JP2003170061A - Porous photocatalyst - Google Patents
Porous photocatalystInfo
- Publication number
- JP2003170061A JP2003170061A JP2001377434A JP2001377434A JP2003170061A JP 2003170061 A JP2003170061 A JP 2003170061A JP 2001377434 A JP2001377434 A JP 2001377434A JP 2001377434 A JP2001377434 A JP 2001377434A JP 2003170061 A JP2003170061 A JP 2003170061A
- Authority
- JP
- Japan
- Prior art keywords
- silica gel
- photocatalyst
- porous
- titanium oxide
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 64
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000000741 silica gel Substances 0.000 claims abstract description 48
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 48
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000010419 fine particle Substances 0.000 claims abstract description 10
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 18
- 239000011148 porous material Substances 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 239000011147 inorganic material Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 17
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 239000000243 solution Substances 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 12
- 239000000499 gel Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000001699 photocatalysis Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- -1 titania alkoxide Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101100321669 Fagopyrum esculentum FA02 gene Proteins 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、諸種の悪臭や空気
中に漂う有害物質の除去或いは排水処理や浄水処理など
を行うための環境浄化材料として用いられている多孔質
光触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous photocatalyst used as an environmental purification material for removing various odors and harmful substances floating in the air, or for wastewater treatment and water purification treatment.
【0002】[0002]
【従来の技術】近年、 抗菌効果、 水質浄化効果、 脱臭防
臭効果、 有毒ガス除去効果、 空気清浄効果のある光触媒
製品の開発は目覚ましいものがあり、 中でもその代表的
なものとして酸化チタンを利用した製品は急増してお
り、 例示すれば建材や外壁材等の建築材料、 障子紙、 水
処理浄化システム、 塗料等に用いられるところである。
過去の文献を検索すると、 特開平6−298520号公
報には、シリカゲル表面に酸化チタン光触媒をコーティ
ングする方法、 すなわち酸化チタン微粒子をシリカゲル
コロイドに分散した後、 コロイドをゲル化し、ついで焼
成することで酸化チタン超微粒子を分散状態で含むシリ
カゲルを製造する方法を用いることで、 透明性良好な酸
化チタン超微粒子分散シリカゲルを、 容易に入手可能な
原料を用いて簡単な操作で効率よく得られることが記載
されている。また、特願2000−388108号に
は、光触媒コーティングするときに、 シリカゲルを光触
媒ゾル中にディップコーティングが、 急激な水分吸収に
よるシリカゲルの膨張と熱吸着による発熱が発生し、 割
れが生じることを防止する新しい手法が記載されてい
る。2. Description of the Related Art In recent years, photocatalyst products with antibacterial effect, water purification effect, deodorizing and deodorizing effect, toxic gas removing effect, and air purifying effect have been remarkably developed. Among them, titanium oxide is used as a representative one. The number of products is increasing rapidly, and for example, it is used for building materials such as building materials and outer wall materials, shoji paper, water treatment purification systems, and paints.
A search of past documents reveals that, in Japanese Patent Laid-Open No. 6-298520, a method of coating a titanium oxide photocatalyst on the surface of silica gel, that is, by dispersing fine particles of titanium oxide in a silica gel colloid, gelating the colloid, and then firing it. By using a method for producing silica gel containing titanium oxide ultrafine particles in a dispersed state, it is possible to efficiently obtain titanium oxide ultrafine particle-dispersed silica gel with good transparency by a simple operation using easily available raw materials. Have been described. Also, in Japanese Patent Application No. 2000-388108, when photocatalyst coating, silica gel is dip-coated in a photocatalyst sol to prevent cracking due to expansion of silica gel due to rapid water absorption and heat generation due to heat adsorption. A new method to do is described.
