JP2003170061A - Porous photocatalyst - Google Patents

Porous photocatalyst

Info

Publication number
JP2003170061A
JP2003170061A JP2001377434A JP2001377434A JP2003170061A JP 2003170061 A JP2003170061 A JP 2003170061A JP 2001377434 A JP2001377434 A JP 2001377434A JP 2001377434 A JP2001377434 A JP 2001377434A JP 2003170061 A JP2003170061 A JP 2003170061A
Authority
JP
Japan
Prior art keywords
silica gel
photocatalyst
porous
titanium oxide
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001377434A
Other languages
Japanese (ja)
Other versions
JP4848500B2 (en
Inventor
博史 ▲たお▼田
Hiroshi Taoda
Takeshi Yo
健 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIA KASEI KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DIA KASEI KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIA KASEI KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical DIA KASEI KK
Priority to JP2001377434A priority Critical patent/JP4848500B2/en
Publication of JP2003170061A publication Critical patent/JP2003170061A/en
Application granted granted Critical
Publication of JP4848500B2 publication Critical patent/JP4848500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a porous photocatalyst generating no fracture or crack even if mounted on an incinerator or a water treatment apparatus, having excellent production efficiency and economical efficiency and excellent in safety, weatherability, stability and workability. <P>SOLUTION: A silica gel is ground to obtain fine particles and a binder is added to these fine particles to form silica gel particles having a spherical, plate-like or tablet-like shape or other arbitrary shape. The porous surfaces of these particles are coated with titanium oxide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、諸種の悪臭や空気
中に漂う有害物質の除去或いは排水処理や浄水処理など
を行うための環境浄化材料として用いられている多孔質
光触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous photocatalyst used as an environmental purification material for removing various odors and harmful substances floating in the air, or for wastewater treatment and water purification treatment.

【0002】[0002]

【従来の技術】近年、 抗菌効果、 水質浄化効果、 脱臭防
臭効果、 有毒ガス除去効果、 空気清浄効果のある光触媒
製品の開発は目覚ましいものがあり、 中でもその代表的
なものとして酸化チタンを利用した製品は急増してお
り、 例示すれば建材や外壁材等の建築材料、 障子紙、 水
処理浄化システム、 塗料等に用いられるところである。
過去の文献を検索すると、 特開平6−298520号公
報には、シリカゲル表面に酸化チタン光触媒をコーティ
ングする方法、 すなわち酸化チタン微粒子をシリカゲル
コロイドに分散した後、 コロイドをゲル化し、ついで焼
成することで酸化チタン超微粒子を分散状態で含むシリ
カゲルを製造する方法を用いることで、 透明性良好な酸
化チタン超微粒子分散シリカゲルを、 容易に入手可能な
原料を用いて簡単な操作で効率よく得られることが記載
されている。また、特願2000−388108号に
は、光触媒コーティングするときに、 シリカゲルを光触
媒ゾル中にディップコーティングが、 急激な水分吸収に
よるシリカゲルの膨張と熱吸着による発熱が発生し、 割
れが生じることを防止する新しい手法が記載されてい
る。
2. Description of the Related Art In recent years, photocatalyst products with antibacterial effect, water purification effect, deodorizing and deodorizing effect, toxic gas removing effect, and air purifying effect have been remarkably developed. Among them, titanium oxide is used as a representative one. The number of products is increasing rapidly, and for example, it is used for building materials such as building materials and outer wall materials, shoji paper, water treatment purification systems, and paints.
A search of past documents reveals that, in Japanese Patent Laid-Open No. 6-298520, a method of coating a titanium oxide photocatalyst on the surface of silica gel, that is, by dispersing fine particles of titanium oxide in a silica gel colloid, gelating the colloid, and then firing it. By using a method for producing silica gel containing titanium oxide ultrafine particles in a dispersed state, it is possible to efficiently obtain titanium oxide ultrafine particle-dispersed silica gel with good transparency by a simple operation using easily available raw materials. Have been described. Also, in Japanese Patent Application No. 2000-388108, when photocatalyst coating, silica gel is dip-coated in a photocatalyst sol to prevent cracking due to expansion of silica gel due to rapid water absorption and heat generation due to heat adsorption. A new method to do is described.

