JP2003170050A - Exhaust gas cleaning catalyst - Google Patents

Exhaust gas cleaning catalyst

Info

Publication number
JP2003170050A
JP2003170050A JP2001376147A JP2001376147A JP2003170050A JP 2003170050 A JP2003170050 A JP 2003170050A JP 2001376147 A JP2001376147 A JP 2001376147A JP 2001376147 A JP2001376147 A JP 2001376147A JP 2003170050 A JP2003170050 A JP 2003170050A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
powder
occlusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001376147A
Other languages
Japanese (ja)
Inventor
Hiroto Hirata
裕人 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001376147A priority Critical patent/JP2003170050A/en
Publication of JP2003170050A publication Critical patent/JP2003170050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst enhanced in its cleaning capacity by further enhancing the support concentration of a carrier. <P>SOLUTION: In manufacturing the occlusion and reduction type exhaust gas cleaning catalyst by supporting an occlusion material for occluding a substance to be cleaned and a reducing catalyst for reducing and cleaning the substance to be cleaned discharged from the occlusion material on the carrier, a nitrogen oxide occluding element being the occlusion material and a noble metal being the reducing catalyst are supported on the carrier comprising manganese oxide having a hollandite type crystal structure. Typically, the nitrogen oxide occluding element is selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals and the noble metal is selected from the group consisting of Pt, Pd and Rh. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化触媒
に関し、特に内燃機関リーン運転時の酸素過剰排気ガス
中の窒素酸化物(NOx)に対する吸蔵・浄化能力を高
めた排気ガス浄化触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying catalyst having an enhanced ability to store and purify nitrogen oxides (NOx) in oxygen-excess exhaust gas during lean operation of an internal combustion engine.

【0002】[0002]

【従来の技術】排気ガス浄化触媒の性能はエンジンの設
定空燃比によって大きく左右され、希薄混合気、つまり
空燃比の大きいリーン側では燃焼後の排気ガス中の酸素
量が多くなり、酸化作用が活発に、還元作用が不活発に
なる。逆に、空燃比の小さいリッチ側では燃焼後の排気
ガス中の酸素量が少なくなり、酸化作用が不活発に、還
元作用が活発になる。
2. Description of the Related Art The performance of an exhaust gas purifying catalyst is greatly influenced by the set air-fuel ratio of the engine, and the lean air-fuel mixture, that is, the lean side where the air-fuel ratio is large, has a large amount of oxygen in the exhaust gas after combustion, resulting in oxidation. Actively, the reducing action becomes inactive. On the other hand, on the rich side where the air-fuel ratio is small, the amount of oxygen in the exhaust gas after combustion becomes small, and the oxidizing action becomes inactive and the reducing action becomes active.

【0003】近年、自動車の低燃費化の要請に応えて通
常走行時になるべく酸素過剰の混合気で燃焼させるリー
ン側での運転が行なわれており、リーン側でも十分にN
Oxを浄化できる触媒が望まれていた。
In recent years, in response to the demand for low fuel consumption of automobiles, lean side operation in which the air-fuel mixture is burned with an oxygen-rich mixture as much as possible during normal driving has been performed, and the lean side is sufficiently operated.
A catalyst that can purify Ox has been desired.

【0004】本出願人は、特開平6−31139号公報
において、酸素過剰下の排気ガス中の一酸化炭素(C
O)、炭化水素(HC)、窒素酸化物(NOx)を同時
に浄化するための排気ガス浄化触媒を提案した。これ
は、酸素過剰の排気ガスを、多孔質担体にアルカリ金属
酸化物および白金を担持させた排気ガス浄化触媒に接触
させることにより、リーン運転時に発生した上記NOx
等の浄化対象物質をアルカリ金属酸化物に吸蔵させ、リ
ッチ運転時に放出された浄化対象物質を白金により還元
浄化する吸蔵還元型触媒である。
The applicant of the present invention has disclosed in Japanese Patent Application Laid-Open No. 6-31139 that carbon monoxide (C
We have proposed an exhaust gas purification catalyst for simultaneously purifying O), hydrocarbons (HC), and nitrogen oxides (NOx). This is because the exhaust gas in excess of oxygen is brought into contact with an exhaust gas purifying catalyst in which a porous carrier carries an alkali metal oxide and platinum, whereby the above-mentioned NOx generated during lean operation.
Is a storage-reduction catalyst in which a substance to be purified such as a substance to be purified is stored in an alkali metal oxide and the substance to be purified released during rich operation is reduced and purified by platinum.