【0003】上記方法は、多孔質光触媒の製造方法につ
いては、ほぼ充分な解決方法が確立しか。しかし、使用
する条件が水処理に利用する時には、急激な水分吸収に
よる割れが発生する。 また、焼却炉による有害物質処理
時においても、 水分を多く含んだ煙を処理する必要があ
る。これらの利用環境を考慮すると、 いくら製造時の割
れを防止する画期的な手法を開発しても、 充分とは言い
にくい。 実際に、 焼却炉へ従来の合成法により得られた
光触媒コートシリカゲルを装填し、 運転を開始すると、
時間の経過とともに排ガスの流れが滞り、 背圧が徐々に
上昇していく事がわかった。 これは、水分を大量に含ん
だ排ガスが多孔質光触媒へ流れ込み、 多孔質光触媒を細
かく破壊し、 フィルターの目づまりを起こしたものであ
った。これから理解されるように、 水分による割れ、 亀
裂の防止は必須条件であることがわかる。更に油(ター
ル等)、 有害物質の細孔への吸着においても、 耐熱性を
併せ持った多孔質光触媒であれば熱処理により分解再生
できる。従来の例えば、 シリカゲルを200゜C以上で
熱処理すると、 吸着性能が極端に落ちてしまう。 このよ
うな欠点を克服する必要もある。With respect to the method for producing a porous photocatalyst, the above method can only be established as a sufficiently satisfactory solution. However, when the condition for use is for water treatment, cracking occurs due to rapid water absorption. Also, when treating harmful substances in an incinerator, it is necessary to treat smoke containing a lot of water. Considering these usage environments, it is not enough to develop an innovative method to prevent cracking during manufacturing. Actually, when the photocatalyst-coated silica gel obtained by the conventional synthesis method was loaded into the incinerator and the operation was started,
It was found that the flow of exhaust gas stagnated and the back pressure gradually increased with the passage of time. This was because the exhaust gas containing a large amount of water flowed into the porous photocatalyst, which finely destroyed the porous photocatalyst and caused clogging of the filter. As will be understood from this, it can be seen that the prevention of cracking and cracking due to moisture is an essential condition. Furthermore, even in the adsorption of oil (tar etc.) and harmful substances to the pores, a porous photocatalyst that also has heat resistance can be decomposed and regenerated by heat treatment. For example, when heat-treating silica gel at 200 ° C or higher, the adsorption performance is extremely deteriorated. There is also a need to overcome such drawbacks.
【0004】[0004]
【発明が解決しようとする課題】本発明に係る多孔質光
触媒は、上記従来の欠陥に鑑み鋭意研究の結果開発され
たものであって、これらの欠点を完全に解決できる多孔
質光触媒を提供することを目的とする。具体的には、 シ
リカゲルを粉砕しバインダーによるシリカゲル体に酸化
チタン光触媒をコーティングし多孔質光触媒ゲルを提供
とすることを目的とするものである。The porous photocatalyst according to the present invention was developed as a result of earnest research in view of the above-mentioned conventional defects, and provides a porous photocatalyst capable of completely solving these defects. The purpose is to Specifically, the objective is to provide a porous photocatalytic gel by pulverizing silica gel and coating the silica gel body with a binder with a titanium oxide photocatalyst.
【0005】[0005]
【課題を解決するための手段】光触媒多孔質体の合成方
法として、 酸化チタンを造粒することによってつくろう
とする方法と、シリカゲル等の多孔質原料の表面を光触
媒化しようとする2つの方法があげられる。しかし、い
ずれの方法も上記課題を解決するためにの完全な手法を
得るに至ってない。本発明者等は、研究改良を重ね検討
した結果、 本発明をなすに至ったもので、 即ち、 本発明
は、 シリカゲルとバインダーを出発原料として、表面に
酸化チタンをコーティングした多孔質光触媒を特徴と
し、 また、細孔の孔径を1〜100nmの範囲で任意の
大きさに調整してなる孔径のそろった細孔を有する酸化
チタン薄膜で被覆した多孔質光触媒を特徴とし、 また、
酸化チタン多孔質薄膜の結晶形がアナターゼである多孔
質光触媒を特徴とし、またシリカゲル体を構成する粉砕
微粒子として、 上記シリカゲルに活性アルミナ等の無機
質材料を混ぜた多孔質光触媒を特徴とするものである。As a method for synthesizing a photocatalyst porous body, there are two methods: a method of granulating titanium oxide and a method of photocatalyzing the surface of a porous raw material such as silica gel. can give. However, none of the methods has obtained a complete method for solving the above problems. The inventors of the present invention have achieved the present invention as a result of repeated research and improvement. That is, the present invention is characterized by a porous photocatalyst whose surface is coated with titanium oxide using silica gel and a binder as starting materials. In addition, a porous photocatalyst coated with a titanium oxide thin film having pores with uniform pore diameters, which is obtained by adjusting the pore diameter of the pores to any size in the range of 1 to 100 nm,
Characterized by a porous photocatalyst in which the crystalline form of the titanium oxide porous thin film is anatase, and also as a crushed fine particle constituting a silica gel body, characterized by a porous photocatalyst in which an inorganic material such as activated alumina is mixed with the above silica gel. is there.