【0003】上記方法は、多孔質光触媒の製造方法につ
いては、ほぼ充分な解決方法が確立しか。しかし、使用
する条件が水処理に利用する時には、急激な水分吸収に
よる割れが発生する。 また、焼却炉による有害物質処理
時においても、 水分を多く含んだ煙を処理する必要があ
る。これらの利用環境を考慮すると、 いくら製造時の割
れを防止する画期的な手法を開発しても、 充分とは言い
にくい。 実際に、 焼却炉へ従来の合成法により得られた
光触媒コートシリカゲルを装填し、 運転を開始すると、
時間の経過とともに排ガスの流れが滞り、 背圧が徐々に
上昇していく事がわかった。 これは、水分を大量に含ん
だ排ガスが多孔質光触媒へ流れ込み、 多孔質光触媒を細
かく破壊し、 フィルターの目づまりを起こしたものであ
った。これから理解されるように、 水分による割れ、 亀
裂の防止は必須条件であることがわかる。更に油(ター
ル等)、 有害物質の細孔への吸着においても、 耐熱性を
併せ持った多孔質光触媒であれば熱処理により分解再生
できる。従来の例えば、 シリカゲルを200゜C以上で
熱処理すると、 吸着性能が極端に落ちてしまう。 このよ
うな欠点を克服する必要もある。
With respect to the method for producing a porous photocatalyst, the above method can only be established as a sufficiently satisfactory solution. However, when the condition for use is for water treatment, cracking occurs due to rapid water absorption. Also, when treating harmful substances in an incinerator, it is necessary to treat smoke containing a lot of water. Considering these usage environments, it is not enough to develop an innovative method to prevent cracking during manufacturing. Actually, when the photocatalyst-coated silica gel obtained by the conventional synthesis method was loaded into the incinerator and the operation was started,
It was found that the flow of exhaust gas stagnated and the back pressure gradually increased with the passage of time. This was because the exhaust gas containing a large amount of water flowed into the porous photocatalyst, which finely destroyed the porous photocatalyst and caused clogging of the filter. As will be understood from this, it can be seen that the prevention of cracking and cracking due to moisture is an essential condition. Furthermore, even in the adsorption of oil (tar etc.) and harmful substances to the pores, a porous photocatalyst that also has heat resistance can be decomposed and regenerated by heat treatment. For example, when heat-treating silica gel at 200 ° C or higher, the adsorption performance is extremely deteriorated. There is also a need to overcome such drawbacks.

【0004】[0004]

【発明が解決しようとする課題】本発明に係る多孔質光
触媒は、上記従来の欠陥に鑑み鋭意研究の結果開発され
たものであって、これらの欠点を完全に解決できる多孔
質光触媒を提供することを目的とする。具体的には、 シ
リカゲルを粉砕しバインダーによるシリカゲル体に酸化
チタン光触媒をコーティングし多孔質光触媒ゲルを提供
とすることを目的とするものである。
The porous photocatalyst according to the present invention was developed as a result of earnest research in view of the above-mentioned conventional defects, and provides a porous photocatalyst capable of completely solving these defects. The purpose is to Specifically, the objective is to provide a porous photocatalytic gel by pulverizing silica gel and coating the silica gel body with a binder with a titanium oxide photocatalyst.