【0005】これは、それまでの汎用触媒、例えばアル
ミナ担体にパラジウム、白金、ロジウムを担持させた三
元触媒等に比べて格段に高い浄化性能を発揮できる。
[0005] This can exhibit a far higher purification performance than conventional general-purpose catalysts such as a three-way catalyst in which palladium, platinum and rhodium are supported on an alumina carrier.

【0006】しかし、環境浄化に対する社会的要請は一
層高まる趨勢にあり、浄化性能を更に高めた排気ガス浄
化触媒が求められていた。
However, the social demand for environmental purification is increasing, and there has been a demand for an exhaust gas purification catalyst having further improved purification performance.

【0007】浄化性能を向上させる大きな要因として、
吸蔵材および還元触媒を担持する担体の担持濃度の向上
が重要である。
As a major factor for improving the purification performance,
It is important to improve the supported concentration of the carrier that supports the storage material and the reduction catalyst.

【0008】この観点からは、上記提案の排気ガス浄化
触媒には限界があった。すなわち、担体として用いてい
るアルミナ、ゼオライト、ジルコニア、シリカアルミ
ナ、シリカ等の多孔質構造では、その担持能力に対して
既に担持濃度が飽和状態であり、更に担持濃度を高める
ことはできなかった。
From this viewpoint, the exhaust gas purifying catalyst proposed above has a limit. That is, in the porous structure of alumina, zeolite, zirconia, silica-alumina, silica, etc. used as a carrier, the supporting concentration was already saturated with respect to its supporting ability, and the supporting concentration could not be further increased.

【0009】[0009]

【発明が解決しようとする課題】本発明は、担体の担持
濃度を更に高めることにより浄化性能を高めた排気ガス
浄化触媒を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an exhaust gas purifying catalyst whose purifying performance is improved by further increasing the supported concentration of the carrier.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の排気ガス浄化触媒は、担体に、浄化対象物
質を吸蔵する吸蔵材と、この吸蔵材から放出された浄化
対象物質を還元浄化する還元触媒とを担持させた吸蔵還
元型の排気ガス浄化触媒において、ホーランダイト型結
晶構造を有するマンガン酸化物から成る担体に、吸蔵材
としての窒素酸化物吸蔵元素と、還元触媒としての貴金
属とを担持して成ることを特徴とする。
In order to achieve the above object, the exhaust gas purifying catalyst of the present invention has, on a carrier, an occlusion material that occludes a substance to be purified and a substance to be purified released from the substance. In an exhaust reduction type exhaust gas purification catalyst supporting a reduction catalyst for reduction and purification, a carrier made of manganese oxide having a hollandite type crystal structure, a nitrogen oxide storage element as an absorption material, and a reduction catalyst It is characterized by supporting a noble metal.

【0011】窒素酸化物吸蔵元素は、典型的にはアルカ
リ金属、アルカリ土類金属および希土類金属から成る群
から選択される。
The nitrogen oxide storage element is typically selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals.

【0012】貴金属は、典型的には、Pt、Pdおよび
Rhから成る群から選択される。
The noble metal is typically selected from the group consisting of Pt, Pd and Rh.