【0006】本発明は、 従来のシリカゲル製造方法とは
異なり、 従来の製造方法にて得られたシリカゲルを微粒
子とし、 バインダーとともに造粒化し熱処理を施す事に
より、 水分と熱に耐性のある粒子を得る事ができる。 ま
た、 本発明は、A型シリカゲル、 B型シリカゲルをとわ
ず実施可能である。 そして、 これにより得られた多孔質
粒子を光触媒溶液に浸漬するか、またはスプレーして酸
化チタンをコーティングし、乾燥せしめ多孔質光触媒と
する。これにより、 耐水性の良好な光触媒多孔質体を得
る事ができる。本発明に用いられる光触媒溶液について
は特に制限はないが、 例えば、 チタニアアルコキシド、
ハロゲン化チタン、 金属チタンから調整する。また、市
販の光触媒ゾルを利用するなど公知のものの中から任意
に選んで使用する事ができる。The present invention differs from the conventional silica gel manufacturing method in that the silica gel obtained by the conventional manufacturing method is made into fine particles, granulated with a binder and subjected to heat treatment to obtain particles resistant to moisture and heat. You can get it. Further, the present invention can be carried out regardless of A-type silica gel and B-type silica gel. Then, the porous particles thus obtained are immersed in a photocatalyst solution or sprayed to coat titanium oxide and dried to obtain a porous photocatalyst. This makes it possible to obtain a photocatalytic porous material having good water resistance. There is no particular limitation on the photocatalyst solution used in the present invention, but for example, titania alkoxide,
Adjust from titanium halide or titanium metal. In addition, a commercially available photocatalyst sol can be used by arbitrarily selecting it from known ones.
【0007】[0007]
【実施例】以下に本発明に係る多孔質光触媒に関する実
施の一例について詳述する。
シリカゲル体の調整方法1
B型シリカゲルをポットミルを使って10μm程度に粉
砕する。充分に乾燥させた粉砕シリカゲルに10重量%
バインダーを入れ、 再度水分調整し粒状に成型する。成
型品を乾燥させることによりB型シリカゲルと同程度の
水分吸着性能のある粒状物を得る。 バインダー剤とし
て、無機系(モンモリロナイト等)、 有機系(ポリビニ
ルアルコール等)特に限定はないが、 光触媒としての特
性を考えた場合無機系が好ましい。 造粒方法は、 打錠機
による方法でもビルドアップによる方法でも特に限定す
るものではない。上記方法により、 どのような粒子径の
ものも任意に造ることが出来る。
シリカゲル体の調整方法2
前記シリカゲル体の調整方法1のB型シリカゲルに活性
アルミナゲルを適量混ぜ同様の操作にて、シリカゲル体
を調整した。
光触媒ゾルの調整方法
チタンテトライソプロプキシド60gを500mlの無
水エタノールで希釈し、 攪拌しながら、 ジエタノールア
ミン20gと水5gを添加し、 更に分子量1000のポ
リエチレングリコール5gを添加して透明なゾル液を調
整した。
実施例1
前記シリカゲル体の調整方法1で合成したシリカゲル体
を、 前記光触媒ゾルの調整方法で調整した光触媒溶液の
中にゲルが浸るように5分間ディッピングし引き上げ
る。 次に、 光触媒溶液をよく切り170゜Cで乾燥させ
た。更に、チタニアの結晶型をルチルからアナターゼに
すべくゲルを500゜Cで焼成させて多孔質光触媒を得
た。
実施例2
前記シリカゲル体の調整方法1で合成したシリカゲル体
を株式会社光触媒研究所製光触媒ゾルAT−01溶液の
中に浸るように5分間ディッピングし引き上げる。 次
に、 溶液をよく切り170゜Cで乾燥させた。この光触
媒ゾルAT−01はアナターゼ化されている為乾燥させ
るだけで多孔質光触媒を得た。
実施例3
前記シリカゲル体の調整方法1と同様に多孔質光触媒を
調整しスプレー法により酸化チタン膜をコーティングし
た。すなわち、 このゾル液にシリカゲル体を微細な金網
の上でゆすりながらゾル液をスプレーし、乾燥した後室
温から170゜Cまでプレヒートさせ、更に500゜C
の温度まで加熱昇温して焼成して多孔質光触媒を得た。
この操作を数回繰り返すことにより膜が厚くなり光活性
も増加する。
実施例4
前記シリカゲル体の調整方法2で合成したシリカゲル体
を、 前記光触媒ゾルの調整方法で調整した光触媒溶液の
中にゲルが浸るように5分間ディッピングし引き上げ
る。 次に、 光触媒溶液をよく切り、 170゜Cで乾燥さ
せた。更に、 チタニアの結晶型をルチルからアナターゼ
にすべくゲルを500゜Cで焼成させて多孔質光触媒を
得た。
実施例5