【0005】[0005]

【課題を解決するための手段】光触媒多孔質体の合成方
法として、 酸化チタンを造粒することによってつくろう
とする方法と、シリカゲル等の多孔質原料の表面を光触
媒化しようとする2つの方法があげられる。しかし、い
ずれの方法も上記課題を解決するためにの完全な手法を
得るに至ってない。本発明者等は、研究改良を重ね検討
した結果、 本発明をなすに至ったもので、 即ち、 本発明
は、 シリカゲルとバインダーを出発原料として、表面に
酸化チタンをコーティングした多孔質光触媒を特徴と
し、 また、細孔の孔径を1〜100nmの範囲で任意の
大きさに調整してなる孔径のそろった細孔を有する酸化
チタン薄膜で被覆した多孔質光触媒を特徴とし、 また、
酸化チタン多孔質薄膜の結晶形がアナターゼである多孔
質光触媒を特徴とし、またシリカゲル体を構成する粉砕
微粒子として、 上記シリカゲルに活性アルミナ等の無機
質材料を混ぜた多孔質光触媒を特徴とするものである。
As a method for synthesizing a photocatalyst porous body, there are two methods: a method of granulating titanium oxide and a method of photocatalyzing the surface of a porous raw material such as silica gel. can give. However, none of the methods has obtained a complete method for solving the above problems. The inventors of the present invention have achieved the present invention as a result of repeated research and improvement. That is, the present invention is characterized by a porous photocatalyst whose surface is coated with titanium oxide using silica gel and a binder as starting materials. In addition, a porous photocatalyst coated with a titanium oxide thin film having pores with uniform pore diameters, which is obtained by adjusting the pore diameter of the pores to any size in the range of 1 to 100 nm,
Characterized by a porous photocatalyst in which the crystalline form of the titanium oxide porous thin film is anatase, and also as a crushed fine particle constituting a silica gel body, characterized by a porous photocatalyst in which an inorganic material such as activated alumina is mixed with the above silica gel. is there.

【0006】本発明は、 従来のシリカゲル製造方法とは
異なり、 従来の製造方法にて得られたシリカゲルを微粒
子とし、 バインダーとともに造粒化し熱処理を施す事に
より、 水分と熱に耐性のある粒子を得る事ができる。 ま
た、 本発明は、A型シリカゲル、 B型シリカゲルをとわ
ず実施可能である。 そして、 これにより得られた多孔質
粒子を光触媒溶液に浸漬するか、またはスプレーして酸
化チタンをコーティングし、乾燥せしめ多孔質光触媒と
する。これにより、 耐水性の良好な光触媒多孔質体を得
る事ができる。本発明に用いられる光触媒溶液について
は特に制限はないが、 例えば、 チタニアアルコキシド、
ハロゲン化チタン、 金属チタンから調整する。また、市
販の光触媒ゾルを利用するなど公知のものの中から任意
に選んで使用する事ができる。
The present invention differs from the conventional silica gel manufacturing method in that the silica gel obtained by the conventional manufacturing method is made into fine particles, granulated with a binder and subjected to heat treatment to obtain particles resistant to moisture and heat. You can get it. Further, the present invention can be carried out regardless of A-type silica gel and B-type silica gel. Then, the porous particles thus obtained are immersed in a photocatalyst solution or sprayed to coat titanium oxide and dried to obtain a porous photocatalyst. This makes it possible to obtain a photocatalytic porous material having good water resistance. There is no particular limitation on the photocatalyst solution used in the present invention, but for example, titania alkoxide,
Adjust from titanium halide or titanium metal. In addition, a commercially available photocatalyst sol can be used by arbitrarily selecting it from known ones.

【0007】[0007]