【0013】[0013]

【発明の実施の形態】本発明の排気ガス浄化触媒は、吸
蔵材および還元触媒の担体を、ホーランダイト(Hollan
dite)型結晶構造を有するマンガン酸化物で構成した点
に特徴がある。このホーランダイト型結晶構造は、Mn
八面体を基本単位とし、これが縦2単位×横2単位
配列して中央に細孔が形成された構造であり、担体全体
としては三次元細孔構造を備えている。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention, the storage material and the carrier for the reduction catalyst are made of hollandite.
It is characterized in that it is composed of manganese oxide having a dite) type crystal structure. This hollandite type crystal structure is Mn
O 6 octahedron is the basic unit, and this is a structure in which 2 units in the vertical direction × 2 units in the horizontal direction are arranged and a pore is formed in the center, and the entire carrier has a three-dimensional pore structure.

【0014】この三次元細孔構造は、排気ガスが担体中
に十分拡散することを可能とすると同時に、吸蔵材およ
び還元触媒を原子単位で高分散に担持して担持濃度を飛
躍的に高め、排気ガス浄化触媒としての浄化能力を格段
に向上させる。
This three-dimensional pore structure enables the exhaust gas to sufficiently diffuse in the carrier, and at the same time, the storage material and the reduction catalyst are supported in a highly dispersed manner in atomic units to dramatically increase the supported concentration, The purification ability as an exhaust gas purification catalyst is significantly improved.

【0015】従来の排気ガス浄化触媒で担体として用い
ていたアルミナ、ジルコニア、シリカアルミナ、シリカ
等、は、本発明のような三次元細孔構造を持たないた
め、「多孔質構造」とはいっても本発明による原子レベ
ルでの高分散担持に比べれば担持形態は平面的であっ
た。
Alumina, zirconia, silica-alumina, silica, etc., which have been used as carriers in conventional exhaust gas purification catalysts, do not have the three-dimensional pore structure of the present invention, and are therefore called "porous structures". Also, compared with the highly dispersed carrier at the atomic level according to the present invention, the carrier form was planar.

【0016】また、やはり従来から担体として用いられ
ていたZSM-5に代表されるゼオライトは、本発明と
同等の三次元細孔構造を有するが、骨格を形成するSi
が吸蔵元素と反応してガラス化してしまうため、吸
蔵還元型の排気ガス浄化触媒の担体として用いることは
できない。
Zeolite represented by ZSM-5, which has also been conventionally used as a carrier, has a three-dimensional pore structure equivalent to that of the present invention, but Si which forms a skeleton.
Since O 2 reacts with the storage element to become vitrified, it cannot be used as a carrier of the storage reduction type exhaust gas purification catalyst.

【0017】[0017]

【実施例】〔実施例1〕本発明により、ホーランダイト
型結晶構造を有するマンガン酸化物から成る担体に、N
Ox吸蔵材としてのバリウム(Ba)と還元触媒として
の白金(Pt)を担持した排気ガス浄化触媒を下記の手
順で作製した。
[Example 1] According to the present invention, a carrier comprising manganese oxide having a hollandite type crystal structure
An exhaust gas purification catalyst carrying barium (Ba) as an Ox storage material and platinum (Pt) as a reduction catalyst was produced by the following procedure.

【0018】<担体:ホーランダイト型マンガン酸化物
の調製>200mlのイオン交換水にKMnO11.
8gを溶解した水溶液を調製した。
<Support: Preparation of hollandite type manganese oxide> KMnO 4 11.
An aqueous solution in which 8 g was dissolved was prepared.

【0019】別に、60mlのイオン交換水にMnSO
(脱水)11.6gを溶解した水溶液を調製した。
Separately, 60 ml of ion-exchanged water was added to MnSO 4.
An aqueous solution in which 11.6 g of 4 (dehydrated) was dissolved was prepared.

【0020】上記2種の水溶液を混合した後、濃硝酸6
mlを加えた。
After mixing the above two aqueous solutions, concentrated nitric acid 6
ml was added.

【0021】得られた混合溶液を、容積300mlのオ
ートクレーブに入れて、100℃×24時間の水熱合成
を行った。
The obtained mixed solution was placed in an autoclave having a volume of 300 ml and subjected to hydrothermal synthesis at 100 ° C. for 24 hours.