前記シリカゲル体の調整方法2で合成したシリカゲル体
を株式会社光触媒研究所製光触媒ゾルAT−01溶液の
中に浸るように5分間ディッピングし引き上げる。 次に
溶液をよく切り、 170゜Cで乾燥させた。この光触媒
ゾルAT−01はアナターゼ化されている為乾燥させる
だけで多孔質光触媒を得た。
実施例6
前記シリカゲル体の調整方法2と同様に多孔質光触媒を
調整しスプレー法により酸化チタン膜をコーティングし
た。すなわち、 このゾル液にシリカゲル体を微細な金網
の上でゆすりながらゾル液をスプレーし、乾燥した後室
温から170゜Cまでプレヒートさせ、更に500゜C
の温度まで加熱昇温して焼成して多孔質光触媒を得た。
この操作を数回繰り返すことにより膜が熱くなり光活性
も増加する。
比較例1
A型球状シリカゲル(JIS規格品)を株式会社光触媒
研究所製光触媒ゾルAT−01溶液の中にディップコー
ティングしたところ、 投入直後より発熱反応を伴って、
音を立てて細かく割れ微粒子となってしまった。
比較例2
B型球状シリカゲル(JIS規格品)を株式会社光触媒
研究所製光触媒ゾルAT−01溶液の中にディップコー
ティングしたところ、 投入直後より発熱反応を伴って、
音を立てて細かく割れ微粒子となってしまった。
比較例3
硫酸(20重量%)100重量部に、珪酸ソーダ(24
ボーメ)100重量部の2液を混合し反応させ水洗する
ことによりヒドロゲルを得る。 そのヒドロゲルを乾燥、
水分調整、 分級を行う。 この時の含水率を60%に調整
し、 光触媒溶液中に5分間ディッピングし引き上げる。
この光触媒を170゜Cで乾燥させ、 更に、 500゜C
で焼成させて多孔質光触媒を得た。
光触媒効果の評価方法
メチレンブルーを100ppmに調整した水溶液の中に
実施例1、2、3、4、5、6、 比較例1、2、3で得
られた多孔質光触媒をそれぞれ入れ、 ブラックライトを
24時間照射したところ、多孔質光触媒のメチレンブル
ーが消失したことを観察した。 明らかに、 実施例1、
2、3、4、5、6で合成したシリカゲル体、 比較例
1、2、3で合成した多孔質ゲルは、多孔質光触媒であ
った。しかし、形状を観察したところ、 比較例1、2、
3は、細かく割れ元の形状を保持できていない。これに
対して、 実施例1、2、3、4、5、6で得られた光触
媒ゲルは形状を保持している。EXAMPLES An example of the implementation of the porous photocatalyst according to the present invention will be described in detail below. Preparation method of silica gel body 1 B-type silica gel is ground to about 10 μm using a pot mill. 10% by weight on fully dried ground silica gel
Add a binder, adjust the water content again, and mold into granules. By drying the molded product, a granular material having a water adsorption performance comparable to that of B-type silica gel is obtained. The binder agent is not particularly limited to an inorganic type (such as montmorillonite) and an organic type (such as polyvinyl alcohol), but an inorganic type is preferable in view of characteristics as a photocatalyst. The granulation method is not limited to a method using a tableting machine or a method using buildup. By the above method, any particle size can be produced arbitrarily. Preparation method 2 of silica gel body A silica gel body was prepared by the same operation by mixing an appropriate amount of activated alumina gel with the B-type silica gel of Preparation method 1 of the above silica gel body. Preparation method of photocatalyst sol 60 g of titanium tetraisopropoxide was diluted with 500 ml of absolute ethanol, 20 g of diethanolamine and 5 g of water were added with stirring, and 5 g of polyethylene glycol having a molecular weight of 1000 was further added to prepare a transparent sol solution. did. Example 1 The silica gel body synthesized by the preparation method 1 of the silica gel body is dipped and pulled