【実施例】以下に本発明に係る多孔質光触媒に関する実
施の一例について詳述する。 シリカゲル体の調整方法1 B型シリカゲルをポットミルを使って10μm程度に粉
砕する。充分に乾燥させた粉砕シリカゲルに10重量%
バインダーを入れ、 再度水分調整し粒状に成型する。成
型品を乾燥させることによりB型シリカゲルと同程度の
水分吸着性能のある粒状物を得る。 バインダー剤とし
て、無機系(モンモリロナイト等)、 有機系(ポリビニ
ルアルコール等)特に限定はないが、 光触媒としての特
性を考えた場合無機系が好ましい。 造粒方法は、 打錠機
による方法でもビルドアップによる方法でも特に限定す
るものではない。上記方法により、 どのような粒子径の
ものも任意に造ることが出来る。 シリカゲル体の調整方法2 前記シリカゲル体の調整方法1のB型シリカゲルに活性
アルミナゲルを適量混ぜ同様の操作にて、シリカゲル体
を調整した。 光触媒ゾルの調整方法 チタンテトライソプロプキシド60gを500mlの無
水エタノールで希釈し、 攪拌しながら、 ジエタノールア
ミン20gと水5gを添加し、 更に分子量1000のポ
リエチレングリコール5gを添加して透明なゾル液を調
整した。 実施例1 前記シリカゲル体の調整方法1で合成したシリカゲル体
を、 前記光触媒ゾルの調整方法で調整した光触媒溶液の
中にゲルが浸るように5分間ディッピングし引き上げ
る。 次に、 光触媒溶液をよく切り170゜Cで乾燥させ
た。更に、チタニアの結晶型をルチルからアナターゼに
すべくゲルを500゜Cで焼成させて多孔質光触媒を得
た。 実施例2 前記シリカゲル体の調整方法1で合成したシリカゲル体
を株式会社光触媒研究所製光触媒ゾルAT−01溶液の
中に浸るように5分間ディッピングし引き上げる。 次
に、 溶液をよく切り170゜Cで乾燥させた。この光触
媒ゾルAT−01はアナターゼ化されている為乾燥させ
るだけで多孔質光触媒を得た。 実施例3 前記シリカゲル体の調整方法1と同様に多孔質光触媒を
調整しスプレー法により酸化チタン膜をコーティングし
た。すなわち、 このゾル液にシリカゲル体を微細な金網
の上でゆすりながらゾル液をスプレーし、乾燥した後室
温から170゜Cまでプレヒートさせ、更に500゜C
の温度まで加熱昇温して焼成して多孔質光触媒を得た。
この操作を数回繰り返すことにより膜が厚くなり光活性
も増加する。 実施例4 前記シリカゲル体の調整方法2で合成したシリカゲル体
を、 前記光触媒ゾルの調整方法で調整した光触媒溶液の
中にゲルが浸るように5分間ディッピングし引き上げ
る。 次に、 光触媒溶液をよく切り、 170゜Cで乾燥さ
せた。更に、 チタニアの結晶型をルチルからアナターゼ
にすべくゲルを500゜Cで焼成させて多孔質光触媒を
得た。 実施例5 前記シリカゲル体の調整方法2で合成したシリカゲル体
を株式会社光触媒研究所製光触媒ゾルAT−01溶液の
中に浸るように5分間ディッピングし引き上げる。 次に
溶液をよく切り、 170゜Cで乾燥させた。この光触媒
ゾルAT−01はアナターゼ化されている為乾燥させる
だけで多孔質光触媒を得た。 実施例6 前記シリカゲル体の調整方法2と同様に多孔質光触媒を
調整しスプレー法により酸化チタン膜をコーティングし
た。すなわち、 このゾル液にシリカゲル体を微細な金網
の上でゆすりながらゾル液をスプレーし、乾燥した後室
温から170゜Cまでプレヒートさせ、更に500゜C
の温度まで加熱昇温して焼成して多孔質光触媒を得た。
この操作を数回繰り返すことにより膜が熱くなり光活性
も増加する。 比較例1 A型球状シリカゲル(JIS規格品)を株式会社光触媒
研究所製光触媒ゾルAT−01溶液の中にディップコー
ティングしたところ、 投入直後より発熱反応を伴って、
音を立てて細かく割れ微粒子となってしまった。 比較例2 B型球状シリカゲル(JIS規格品)を株式会社光触媒
研究所製光触媒ゾルAT−01溶液の中にディップコー
ティングしたところ、 投入直後より発熱反応を伴って、
音を立てて細かく割れ微粒子となってしまった。 比較例3 硫酸(20重量%)100重量部に、珪酸ソーダ(24
ボーメ)100重量部の2液を混合し反応させ水洗する
ことによりヒドロゲルを得る。 そのヒドロゲルを乾燥、
水分調整、 分級を行う。 この時の含水率を60%に調整
し、 光触媒溶液中に5分間ディッピングし引き上げる。
この光触媒を170゜Cで乾燥させ、 更に、 500゜C
で焼成させて多孔質光触媒を得た。 光触媒効果の評価方法 メチレンブルーを100ppmに調整した水溶液の中に
実施例1、2、3、4、5、6、 比較例1、2、3で得
られた多孔質光触媒をそれぞれ入れ、 ブラックライトを
24時間照射したところ、多孔質光触媒のメチレンブル
ーが消失したことを観察した。 明らかに、 実施例1、
2、3、4、5、6で合成したシリカゲル体、 比較例
1、2、3で合成した多孔質ゲルは、多孔質光触媒であ
った。しかし、形状を観察したところ、 比較例1、2、
3は、細かく割れ元の形状を保持できていない。これに
対して、 実施例1、2、3、4、5、6で得られた光触
媒ゲルは形状を保持している。
EXAMPLES An example of the implementation of the porous photocatalyst according to the present invention will be described in detail below. Preparation method of silica gel body 1 B-type silica gel is ground to about 10 μm using a pot mill. 10% by weight on fully dried ground silica gel
Add a binder, adjust the water content again, and mold into granules. By drying the molded product, a granular material having a water adsorption performance comparable to that of B-type silica gel is obtained. The binder agent is not particularly limited to an inorganic type (such as montmorillonite) and an organic type (such as polyvinyl alcohol), but an inorganic type is preferable in view of characteristics as a photocatalyst. The granulation method is not limited to a method using a tableting machine or a method using buildup. By the above method, any particle size can be produced arbitrarily. Preparation method 2 of silica gel body A silica gel body was prepared by the same operation by mixing an appropriate amount of activated alumina gel with the B-type silica gel of Preparation method 1 of the above silica gel body. Preparation method of photocatalyst sol 60 g of titanium tetraisopropoxide was diluted with 500 ml of absolute ethanol, 20 g of diethanolamine and 5 g of water were added with stirring, and 5 g of polyethylene glycol having a molecular weight of 1000 was further added to prepare a transparent sol solution. did. Example 1 The silica gel body synthesized by the preparation method 1 of the silica gel body is dipped and pulled up for 5 minutes so that the gel is immersed in the photocatalyst solution prepared by the preparation method of the photocatalyst sol. Next, the photocatalyst solution was thoroughly cut and dried at 170 ° C. Further, the gel was fired at 500 ° C. in order to change the crystal form of titania from rutile to anatase to obtain a porous photocatalyst. Example 2 The silica gel body synthesized by the preparation method 1 of the silica gel body is dipped for 5 minutes so as to be immersed in a photocatalyst sol AT-01 solution manufactured by Photocatalyst Laboratory Co., Ltd. and pulled up. The solution was then cut well and dried at 170 ° C. Since this photocatalyst sol AT-01 was anatase-ized, a porous photocatalyst was obtained only by drying. Example 3 A porous photocatalyst was prepared in the same manner as in Preparation Method 1 for the silica gel body, and a titanium oxide film was coated by a spray method. That is, the sol solution was sprayed onto the sol solution while shaking the silica gel on a fine wire net, dried and then preheated from room temperature to 170 ° C, and further 500 ° C.
Then, the temperature was raised to the above temperature and the mixture was baked to obtain a porous photocatalyst.
By repeating this operation several times, the film becomes thicker and the photoactivity also increases. Example 4 The silica gel body synthesized by the preparation method 2 of the silica gel body is dipped for 5 minutes and pulled up so that the gel is immersed in the photocatalyst solution prepared by the preparation method of the photocatalyst sol. Next, the photocatalyst solution was cut well and dried at 170 ° C. Further, the gel was calcined at 500 ° C. in order to change the crystal form of titania from rutile to anatase to obtain a porous photocatalyst. Example 5 The silica gel body synthesized by the preparation method 2 of the silica gel body is dipped for 5 minutes so as to be immersed in a photocatalyst sol AT-01 solution manufactured by Photocatalyst Laboratory Co., Ltd. and pulled up. The solution was then cut well and dried at 170 ° C. Since this photocatalyst sol AT-01 was anatase-ized, a porous photocatalyst was obtained only by drying. Example 6 A porous photocatalyst was prepared in the same manner as in the preparation method 2 for the silica gel body, and a titanium oxide film was coated by a spray method. That is, the sol solution was sprayed onto the sol solution while shaking the silica gel on a fine wire net, dried and then preheated from room temperature to 170 ° C, and further 500 ° C.
Then, the temperature was raised to the above temperature and the mixture was baked to obtain a porous photocatalyst.
By repeating this operation several times, the film becomes hot and the photoactivity also increases. Comparative Example 1 A type spherical silica gel (JIS standard product) was dip-coated in a photocatalyst sol AT-01 solution manufactured by Photocatalyst Laboratory Co., Ltd.
It made a sound and was broken into fine particles. Comparative Example 2 B-type spherical silica gel (JIS standard product) was dip-coated in a photocatalyst sol AT-01 solution manufactured by Photocatalysis Laboratory Inc.
It made a sound and was broken into fine particles. Comparative Example 3 To 100 parts by weight of sulfuric acid (20% by weight), sodium silicate (24
(Baume) 100 parts by weight of the two liquids are mixed, reacted and washed with water to obtain a hydrogel. Dry the hydrogel,
Adjust water content and classify. The water content at this time is adjusted to 60%, and dipping in the photocatalyst solution for 5 minutes and pulling up.
This photocatalyst is dried at 170 ° C, and then 500 ° C.
It was baked at to obtain a porous photocatalyst. Evaluation method of photocatalytic effect The porous photocatalysts obtained in Examples 1, 2, 3, 4, 5, 6 and Comparative Examples 1, 2, 3 were placed in an aqueous solution in which methylene blue was adjusted to 100 ppm, and black light was applied. After irradiation for 24 hours, it was observed that methylene blue of the porous photocatalyst disappeared. Apparently, Example 1,
The silica gel bodies synthesized in 2, 3, 4, 5, and 6 and the porous gel synthesized in Comparative Examples 1, 2, and 3 were porous photocatalysts. However, when the shape was observed, Comparative Examples 1, 2,
In No. 3, the original shape of the crack could not be finely maintained. On the other hand, the photocatalytic gels obtained in Examples 1, 2, 3, 4, 5, and 6 retain their shape.

【0008】[0008]

【発明の効果】本発明によれば、 多孔質光触媒の製造工
程中、 焼却炉、 水処理装置へ多孔質光触媒を装着中に割
れ亀裂が発生せず、 格段に優れた生産効果を備え、 経済
的に提供し得ると同時に、 安全性や耐候性、 安定性、 作
業性の面から極めて優れた特性を有した多孔質光触媒が
得られた。
EFFECTS OF THE INVENTION According to the present invention, during the process of manufacturing a porous photocatalyst, cracks and cracks do not occur during the installation of the porous photocatalyst in the incinerator and the water treatment device, and the production effect is remarkably excellent, and the economy The porous photocatalyst has excellent properties in terms of safety, weather resistance, stability, and workability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/10 301 B01J 35/10 301G C02F 1/30 C02F 1/30 1/72 101 1/72 101 A61L 9/00 C // A61L 9/00 B01D 53/36 ZABH (72)発明者 ▲たお▼田 博史 愛知県名古屋市守山区大字下志段味字穴ケ 洞2266−98 独立行政法人産業技術総合研 究所 中部産学官連携センター内 (72)発明者 楊 健 佐賀県佐賀市赤松町7番13号 エスペラン サ赤松503号 有限会社ダイヤセカイ内 Fターム(参考) 4C080 AA07 BB02 CC01 HH05 JJ04 KK08 LL03 MM02 NN06 4D037 AA11 AB02 BA16 CA11 4D048 AA22 BA03Y BA06X BA07X BA41X BB17 EA01 4D050 AA12 AB11 BB01 BC06 BC09 4G069 AA03 AA08 BA01A BA02A BA02B BA04A BA04B BA37 BA38 BA48A CA01 CA05 CA17 DA05 EC13X EC14X EC15X EC16X EC22X EC22Y FA01 FA02 FB15 FB16 FB24 FB30 FB57 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 35/10 301 B01J 35/10 301G C02F 1/30 C02F 1/30 1/72 101 1/72 101 A61L 9/00 C // A61L 9/00 B01D 53/36 ZABH (72) Inventor ▲ Tao ▼ Hiroshi Tada 2266-98 Shimoshidanji Amagake-do, Shimoshidanji, Moriyama-ku, Nagoya, Aichi Prefectural Government AIST Chubu Industry-Academia-Government Collaboration Center (72) Inventor Yang Yang 7-13 Akamatsucho, Saga City, Saga Prefecture Esperanza Akamatsu 503 F-Term (Reference) 4C080 AA07 BB02 CC01 HH05 JJ04 KK08 LL03 MM02 NN06 4D037 AA11 AB02 BA16 CA11 4D048 AA22 BA03Y BA06X BA07X BA41X BB17 EA01 4D050 AA12 AB11 BB01 BC06 BC09 4G069 AA03 AA08 BA01A BA02A BA02B BA04A BA04B BA3 7 BA38 BA48A CA01 CA05 CA17 DA05 EC13X EC14X EC15X EC16X EC22X EC22Y FA01 FA02 FB15 FB16 FB24 FB30 FB57

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカゲルを粉砕して微粒子とし、 これ
にバインダーを添加して球状、 板状、錠剤状その他任意
の形状を呈するシリカゲル体の粒子の多孔質表面に酸化
チタンをコーティングしたことを特徴とする多孔質光触
媒。
1. A method in which silica gel is pulverized into fine particles, and a binder is added to the fine particles to coat the porous surface of silica gel particles having a spherical shape, a plate shape, a tablet shape, or any other shape with titanium oxide. And a porous photocatalyst.
【請求項2】 粉砕するシリカゲルの細孔の孔径を1〜
100nmの範囲で任意の大きさに調整したものを利用
し酸化チタン光触媒をコーティングしたことを特徴とす
る請求項1記載の多孔質光触媒。
2. The pore size of the silica gel to be crushed is from 1 to
The porous photocatalyst according to claim 1, wherein a titanium oxide photocatalyst is coated using a material adjusted to an arbitrary size within a range of 100 nm.
【請求項3】 酸化チタン多孔質薄膜の結晶形がアナタ
ーゼであることを特徴とする請求項1、 2記載の多孔質
光触媒。
3. The porous photocatalyst according to claim 1, wherein the crystalline form of the titanium oxide porous thin film is anatase.
【請求項4】 シリカゲル体を構成する粉砕微粒子とし
て、 請求項1のシリカゲルに活性アルミナ等の無機質材
料を混ぜた請求項1、 2、 3記載の多孔質光触媒。
4. The porous photocatalyst according to claim 1, 2, or 3, wherein the silica gel of claim 1 is mixed with an inorganic material such as activated alumina as pulverized fine particles constituting a silica gel body.
JP2001377434A 2001-12-11 2001-12-11 Porous photocatalyst Expired - Lifetime JP4848500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377434A JP4848500B2 (en) 2001-12-11 2001-12-11 Porous photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377434A JP4848500B2 (en) 2001-12-11 2001-12-11 Porous photocatalyst

Publications (2)

Publication Number Publication Date
JP2003170061A true JP2003170061A (en) 2003-06-17
JP4848500B2 JP4848500B2 (en) 2011-12-28

Family

ID=19185396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377434A Expired - Lifetime JP4848500B2 (en) 2001-12-11 2001-12-11 Porous photocatalyst

Country Status (1)

Country Link
JP (1) JP4848500B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246223A (en) * 2004-03-03 2005-09-15 Saga Prefecture Silica gel photocatalyst coated porous material and manufacturing method therefor
JP2019048753A (en) * 2017-09-12 2019-03-28 富士ゼロックス株式会社 Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure
JP2020146671A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Water purification member, hydroponic device, and water purification device
JP2020146672A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Water purification particles, hydroponic device, and water purification device
US10807058B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica-titania composite aerogel particle, photocatalyst-forming composition, and photocatalyst
US10807070B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246223A (en) * 2004-03-03 2005-09-15 Saga Prefecture Silica gel photocatalyst coated porous material and manufacturing method therefor
JP2019048753A (en) * 2017-09-12 2019-03-28 富士ゼロックス株式会社 Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure
US10807058B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica-titania composite aerogel particle, photocatalyst-forming composition, and photocatalyst
US10807070B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst
JP7003513B2 (en) 2017-09-12 2022-01-20 富士フイルムビジネスイノベーション株式会社 Silica titania composite airgel particles, method for producing silica titania composite airgel particles, photocatalyst forming composition, photocatalyst, and structure.
JP2020146671A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Water purification member, hydroponic device, and water purification device
JP2020146672A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Water purification particles, hydroponic device, and water purification device
JP7305996B2 (en) 2019-03-15 2023-07-11 富士フイルムビジネスイノベーション株式会社 Water Purification Particles, Hydroponic Cultivation Device, and Water Purification Device
JP7305995B2 (en) 2019-03-15 2023-07-11 富士フイルムビジネスイノベーション株式会社 Water purification member, hydroponic cultivation device, and water purification device

Also Published As

Publication number Publication date
JP4848500B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP2600103B2 (en) Photocatalytic filter and method for producing the same
JP2001269573A (en) Photocatalyst particles, method for manufacturing the same and use of photocatalyst particles
JPH08196903A (en) Porous photocatalyst and manufacture thereof
JP3976851B2 (en) Method for producing titanium dioxide fine particles, method for producing photocatalyst powder for NOX purification, method for producing paint, method for producing building material
CN110283503A (en) A kind of highway barrier coating and preparation method thereof of effective purification vehicle exhaust
JP2003170061A (en) Porous photocatalyst
JPH08266897A (en) Fixed photocatalyst and its production
JPH09276706A (en) Photocatalyst particle and its production
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP3978636B2 (en) Coating composition for photocatalyst film formation
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
CN111153658A (en) Diatom ooze for catalytically degrading formaldehyde by using visible light and preparation method thereof
JP3992129B2 (en) Method for producing porous photocatalyst
JP2017104809A (en) Method for producing photocatalyst-silica composite molding
JP4580197B2 (en) Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP2005263610A (en) Titanium oxide-coated activated carbon
JP6082895B1 (en) Solid photocatalyst material comprising solid material composed only of titanium dioxide having photocatalytic function, and method for producing the same
JPH08105178A (en) Tile having light catalytic function
JP6067899B2 (en) Interior composite film formed on the inner surface of a kitchen, bathroom, and toilet containing anatase-type titanium oxide
JP2004130156A (en) Photocatalyst carrying granule and its manufacturing method
CN109012650A (en) A kind of preparation method of rare earth porcelain grit scavenging material
JP2005343725A (en) Production method of porous sintered compact
JPH10337478A (en) Titanium oxide sol for photocatalyst, production and utilization of photocatalytic polyfunctional member
JPH10323568A (en) Porous gel photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080605

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4848500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term