【0022】水熱合成による生成物を濾過して固形分を
回収し,イオン交換水で洗浄した後、120℃で乾燥し
て、粉末サンプルを得た。
The product obtained by hydrothermal synthesis was filtered to collect solids, washed with ion-exchanged water, and dried at 120 ° C. to obtain a powder sample.

【0023】上記の手順でサンプル粉末を5バッチ調製
した。
Five batches of sample powder were prepared by the above procedure.

【0024】得られたサンプル粉末についてX線回折を
行ったところ、ホーランダイト型結晶構造を持つことが
確認された。CuKα線によるX線回折チャートの例を
図1に示す。
When the obtained sample powder was subjected to X-ray diffraction, it was confirmed to have a hollandite type crystal structure. An example of an X-ray diffraction chart using CuKα rays is shown in FIG.

【0025】また、上記サンプル粉末の比表面積は13
5m−1であった。
The specific surface area of the sample powder is 13
It was 5 m < 2 > g <-1 >.

【0026】<触媒作製:バリウム(Ba)および白金
(Pt)の担持>上記で作製したホーランダイト型マン
ガン酸化物粉末20gを水に分散させ、これに酢酸バリ
ウム8.5gを加えた後、濃縮乾固して、酢酸バリウム
担持粉末とした。
<Catalyst Preparation: Supporting Barium (Ba) and Platinum (Pt)> 20 g of the hollandite-type manganese oxide powder prepared above was dispersed in water, and 8.5 g of barium acetate was added thereto, followed by concentration. It was dried to obtain barium acetate-supported powder.

【0027】この酢酸バリウム担持粉末を550℃で2
時間焼成した。
This barium acetate-supported powder was heated at 550 ° C. for 2 hours.
Burned for hours.

【0028】炭酸アンモニウム(NHHCO)2.
1gを300gの水に溶解した水溶液に、上記焼成後の
酢酸バリウム担持粉末を分散させ、15分間攪拌した
後、吸引濾過した固形分を乾燥して、炭酸バリウム担持
粉末とした。
Ammonium carbonate (NH 4 HCO 3 ) 2.
The barium acetate-supporting powder after firing was dispersed in an aqueous solution in which 1 g was dissolved in 300 g of water, and after stirring for 15 minutes, the solid content filtered by suction was dried to obtain a barium carbonate-supporting powder.

【0029】この炭酸バリウム担持粉末を300gの水
に分散させ、これに、白金(Pt)のモル数が1.71
×10−3molとなるようにジニトロジアミン白金錯
体溶液を加え、30分間攪拌した後、濃縮乾燥して粉末
を回収した。
This barium carbonate-supporting powder was dispersed in 300 g of water, and the number of moles of platinum (Pt) was 1.71.
A dinitrodiamine platinum complex solution was added so as to have a concentration of × 10 -3 mol, the mixture was stirred for 30 minutes, and then concentrated and dried to recover a powder.

【0030】この粉末を110℃で2時間乾燥した後、
450℃で2時間焼成した。
After drying this powder at 110 ° C. for 2 hours,
It was baked at 450 ° C. for 2 hours.

【0031】これにより、ホーランダイト型マンガン酸
化物から成る担体に、NOx吸蔵材としてのバリウム
(Ba)と、還元触媒としての白金(Pt)とが担持さ
れた粉末状の排気ガス浄化触媒が得られた。
As a result, a powdery exhaust gas purifying catalyst in which barium (Ba) as a NOx storage material and platinum (Pt) as a reducing catalyst are supported on a carrier made of hollandite type manganese oxide is obtained. Was given.

【0032】得られた触媒粉末は、白金(Pt)の担持
濃度が触媒粉末1g当たり8.54×10−5mol、
バリウム(Ba)の担持濃度が触媒粉末1g当たり1.
67×10−3molである。
The obtained catalyst powder had a supported concentration of platinum (Pt) of 8.54 × 10 −5 mol per 1 g of the catalyst powder,
The supported concentration of barium (Ba) was 1.
It is 67 × 10 −3 mol.

【0033】上記触媒粉末を直径1〜3mmのペレット
に成形して、試験に供した。
The above catalyst powder was molded into pellets having a diameter of 1 to 3 mm and subjected to a test.

【0034】〔実施例2〕本発明により、ホーランダイ
ト型結晶構造を有するマンガン酸化物から成る担体に、
NOx吸蔵材としてのバリウム(K)と還元触媒として
の白金(Pt)を担持した排気ガス浄化触媒を下記の手
順で作製した。
Example 2 According to the present invention, a carrier composed of manganese oxide having a hollandite type crystal structure,
An exhaust gas purification catalyst carrying barium (K) as a NOx storage material and platinum (Pt) as a reduction catalyst was produced by the following procedure.

【0035】実施例1で作製したホーランダイト型マン
ガン酸化物粉末20gを300gの水に分散させ、これ
に、白金(Pt)のモル数が1.71×10−3mol
となるようにジニトロジアミン白金錯体溶液を加え、3
0分間攪拌した後、濃縮乾燥して粉末を回収した。
20 g of the hollandite-type manganese oxide powder prepared in Example 1 was dispersed in 300 g of water, and the number of moles of platinum (Pt) was 1.71 × 10 −3 mol.
Add the dinitrodiamine platinum complex solution so that
After stirring for 0 minutes, the powder was collected by concentration and drying.

【0036】この粉末を110℃で2時間乾燥した後、
450℃で2時間焼成して、白金(Pt)担持粉末とし
た。
After drying this powder at 110 ° C. for 2 hours,
It was baked at 450 ° C. for 2 hours to obtain a platinum (Pt) -supported powder.

【0037】上記焼成後の白金担持粉末を200mlの
水に分散させ、これに酢酸カリウム3.26gを加えた
後、濃縮乾燥して粉末を回収した。
The platinum-supported powder after firing was dispersed in 200 ml of water, 3.26 g of potassium acetate was added thereto, and the mixture was concentrated and dried to recover the powder.

【0038】この粉末を120℃で2時間乾燥した後、
550℃で2時間焼成した。
After drying this powder at 120 ° C. for 2 hours,
It was baked at 550 ° C. for 2 hours.

【0039】これにより、ホーランダイト型マンガン酸
化物から成る担体に、NOx吸蔵材としてのカリウム
(K)と、還元触媒としての白金(Pt)とが担持され
た粉末状の排気ガス浄化触媒が得られた。
As a result, a powdery exhaust gas purifying catalyst in which potassium (K) as a NOx storage material and platinum (Pt) as a reducing catalyst are supported on a carrier made of hollandite type manganese oxide is obtained. Was given.

【0040】得られた触媒粉末は、白金(Pt)の担持
濃度が触媒粉末1g当たり8.54×10−5mol、
カリウム(K)の担持濃度が触媒粉末1g当たり1.6
7×10−3molである。
The obtained catalyst powder had a supported concentration of platinum (Pt) of 8.54 × 10 −5 mol per 1 g of the catalyst powder,
The supported concentration of potassium (K) was 1.6 per 1 g of catalyst powder.
It is 7 × 10 −3 mol.

【0041】上記触媒粉末を直径1〜3mmのペレット
に成形して、試験に供した。
The above catalyst powder was molded into pellets having a diameter of 1 to 3 mm and subjected to a test.

【0042】〔比較例1〕比較のために、実施例1にお
けるホーランダイト型マンガン酸化物に代えて、従来の
γ−アルミナ(γ−Al)を担体とした用いた以
外は、実施例1と同様にして排気ガス浄化触媒を作製
し、ペレットの成形して試験に供した。
Comparative Example 1 For comparison, except that the conventional γ-alumina (γ-Al 2 O 3 ) was used as a carrier instead of the hollandite-type manganese oxide in Example 1, execution was carried out. An exhaust gas purification catalyst was produced in the same manner as in Example 1, pellets were molded and subjected to the test.

【0043】〔比較例2〕比較のために、実施例2にお
けるホーランダイト型マンガン酸化物に代えて、従来の
γ−アルミナ(γ−Al)を担体とした用いた以
外は、実施例1と同様にして排気ガス浄化触媒を作製
し、ペレットに成形して試験に供した。
[Comparative Example 2] For comparison, an experiment was conducted except that the conventional γ-alumina (γ-Al 2 O 3 ) was used as a carrier instead of the hollandite type manganese oxide in Example 2. An exhaust gas purification catalyst was produced in the same manner as in Example 1, molded into pellets, and subjected to the test.

【0044】実施例1、2および比較例1、2により作
製した触媒ペレットについて、下記条件にてモデルガス
評価試験を行った。
A model gas evaluation test was conducted on the catalyst pellets produced in Examples 1 and 2 and Comparative Examples 1 and 2 under the following conditions.

【0045】<モデルガス評価試験>触媒ペレットを反
応容器内に配置し、表1に示すモデル排気ガスをガス空
間速度100,000h−1にて導入した。
<Model Gas Evaluation Test> The catalyst pellets were placed in a reaction vessel, and the model exhaust gas shown in Table 1 was introduced at a gas space velocity of 100,000 h −1 .

【0046】触媒床温度を200〜600℃の範囲で種
々に設定し、リッチガス定常状態からリーンガス定常状
態に切り換えて、反応容器から排出されるガスのNOx
濃度が定常状態になるまでに触媒が吸蔵したNOx量
(NOx飽和吸蔵量)を測定した。
The catalyst bed temperature is variously set in the range of 200 to 600 ° C., the rich gas steady state is switched to the lean gas steady state, and NOx of the gas discharged from the reaction vessel is changed.
The amount of NOx stored by the catalyst until the concentration reached a steady state (NOx saturated storage amount) was measured.

【0047】[0047]

【表1】 [Table 1]

【0048】図2に、吸蔵材がバリウム(Ba)である
実施例1および比較例1についての測定結果を示し、図
3に、吸蔵材がカリウム(K)である実施例2および比
較例2についての測定結果を示す。
FIG. 2 shows the measurement results of Example 1 and Comparative Example 1 in which the storage material is barium (Ba), and FIG. 3 shows Example 2 and Comparative Example 2 in which the storage material is potassium (K). The measurement result of is shown.

【0049】各図から、いずれの吸蔵材を用いた場合
も、従来のようにγ−アルミナを担体とする比較例1、
2に比べて、本発明によるホーランダイト型マンガン酸
化物を担体とする実施例1、2は、NOx吸蔵量が格段
に向上していることが分かる。これは、本発明の触媒は
担体として用いたホーランダイト型マンガン酸化物の三
次元細孔が、吸蔵材としてのバリウムまたはカリウムを
原子レベルで高分散に担持し、かつ触媒中で排気ガスを
十分に拡散させるためであると考えられる。同様に、還
元触媒としての白金も三次元細孔に原子レベルで高分散
に担持されていると考えられ、NOxの吸蔵能力および
放出ガスの還元能力が向上し、高い浄化能力を備えた排
気ガス浄化触媒が得られる。
From each figure, no matter which storage material was used, Comparative Example 1 using γ-alumina as a carrier as in the conventional case,
It can be seen that the NOx storage amount is significantly improved in Examples 1 and 2 in which the hollandite-type manganese oxide according to the present invention is used as a carrier, as compared with 2. This is because three-dimensional pores of hollandite-type manganese oxide used as a carrier in the catalyst of the present invention carry barium or potassium as a storage material in a highly dispersed manner at the atomic level, and exhaust gas is sufficiently contained in the catalyst. It is thought to be for the purpose of diffusion. Similarly, it is considered that platinum as a reducing catalyst is also highly dispersed and supported on the three-dimensional pores at the atomic level, and the NOx storage capacity and the exhaust gas reduction capacity are improved, and the exhaust gas with high purification capacity is provided. A purification catalyst is obtained.

【0050】[0050]

【発明の効果】本発明によれば、担体としてホーランダ
イト型結晶構造を有するマンガン酸化物を用いたことに
より、吸蔵材および還元触媒を三次元細孔に原子レベル
で高分散に担持できるため、従来の触媒では得られなか
った高いNOx浄化能力が得られる。
According to the present invention, since the manganese oxide having a hollandite type crystal structure is used as the carrier, the occluding material and the reducing catalyst can be carried in the three-dimensional pores at a high atomic level dispersion. A high NOx purification capacity that cannot be obtained with conventional catalysts can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明によるホーランダイト型結晶構
造マンガン酸化物のX線回折チャートの一例を示すグラ
フである。
FIG. 1 is a graph showing an example of an X-ray diffraction chart of a hollandite type crystal structure manganese oxide according to the present invention.

【図2】図2は、種々の温度におけるNOx飽和吸蔵量
を、本発明によるホーランダイト型結晶構造マンガン酸
化物から成る担体にNOx吸蔵材としてのバリウム(B
a)と還元触媒としての白金(Pt)とを担持させた触
媒(実施例1)と、従来のγ−アルミナ(γ−Al
)から成る担体に同じ吸蔵材および白金を担持させた
触媒(比較例1)とについて比較して示すグラフであ
る。
FIG. 2 is a graph showing the saturated storage amount of NOx at various temperatures in a carrier made of hollandite type crystal structure manganese oxide according to the present invention as barium (B) as a NOx storage material.
a) and a catalyst supporting platinum (Pt) as a reduction catalyst (Example 1) and conventional γ-alumina (γ-Al 2 O).
3 is a graph showing comparison with a catalyst (Comparative Example 1) in which the same occlusion material and platinum are supported on a carrier composed of 3 ).

【図3】図3は、種々の温度におけるNOx飽和吸蔵量
を、本発明によるホーランダイト型結晶構造マンガン酸
化物から成る担体にNOx吸蔵材としてのカリウム
(K)と還元触媒としての白金(Pt)とを担持させた
触媒(実施例2)と、従来のγ−アルミナ(γ−Al
)から成る担体に同じ吸蔵材および白金を担持させ
た触媒(比較例2)とについて比較して示すグラフであ
る。
FIG. 3 is a graph showing the NOx saturated storage amount at various temperatures in a carrier composed of hollandite-type crystal structure manganese oxide according to the present invention, potassium (K) as a NOx storage material, and platinum (Pt) as a reduction catalyst. ) And a conventional catalyst (Example 2) and conventional γ-alumina (γ-Al 2
3 is a graph showing a comparison of a catalyst (Comparative Example 2) in which the same storage material and platinum are supported on a carrier made of O 3 ).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D048 AA06 AA13 AA18 AB05 BA01Y BA02Y BA14X BA15X BA18Y BA28X BA30X BA31X BA33Y BA41X BB01 EA04 4G069 AA03 BB02A BB02B BB04A BB04B BC01A BC03A BC03B BC08A BC13A BC13B BC38A BC62A BC62B BC71A BC72A BC75A BC75B CA02 CA03 CA08 CA09 CA13 EA02Y EB18Y EC22X EC22Y    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D048 AA06 AA13 AA18 AB05 BA01Y                       BA02Y BA14X BA15X BA18Y                       BA28X BA30X BA31X BA33Y                       BA41X BB01 EA04                 4G069 AA03 BB02A BB02B BB04A                       BB04B BC01A BC03A BC03B                       BC08A BC13A BC13B BC38A                       BC62A BC62B BC71A BC72A                       BC75A BC75B CA02 CA03                       CA08 CA09 CA13 EA02Y                       EB18Y EC22X EC22Y

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 担体に、浄化対象物質を吸蔵する吸蔵材
と、この吸蔵材から放出された浄化対象物質を還元浄化
する還元触媒とを担持させた吸蔵還元型の排気ガス浄化
触媒において、 ホーランダイト型結晶構造を有するマンガン酸化物から
成る担体に、吸蔵材としての窒素酸化物吸蔵元素と、還
元触媒としての貴金属とを担持して成ることを特徴とす
る排気ガス浄化触媒。
1. An occlusion-reduction type exhaust gas purifying catalyst in which a carrier carries an occlusion material for occlusion of a substance to be purified and a reduction catalyst for reducing and purifying the substance to be purified released from the occlusion material, An exhaust gas purifying catalyst, characterized in that a carrier made of manganese oxide having a dite-type crystal structure carries a nitrogen oxide storage element as a storage material and a noble metal as a reduction catalyst.
【請求項2】 前記窒素酸化物吸蔵元素が、アルカリ金
属、アルカリ土類金属および希土類金属から成る群から
選択されることを特徴とする請求項1記載の排気ガス浄
化触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the nitrogen oxide storage element is selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals.
【請求項3】 前記金属が、Pt、PdおよびRhから
成る群から選択されることを特徴とする請求項1または
2記載の排気ガス浄化触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the metal is selected from the group consisting of Pt, Pd and Rh.
JP2001376147A 2001-12-10 2001-12-10 Exhaust gas cleaning catalyst Pending JP2003170050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376147A JP2003170050A (en) 2001-12-10 2001-12-10 Exhaust gas cleaning catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376147A JP2003170050A (en) 2001-12-10 2001-12-10 Exhaust gas cleaning catalyst

Publications (1)

Publication Number Publication Date
JP2003170050A true JP2003170050A (en) 2003-06-17

Family

ID=19184400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376147A Pending JP2003170050A (en) 2001-12-10 2001-12-10 Exhaust gas cleaning catalyst

Country Status (1)

Country Link
JP (1) JP2003170050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525831A (en) * 2016-06-30 2019-09-12 ビーエーエスエフ コーポレーション Manganese oxide catalyst and catalytic device for removing formaldehyde and volatile organic compounds
CN112717922A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Tert-butyl alcohol pretreatment catalyst and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525831A (en) * 2016-06-30 2019-09-12 ビーエーエスエフ コーポレーション Manganese oxide catalyst and catalytic device for removing formaldehyde and volatile organic compounds
JP7173871B2 (en) 2016-06-30 2022-11-16 ビーエーエスエフ コーポレーション Manganese oxide based catalyst and catalytic device for removing formaldehyde and volatile organic compounds
CN112717922A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Tert-butyl alcohol pretreatment catalyst and preparation method and application thereof
CN112717922B (en) * 2019-10-28 2023-01-10 中国石油化工股份有限公司 Tert-butyl alcohol pretreatment catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
JP4959129B2 (en) Exhaust gas purification catalyst
EP0993861B1 (en) Catalyst for purifying exhaust gas from lean-burn engine
JP4090547B2 (en) Exhaust gas purification catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
KR20100037164A (en) Exhaust gas purifying catalyst
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JP3378096B2 (en) Exhaust gas purification catalyst
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2003170050A (en) Exhaust gas cleaning catalyst
JP2910278B2 (en) Exhaust gas purification method
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2000246107A (en) Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JPH08323205A (en) Exhaust gas purifying catalyst and its production
JP4962753B2 (en) Sulfur oxide absorber and exhaust gas purification device
JP2837864B2 (en) Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000271428A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning method
JP2001314763A (en) CARRIER FOR NOx ABSORBING AND REDUCING CATALYST AND NOx ABSORBING AND REDUCING CATALYST USING THE SAME
JP2001046835A (en) NOx ABSORBING AND CLEANING MATERIAL AND EXHAUST GAS CLEANING CATALYST USING THE SAME
JP3264696B2 (en) Exhaust gas purification catalyst and purification system using the same
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JP2000051698A (en) Exhaust emission purifying catalyst and its use
JPH11290686A (en) Exhaust gas cleaning catalyst
JPH1190229A (en) Catalyst for purifying exhaust gas