up for 5 minutes so that the gel is immersed in the photocatalyst solution prepared by the preparation method of the photocatalyst sol. Next, the photocatalyst solution was thoroughly cut and dried at 170 ° C. Further, the gel was fired at 500 ° C. in order to change the crystal form of titania from rutile to anatase to obtain a porous photocatalyst. Example 2 The silica gel body synthesized by the preparation method 1 of the silica gel body is dipped for 5 minutes so as to be immersed in a photocatalyst sol AT-01 solution manufactured by Photocatalyst Laboratory Co., Ltd. and pulled up. The solution was then cut well and dried at 170 ° C. Since this photocatalyst sol AT-01 was anatase-ized, a porous photocatalyst was obtained only by drying. Example 3 A porous photocatalyst was prepared in the same manner as in Preparation Method 1 for the silica gel body, and a titanium oxide film was coated by a spray method. That is, the sol solution was sprayed onto the sol solution while shaking the silica gel on a fine wire net, dried and then preheated from room temperature to 170 ° C, and further 500 ° C.
Then, the temperature was raised to the above temperature and the mixture was baked to obtain a porous photocatalyst.
By repeating this operation several times, the film becomes thicker and the photoactivity also increases. Example 4 The silica gel body synthesized by the preparation method 2 of the silica gel body is dipped for 5 minutes and pulled up so that the gel is immersed in the photocatalyst solution prepared by the preparation method of the photocatalyst sol. Next, the photocatalyst solution was cut well and dried at 170 ° C. Further, the gel was calcined at 500 ° C. in order to change the crystal form of titania from rutile to anatase to obtain a porous photocatalyst. Example 5 The silica gel body synthesized by the preparation method 2 of the silica gel body is dipped for 5 minutes so as to be immersed in a photocatalyst sol AT-01 solution manufactured by Photocatalyst Laboratory Co., Ltd. and pulled up. The solution was then cut well and dried at 170 ° C. Since this photocatalyst sol AT-01 was anatase-ized, a porous photocatalyst was obtained only by drying. Example 6 A porous photocatalyst was prepared in the same manner as in the preparation method 2 for the silica gel body, and a titanium oxide film was coated by a spray method. That is, the sol solution was sprayed onto the sol solution while shaking the silica gel on a fine wire net, dried and then preheated from room temperature to 170 ° C, and further 500 ° C.
Then, the temperature was raised to the above temperature and the mixture was baked to obtain a porous photocatalyst.
By repeating this operation several times, the film becomes hot and the photoactivity also increases. Comparative Example 1 A type spherical silica gel (JIS standard product) was dip-coated in a photocatalyst sol AT-01 solution manufactured by Photocatalyst Laboratory Co., Ltd.
It made a sound and was broken into fine particles. Comparative Example 2 B-type spherical silica gel (JIS standard product) was dip-coated in a photocatalyst sol AT-01 solution manufactured by Photocatalysis Laboratory Inc.
It made a sound and was broken into fine particles. Comparative Example 3 To 100 parts by weight of sulfuric acid (20% by weight), sodium silicate (24
(Baume) 100 parts by weight of the two liquids are mixed, reacted and washed with water to obtain a hydrogel. Dry the hydrogel,
Adjust water content and classify. The water content at this time is adjusted to 60%, and dipping in the photocatalyst solution for 5 minutes and pulling up.
This photocatalyst is dried at 170 ° C, and then 500 ° C.
It was baked at to obtain a porous photocatalyst. Evaluation method of photocatalytic effect The porous photocatalysts obtained in Examples 1, 2, 3, 4, 5, 6 and Comparative Examples 1, 2, 3 were placed in an aqueous solution in which methylene blue was adjusted to 100 ppm, and black light was applied. After irradiation for 24 hours, it was observed that methylene blue of the porous photocatalyst disappeared. Apparently, Example 1,
The silica gel bodies synthesized in 2, 3, 4, 5, and 6 and the porous gel synthesized in Comparative Examples 1, 2, and 3 were porous photocatalysts. However, when the shape was observed, Comparative Examples 1, 2,
In No. 3, the original shape of the crack could not be finely maintained. On the other hand, the photocatalytic gels obtained in Examples 1, 2, 3, 4, 5, and 6 retain their shape.
【0008】[0008]
【発明の効果】本発明によれば、 多孔質光触媒の製造工
程中、 焼却炉、 水処理装置へ多孔質光触媒を装着中に割
れ亀裂が発生せず、 格段に優れた生産効果を備え、 経済
的に提供し得ると同時に、 安全性や耐候性、 安定性、 作
業性の面から極めて優れた特性を有した多孔質光触媒が
得られた。EFFECTS OF THE INVENTION According to the present invention, during the process of manufacturing a porous photocatalyst, cracks and cracks do not occur during the installation of the porous photocatalyst in the incinerator and the water treatment device, and the production effect is remarkably excellent, and the economy The porous photocatalyst has excellent properties in terms of safety, weather resistance, stability, and workability.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/10 301 B01J 35/10 301G C02F 1/30 C02F 1/30 1/72 101 1/72 101 A61L 9/00 C // A61L 9/00 B01D 53/36 ZABH (72)発明者 ▲たお▼田 博史 愛知県名古屋市守山区大字下志段味字穴ケ 洞2266−98 独立行政法人産業技術総合研 究所 中部産学官連携センター内 (72)発明者 楊 健 佐賀県佐賀市赤松町7番13号 エスペラン サ赤松503号 有限会社ダイヤセカイ内 Fターム(参考) 4C080 AA07 BB02 CC01 HH05 JJ04 KK08 LL03 MM02 NN06 4D037 AA11 AB02 BA16 CA11 4D048 AA22 BA03Y BA06X BA07X BA41X BB17 EA01 4D050 AA12 AB11 BB01 BC06 BC09 4G069 AA03 AA08 BA01A BA02A BA02B BA04A BA04B BA37 BA38 BA48A CA01 CA05 CA17 DA05 EC13X EC14X EC15X EC16X EC22X EC22Y FA01 FA02 FB15 FB16 FB24 FB30 FB57 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 35/10 301 B01J 35/10 301G C02F 1/30 C02F 1/30 1/72 101 1/72 101 A61L 9/00 C // A61L 9/00 B01D 53/36 ZABH (72) Inventor ▲ Tao ▼ Hiroshi Tada 2266-98 Shimoshidanji Amagake-do, Shimoshidanji, Moriyama-ku, Nagoya, Aichi Prefectural Government AIST Chubu Industry-Academia-Government Collaboration Center (72) Inventor Yang Yang 7-13 Akamatsucho, Saga City, Saga Prefecture Esperanza Akamatsu 503 F-Term (Reference) 4C080 AA07 BB02 CC01 HH05 JJ04 KK08 LL03 MM02 NN06 4D037 AA11 AB02 BA16 CA11 4D048 AA22 BA03Y BA06X BA07X BA41X BB17 EA01 4D050 AA12 AB11 BB01 BC06 BC09 4G069 AA03 AA08 BA01A BA02A BA02B BA04A BA04B BA3 7 BA38 BA48A CA01 CA05 CA17 DA05 EC13X EC14X EC15X EC16X EC22X EC22Y FA01 FA02 FB15 FB16 FB24 FB30 FB57
Claims (4)
にバインダーを添加して球状、 板状、錠剤状その他任意
の形状を呈するシリカゲル体の粒子の多孔質表面に酸化
チタンをコーティングしたことを特徴とする多孔質光触
媒。1. A method in which silica gel is pulverized into fine particles, and a binder is added to the fine particles to coat the porous surface of silica gel particles having a spherical shape, a plate shape, a tablet shape, or any other shape with titanium oxide. And a porous photocatalyst.
100nmの範囲で任意の大きさに調整したものを利用
し酸化チタン光触媒をコーティングしたことを特徴とす
る請求項1記載の多孔質光触媒。2. The pore size of the silica gel to be crushed is from 1 to
The porous photocatalyst according to claim 1, wherein a titanium oxide photocatalyst is coated using a material adjusted to an arbitrary size within a range of 100 nm.
ーゼであることを特徴とする請求項1、 2記載の多孔質
光触媒。3. The porous photocatalyst according to claim 1, wherein the crystalline form of the titanium oxide porous thin film is anatase.
て、 請求項1のシリカゲルに活性アルミナ等の無機質材
料を混ぜた請求項1、 2、 3記載の多孔質光触媒。4. The porous photocatalyst according to claim 1, 2, or 3, wherein the silica gel of claim 1 is mixed with an inorganic material such as activated alumina as pulverized fine particles constituting a silica gel body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001377434A JP4848500B2 (en) | 2001-12-11 | 2001-12-11 | Porous photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001377434A JP4848500B2 (en) | 2001-12-11 | 2001-12-11 | Porous photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003170061A true JP2003170061A (en) | 2003-06-17 |
JP4848500B2 JP4848500B2 (en) | 2011-12-28 |
Family
ID=19185396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001377434A Expired - Lifetime JP4848500B2 (en) | 2001-12-11 | 2001-12-11 | Porous photocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4848500B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005246223A (en) * | 2004-03-03 | 2005-09-15 | Saga Prefecture | Silica gel photocatalyst coated porous material and manufacturing method therefor |
JP2019048753A (en) * | 2017-09-12 | 2019-03-28 | 富士ゼロックス株式会社 | Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure |
JP2020146671A (en) * | 2019-03-15 | 2020-09-17 | 富士ゼロックス株式会社 | Water purification member, hydroponic device, and water purification device |
JP2020146672A (en) * | 2019-03-15 | 2020-09-17 | 富士ゼロックス株式会社 | Water purification particles, hydroponic device, and water purification device |
US10807058B2 (en) | 2017-09-12 | 2020-10-20 | Fuji Xerox Co., Ltd. | Silica-titania composite aerogel particle, photocatalyst-forming composition, and photocatalyst |
US10807070B2 (en) | 2017-09-12 | 2020-10-20 | Fuji Xerox Co., Ltd. | Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst |
-
2001
- 2001-12-11 JP JP2001377434A patent/JP4848500B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005246223A (en) * | 2004-03-03 | 2005-09-15 | Saga Prefecture | Silica gel photocatalyst coated porous material and manufacturing method therefor |
JP2019048753A (en) * | 2017-09-12 | 2019-03-28 | 富士ゼロックス株式会社 | Silica-titania composite aerogel particle, method for producing silica-titania composite aerogel particle, photocatalyst-forming composition, photocatalyst and structure |
US10807058B2 (en) | 2017-09-12 | 2020-10-20 | Fuji Xerox Co., Ltd. | Silica-titania composite aerogel particle, photocatalyst-forming composition, and photocatalyst |
US10807070B2 (en) | 2017-09-12 | 2020-10-20 | Fuji Xerox Co., Ltd. | Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst |
JP7003513B2 (en) | 2017-09-12 | 2022-01-20 | 富士フイルムビジネスイノベーション株式会社 | Silica titania composite airgel particles, method for producing silica titania composite airgel particles, photocatalyst forming composition, photocatalyst, and structure. |
JP2020146671A (en) * | 2019-03-15 | 2020-09-17 | 富士ゼロックス株式会社 | Water purification member, hydroponic device, and water purification device |
JP2020146672A (en) * | 2019-03-15 | 2020-09-17 | 富士ゼロックス株式会社 | Water purification particles, hydroponic device, and water purification device |
JP7305996B2 (en) | 2019-03-15 | 2023-07-11 | 富士フイルムビジネスイノベーション株式会社 | Water Purification Particles, Hydroponic Cultivation Device, and Water Purification Device |
JP7305995B2 (en) | 2019-03-15 | 2023-07-11 | 富士フイルムビジネスイノベーション株式会社 | Water purification member, hydroponic cultivation device, and water purification device |
Also Published As
Publication number | Publication date |
---|---|
JP4848500B2 (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2600103B2 (en) | Photocatalytic filter and method for producing the same | |
JP2001269573A (en) | Photocatalyst particles, method for manufacturing the same and use of photocatalyst particles | |
JPH08196903A (en) | Porous photocatalyst and manufacture thereof | |
JP3976851B2 (en) | Method for producing titanium dioxide fine particles, method for producing photocatalyst powder for NOX purification, method for producing paint, method for producing building material | |
CN110283503A (en) | A kind of highway barrier coating and preparation method thereof of effective purification vehicle exhaust | |
JP2003170061A (en) | Porous photocatalyst | |
JPH08266897A (en) | Fixed photocatalyst and its production | |
JPH09276706A (en) | Photocatalyst particle and its production | |
JP5544515B2 (en) | Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film | |
JP3978636B2 (en) | Coating composition for photocatalyst film formation | |
JP2005254128A (en) | Photocatalyst particle and method of immobilizing it, and photocatalytic member | |
CN111153658A (en) | Diatom ooze for catalytically degrading formaldehyde by using visible light and preparation method thereof | |
JP3992129B2 (en) | Method for producing porous photocatalyst | |
JP2017104809A (en) | Method for producing photocatalyst-silica composite molding | |
JP4580197B2 (en) | Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same | |
JP4296533B2 (en) | Titanium oxide photocatalyst with excellent nitrogen oxide removal performance | |
JP2005263610A (en) | Titanium oxide-coated activated carbon | |
JP6082895B1 (en) | Solid photocatalyst material comprising solid material composed only of titanium dioxide having photocatalytic function, and method for producing the same | |
JPH08105178A (en) | Tile having light catalytic function | |
JP6067899B2 (en) | Interior composite film formed on the inner surface of a kitchen, bathroom, and toilet containing anatase-type titanium oxide | |
JP2004130156A (en) | Photocatalyst carrying granule and its manufacturing method | |
CN109012650A (en) | A kind of preparation method of rare earth porcelain grit scavenging material | |
JP2005343725A (en) | Production method of porous sintered compact | |
JPH10337478A (en) | Titanium oxide sol for photocatalyst, production and utilization of photocatalytic polyfunctional member | |
JPH10323568A (en) | Porous gel photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080205 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080218 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080404 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080605 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20080627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110509 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4848500 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |