっており、ま
た、この第2実施形態ではサイドメンバ前方領域11F
の周壁の板厚tは、全区間に亘って一定として構成して
ある。
At this time, the rigidity of the reinforcing portion 11R on which the power unit 30 (see FIG. 2) is mounted is determined by the partition plate 61.
It can be ensured by the plate thickness t5 of e, and in the second embodiment, the side member front region 11F.
The plate thickness t of the peripheral wall is constant over the entire section.

【0055】従って、この第2実施形態の車体前部構造
では、衝突荷重Fがサイドメンバ11の前端部に入力さ
れた際に、サイドメンバ前方領域11Fの長手方向に連
なる仮想断面で発生する最大応力の制御を各仕切り板6
1a,61b…61eで行うことができ、ひいては強度
バランスの調整が容易となって、衝突時におけるサイド
メンバ前方領域11Fの前端部からの圧壊Kを確実に誘
発することができ、前記第1実施形態と同様の効果を奏
することができる。
Therefore, in the vehicle body front structure of the second embodiment, when the collision load F is input to the front end portion of the side member 11, the maximum generated in the imaginary cross section continuous in the longitudinal direction of the side member front region 11F. Control of stress on each partition plate 6
1e, 61b ... 61e, which in turn facilitates the adjustment of the strength balance and can reliably induce the collapse K from the front end of the side member front region 11F at the time of a collision. It is possible to obtain the same effect as the form.

【0056】また、この実施形態ではサイドメンバ前方
領域11Fの板厚tを全区間に亘って一定としたが、前
記第1実施形態のように板厚を段階的に変化させたサイ
ドメンバ板厚変化構造50と組み合わせることもでき
る。
Further, in this embodiment, the plate thickness t of the front region 11F of the side member is constant over the entire section, but the plate thickness of the side member is changed stepwise as in the first embodiment. It can also be combined with the variable structure 50.

【0057】(第3実施形態)図12,図13は本発明
の第3実施形態を示し、前記第1実施形態と同一構成部
分に同一符号を付して重複する説明を省略して述べる。
尚、図12は車体前部右側の骨格構造を示す略示的平面
説明図、図13はサイドメンバ前方領域の斜視図であ
る。
(Third Embodiment) FIGS. 12 and 13 show a third embodiment of the present invention, in which the same components as those in the first embodiment are designated by the same reference numerals and a duplicate description will be omitted.
12 is a schematic plan view showing the skeleton structure on the right side of the front part of the vehicle body, and FIG. 13 is a perspective view of the front region of the side member.

【0058】この第3実施形態の車体前部構造は、図1
2,図13に示すようにサイドメンバ11の補強部分1
1Rから前方部分に設けたサイドメンバ前方領域11F
を、それぞれを車体前方に向かって車幅方向外方に傾斜
させてある。
The vehicle body front structure of the third embodiment is shown in FIG.
2, the reinforcing portion 1 of the side member 11 as shown in FIG.
Side member front region 11F provided in the front portion from 1R
Are inclined outward in the vehicle width direction toward the front of the vehicle body.

【0059】尚、この実施形態にあってはサイドメンバ
前方領域11Fには、前記第1実施形態と同様に強度調
整手段としてのサイドメンバ板厚変化構造50が構成さ
れていて、〜へと板厚が増大変化している。
In this embodiment, the side member front region 11F is provided with a side member plate thickness changing structure 50 as a strength adjusting means as in the first embodiment, and the side member plate thickness changing structure 50 is formed. The thickness is increasing and changing.

【0060】従って、この第3実施形態の車体前部構造
では、サイドメンバ前方領域11Fを車体前方に向かっ
て車幅方向外方に傾斜して形成しているので、斜め前方
からの衝突は勿論のこと、正面方向からの衝突に対して
もサイドメンバ前方領域11Fを先端部から持続的に圧
壊させることができる。
Therefore, in the vehicle body front structure of the third embodiment, the side member front region 11F is formed so as to be inclined outward in the vehicle width direction toward the front of the vehicle body. Therefore, the side member front region 11F can be continuously crushed from the tip even when the frontal collision occurs.

【0061】また、車幅方向外方に傾斜させたサイドメ
ンバ前方領域11Fにより、図12に示すようにサイド
メンバ11の前端部をより車体外方に配置することがで
きるため、車体前端部における入力支持範囲を車幅方向
に拡大することができる。
Further, as shown in FIG. 12, the front end portion of the side member 11 can be arranged further outward of the vehicle body by the side member front region 11F inclined outward in the vehicle width direction. The input support range can be expanded in the vehicle width direction.

【0062】つまり、図12中破線に示すようにサイド
メンバ11を直状に形成した場合には、この直状のサイ
ドメンバ11に入力されないような衝突形態であって
も、同図中実線で示した本実施形態のサイドメンバ11
では、サイドメンバ前方領域11Fに衝突荷重Fの分力
成分Fnが入力され、衝突エネルギーの吸収を良好に行
うことができる。
That is, in the case where the side member 11 is formed straight as shown by the broken line in FIG. 12, even in the collision mode in which the side member 11 is not input, the solid line in FIG. The side member 11 of the present embodiment shown
Then, the component force component Fn of the collision load F is input to the side member front region 11F, and the collision energy can be absorbed well.

【0063】更に、前記サイドメンバ前方領域11F
は、パワーユニット30を搭載する補強部分11Rから
車幅方向外方に傾斜しているため、図12に示すように
サイドメンバ11への衝突荷重Fの入力を、補強部分1
1Rからマウントブラケット31を介してパワーユニッ
ト30、更にはこのパワーユニット30を介して他方の
補強部分11Rおよび他方のサイドメンバ11へと伝達
する経路Cを構成することができるため、衝突荷重Fを
車体前部の幅広い部位で分散させることができる。
Further, the side member front region 11F
Is inclined outward from the reinforcing portion 11R on which the power unit 30 is mounted, in the vehicle width direction. Therefore, as shown in FIG.
Since the path C can be configured to be transmitted from 1R to the power unit 30 via the mount bracket 31 and further to the other reinforcing portion 11R and the other side member 11 via this power unit 30, the collision load F can be applied to the front of the vehicle body. It can be dispersed in a wide range of parts.

【0064】(第4実施形態)図14〜図16は本発明
の第4実施形態を示し、前記各実施形態と同一構成部分
に同一符号を付して重複する説明を省略して述べる。
尚、図14はサイドメンバ前方領域の斜視図、図15は
図14中B−B線に沿った拡大断面図、図16は強度調
整手段の概念を示す応力分布図である。
(Fourth Embodiment) FIGS. 14 to 16 show a fourth embodiment of the present invention, in which the same components as those in the above-mentioned embodiments are designated by the same reference numerals and a duplicate description will be omitted.
14 is a perspective view of the front region of the side member, FIG. 15 is an enlarged sectional view taken along the line BB in FIG. 14, and FIG. 16 is a stress distribution diagram showing the concept of strength adjusting means.

【0065】この第4実施形態の車体前部構造は、図1
4に示すように強度調整手段を、サイドメンバ前方領域
11Fの断面寸法x,yを長手方向で変化させた断面寸
法変化構造70として構成してある。
The vehicle body front structure of the fourth embodiment is shown in FIG.
As shown in FIG. 4, the strength adjusting means is configured as a sectional dimension changing structure 70 in which the sectional dimensions x and y of the side member front region 11F are changed in the longitudinal direction.

【0066】また、この実施形態の断面寸法変化構造7
0は、図15に示すようにサイドメンバ前方領域11F
で板厚t分布を先細りとなるように変化させてあり、前
記断面寸法x,yおよび板厚tは連続的に変化される。
The cross-sectional dimension change structure 7 of this embodiment is also used.
0 indicates the side member front region 11F as shown in FIG.
The distribution of the plate thickness t is changed so as to taper, and the cross-sectional dimensions x and y and the plate thickness t are continuously changed.

【0067】この実施形態ではサイドメンバ11を全体
的にアルミニウム合金などの軽合金による押出し材で形
成してあり、サイドメンバ前方領域11Fで断面寸法
x,yおよび板厚tを変化させてある。
In this embodiment, the side member 11 is entirely formed of an extruded material of a light alloy such as an aluminum alloy, and the cross-sectional dimensions x and y and the plate thickness t are changed in the side member front region 11F.

【0068】また、この実施形態にあってもサイドメン
バ11の前端部に静的に衝突荷重Fが作用した際に、サ
イドメンバ前方領域11Fの長手方向に連なる各仮想断
面において発生する軸力成分応力とモーメント成分応力
の和(前記式1参照)の最大値が、長手方向に一定かつ
素材の降伏強度としてある。
Also in this embodiment, when the collision load F is statically applied to the front end portion of the side member 11, the axial force component generated in each imaginary cross section continuous in the longitudinal direction of the side member front region 11F. The maximum value of the sum of the stress and the moment component stress (see the above formula 1) is constant in the longitudinal direction and is the yield strength of the material.

【0069】従って、この実施形態の車体前部構造は、
前記第1実施形態と同様の機能を奏するとともに、サイ
ドメンバ前方領域11Fは板厚tのみならず断面寸法
x,yを変化させてあり、このように断面寸法x,yを
変化させることにより、材料力学の観点から板厚t変化
に比較して部材断面定数への感度を高くすることができ
る。
Therefore, the vehicle body front structure of this embodiment is
The side member front region 11F changes not only the plate thickness t but also the cross-sectional dimensions x and y while having the same function as that of the first embodiment. By changing the cross-sectional dimensions x and y in this way, From the viewpoint of material mechanics, it is possible to increase the sensitivity to the member cross-section constant as compared with the change in the plate thickness t.

【0070】また、サイドメンバ前方領域11Fを、断
面寸法x,yおよび板厚tを長手方向に連続的に変化さ
せることができる押出し材で構成したので、板厚の調整
が容易になり、より一層の構造合理化および軽量化を図
ることができる。
Moreover, since the side member front region 11F is made of an extruded material capable of continuously changing the cross-sectional dimensions x and y and the plate thickness t in the longitudinal direction, the plate thickness can be easily adjusted, and Further structural rationalization and weight reduction can be achieved.

【0071】更に、この実施形態では断面寸法x,yお
よび板厚tを連続的に変化させてあるので、図16に示
すように応力分布はサイドメンバ前方領域11Fの全区
間に亘って略一定となっている。
Further, in this embodiment, since the cross-sectional dimensions x and y and the plate thickness t are continuously changed, the stress distribution is substantially constant over the entire area of the side member front region 11F as shown in FIG. Has become.

【0072】ところで、本発明の車体前部構造は前記各
実施形態を例にとって説明したが、本発明の要旨を逸脱
しない範囲内でその他の実施形態をとることができる。
The vehicle body front structure of the present invention has been described by taking the above-described embodiments as examples, but other embodiments can be adopted without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対象とする自動車の外観斜視図。FIG. 1 is an external perspective view of an automobile targeted by the present invention.

【図2】本発明の第1実施形態における車体前部右側の
骨格構造を示す略示的平面説明図。
FIG. 2 is a schematic plan explanatory view showing a skeleton structure on the right side of the front portion of the vehicle body in the first embodiment of the invention.

【図3】本発明の第1実施形態におけるサイドメンバ前
方領域の斜視図。
FIG. 3 is a perspective view of a side member front region according to the first embodiment of the present invention.

【図4】図3中A−A線に沿った拡大断面図。FIG. 4 is an enlarged cross-sectional view taken along the line AA in FIG.

【図5】本発明の第1実施形態における強度調整手段を
入力形態モデル(a)と応力分布図(b)で示す説明
図。
FIG. 5 is an explanatory view showing the strength adjusting means in the first embodiment of the present invention with an input form model (a) and a stress distribution diagram (b).

【図6】本発明の第1実施形態における強度調整手段の
概念を示す応力分布図。
FIG. 6 is a stress distribution diagram showing the concept of strength adjusting means in the first embodiment of the present invention.

【図7】本発明の第1実施形態における正面衝突および
斜め前面衝突時における入力形態を示す車体前部右側の
略示的平面説明図。
FIG. 7 is a schematic plan explanatory view on the right side of the front portion of the vehicle body showing an input form at the time of a frontal collision and an oblique frontal collision in the first embodiment of the present invention.

【図8】従来に観られるサイドメンバの変形モードを示
す説明図。
FIG. 8 is an explanatory view showing a deformation mode of a side member that is conventionally seen.

【図9】本発明の第1実施形態における正面衝突(a)
および斜め前面衝突(b)時のサイドメンバの変形モー
ドを示す説明図。
FIG. 9 is a frontal collision (a) according to the first embodiment of the present invention.
And an explanatory view showing a deformation mode of the side member at the time of an oblique frontal collision (b).

【図10】本発明の第1実施形態におけるサイドメンバ
の正面衝突および斜め前面衝突時のエネルギー吸収量と
時間の関係を従来(a)と本実施形態(b)で比較した
グラフ。
FIG. 10 is a graph comparing the relationship between the energy absorption amount and time at the time of a frontal collision and a diagonal frontal collision of the side member in the first embodiment of the present invention between the conventional (a) and the present embodiment (b).

【図11】本発明の第2実施形態におけるサイドメンバ
前方領域の拡大断面図。
FIG. 11 is an enlarged cross-sectional view of a side member front region in the second embodiment of the invention.

【図12】本発明の第3実施形態における車体前部右側
の骨格構造を示す略示的平面説明図。
FIG. 12 is a schematic plan view showing the skeleton structure on the right side of the front part of the vehicle body in the third embodiment of the invention.

【図13】本発明の第3実施形態におけるサイドメンバ
前方領域の斜視図。
FIG. 13 is a perspective view of a side member front region according to a third embodiment of the present invention.

【図14】本発明の第4実施形態におけるサイドメンバ
前方領域の斜視図。
FIG. 14 is a perspective view of a side member front region in the fourth embodiment of the present invention.

【図15】図14中B−B線に沿った拡大断面図。FIG. 15 is an enlarged cross-sectional view taken along the line BB in FIG.

【図16】本発明の第4実施形態における強度調整手段
の概念を示す応力分布図。
FIG. 16 is a stress distribution diagram showing the concept of strength adjusting means in the fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 車体 F・C フロントコンパートメント 11 サイドメンバ 11F サイドメンバ前方領域 11R 補強部分 30 パワーユニット(車両ユニット部品) 50 サイドメンバ板厚変化構造(強度調整手段) 51a,51b,51c…51f 板材 52 複合パネル材 60 仕切り板厚変化構造(強度調整手段) 61a,61b…61e 仕切り板 70 断面寸法変化構造(強度調整手段) Ia,Ib…Ie 仮想断面 10 car body FC front compartment 11 side members 11F Side member front area 11R reinforcement part 30 power units (vehicle unit parts) 50 Side member thickness change structure (strength adjusting means) 51a, 51b, 51c ... 51f Plate material 52 Composite panel material 60 Partition plate thickness change structure (strength adjusting means) 61a, 61b ... 61e Partition plate 70 Cross-sectional dimension change structure (strength adjusting means) Ia, Ib ... Ie virtual cross section

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 フロントコンパートメントの左右両側部
に車体前後方向に配設したサイドメンバに車両ユニット
部品を搭載するための補強部分を設けた車体前部構造に
おいて、 前記サイドメンバの前記補強部分から前方となるサイド
メンバ前方領域に、長手方向に連なる仮想断面の前部と
後部に発生する最大応力が、前部が後部以上、若しくは
これに近い状態の強度となるような強度調整手段を設け
たことを特徴とする車体前部構造。
1. A vehicle body front structure comprising reinforcing members for mounting vehicle unit parts on side members arranged in front and rear directions of a vehicle body on both left and right sides of a front compartment, the front portion of the side member being reinforced. In the front region of the side member, the strength adjusting means is provided so that the maximum stress generated in the front part and the rear part of the virtual cross section continuous in the longitudinal direction is such that the front part has a strength equal to or higher than the rear part or close to this. The front structure of the car body.
【請求項2】 強度調整手段による最大応力の上限値
を、サイドメンバを構成する素材の降伏強度を基準に設
定したことを特徴とする請求項1に記載の車体前部構
造。
2. The vehicle body front structure according to claim 1, wherein the upper limit value of the maximum stress by the strength adjusting means is set on the basis of the yield strength of the material forming the side member.
【請求項3】 強度調整手段は、前記サイドメンバ前方
領域の板厚分布を長手方向に変化させたサイドメンバ板
厚変化構造であることを特徴とする請求項1または2に
記載の車体前部構造。
3. The vehicle body front portion according to claim 1, wherein the strength adjusting means is a side member plate thickness changing structure in which the plate thickness distribution in the front region of the side member is changed in the longitudinal direction. Construction.
【請求項4】 サイドメンバ板厚変化構造は、板厚の異
なる複数の板材をそれらの板厚が段階的に変化するよう
に接合した複合パネル材を、板厚の変化方向が長手方向
となるようにして構成したことを特徴とする請求項3に
記載の車体前部構造。
4. The side member plate thickness changing structure comprises a composite panel member in which a plurality of plate members having different plate thicknesses are joined so that the plate thicknesses thereof are changed stepwise, and the plate thickness changing direction is the longitudinal direction. The vehicle body front structure according to claim 3, wherein the vehicle front structure is configured as described above.
【請求項5】 強度調整手段は、前記サイドメンバ前方
領域の閉断面内に長手方向に適宜間隔をもって複数の仕
切り板を配置し、各仕切り板の板厚をサイドメンバの長
手方向に変化させた仕切り板厚変化構造であることを特
徴とする請求項1または2に記載の車体前部構造。
5. The strength adjusting means arranges a plurality of partition plates at appropriate intervals in the longitudinal direction within the closed cross section of the front region of the side member, and changes the plate thickness of each partition plate in the longitudinal direction of the side member. The vehicle body front structure according to claim 1 or 2, which is a partition plate thickness changing structure.
【請求項6】 強度調整手段は、前記サイドメンバ前方
領域の断面寸法を長手方向に変化させた断面寸法変化構
造であることを特徴とする請求項1〜5のいずれかに記
載の車体前部構造。
6. The vehicle body front portion according to claim 1, wherein the strength adjusting means is a cross-sectional dimension change structure in which the cross-sectional dimension of the side member front region is changed in the longitudinal direction. Construction.
【請求項7】 押出し板厚や押出し断面寸法が押出し方
向に連続して変化する押出し材によりサイドメンバ前方
領域を形成して、サイドメンバ前方領域の板厚または断
面寸法を変化させ、若しくは板厚と断面寸法の両者を変
化させて強度調整手段を構成したことを特徴とする請求
項1または2に記載の車体前部構造。
7. The side member front region is formed by an extruded material whose extruded plate thickness and extruded cross-sectional dimension continuously change in the extruding direction, and the plate thickness or cross-sectional dimension of the side member front region is changed, or the plate thickness is changed. 3. The vehicle body front structure according to claim 1, wherein the strength adjusting means is configured by changing both of the cross sectional dimension and the cross sectional dimension.
【請求項8】 強度調整手段による最大応力設定は、サ
イドメンバの前端部に静的に斜め入力が作用した場合を
想定し、サイドメンバ前方領域の長手方向に連なる各仮
想断面に発生する軸力成分応力とモーメント成分応力の
両方を考慮することにより演算した値を適用することを
特徴とする請求項1〜7のいずれかに記載の車体前部構
造。
8. The maximum stress is set by the strength adjusting means on the assumption that a diagonal input is statically applied to the front end portion of the side member, and the axial force generated in each virtual cross section continuous in the longitudinal direction of the front region of the side member. The vehicle body front structure according to claim 1, wherein a value calculated by considering both the component stress and the moment component stress is applied.
【請求項9】 左右のサイドメンバのサイドメンバ前方
領域は、それぞれ車体前後方向に直状に形成して、相互
に平行に配置したことを特徴とする請求項1〜8のいず
れかに記載の車体前部構造。
9. The front region of the side member of each of the left and right side members is formed straight in the front-rear direction of the vehicle body and arranged in parallel with each other. Body front structure.
【請求項10】 左右のサイドメンバのサイドメンバ前
方領域は、それぞれ車体前方に向かって車幅方向外方に
傾斜させて形成したことを特徴とする請求項1〜8のい
ずれかに記載の車体前部構造。
10. The vehicle body according to claim 1, wherein the front regions of the left and right side members are formed so as to be inclined outward in the vehicle width direction toward the front of the vehicle body. Front structure.
JP2001347573A 2001-11-13 2001-11-13 Body front structure Expired - Fee Related JP3613229B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001347573A JP3613229B2 (en) 2001-11-13 2001-11-13 Body front structure
EP02023487.8A EP1325859B1 (en) 2001-11-13 2002-10-21 Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
US10/286,909 US6893078B2 (en) 2001-11-13 2002-11-04 Front body structure for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001347573A JP3613229B2 (en) 2001-11-13 2001-11-13 Body front structure

Publications (2)

Publication Number Publication Date
JP2003146241A true JP2003146241A (en) 2003-05-21
JP3613229B2 JP3613229B2 (en) 2005-01-26

Family

ID=19160555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001347573A Expired - Fee Related JP3613229B2 (en) 2001-11-13 2001-11-13 Body front structure

Country Status (1)

Country Link
JP (1) JP3613229B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219609A (en) * 2004-02-05 2005-08-18 Nissan Motor Co Ltd Front body structure of vehicle
EP1654149A1 (en) * 2003-08-06 2006-05-10 Copperweld Canada Inc. Vehicle frame having energy management system and method for making same
JP2007055344A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Vehicle body structure
JP2009107445A (en) * 2007-10-29 2009-05-21 Honda Motor Co Ltd Front structure of vehicle body
JP2015000682A (en) * 2013-06-17 2015-01-05 新日鐵住金株式会社 Impact absorption member
US10926807B2 (en) 2015-12-09 2021-02-23 Arcelormittal Vehicle front body structure and method for manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139242A (en) * 1991-11-19 1993-06-08 Toyota Motor Corp Body front part structure
JPH07228267A (en) * 1994-02-17 1995-08-29 Mitsubishi Motors Corp Strength member structure of car body
JPH1178977A (en) * 1997-09-02 1999-03-23 Honda Motor Co Ltd Al alloy hollow frame member for vehicle body frame
JPH11255146A (en) * 1998-03-10 1999-09-21 Nissan Motor Co Ltd Energy absorption member
JP2000053019A (en) * 1998-08-17 2000-02-22 Honda Motor Co Ltd Automobile body structure
JP2001063626A (en) * 1999-08-26 2001-03-13 Honda Motor Co Ltd Vehicular front part structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139242A (en) * 1991-11-19 1993-06-08 Toyota Motor Corp Body front part structure
JPH07228267A (en) * 1994-02-17 1995-08-29 Mitsubishi Motors Corp Strength member structure of car body
JPH1178977A (en) * 1997-09-02 1999-03-23 Honda Motor Co Ltd Al alloy hollow frame member for vehicle body frame
JPH11255146A (en) * 1998-03-10 1999-09-21 Nissan Motor Co Ltd Energy absorption member
JP2000053019A (en) * 1998-08-17 2000-02-22 Honda Motor Co Ltd Automobile body structure
JP2001063626A (en) * 1999-08-26 2001-03-13 Honda Motor Co Ltd Vehicular front part structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1654149A1 (en) * 2003-08-06 2006-05-10 Copperweld Canada Inc. Vehicle frame having energy management system and method for making same
EP1654149A4 (en) * 2003-08-06 2006-10-04 Dofasco Tubular Products Inc Vehicle frame having energy management system and method for making same
JP2005219609A (en) * 2004-02-05 2005-08-18 Nissan Motor Co Ltd Front body structure of vehicle
JP2007055344A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Vehicle body structure
JP4730020B2 (en) * 2005-08-23 2011-07-20 トヨタ自動車株式会社 Vehicle body structure
JP2009107445A (en) * 2007-10-29 2009-05-21 Honda Motor Co Ltd Front structure of vehicle body
JP2015000682A (en) * 2013-06-17 2015-01-05 新日鐵住金株式会社 Impact absorption member
US10926807B2 (en) 2015-12-09 2021-02-23 Arcelormittal Vehicle front body structure and method for manufacturing thereof

Also Published As

Publication number Publication date
JP3613229B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
EP1325859B1 (en) Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
JP4122887B2 (en) Body front structure
JP5967292B2 (en) Vehicle front structure
JP5698340B2 (en) Car body rear structure
JP5975168B2 (en) Vehicle front structure
JP3659218B2 (en) Body front structure
JP2003226266A (en) Front structure of vehicle body
JP2001253365A (en) Front body structure of automobile
JPWO2014141934A1 (en) Vehicle front structure
JP2001225707A (en) Shock absorbing mechanism and bumper reinforcement provided with the same
JP4715467B2 (en) Body front structure
JP2006193023A (en) Front structure of car body
JP2004075021A (en) Car body skeleton structure
JP3613229B2 (en) Body front structure
JP3632654B2 (en) Body front structure
JP2004345466A (en) Vehicle body front part skeleton structure
JP4214629B2 (en) Front body structure of the vehicle
JP3572459B2 (en) Body front structure
JP5651660B2 (en) Automotive front structure
JP5699574B2 (en) Body front structure
JP2002321657A (en) Body floor structure of automobile
JP4506695B2 (en) Body reinforcement structure
JP3591508B2 (en) Body front structure
JP2009120012A (en) Vehicle front body structure
JP7400523B2 (en) Vehicle front body structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees